Document Type


Publication Date


Publication Title

Journal of Commutative Algebra


We give explicit formulas for the determinants of the incidence and Hessian matrices arising from the interaction between the rank 1 and rank n−1 level sets of the subspace lattice of an n-dimensional finite vector space. Our exploration is motivated by the fact that both of these matrices arise naturally in the study of the combinatorial and algebraic Lefschetz properties for the vector space lattice and the graded Artinian Gorenstein algebra associated to it, respectively.


This version of the paper was obtained from In order for the work to be deposited in, the authors must hold the rights or the work must be under Creative Commons Attribution license, Creative Commons Attribution-Noncommercial-ShareAlike license, or Create Commons Public Domain Declaration. The publisher’s final edited version of this article is available at Journal of Commutative Algebra.

Included in

Mathematics Commons