A Field Test of Tubino's (1991) Model of Alternate Bar Formation

Document Type

Article

Publication Date

1994

Publication Title

Earth Surface Processes & Landforms

DOI

10.1002/esp.3290190402

Abstract

This study investigates the fluvial dynamics of straight natural stream channels. In particular, this experimental field study quantitatively assesses a physically based non-linear mathematical theory of alternate bar formation under unsteady natural flow conditions within a straight alluvial stream. The study site is an artificially straightened section of the Embarras River located approximately 16 km south of Champaign, Illinois. Data were collected on channel form, gradient, alternate bar dimensions, bed sediment size and flow stage over a 2 year study period.

Both linear and non-linear steady flow hydrodynamic theories suggest that alternate bars are critical to the process of meander development. But these theories do not predict bar development for unsteady flow conditions, which typically occur in natural alluvial channels. Tubino (1991) suggests that bar evolution for a flood hydrograph can be divided into three parts: (1) a period of limited bar growth during the rising stage of the flood; (2) a stage of modest bar decay near the peak of the flood; and (3) a stage of non-linear bar growth during the prolonged falling stage of the flood.

Bars developed during the falling limb of a hydrograph, and exhibited sequential development rather than the uniform growth along the reach predicted by Tubino's model. As flow stage decreased, short, low, fine-grained bars were superimposed on long, high and coarser-grained bars that developed under preceding high flow stages. These results suggest that the process of bar formation in artificially straightened natural streams with heterogeneous bed material may occur under different flow conditions and in a different manner than predicted by theoretical models. Further work should focus on attempting to isolate the physical mechanisms responsible for alternate bar formation in straight natural streams with heterogeneous bed material and flashy hydrologic flow regimes.

Share

COinS