Term of Award

Spring 2019

Degree Name

Master of Science in Mathematics (M.S.)

Document Type and Release Option

Thesis (open access)

Copyright Statement / License for Reuse

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Department

Department of Mathematical Sciences

Committee Chair

Hua Wang

Committee Member 1

Colton Magnant

Committee Member 2

Daniel Gray

Abstract

We explore a relatively new concept in edge-colored graphs called conflict-free connectivity. A conflict-free path is a (edge-) colored path that has an edge with a color that appears only once. Conflict-free connectivity is the maximal number of internally disjoint conflict-free paths between all pairs of vertices in a graph. We also define the c-conflict-free-connection of a graph G. This is the maximum conflict-free connectivity of G over all c-colorings of the edges of G. In this paper we will briefly survey the works related to conflict-free connectivity. In addition, we will use the probabilistic method to achieve a bound on the c-conflict-free connection number of complete graphs.

Research Data and Supplementary Material

No

Share

COinS