Term of Award

Fall 2018

Degree Name

Master of Science in Applied Engineering (M.S.A.E.)

Document Type and Release Option

Thesis (open access)

Copyright Statement / License for Reuse

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


Department of Mechanical Engineering

Committee Chair

Valentin Soloiu

Committee Member 1

Marcel Ilie

Committee Member 2

Mosfequr Rahman


Restrictions in the allowable exhaust gas emissions of diesel engines has become a driving factor in the design, development, and implementation of internal combustion (IC) engines. A dual fuel research engine concept was developed and implemented in an indirect injected engine in order to research combustion characteristics and emissions for non-road applications. The experimental engine was operated at a constant speed and load 2400 rpm and 5.5 bar indicated mean effective pressure (IMEP). n-Butanol was port fuel injected at 10%, 20%, 30%, and 40% by mass fraction with neat ultra-low sulfur diesel (ULSD#2). Peak pressure, maximum pressure rise rates, and heat release rates all increased with the increasing concentration of n-Butanol. MPRR increased by 127% and AHRR increased by 30.5% as a result of the shorter ignition delay and combustion duration. Ignition delay and combustion duration were reduced by 3.6% and 31.6% respectively. This occurred despite the lower cetane number of n-Butanol as a result of increased mixing due to the port fuel injection of the alcohol. NOx and soot were simultaneously reduced by 21% and 80% respectively. Carbon monoxide and unburned hydrocarbons emissions were increased for the dual fuel combustion strategies due to valve overlap. Results display large emission reductions of harmful pollutants, such as NOx and soot.

OCLC Number


Research Data and Supplementary Material