Mar 25th, 3:00 PM - 3:45 PM

Where Do Students Go Wrong in Applying the Scientific Method?

Louis J. Rubbo
Coastal Carolina University, lrubbo@coastal.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/sotlcommons

Recommended Citation
Where do Students Go Wrong in Applying the Scientific Method?

Louis Rubbo, Katherine Hunt, and Christopher Moore
Department of Chemistry & Physics
Coastal Carolina University

HYPOTHETICO-DEDUCTIVE MODEL
The path to developing scientific reasoning skills may be more complicated than we originally thought.

Scientific reasoning needs to be explicit in the classroom.

Implementation strategies for teaching scientific reasoning:

Students show difficulties with scientific reasoning at all stages.
Our liberal arts physics and astronomy courses use SCALE-UP with a number of interactive activities.

Class sizes range from 24 (in physics) to 60 (in astro)
We can attempt to measure scientific reasoning using the Lawson

The LCTS measures:
- Conservation
- Proportionality
- Control of Variables
- Probability
- Correlation
- Hypothetico-deductive

Lawson, JRST 15, 11 (1978)
Multiple choice version (2000)
Content knowledge does not necessarily translate into scientific reasoning abilities

DIRECT
N = 40

TUG-K
N = 38

SPCI
N = 36

Moore & Rubbo, PRST-PER 8, 010106
Content knowledge does not necessarily translate into scientific reasoning abilities

DIRECT
N = 40

TUG-K
N = 38

SPCI
N = 36

LCTSR (Phys)
N = 41

LCTSR (Astro)
N = 21

Moore & Rubbo, PRST-PER 8, 010106
Content knowledge and scientific reasoning abilities appear to be disconnected

Content knowledge and scientific reasoning abilities appear to be disconnected

Scientific reasoning can be made explicit by using “If... and ... then” (IAT) statements

<table>
<thead>
<tr>
<th>Causal Question</th>
<th>A question that can be addressed through causal events</th>
</tr>
</thead>
<tbody>
<tr>
<td>If ...</td>
<td>a proposed explanation</td>
</tr>
<tr>
<td>and ...</td>
<td>an experiment designed to test the proposed explanation</td>
</tr>
<tr>
<td>then ...</td>
<td>a predicted outcome that would follow from performing the experiment</td>
</tr>
<tr>
<td>And/But ...</td>
<td>the actual observed results from performing the experiment</td>
</tr>
<tr>
<td>Therefore ...</td>
<td>the conclusions inferred by comparing the prediction to the observed results</td>
</tr>
</tbody>
</table>

Adopted from Lawson, The American Biology Teacher 62
Science starts with causal questions that are often derived from observations related to unexplained phenomena.
Science starts with causal questions that are often derived from observations related to unexplained phenomena.

What is Earth’s shape?
Science starts with causal questions that are often derived from observations related to unexplained phenomena.

What is Earth’s shape?
Once a causal question is asked an IAT statement guides the scientific reasoning

If

and

then
Once a causal question is asked an IAT statement guides the scientific reasoning

If

the Earth is flat

and

then
Once a causal question is asked an IAT statement guides the scientific reasoning

If the Earth is flat

and we travel in one direction for an extended amount of time

then
Once a causal question is asked an IAT statement guides the scientific reasoning.

If the Earth is flat

and we travel in one direction for an extended amount of time

then we should eventually fall off the edge of the Earth.
Once a causal question is asked an IAT statement guides the scientific reasoning

If the Earth is spherical and then
Once a causal question is asked an IAT statement guides the scientific reasoning

If the Earth is spherical and we travel in one direction for an extended amount of time then
Once a causal question is asked an IAT statement guides the scientific reasoning

If the Earth is spherical and we travel in one direction for an extended amount of time then we should arrive back at our starting point.
A conclusion is formed by comparing the predicted outcome to the observed results
A conclusion is formed by comparing the predicted outcome to the observed results.
A conclusion is formed by comparing the predicted outcome to the observed results.

The experimental evidence does not support the flat-earth model, but is consistent with the round-earth model.
Implementation is carried out through in-class group activities, laboratory exercises, and mini-essays.

Activity 2: Why do we have seasons

In the table below, propose an explanation for why we experience seasons. Also, describe an experiment that follows from your proposal and the expected results from your experiment.

Causal Question

Why do we experience seasons?

Proposed Explanation

If ...

and ...

then ...

therefore ...

Expected Result

Observed Result

Planned Test

Conclusion
Have these changes made a difference?
Have these changes made a difference?

IATs were first introduced here.

IATs were first introduced here.
Have these changes made a difference?

N = 46
Have these changes made a difference?

Fall 2010

- Concrete: Pre 15%, Post 5%
- Early Transitional: Pre 60%, Post 45%
- Late Transitional: Pre 30%, Post 30%
- Formal: Pre 0%, Post 15%

Fall 2014

- Concrete: Pre 60%, Post 30%
- Early Transitional: Pre 45%, Post 30%
- Late Transitional: Pre 30%, Post 45%
- Formal: Pre 15%, Post 0%
A cursory investigation indicates a wide range of difficulties in applying IAT statements.
A cursory investigation indicates a wide range of difficulties in applying IAT statements.
A cursory investigation indicates a wide range of difficulties in applying IAT statements.
Even students within a collaborative peer group demonstrate vastly different reasoning abilities.

Activity 10: Everyday Example of the Scientific Process

In the table below give an example of how you use evidence-based reasoning in an everyday situation. Make sure to include a detailed description of each step in the process. You can make up an observed result for the purpose of this activity.

Causal Question:
Does brushing your teeth twice a day will whiten your teeth.

Proposed Explanation:
If ... (details to be filled in)

Planned Test:
and ... (details to be filled in)

Expected Result:
then ... (details to be filled in)

Observed Result:
therefore ... (details to be filled in)

Conclusion:

Activity 10: Everyday Example of the Scientific Process

In the table below give an example of how you use evidence-based reasoning in an everyday situation. Make sure to include a detailed description of each step in the process. You can make up an observed result for the purpose of this activity.

Causal Question:
Does brushing your teeth everyday do your teeth get whiter.

Proposed Explanation:
If ... (details to be filled in)

Planned Test:
and ... (details to be filled in)

Expected Result:
then ... (details to be filled in)

Observed Result:
therefore ... (details to be filled in)

Conclusion:

A more thorough assessment of IATs employed a scientific reasoning rubric

<table>
<thead>
<tr>
<th>If ... A proposed scientific model that attempts to explain a given causal question</th>
<th>Missing</th>
<th>Insufficient</th>
<th>Needs Improvement</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>A scientific model is not established OR the proposed model is confused with a test or a predicted outcome</td>
<td>A scientific model is established but it is conflated with a test or a predicted outcome OR it does not explicitly address the causal question and it is not falsifiable</td>
<td>A scientific model is established but it does not explicitly address the causal question OR it is not falsifiable</td>
<td>A scientific model is established that explicitly addresses the causal question and is falsifiable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>and ... A test designed to examine the uniqueness of the proposed scientific model</th>
<th>Missing</th>
<th>Insufficient</th>
<th>Needs Improvement</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>A test is not described OR the test is confused with a proposed scientific model or the observed results from an experiment</td>
<td>A test is described but it is conflated with a scientific model or predicted outcome OR it does not examine the uniqueness of the proposed scientific model and it is incomplete in its description such that it could not be independently repeated</td>
<td>A test is described but it does not examine the uniqueness of the proposed scientific model OR it is ambiguous and does not logically follow from the proposed scientific model and the designed test</td>
<td>A test is described that directly examines the uniqueness of the proposed scientific model and is sufficiently detailed in its description such that it could be independently repeated</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>then ... The predicted outcome that logically follows from the proposed scientific model and performing the designed test</th>
<th>Missing</th>
<th>Insufficient</th>
<th>Needs Improvement</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>A predicted outcome is not stated OR the predicted outcome is conflated with a test, observed results, or a conclusion</td>
<td>A predicted outcome is stated but it is ambiguous OR it does not logically follow from the proposed scientific model and the designed test</td>
<td>A predicted outcome is stated but it does not logically follow from the proposed scientific model or the predicted outcome OR it is ambiguous and does not logically follow from the proposed scientific model</td>
<td>A predicted outcome is stated that is clear and logically follows from the proposed scientific model and the designed test</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>And / But ... The observed results obtained by conducting the test designed to investigate the proposed scientific model</th>
<th>Missing</th>
<th>Insufficient</th>
<th>Needs Improvement</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed results are not referenced OR are incorrect OR are confused with a predicted outcome or a conclusion</td>
<td>Observed results are referenced but they are conflated with the predicted outcome or conclusion OR they are not the outcome of the described test and are not relevant to investigating the proposed scientific model</td>
<td>Observed results are referenced but they are not the outcome of the described test OR they are not relevant to investigating the proposed scientific model and are not relevant to investigating the proposed scientific model</td>
<td>Observed results are referenced that are the outcome of the designed test and are relevant to the proposed scientific model</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therefore ... A conclusion about the proposed scientific model inferred by comparing the predicted outcome to the observed results from the designed test</th>
<th>Missing</th>
<th>Insufficient</th>
<th>Needs Improvement</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>A conclusion is not inferred OR it is confused with a predicted outcome or observed results</td>
<td>A conclusion is inferred but it is conflated with the predicted outcome or observed results OR it does not address the proposed scientific model and does not logically follow from comparing the predicted outcome with the observed results</td>
<td>A conclusion is inferred but it does not address the proposed scientific model OR it does not logically follow from comparing the predicted outcome with the observed results</td>
<td>A conclusion is inferred that addresses the proposed scientific model and is derived by logically comparing the predicted outcome with the observed results</td>
<td></td>
</tr>
</tbody>
</table>
A more thorough assessment of IATs employed a scientific reasoning rubric

<table>
<thead>
<tr>
<th>If …</th>
<th>Missing</th>
<th>Insufficient</th>
<th>Needs Improvement</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>A proposed scientific model that attempts to explain a given causal question</td>
<td>A scientific model is not established, OR the proposed model is confused with a test or a predicted outcome</td>
<td>A scientific model is established but it is conflated with a test or a predicted outcome OR it does not explicitly address the causal question and it is not falsifiable</td>
<td>A scientific model is established but it does not explicitly address the causal question OR it is not falsifiable</td>
<td>A scientific model is established that explicitly addresses the causal question and is falsifiable</td>
</tr>
</tbody>
</table>

| and … | A test designed to examine the uniqueness of the proposed scientific model | A test is not described OR the test is confused with a proposed scientific model or the observed results from an experiment | A test is described but it is conflated with a scientific model or predicted outcome OR it does not examine the uniqueness of the proposed scientific model and it is incomplete in its description such that it could not be independently repeated | A test is described that directly examines the uniqueness of the proposed scientific model and is sufficiently detailed in its description such that it could be independently repeated |

| then … | The predicted outcome that logically follows from the proposed scientific model and performing the designed test | A predicted outcome is not stated OR the predicted outcome is confused with a test, observed results, or a conclusion | A predicted outcome is stated but it is conflated with a test, the observed results, or a conclusion OR it is ambiguous and does not logically follow from the proposed scientific model and the designed test | A predicted outcome is stated that is clear and logically follows from the proposed scientific model and the designed test |

| And / But … | The observed results obtained by conducting the test designed to investigate the proposed scientific model | Observed results are not referenced OR are incorrect OR are confused with a predicted outcome or a conclusion | Observed results are referenced but they are conflated with the predicted outcome or conclusion OR they are not the outcome of the described test and are not relevant to investigating the proposed scientific model | Observed results are referenced that are the outcome of the designed test and are relevant to the proposed scientific model |

| Therefore … | A conclusion about the proposed scientific model inferred by comparing the predicted outcome to the observed results from the designed test | A conclusion is not inferred OR it is confused with a predicted outcome or observed results | A conclusion is inferred but it is conflated with the predicted outcome or observed results OR it does not address the proposed scientific model and does not logically follow from comparing the predicted outcome with the observed results | A conclusion is inferred that addresses the proposed scientific model and is derived by logically comparing the predicted outcome with the observed results |
A more thorough assessment of IATs employed a scientific reasoning rubric

<table>
<thead>
<tr>
<th>Scientific Reasoning Rubric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing</td>
</tr>
<tr>
<td>If ... A proposed scientific model that attempts to explain a given causal question</td>
</tr>
<tr>
<td>and ... A test designed to examine the uniqueness of the proposed scientific model</td>
</tr>
<tr>
<td>then ... The predicted outcome that logically follows from the proposed scientific model and performing the designed test</td>
</tr>
<tr>
<td>And / But ... The observed results obtained by conducting the test designed to investigate the proposed scientific model</td>
</tr>
<tr>
<td>Therefore ... A conclusion about the proposed scientific model inferred by comparing the predicted outcome to the observed results from the designed test</td>
</tr>
</tbody>
</table>
A more thorough assessment of IATs employed a scientific reasoning rubric

Scientific Reasoning Rubric

<table>
<thead>
<tr>
<th>If …</th>
<th>Missing</th>
<th>Insufficient</th>
<th>Needs Improvement</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>A proposed scientific model that attempts to explain a given causal question</td>
<td>A scientific model is not established OR the proposed model is confused with a test or a predicted outcome</td>
<td>A scientific model is established but it is conflated with a test or a predicted outcome OR it does not explicitly address the causal question and it is not falsifiable</td>
<td>A scientific model is established but it does not explicitly address the causal question OR it is not falsifiable</td>
<td>A scientific model is established that explicitly addresses the causal question and is falsifiable</td>
</tr>
<tr>
<td>and …</td>
<td>A test is not described OR the test is confused with a proposed scientific model or the observed results from an experiment</td>
<td>A test is described but it is conflated with a scientific model or predicted outcome OR it does not examine the uniqueness of the proposed scientific model and it is incomplete in its description such that it could not be independently repeated</td>
<td>A test is described but it does not examine the uniqueness of the proposed scientific model OR it is ambiguous OR it does not logically follow from the proposed scientific model and the designed test</td>
<td>A test is described that directly examines the uniqueness of the proposed scientific model and is sufficiently detailed in its description such that it could be independently repeated</td>
</tr>
<tr>
<td>then …</td>
<td>A predicted outcome is not stated OR the predicted outcome is confused with a test, observed results, or a conclusion</td>
<td>A predicted outcome is stated but it is conflated with a test, the observed results, or a conclusion OR it is ambiguous and does not logically follow from the proposed scientific model and the designed test</td>
<td>A predicted outcome is stated but it is ambiguous OR it does not logically follow from the proposed scientific model and the designed test</td>
<td>A predicted outcome is stated that is clear and logically follows from the proposed scientific model and the designed test</td>
</tr>
<tr>
<td>And / But …</td>
<td>Observed results are not referenced OR are incorrect OR are confused with a predicted outcome or a conclusion</td>
<td>Observed results are referenced but they are conflated with the predicted outcome or conclusion OR they are not the outcome of the described test and are not relevant to investigating the proposed scientific model</td>
<td>Observed results are referenced but they are not the outcome of the described test OR they are not relevant to investigating the proposed scientific model</td>
<td>Observed results are referenced that are the outcome of the designed test and are relevant to the proposed scientific model</td>
</tr>
<tr>
<td>Therefore …</td>
<td>A conclusion is not inferred OR it is confused with a predicted outcome or observed results</td>
<td>A conclusion is inferred but it is conflated with the predicted outcome or observed results OR it does not address the proposed scientific model and does not logically follow from comparing the predicted outcome with the observed results</td>
<td>A conclusion is inferred but it does not address the proposed scientific model OR it does not logically follow from comparing the predicted outcome with the observed results</td>
<td>A conclusion is inferred that addresses the proposed scientific model and is derived by logically comparing the predicted outcome with the observed results</td>
</tr>
</tbody>
</table>
A more thorough assessment of IATs employed a scientific reasoning rubric

Scientific Reasoning Rubric

<table>
<thead>
<tr>
<th>If …</th>
<th>Missing</th>
<th>Insufficient</th>
<th>Needs Improvement</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>A proposed scientific model that attempts to explain a given causal question</td>
<td>A scientific model is not established OR the proposed model is confused with a test or a predicted outcome</td>
<td>A scientific model is established but it is conflated with a test or a predicted outcome OR it does not explicitly address the causal question and it is not falsifiable</td>
<td>A scientific model is established but it does not explicitly address the causal question OR it is not falsifiable</td>
<td>A scientific model is established that explicitly addresses the causal question and is falsifiable</td>
</tr>
<tr>
<td>and …</td>
<td>A test is not described OR the test is confused with a proposed scientific model or the observed results from an experiment</td>
<td>A test is described but it is conflated with a scientific model or predicted outcome OR it does not examine the uniqueness of the proposed scientific model and it is incomplete in its description such that it could not be independently repeated</td>
<td>A test is described but it does not examine the uniqueness of the proposed scientific model OR it is ambiguous OR it does not logically follow from the proposed scientific model and the designed test</td>
<td>A test is described that directly examines the uniqueness of the proposed scientific model and is sufficiently detailed in its description such that it could be independently repeated</td>
</tr>
<tr>
<td>then …</td>
<td>A predicted outcome is not stated OR the predicted outcome is confused with a test, observed results, or a conclusion</td>
<td>A predicted outcome is stated but it is conflated with a test, the observed results, or a conclusion OR it is ambiguous and does not logically follow from the proposed scientific model and the designed test</td>
<td>A predicted outcome is stated but it is ambiguous OR it does not logically follow from the proposed scientific model and the designed test</td>
<td>A predicted outcome is stated that is clear and logically follows from the proposed scientific model and the designed test</td>
</tr>
<tr>
<td>And / But …</td>
<td>Observed results are not referenced OR are incorrect OR are confused with a predicted outcome or a conclusion</td>
<td>Observed results are referenced but they are conflated with the predicted outcome or conclusion OR they are not the outcome of the described test and are not relevant to investigating the proposed scientific model</td>
<td>Observed results are referenced but they are not the outcome of the described test OR they are not relevant to investigating the proposed scientific model</td>
<td>Observed results are referenced that are the outcome of the designed test and are relevant to the proposed scientific model</td>
</tr>
<tr>
<td>Therefore …</td>
<td>A conclusion is not inferred OR it is confused with a predicted outcome or observed results</td>
<td>A conclusion is inferred but it is conflated with the predicted outcome or observed results OR it does not address the proposed scientific model and does not logically follow from comparing the predicted outcome with the observed results</td>
<td>A conclusion is inferred but it does not address the proposed scientific model OR it does not logically follow from comparing the predicted outcome with the observed results</td>
<td>A conclusion is inferred that addresses the proposed scientific model and is derived by logically comparing the predicted outcome with the observed results</td>
</tr>
</tbody>
</table>
A more thorough assessment of IATs employed a scientific reasoning rubric

Scientific Reasoning Rubric

<table>
<thead>
<tr>
<th>Condition</th>
<th>Missing</th>
<th>Insufficient</th>
<th>Needs Improvement</th>
<th>Sufficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>If … A proposed scientific model that attempts to explain a given causal question</td>
<td>A scientific model is not established OR the proposed model is confused with a test or a predicted outcome</td>
<td>A scientific model is established but it is conflated with a test or a predicted outcome OR it does not explicitly address the causal question and it is not falsifiable</td>
<td>A scientific model is established but it does not explicitly address the causal question OR it is not falsifiable</td>
<td>A scientific model is established that explicitly addresses the causal question and is falsifiable</td>
</tr>
<tr>
<td>and … A test designed to examine the uniqueness of the proposed scientific model</td>
<td>A test is not described OR the test is confused with a proposed scientific model or the observed results from an experiment</td>
<td>A test is described but it is conflated with a scientific model or predicted outcome OR it does not examine the uniqueness of the proposed scientific model and it is incomplete in its description such that it could not be independently repeated</td>
<td>A test is described but it does not examine the uniqueness of the proposed scientific model OR it is conflated with a scientific model or predicted outcome OR it is not clear and logically follows from the proposed scientific model and the designed test</td>
<td>A test is described that directly examines the uniqueness of the proposed scientific model and is sufficiently detailed in its description such that it could be independently repeated</td>
</tr>
<tr>
<td>then … The predicted outcome that logically follows from the proposed scientific model and performing the designed test</td>
<td>A predicted outcome is not stated OR the predicted outcome is confused with a test, observed results, or a conclusion</td>
<td>A predicted outcome is stated but it is conflated with a test, the observed results, or a conclusion OR it is ambiguous and does not logically follow from the proposed scientific model and the designed test</td>
<td>A predicted outcome is stated but it is ambiguous OR it does not logically follow from the proposed scientific model and the designed test</td>
<td>A predicted outcome is stated that is clear and logically follows from the proposed scientific model and the designed test</td>
</tr>
<tr>
<td>And / But … The observed results obtained by conducting the test designed to investigate the proposed scientific model</td>
<td>Observed results are not referenced OR are incorrect OR are confused with a predicted outcome or a conclusion</td>
<td>Observed results are referenced but they are conflated with the predicted outcome or conclusion OR they are not the outcome of the described test and are not relevant to investigating the proposed scientific model</td>
<td>Observed results are referenced but they are not the outcome of the described test OR they are not relevant to investigating the proposed scientific model</td>
<td>Observed results are referenced that are the outcome of the designed test and are relevant to the proposed scientific model</td>
</tr>
<tr>
<td>Therefore … A conclusion about the proposed scientific model inferred by comparing the predicted outcome to the observed results</td>
<td>A conclusion is not inferred OR it is confused with a predicted outcome or observed results</td>
<td>A conclusion is inferred but it is conflated with the predicted outcome or observed results OR it does not address the proposed scientific model and does not logically follow from comparing the predicted outcome with the observed results</td>
<td>A conclusion is inferred but it does not address the proposed scientific model OR it does not logically follow from comparing the predicted outcome with the observed results</td>
<td>A conclusion is inferred that addresses the proposed scientific model and is derived by logically comparing the predicted outcome with the observed results</td>
</tr>
</tbody>
</table>
We expected to see improvement in IAT statements as the semester progressed.

<table>
<thead>
<tr>
<th>Causal Question</th>
<th>Can we improve students’ scientific reasoning abilities using IAT activities?</th>
</tr>
</thead>
<tbody>
<tr>
<td>If ...</td>
<td>IAT activities improve students’ scientific reasoning abilities</td>
</tr>
<tr>
<td>and ...</td>
<td>we measure their reasoning abilities using the Scientific Reasoning Rubric</td>
</tr>
<tr>
<td>then ...</td>
<td>students should progressively score higher as more activities are completed</td>
</tr>
</tbody>
</table>
Students performed the same as the semester progressed.

Average Rubric Values by Category

- If
- and
- then
- And/But
- Therefore

Average Total Scientific Reasoning Score

- Activity 1
- Activity 2
- Activity 9
- Activity 10
We expected to see improvement in IAT statements as the semester progressed.

Causal Question

If ...	IAT activities improve students’ scientific reasoning abilities
and ...	we measure their reasoning abilities using the *Scientific Reasoning Rubric*
then ...	students should progressively score better as more activities are completed
But ...	students performed the same throughout the semester
Therefore ...	(?)

Can we improve students’ scientific reasoning abilities using IAT activities?
Students may struggle with IAT statements because they lack pre-

Have humans ever stepped foot on the Moon?

IF . . .
Humans have been to the Moon

AND . . .
We make some kind of measurement

THEN . . .
We expect some kind of result
A possible solution to the context issue is to have students extract IAT arguments from published articles.

At the end of the day we want students to use scientific reasoning in everyday situations.

It happens time and time again. Two celebrities — like Robin Williams and Lauren Bacall — die within a couple days of each other, and people start holding their breath. “Celebrities always die in threes,” they say, post and tweet. “Who’s next?”

Probably nobody, if history is any guide. Despite the all-too-human desire to find patterns in life, there really are none here.

The Upshot took a look at celebrity deaths, using data from The New York Times obituary archives. We defined “celebrity” as anyone whose obit ran at least 2,000 words, roughly two-thirds of a printed page when photos are added. (For comparison, Ms. Bacall’s was about 3,000 words. The longest, for Pope John Paul II, ran 13,363 words.)

Since 1990, 449 such people have died. In 75 cases, two of them died within three days of each other. But in only seven cases did three of them die within a five-day period. According to my colleague Boris Chen, a statistician, this is about what
What we’ve found so far:

Results from the LCTSR instrument imply the IAT activities are improving scientific reasoning abilities.

Students struggle at all stages of the hypothetico-deductive argument.

Students don’t show improvement in IAT activities as the semester progresses.