Mar 26th, 9:00 AM - 9:45 AM

Assessment Strategies to Support Teaching from the Test

J Dana Eckart
Columbus State University, eckart_jon@columbusstate.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/sotlcommons

Part of the Curriculum and Instruction Commons, Educational Assessment, Evaluation, and Research Commons, Educational Methods Commons, Higher Education Commons, and the Social and Philosophical Foundations of Education Commons

Recommended Citation
Eckart, J Dana, "Assessment Strategies to Support Teaching from the Test" (2015). SoTL Commons Conference. 76.
https://digitalcommons.georgiasouthern.edu/sotlcommons/SoTL/2015/76

This presentation (open access) is brought to you for free and open access by the Conferences & Events at Digital Commons@Georgia Southern. It has been accepted for inclusion in SoTL Commons Conference by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Who Likes Testing (for Assessment)?

Students Dread Taking Tests
 • How much study time?
 • What should I study?
 • What kind of questions?
 • How many questions?
 • Will I get a high enough grade?
 • Will grade reflect what I know?
Who Likes Testing (for Assessment)?

Faculty Dread Creating/Giving Tests

- Do questions target knowledge level?
- Do questions check understanding?
- Adequate material coverage (random sampling)?
- Deciphering student handwriting and grammar
- Will student grades reflect their knowledge and understanding?
Some Causes of Testing Angst...

• Tests are usually “secret”
 • to reduce/avoid student just memorizing answers
 • faculty often customize each test (to avoid repeats)

• Test coverage is incomplete and randomized
 • too little time to ask every question
 • based on random sampling methods
 • students want to maximize their time investment (avoid “over studying”)

• Procrastination
 • faculty delay test creation – sometimes until just days before the test
 • students delay studying – often cramming 2-4 days before the test
The Best Course I Ever Took

• Gated Course
• No real lecture
• Gates were pass-fail (>= 80% to pass)
• Recitation sections that were gate specific, like a flipped classroom individualized to each gate
• Unfortunately, few people excelled in the course, about 4 of 50 students passed all the gates
• It was widely known as “Self-shaft Physics”
How the FAA Test Pilots...

Knowledge Test
- Public databank of questions
- 900+ possible questions
- Multiple choice questions
- Many third party test study aids
- Required before Flight test
- Pass/Fail

Flight Test
- Need instructor’s recommendation
- Oral test
- Practical test – the checkride.
- Public rubric – Practical Test Standards
- FAA (Designated Pilot) Examiner – not part of student’s training
- Pass/Fail
Two Courses, Two Approaches...

Computer Science I (Freshman)
- List of 10 programming problems (1 chosen for test)
- Given out 10-14 days before test
- Specified language features that must be used (for full credit)
- Encouraged to work together to solve *before* test
- Points for answers during test

Operating Systems (Junior)
- All questions available from start of course (but no answers)
- ~50 questions per week
- Mostly multiple selection
- Includes some programming and diagram labeling, etc.
- Unannounced quizzes (best 10 scores) – to promote currency
Computer Science I (Freshman)

• Requires computer for each student during test
• Must limit access (to other files, internet, etc)
• Students must effectively use computing environment
 • create code and test data files
 • edit – compile – test – debug
• Addresses complaint of many students (and faculty)
 • tests and assignments are dissimilar
 • students passing CS I not always prepared for CS II
• Students must demonstrate ability in realistic setting to pass
Computer Science I – Sample Question

• Read in a list of fruit names, case sensitive, given 1 per line
• Print out each unique fruit name + # times seen + % of total fruits
• Solution must use a
 • record type and variable
 • array type and variable
 • function that takes at least one parameter
 • procedure that takes at least one parameter

• Sample output:
 apple 3 30%
 grape 5 50%
 pear 2 20%
Operating Systems (Junior)

• Question bank *per topic* to help students self-assess understanding
• Large question bank discourages memorization
• Students warned that tests may include new/reworded questions
• Students must indicate all correct answers
 • Many questions require information “assembly”
 • Must do more than eliminate or recognize
 • “None of the above” is frequent option

• Grading
 • 2 pts all (and only) correct
 • 1 pt if >= 50% correct (*red* marks don’t outnumber circled correct responses)
Operating Systems – Sample Questions

Which scheduling algorithms favor CPU over I/O bound processes?

a) First Come, First Served
b) Shortest Job First
c) Shortest Remaining Time
d) Guaranteed Scheduling
e) None of the above

The P (DOWN) semaphore operation is best described by

a) count--; if (count <= 0) { sleep(); }
b) sleep(); if (count <= 0) { count--; }
c) if (count <= 0) { count--; } sleep();
d) if (count <= 0) { sleep(); } count--;
e) None of the above
Quizzes vs Test Scores (OS – Juniors)

UNannounced Quizzes vs Test Scores (R = 0.4833)
Student Feedback

• Greatly appreciated seeing questions beforehand
• Nearly all students actively used questions as study aids
• CS I – liked using the computer (no paper coding)
• OS – said unannounced quizzes helped them stay current

Complaints
• Answers are not included
• Too many questions
What’s the Core Difference?

Teaching TO the Test
• What everyone is expected/responsible to know
• Least common denominator (Intersection of interests)
• Static material and coverage
• Hyper focused and specialized
• Results in repeated “drills” that kills curiosity and individuality

Teaching FROM the Test
• What everyone could know based on the material
• Expansive (Union of interests)
• Continually add questions about
 • Relationships between info
 • New application domains
• Broad based scope with deep dive areas
• Promotes exploration & curiosity
Traditional Course Development Approach

• Objectives are created 1st
• Content is organized based on the objectives
• But assessments are often a compromise – perhaps only a proxy for the true objectives
Align Assessment, Content, and Objectives

• Create assessments 1st
• Iteratively develop objectives and refine assessments
• Objectives are just a summary of assessments
• Develop content (and delivery) that supports assessments
Thank you ...

Questions?