Detection of Acinetobacter baumannii in Human Lice

Shamta Warang
sw05817@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/research_symposium

Recommended Citation
https://digitalcommons.georgiasouthern.edu/research_symposium/2016/2016/1
Detection of Acinetobacter baumannii in Human Lice
Shanta Warang1,2 and Marina E. Eremeeva1
1Jian-Ping Hsu College of Public Health and 2College of Science and Mathematics, Georgia Southern University, Statesboro, GA 30458

Pediculus humanus humanus and Pediculus humanus capitii are bloodsucking human ectoparasites. Human body lice have been long known to vector several human pathogens, including Rickettsia prowazekii, Bartonella quintana, and Borrelia recurrentis and thus are associated with high incidences of diseases and mortality rates. In contrast, human head lice are not typically associated with the carriage of any pathogens, despite sporadic findings of B. quintana and Acinetobacter baumannii in lice collected from homeless people and children in different parts of the world. The purpose of this project is to assess the prevalence of A. baumannii in human head lice collected from school children from Madagascar and Georgia, USA, and in body lice from homeless people in Russia.

Previous studies conducted in several geographic regions have reported the detection of Acinetobacter baumannii from head and body lice.

Table 1. Prevalence rate of A. baumannii in human lice samples collected from different geographical locations.

<table>
<thead>
<tr>
<th>Location</th>
<th>Total No. Positive</th>
<th>Total No. Tested</th>
<th>Prevalence Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madagascar</td>
<td>12</td>
<td>30</td>
<td>40%</td>
</tr>
<tr>
<td>Georgia, USA</td>
<td>17</td>
<td>20</td>
<td>85%</td>
</tr>
<tr>
<td>Russia</td>
<td>20</td>
<td>20</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 2. Prevalence of A. baumannii in human lice samples collected from Madagascar, Georgia, USA, and Russia.

<table>
<thead>
<tr>
<th>Location</th>
<th>Species</th>
<th>Total No. Positive</th>
<th>Total No. Tested</th>
<th>Prevalence Rate (%)</th>
<th>Average Ct Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madagascar</td>
<td>P. humanus capitii</td>
<td>12</td>
<td>30</td>
<td>40%</td>
<td>34.59</td>
</tr>
<tr>
<td>Georgia, USA</td>
<td>P. humanus capitii</td>
<td>17</td>
<td>20</td>
<td>85%</td>
<td>36.73</td>
</tr>
<tr>
<td>Russia</td>
<td>P. humanus humanus</td>
<td>20</td>
<td>20</td>
<td>100%</td>
<td>31.88</td>
</tr>
</tbody>
</table>

Figure 1. TaqMan detection of rpoB gene in environmental isolates of Acinetobacter species. PCR positive samples were identified as Acinetobacter baumannii by 16S rRNA gene sequencing.

Figure 2. Detection of A. baumannii rpoB using TaqMan in head lice samples collected from Georgia, USA. (Green lines correspond to control positive culture, red lines correspond to negative control or no template samples.)

Figure 3. Percentage prevalence of A. baumannii in male and females of head lice and body lice.

MATERIALS AND METHODS

Samples of adult human lice were obtained from Madagascar, Russia, and Georgia USA.

Each louse was identified to species and sex using taxonomic keys.

DNA was extracted from each louse using the Qiagen QiAmp DNA Mini Kit protocol.

PCR was performed to optimize amplification conditions using DNA from a cultured environmental isolate of A. baumannii.

Louse DNA was tested using TaqMan assay targeting rpoB of Acinetobacter baumannii.

Data were analyzed using the chi-square test.

REFERENCES


SIGNIFICANCE & CONCLUSIONS

Louse positive for Acinetobacter baumannii were found at each location. Among three countries tested, Russia had the greatest prevalence of 100%. Female samples collected from Madagascar and Georgia, USA had a higher prevalence rate than male samples (P=0.11, CI 95%). Male and female lice samples from Russia were all positive. Body lice has a high prevalence of carrying A. baumannii than head lice (P<0.001, CI 95%) based on these results but samples from more locations are needed to determine if this is unique to this collection.

The frequent presence of A. baumannii in association with human lice is of particular importance and concern because this otherwise opportunistic environmental microorganism harbors numerous antibiotic resistant genes and is capable of surviving in hostile environments and because louse feeding may increase its likelihood of causing infections at the bite sites.

When lice are infected with this agent, it may lead to greater severity of pediculosis in some individuals, particularly those with weakened immune systems.

Detection of this bacterium is crucial in monitoring louse borne diseases and its transmission to humans.

FUTURE RESEARCH

Clone a rpoB fragment of an A. baumannii isolate and make a recombinant plasmid which will be used as a PCR positive control for further testing of lice with the TaqMan assay.

Conduct genetic typing of A. baumannii and examine the profile of its antibiotic resistance genes.

Include in the study more geographical areas along with larger sample sizes of body and head lice.

Understand and identify where this bacterium resides in the louse and if it is maintained vertically (transstadially, transovarily) or horizontally (co-feeding, sexual transmission) to define new strategies to reduce the carriage of this agent.

Determine if Acinetobacter provides B-vitamin cofactors essential to the louse that may complement those that are produced by its endosymbiont, Riesia pediculicola.

ACKNOWLEDGMENTS

We thank N. Tokarzchik and Sarah Zohri for providing lice for this study. We thank Dani Capps and Sarah Braswell for their work collecting lice and extracting DNA. Megan Mears and Cassie Kirk for isolating and identifying A. baumannii. The research presented in this poster was supported in part by the 2013 and 2015 GSU Faculty Research Awards to M. Eremeeva and L. Durden.