2012

A Quantitative Content Analysis of Mercer University Theses

Justus J. Randolph
Mercer University, randolph_jj@mercer.edu

Lura S. Gaiek
Mercer University

Torian A. White
Mercer University

Lisa A. Slappey
Mercer University

Andrea Chastain
Mercer University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/gerjournal
Part of the Educational Methods Commons

Recommended Citation
Randolph, Justus J.; Gaiek, Lura S.; White, Torian A.; Slappey, Lisa A.; Chastain, Andrea; Prejean-Harris, Rose; and Hansard, Cole (2012) 'A Quantitative Content Analysis of Mercer University Theses,' Georgia Educational Researcher: Vol. 9 : Iss. 1 , Article 6.
DOI: 10.20429/ger.2012.090106
Available at: https://digitalcommons.georgiasouthern.edu/gerjournal/vol9/iss1/6

This quantitative research is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in Georgia Educational Researcher by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
A Quantitative Content Analysis of Mercer University Theses

Abstract
Quantitative content analysis of a body of research not only helps budding researchers understand the culture, language, and expectations of scholarship, it helps identify deficiencies and inform policy and practice. Because of these benefits, an analysis of a census of 980 Mercer University M.Ed., Ed.S., and doctoral theses was conducted. Each thesis was coded on 10 variables. The descriptive characteristics of the theses, the predictors of the length of the theses, and the predictors of the type of research method used were investigated. The main results were that: (a) the vast majority of thesis authors was female, (b) the number of qualitative theses was on the rise, (c) there were slight variations in research method and length based on location of publication, (d) the page length of M.Ed. theses had been slightly decreasing over time, (e) mathematics instruction was the most frequent subject descriptor of theses, and (f) the proportion of male authors increased over time.

Keywords
Quantitative, Methodological review, Research methods, Content analysis, Theses and dissertations

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Authors
Justus J. Randolph, Lura S. Gaiek, Torian A. White, Lisa A. Slappey, Andrea Chastain, Rose Prejean-Harris, and Cole Hansard
A QUANTITATIVE CONTENT ANALYSIS OF MERCER UNIVERSITY M.ED., ED.S., AND DOCTORAL THESIS

Justus J. Randolph, randolph_jj@mercer.edu
Lura S. Gaiek
Torian A. White
Lisa A. Slappey
Andrea Chastain
Rose Prejean-Harris
Cole Hansard

College of Education
Mercer University
Atlanta, GA

Abstract: Quantitative content analysis of a body of research not only helps budding researchers understand the culture, language, and expectations of scholarship, it helps identify deficiencies and inform policy and practice. Because of these benefits, an analysis of a census of 980 Mercer University M.Ed., Ed.S., and doctoral theses was conducted. Each thesis was coded on 10 variables. The descriptive characteristics of the theses, the predictors of the length of the theses, and the predictors of the type of research method used were investigated. The main results were that: (a) the vast majority of thesis authors was female, (b) the number of qualitative theses was on the rise, (c) there were slight variations in research method and length based on location of publication, (d) the page length of M.Ed. theses had been slightly decreasing over time, (e) mathematics instruction was the most frequent subject descriptor of theses, and (f) the proportion of male authors increased over time.

Keywords: methodological review, research methods, content analysis, theses and dissertations

Authors’ Note: A previous version of this manuscript was delivered at the 2010 GERA conference.

Introduction

Quantitative content analysis, “the systematic, objective, quantitative analysis of message characteristics” (Neuendorf, 2002, p. 1), has been used with much success in fields, such as communications, marketing, sociology, and psychology, to monitor trends and identify patterns of covariation in message characteristics. One benefit of this monitoring within education research is that it can lead budding scholars to insights about the “tribes and territories” (Becher & Trowler, 2001) of their field and gain a deeper understanding of the culture, language, and expectations of scholarship.
Another benefit of a content analysis of the message characteristics and methods within a body of research is that it can help identify common research deficiencies and, thereby, serve as a starting point for improving practice and informing policy. One example of this is Leland Wilkinson and the APA Task Force on Statistical Inference's influential 1999 report, *Statistical Methods in Psychology Journals: Guidelines and Explanations*. In that report, social science researchers drew on content analyses of existing research to identify deficiencies in statistical analysis and reporting and created guidelines to remedy those deficiencies.

Because of the many benefits that can come about as a result of a content analysis of existing research, we conducted a content analysis of Mercer University M.Ed., Ed.S., and Ph.D. theses. In this study, we refer to M.Ed., Ed.S., and Ph.D. theses or dissertations as “theses” although they are appropriately called “projects” or “dissertations” at Mercer University, depending on the type of publication. The purposes of this quantitative content analysis are: (a) to describe the characteristics and subjects of Mercer University M.Ed., Ed.S., and doctoral theses, and (b) identify any trends or patterns in these publications. With hope, the results of this research can help budding scholars better understand the culture, language, and expectations of scholarship and to identify trends or deficiencies in the research to improve practice and inform policy. Although the scope of this study is limited to Mercer University theses, it may be the first step in a statewide, national, or international analysis of educational theses and dissertations.

Related Research

A systematic literature search of Google Scholar, EBSCO Host, and ProQuest using the keyword combinations *dissertation characteristics education* and *thesis characteristics education* was conducted in October 2010. The results from those searches were explored to determine which met the following criteria for inclusion and exclusion:

1. The research was written in English;
2. The research was a content analysis of education theses or dissertations;
3. Analyses of theses outside of the field of education were not included.

Furthermore, the references of the articles that met the criteria for inclusion and exclusion were reviewed to find more research that met the criteria for inclusion.

The systematic search ultimately resulted in nine studies that met the criteria for inclusion and exclusion (Avery, 1970; Coorough, 1993; Coorough & Nelson, 1994, 1997; Melendez, 2002; Morris, 1993; Rone, 1998; Sharpe, 1993; Wick & Dirkes, 1973). Unfortunately, Morris’ (1993) and Sharpe’s (1993) studies were irretrievable, unpublished doctoral theses. A summary of each retrievable study is given below.

Melendez (2002) conducted a review of 192 dissertations from the field of higher education, about half of which were published in 1977 and the other half published in 1997. The key findings of the Melendez study were that: (a) there was an increase in the numbers of female recipients of doctoral degrees, (b) an increase in dissertation length over time, and (c) an increase in the use of qualitative designs over time.
Rone (1998) investigated the characteristics of 115 higher education dissertations. In contrast to Melendez (2002), Rone found a decrease in dissertation length over time. He found about an equal number of female and male authors and, like Melendez, also found an increase in qualitative designs over time.

Coorough (1993) and Coorough and Nelson (1994, 1997) reviewed over 10,000 dissertation abstracts from 1950 to 1990 in terms of the designs and statistical procedures used. They found that: (a) survey research was overwhelmingly the most used design, (b) one quarter of the reviewed dissertations reported no statistics, and (c) one third of dissertations reported no statistically significant results. They also reported few changes over time. In terms of the differences between Ed.D. and Ph.D. theses, Ph.D. theses were found to use more multivariate statistics and were more generalizable than Ed.D. theses, which used more survey research and concentrated mostly on topics related to educational administration.

Wick and Dirkes (1973) analyzed the dissertation characteristics of a random sample of 199 dissertation abstracts. They coded each dissertation by type, independent variables used, research design, types of measures used, data analysis techniques, and sampling plans. The results that are relevant to this study are that 69% of those theses were experimental and that only 7% of dissertations used non-numerical data gathering methods, such as interviews.

To examine the reliability of an instrument for the evaluation of doctoral dissertations in education, Avery (1970) reviewed 127 dissertations from Indiana University. The items on the instrument were grouped into the following categories: presentation of the subject, research material, adaptation, evaluation of facts and data, paragraphs, sentences, words, form of manuscript, and readability. Since this was a measurement study, the results of these dissertations in each of those categories is not given; reliability estimates are given instead.

In summary, the previous research converges on the finding that there is an increasing number of qualitative doctoral dissertations in education. The research diverges on whether the length of theses and the proportion of female authors is increasing, decreasing, or staying the same.

Research Questions

1. What are the descriptive characteristics of Mercer theses?
2. What are the predictors of the length of theses?
3. What are the predictors of the research methods of theses?
4. Is the proportion of female authors to male authors increasing, decreasing, or staying the same over time?

Methods

In this section, we describe the sample and sampling strategy, the data collection process, and how interrater reliability was established. We end with a discussion of the data analysis methods used.
Sample and Sampling Strategy

All published Mercer University M.Ed. or Ed.S. theses or doctoral dissertations were included in this analysis. These studies were found by using the following terms in the subject search field of the Swilley Library Online Catalog: Mercer University Atlanta Dissertations and Mercer University Dissertations. The first search term yielded 855 theses or dissertations housed in the Atlanta campus. The second search term yielded 427 theses or dissertations from the Macon campus. A researcher then searched the note field of each bibliographic entry to determine which of these 1282 entries were M.Ed., Ed.S., or doctoral theses in the field of education. Of the 855 theses housed in the Atlanta campus, 768 (89.8%) were determined to be M.Ed., Ed.S., or doctoral theses in education. Of the 427 theses housed on the Macon campus, 212 (49.7%) were determined to be M.Ed., Ed.S., or doctoral theses in education. In total, the bibliographic entries of the 980 M.Ed., Ed.S., or doctoral theses in education published at Mercer University were reviewed.

Data Collection

The bibliographic entry for each thesis was coded on 10 variables:
1. Type of publication (i.e., M.Ed., Ed.S., or doctoral dissertation);
2. Year of publication;
3. Number of authors;
4. Number of female authors (if able to be determined from names);
5. Number of pages;
6. Number of bibliographic pages;
7. The subject descriptors;
8. Place of publication (i.e., Atlanta or Macon campus);
9. Research tradition (quantitative, qualitative, or mixed-methods) if able to be determined from title of publication; and
10. Complete title of publication.

The coding book that was used can be found in the Appendix.

The seven authors of this paper each independently rated between 100 and 200 of the 980 bibliographic entries. The first author of this paper selected a simple random sample of 100 of the 980 entries and also coded those entries to establish interrater reliability estimates on the only nonfactual variable (i.e., the research tradition variable).

Interrater Reliability

Based on a simple random sample of 100 cases, the proportion of overall agreement between the seven raters and the interrater reliability rater was 95% on the research tradition variable. The corresponding free-marginal kappa was 0.93, indicating high interrater reliability.

Data Analysis

Descriptive statistics were calculated for the quantitative variables mentioned above. The general linear model was used to identify predictors of thesis length; logistic regression was
used to identify the predictors of research method. All quantitative analyses were conducted with SPSS 11.0. Computer-based content analysis was done using Concordance software (Watt, 2009). Brennan and Prediger’s (1981) free-marginal kappa was used as the measure of interrater reliability. It was calculated with Randolph’s (2008) Online Kappa Calculator software.

Results

Descriptive Results

Year of publication. The range of years for this analysis ranged from 1985 to 2010. A histogram of theses by years is shown in Figure 1 below. Note that while there were educationally oriented theses published before 1985, they were not labeled as M.Ed. theses, and, therefore, were not included in this study.

Figure 1
Histogram of Theses Published by Year

Number of authors. Of the 980 theses, 961 of those had a single author. The range of authors varied from 1-10.

Gender of authors. Of the 913 cases where the gender of the author was able to be determined by name, female authors accounted for 88.3% of the total.
Number of pages and bibliographic pages. For M.Ed. theses, the minimum and maximum number of pages was 23 and 183, respectively. The mean was 64.15 with a standard deviation of 23.37. The minimum and maximum number of bibliographic pages was 1 and 38, respectively. The mean number of bibliographic pages was 5.32 with a standard deviation of 2.57. For Ed.S. theses, the minimum and maximum number of pages was 29 and 165, respectively. The mean was 67.18 with a standard deviation of 25.94. The minimum and maximum number of bibliographic pages was 3 and 19, respectively. The mean number of bibliographic pages was 5.85 with a standard deviation of 2.25. For doctoral theses, the minimum and maximum number of pages was 77 and 273, respectively. The mean was 142.40 with a standard deviation of 47.21. The minimum and maximum number of bibliographic pages was 5 and 24, respectively. The mean number of bibliographic pages was 10.53 with a standard deviation of 4.96.

Subject descriptors. Across all types of theses and years, the ten most frequently occurring subject descriptors, in order of frequency, are listed below. The descriptors are followed by the number of occurrences in parentheses. A complete list of subject descriptors can be found online at http://justusrandolph.net/gera_2010/subject_descriptor_frequencies.pdf.

1. Mathematics -- Study and teaching (Elementary) (66)
2. Mathematics -- Study and teaching (Middle school) (52)
3. Classroom management (49)
4. Group work in education (46)
5. Mathematics -- Study and teaching (Primary) (46)
6. Reading (Primary) (40)
7. Reading (Elementary) (30)
8. Language arts -- Correlation with content subjects (29)
9. Language arts (Elementary) (28)
10. Computer-assisted instruction (27)

Place of publication. Of the 980 articles in our study, 768 (78.4%) were published on the Atlanta campus.

Research tradition. Of the 930 theses where the method could be determined by the title, the vast majority (90.3%) was quantitative; the others were qualitative. None of the theses title clearly indicated the use of mixed methods. About 5% of theses had titles that were not descriptive enough to determine the type of research method used.

Titles of publications. Computer-based content analysis was used to analyze the titles of publications. The top ten most frequently used words in titles are listed below. An interactive concordance analysis of all titles can be found online at http://justusrandolph.net/gera_2010/textfromclipboard-file3.txt/textfromclipboard-file3.txt.WebConcordance/framconc.htm.

1. Effect/effects
2. Students
3. Grade
4. Achievement
5. School
6. Mathematics/math
7. Writing
8. Teaching
9. Instruction
10. Classroom

Predictors of Page Numbers

Table 1 below shows a model predicting the number of pages in a Mercer thesis. Location of publication (i.e. Macon or Atlanta), type of publication (i.e., M.Ed., Ed.S., or doctoral thesis), year of publication, research method (i.e., quantitative or qualitative), type of publication by research method interaction, and a type of publication by location interaction were statistically significant predictors of the numbers of pages.

Table 1
Predictors of Page Length

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>F</th>
<th>p</th>
<th>Partial η</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>8</td>
<td>77.31</td>
<td>.000</td>
<td>.40</td>
</tr>
<tr>
<td>Intercept</td>
<td>1</td>
<td>26.04</td>
<td>.000</td>
<td>.03</td>
</tr>
<tr>
<td>Location</td>
<td>1</td>
<td>102.74</td>
<td>.000</td>
<td>.10</td>
</tr>
<tr>
<td>Type</td>
<td>2</td>
<td>169.11</td>
<td>.000</td>
<td>.27</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
<td>23.48</td>
<td>.000</td>
<td>.03</td>
</tr>
<tr>
<td>Method</td>
<td>1</td>
<td>7.22</td>
<td>.007</td>
<td>.01</td>
</tr>
<tr>
<td>Type*Method</td>
<td>2</td>
<td>7.53</td>
<td>.001</td>
<td>.02</td>
</tr>
<tr>
<td>Location*Type</td>
<td>1</td>
<td>4.42</td>
<td>.036</td>
<td>.01</td>
</tr>
<tr>
<td>Error</td>
<td>915</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>924</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>923</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. R^2 = .40.

Tables 2 through 6 show the estimated marginal means for location, thesis type, method, the type of thesis by method interaction, and the type of the thesis by location interaction. The findings are listed below:

1. Theses published in Atlanta tend to be slightly longer (this included Atlanta doctoral theses);
2. M.Ed., Ed.S., and doctoral theses have an increasingly greater number of pages, respectively (although the number of M.Ed. and Ed.S. pages is almost identical);
3. On average, qualitative theses are longer than quantitative theses;
4. The only exception is that Ed.S. theses have longer quantitative theses than qualitative theses;
5. Atlanta M.Ed. and Ed.S. theses tended to be longer than Macon M.Ed. and Ed.S. theses.
Note that Macon does not publish doctoral theses in education at the current time. Regression analyses between year and length of publication were calculated for each thesis type. The only statistically significant regression parameter was for M.Ed. theses ($b = -0.71, p < .001$); however, the decrease in practical terms was negligible. For every year after 1985, a M.Ed. thesis has decreased by 7/10ths of a page (see Figure 2).

Table 2
Estimated Marginal Mean Page Length by Location of Publication

<table>
<thead>
<tr>
<th>Location</th>
<th>M (SE)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>98.70 (1.82)</td>
<td>[95.13, 102.27]</td>
</tr>
<tr>
<td>Macon</td>
<td>47.25 (2.27)</td>
<td>[42.81, 51.70]</td>
</tr>
</tbody>
</table>

Table 3
Estimated Marginal Mean Page Length by Thesis Type

<table>
<thead>
<tr>
<th>Type of Thesis</th>
<th>M (SE)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Ed.</td>
<td>58.50 (1.69)</td>
<td>[55.18, 61.81]</td>
</tr>
<tr>
<td>Ed.S.</td>
<td>61.18 (2.89)</td>
<td>[55.51, 66.85]</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>151.26 (3.95)</td>
<td>[143.51, 159.00]</td>
</tr>
</tbody>
</table>

Table 4
Estimated Marginal Mean Paper Length by Research Method

<table>
<thead>
<tr>
<th>Method</th>
<th>M (SE)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative</td>
<td>75.74 (1.48)</td>
<td>[72.83, 78.66]</td>
</tr>
<tr>
<td>Qualitative</td>
<td>80.50 (2.70)</td>
<td>[75.21, 85.79]</td>
</tr>
</tbody>
</table>
Table 5
Estimated Marginal Mean Page Length by Method and Type of Thesis

<table>
<thead>
<tr>
<th>Method</th>
<th>M (SE)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Ed.</td>
<td>57.55 (1.17)</td>
<td>[55.25, 59.85]</td>
</tr>
<tr>
<td>Ed.S.</td>
<td>63.61 (2.43)</td>
<td>[58.84, 68.39]</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>136.39 (5.32)</td>
<td>[125.94, 146.84]</td>
</tr>
<tr>
<td>Qualitative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Ed.</td>
<td>59.44 (3.26)</td>
<td>[53.04, 65.84]</td>
</tr>
<tr>
<td>Ed.S.</td>
<td>58.74 (5.20)</td>
<td>[48.53, 68.95]</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>166.13 (5.46)</td>
<td>[155.42, 176.84]</td>
</tr>
</tbody>
</table>

Table 6
Estimated Marginal Mean Page Length by Location and Type of Thesis

<table>
<thead>
<tr>
<th>Location</th>
<th>M (SE)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Ed.</td>
<td>68.47 (1.91)</td>
<td>[64.72, 72.22]</td>
</tr>
<tr>
<td>Ed.S.</td>
<td>76.37 (3.25)</td>
<td>[70.00, 82.76]</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>151.26 (3.95)</td>
<td>[143.50, 159.01]</td>
</tr>
<tr>
<td>Macon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Ed.</td>
<td>48.52 (2.16)</td>
<td>[44.29, 52.75]</td>
</tr>
<tr>
<td>Ed.S.</td>
<td>45.98 (3.99)</td>
<td>[38.16, 53.80]</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Predictors of the Research Method

The results of a logistic regression analysis of the predictors of a qualitative thesis are given in Table 7. The results show that qualitative theses: (a) are more likely on the Macon campus, (b) are more likely in Ph.D. theses than M.Ed. or Ed.S. theses, and (c) show an increase over time.
Table 7
Logistic Regression Predictors of a Qualitative Research Thesis

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>OR</th>
<th>95% CI for OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>-1.62***</td>
<td>0.20</td>
<td>[0.12, 0.33]</td>
</tr>
<tr>
<td>Macon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Ed.</td>
<td>-2.52***</td>
<td>0.08</td>
<td>[0.04, 0.19]</td>
</tr>
<tr>
<td>Ed.S.</td>
<td>-1.59**</td>
<td>0.20</td>
<td>[0.07, 0.59]</td>
</tr>
<tr>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>0.07*</td>
<td>1.07</td>
<td>[1.01, 1.13]</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td></td>
<td>-133.59*</td>
</tr>
</tbody>
</table>

* Reference category.

* $p < .05$, **$p < .10$, ***$p < .001$.

To illustrate these ideas further, crosstabulations are shown in Tables 8 through 10. As shown in Table 8, Atlanta has 6.9% qualitative theses compared to Macon’s 21.0%. As shown in Table 9, M.Ed., Ed.S., and Ph.D. theses have an increasing proportion of qualitative theses. Finally, Table 10 shows that there has been a growth in qualitative theses over time.

Table 8
Crosstabulation of Location and Research Method

<table>
<thead>
<tr>
<th>Location</th>
<th>Quantitative (%)</th>
<th>Qualitative (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>693 (93.15)</td>
<td>51 (6.85)</td>
<td>744</td>
</tr>
<tr>
<td>Macon</td>
<td>147 (79.03)</td>
<td>39 (21.97)</td>
<td>186</td>
</tr>
<tr>
<td>Total</td>
<td>840 (90.33)</td>
<td>90 (9.66)</td>
<td>930</td>
</tr>
</tbody>
</table>
Table 9
Proportions of Type of Theses

<table>
<thead>
<tr>
<th>Type of Thesis</th>
<th>Quantitative (%)</th>
<th>Qualitative (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Ed.</td>
<td>726 (93.4)</td>
<td>51 (6.6)</td>
<td>777</td>
</tr>
<tr>
<td>Ed.S.</td>
<td>93 (82.3)</td>
<td>20 (17.7)</td>
<td>113</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>20 (51.3)</td>
<td>19 (48.7)</td>
<td>39</td>
</tr>
<tr>
<td>Total</td>
<td>839 (90.3)</td>
<td>90 (9.7)</td>
<td>929</td>
</tr>
</tbody>
</table>

Table 10
Proportion of Qualitative and Quantitative Studies by Time Period

<table>
<thead>
<tr>
<th>Time period</th>
<th>Quantitative (%)</th>
<th>Qualitative (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985-1989</td>
<td>34 (100)</td>
<td>0 (0.00)</td>
<td>34</td>
</tr>
<tr>
<td>1990-1994</td>
<td>59 (95.16)</td>
<td>3 (4.84)</td>
<td>62</td>
</tr>
<tr>
<td>1995-1999</td>
<td>318 (90.59)</td>
<td>33 (9.41)</td>
<td>351</td>
</tr>
<tr>
<td>2000-2004</td>
<td>281 (93.67)</td>
<td>19 (6.33)</td>
<td>300</td>
</tr>
<tr>
<td>2005-2010</td>
<td>148 (80.87)</td>
<td>35 (19.13)</td>
<td>183</td>
</tr>
<tr>
<td>Total</td>
<td>840 (90.32)</td>
<td>90 (9.67)</td>
<td>930</td>
</tr>
</tbody>
</table>

Table 11 below indicates that the number of male authors has been increasing over time. A linear-by-linear association test of the data in Table 11 was statistically significant, $\chi^2 (1, 911) = 13.01, p < .000$.

Table 11
Number and Proportion of Female/Male Authors over Time

<table>
<thead>
<tr>
<th>Time period</th>
<th>Male (%)</th>
<th>Female (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985-1989</td>
<td>0 (0.00)</td>
<td>34 (100.0)</td>
<td>34</td>
</tr>
<tr>
<td>1990-1994</td>
<td>3 (5.10)</td>
<td>56 (94.90)</td>
<td>59</td>
</tr>
<tr>
<td>1995-1999</td>
<td>36 (10.78)</td>
<td>298 (89.22)</td>
<td>334</td>
</tr>
<tr>
<td>2000-2004</td>
<td>33 (11.05)</td>
<td>266 (88.96)</td>
<td>299</td>
</tr>
<tr>
<td>2005-2010</td>
<td>34 (18.37)</td>
<td>151 (81.62)</td>
<td>185</td>
</tr>
<tr>
<td>Total</td>
<td>106 (11.64)</td>
<td>805 (88.36)</td>
<td>911</td>
</tr>
</tbody>
</table>
Summary

The main results of this study were that:
1. the vast majority of authors is female;
2. the proportion of qualitative theses is on the rise;
3. there are slight variations in research method and length based on location of publication;
4. the page length of M.Ed. theses has been slightly decreasing over time;
5. mathematics instruction is the most frequent subject descriptor of theses; and
6. the proportion of male authors is increasing over time.

In terms of the relationship between our study and previous studies, first, our finding that the number of qualitative thesis is on the rise converges with the research done by Melendez (2002) and Rone (1998). Second, at least compared to Rone’s sample of higher education dissertations, which had about 50% female authors, our census indicated that over 88% of Mercer education thesis authors are female. This is expected here, however, because over 81% of Georgia’s teachers are female (Georgia Professional Standards Commission, 2006). We also found that the raw number of theses to be increasing over time; this is also expected because the demand for teachers has also been steadily increasing over time (Bureau of Labor Statistics, 2010).

In conclusion, we believe that this research can help budding scholars better understand what the norms are for producing theses or dissertations. For example, a graduate student writing a doctoral dissertation can use this information to get a sense of how many pages an educational dissertation tends to be and what subject areas or research methods tend to be of interest to their local research community. Second, this information can help the research and higher education community identify weaknesses or strengths in graduate research. For example, we find it alarming that the page length of M.Ed. theses has been decreasing and can now take action and develop policies to ensure the quality of graduate research remains high, even as the number of education students that are being served is continually on the rise.

An obvious limitation of this research is that it was limited to Mercer University theses and doctoral dissertations in education. However, we believe that this might be a first step in a larger effort to continually evaluate and improve upon the quality of graduate research locally, nationally, and even internationally.

References

Appendix
Mercer Thesis Analysis Coding Book

V1. Record number.
Write in the record number. This is the first line of the bibliographic entry.

V2. Location of publication.
This can be founds from the “locations” line of the bibliographic entry.
 1. Atlanta
 2. Macon

V3. Name of coder
Input the number corresponding with the correct name.

V4. Number of authors
This can be found from the “author” line of the bibliographic entry. Input the number of authors.

V5. Number of female authors
Based on your best guess from the first name of the author, decide how many authors are male or female. The number of female authors cannot be greater than the number of variables in V4. If you are unsure about the gender of one or more authors input “-9” to indicate “unable to determine.”

V6. Title of thesis
Copy and paste the entire title of the thesis in the database. Don’t include the author’s name if that is included in the title. For example, if the title in the bibliographic entry is “Ability versus achievement : the relationship between the Cognitive abilities test and Stanford achievement test by Tammy D. Strickland,” only copy and paste “Ability versus achievement : the relationship between the Cognitive abilities test and Stanford achievement test.” This can be found in the “Title” line of the bibliographic entry.

V7. Year of publication.
Type in the four digit year of publication. This can be found in the “PUB INFO” line of the bibliographic entry.

V8. Number of pages.
Type in the number of pages (a.k.a. leaves). This can be found from the “DESCRIPT” line of the bibliographic entry.
V9. Type of thesis
This can be found from the “NOTE” line of the bibliographic entry.
 1. M.Ed.
 2. Ed.S.
 3. Ph.D.
This can be found from the “NOTE” field. For example, if the note field indicates, “Includes bibliographical references (leaves 41-47),” then you would type in 7 in the datasheet because the reference list is seven pages long.

V11. Subject 1
Copy and paste the first subject descriptor from the “SUBJECT” field other than “Mercer University – Dissertations.” Do not copy and paste the period. Be sure to copy and paste because important that all descriptors be exact. If there is more than one subject, record them in variables v12 and v13. If there are ever more than three descriptors just ignore the rest.

V12. Subject 2
See V11 for instructions.

V13. Subject 3
See V11 for instructions.

V14. Methods
Look again at the title. Determine from the title whether the study is quantitative, qualitative, or mixed methods. For example, if the title has the word “Experiment” or “the effects of X on Y” or “the relationship between,” then it is probably a quantitative study. If the title has the name of a qualitative tradition or examines “perceptions” it is probably a qualitative study. If the title has the words “mixed methods,” it’s probably a mixed methods study. If you can’t determine from the title choose “unable to determine”
 1. Quantitative
 2. Qualitative
 3. Mixed methods
 4. Unable to determine

V15. Note. Use this space in case you want to make a note about a certain entry. This variable is optional.