Mar 5th, 7:00 PM - 9:00 PM

Robert C. Idsardi Jr
University of Georgia, boidsardi@gmail.com

Barbara A. Crawford
University of Georgia, barbarac@uga.edu

Jaclyn K. Murray
University of Georgia, jakspiel@hotmail.com

James F. Ammons
University of Georgia, ammons.james@gmail.com

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/stem

Recommended Citation
https://digitalcommons.georgiasouthern.edu/stem/2015/2015/57

This event is brought to you for free and open access by the Conferences & Events at Digital Commons@Georgia Southern. It has been accepted for inclusion in Interdisciplinary STEM Teaching & Learning Conference by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
This research involves the Science Practices in the Classroom Matrix (SPCM), an analytical tool used to identify the level of sophistication of scientific practices occurring in classroom lessons and the level of student versus teacher centeredness. The SPCM was developed through iterative rounds of coding videotaped lessons and confirming and disconfirming components of the Matrix, followed by a process of discussion and consensus building. The SPCM is being used to systematically determine how science teachers enact the scientific practices in their classrooms in meaningful ways. Additionally, implications of the use of the SPCM in prospective science teacher education and practicing teacher professional development will be discussed.

Purpose

- Students rarely have opportunities to engage in the scientific practices in their classrooms. The need arose to systematically analyze the nature of students' engagement in the scientific practices.
- An investigation is revised and carried out.
- Engaging in argument form evidence.
- Planning Investigations

Theoretical Framework

Teaching science as inquiry is engaging students in the natural and material world with the expert knowledge and views of inquiry and NOS.

Implications for research and teacher education

The SPCM has multiple uses. First, the SPCM will be used to differentiate teachers’ enactment of the scientific practices through the Fossil Finders professional development project. Recordings of their enactment of the Fossil Finders curriculum will be analyzed with the SPCM to compare teachers’ knowledge and views on inquiry and NOS both before and after the professional development intervention. Second, the SPCM may offer teacher educators a way to support practicing and prospective teachers in understanding the scientific practices of science, where learners grapple with data and ideas through systematic investigations.

Table 1. An option of the SPCM. The full SPCM covers all eight of the NGSS Science Practices

<table>
<thead>
<tr>
<th>Science Practices</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Investigations</td>
<td>An investigation is planned in advance of theачn investigation.</td>
<td>An investigation is planned in advance of the planning investigation.</td>
<td>An investigation is planned in advance of the study investigation.</td>
<td>An investigation is planned in advance of the planning investigation.</td>
</tr>
<tr>
<td>Carrying out Investigations</td>
<td>An investigation is carried out.</td>
<td>An investigation is available to students.</td>
<td>An investigation is carried out.</td>
<td>An investigation is carried out.</td>
</tr>
<tr>
<td>Analyzing data</td>
<td>Data analysis is conducted through systematic quantitative (e.g., statistics) or qualitative methods to create visual representations.</td>
<td>Teacher analyzes data.</td>
<td>Teacher analyzes data.</td>
<td>Teacher analyzes data.</td>
</tr>
<tr>
<td>Interpreting data</td>
<td>Interpreting data is conducted through visual representations.</td>
<td>Data analysis is conducted through systematic quantitative (e.g., statistics) or qualitative methods to create visual representations.</td>
<td>Teacher analyzes data.</td>
<td>Teacher analyzes data.</td>
</tr>
</tbody>
</table>

References

Implications for research and teacher education

The SPCM has multiple uses. First, the SPCM will be used to differentiate teachers’ enactment of the scientific practices through the Fossil Finders professional development project. Recordings of their enactment of the Fossil Finders curriculum will be analyzed with the SPCM to compare teachers’ knowledge and views on inquiry and NOS both before and after the professional development intervention. Second, the SPCM may offer teacher educators a way to support practicing and prospective teachers in understanding the scientific practices, bringing research into practice. Prospective teachers may have difficulty differentiating between features of inquiry and student-centeredness (Forbes, 2011). A proposed study is in development to see if an intervention on the scientific practices and use of the SPCM enhances prospective teacher knowledge of the practices and changes prospective teacher’s views of the scientific practices, as shown below.

Table 2. Background experiences of teachers studied.

Overview of NJ’s and KN’s classrooms

DJ
- Carried out science practices mostly at an emerging level
- Students mainly guided in science practices
- Students engaged with a broad range of science practices in less depth

KN
- Carried out science practices using a combination of emerging and more informed levels
- Students were guided and worked independently in science practices
- Students engaged in few science practices in more depth

Acknowledgements

We thank The University of George for their support. This material is based upon work supported by the National Science Foundation under Grant No. NSF 1249157. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.