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OPTIMIZING THE RELIABILITY IMPROVEMENT OF POWER ELECTRONIC 

CONVERTERS USING DIFFERENT COMPUTATIONAL OPTIMIZATION TECHNIQUES 

 

 

by 

VALENTIN DUN 

(Under the Direction of Masoud Davari)  

ABSTRACT 

 

The implementation of renewable energy and decentralization of power generation over the last 

years created the need for superior technology to be implemented into the grid, which had to 

transform and integrate these variable renewable energy sources into the existing grid. This 

technology aims to completely replace the traditional technology in the grid by providing more 

efficient electricity generation, transmission, and distribution, as well as ensuring benefits such as 

high reliability, lower cost, higher efficiency, and more compactness, among others. However, the 

inclusion of power electronic converters into the grid brings many challenges, such as harmonic 

distortions introduced by power electronic converters and non-linear operation. In addition, power 

electronic converters can bring challenges related to the quality of the power generated, as well as 

the stability of the system. In other words, converter design will be critical depending on its 

application. The most optimum design can be done after a thorough study of the behavior of the 

converts as well as how to optimize its characteristics. Therefore, this work develops the modeling 

process of the reliability of power electronic converters at the component, sub-system, and power 

system level and the optimization of the proposed reliability improvement model. This 

optimization will be done by using different computational optimization techniques, also called 

metaheuristic algorithms, such as the Harris Hawk Optimization (HHO) algorithm, the Artificial 

Bee Colony (ABC) algorithm, and the Particle Swarm Optimization (PSO) algorithm. The 

objective is to compare each algorithm’s performance in terms of convergence rate and the fitness 

of the parameters in terms of constraints provided by the designer. 

 

 

INDEX WORDS: Power converter reliability, Reliability Modeling, Reliability Optimization, 

Metaheuristic Optimization Algorithms. 
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contribution of thermal cycling of 

the soldered joints [= 0.066853] 
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Π𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 Influence of the environment of 

use during application on the 

converter’s reliability [assume 

best case (controlled 

environment) = 1] 

𝜆0𝑅𝐻 Basic failure rate of a SD due to 

relative humidity contribution 

[0.487813] 

𝑊𝑠𝑐𝑜𝑟𝑒𝑠,𝑘 Weightings for the scores 

assigned to each criterion of 

condition [assume favorable 

condition, i.e. Π𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 1] 

𝜆𝑀𝑒𝑐ℎ Basic failure rate of a SD due to 

mechanical contribution 

[0.001337] 

𝑊𝑂𝑆,𝑘 Weight of each criterion Π𝑇𝐻 The acceleration factor indicating 

thermal stress sensitivity on the 

SD during operation. 
Π𝑅𝑢𝑔𝑔𝑒𝑑𝑖𝑧𝑖𝑛𝑔 Influence of the policy of building 

overstress tolerance into the Cap 

or SD 

Π𝑇𝐶𝑦𝐶𝑎𝑠𝑒 Acceleration factor indicating 

thermal cycling stress sensitivity 

on the SD during operation. 
𝑅𝑒𝑐𝑜𝑚_𝐺𝑟𝑎𝑑𝑒 Weighted recommendation score 

assigned to the Cap or SD 
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have been applied = 1] 

Π𝑇𝐶𝑦𝑆𝑜𝑙𝑑𝑒𝑟𝑗𝑜𝑖𝑛𝑡𝑠 Acceleration factor indicating 

thermal cycling stress sensitivity 

on the SD’s soldered joints during 

operation. 
C𝑆𝑒𝑛𝑠 Overstress sensitivity coefficient 

inherent to the technology of the 

Cap or SD 

𝐶𝑠𝑒𝑛𝑠 = 𝛼𝐸𝑂𝑆 + 𝛽𝑀𝑂𝑆 

+𝛾𝑀𝑂𝑆 = 6.3 

Π𝑅𝐻 Acceleration factor indicating 

relative humidity stress sensitivity 

on the SD during operation 

[during operation = 0] 

𝜆0𝐶𝑎𝑝 Basic failure rate of the Cap 

(assume the value of ceramic 

capacitor [𝜆0𝐶𝑎𝑝 = 0.4]) 

Π𝑀𝑒𝑐ℎ,𝑆𝐷 Acceleration factor indicating 

mechanical stress sensitivity on 

the SD during operation. 
𝑡𝑝ℎ𝑎𝑠𝑒 Duration of the operation and 

maintenance phase [We assume 

only this phase to reduce 

mathematical complexity. Also, 

assume a 24-hr operation 

(𝑡𝑝ℎ𝑎𝑠𝑒 = 24ℎ𝑟𝑠)] 

𝑇𝑗−𝐼𝐺𝐵𝑇 SD’s junction temperature during 

an operating phase 

𝑇𝑡𝑜𝑡𝑎𝑙  Reference duration in a year 

(𝑇𝑡𝑜𝑡𝑎𝑙 = 8760ℎ𝑟𝑠)] 

Δ𝑇𝑐𝑦𝑐𝑙𝑖𝑛𝑔,𝑆𝐷 Amplitude of temperature 

variation associated with the SD’s 

cycling phase (°𝐶) [equation 

determined from curve-fitting 

technique in MATLAB] 

𝑇𝑅𝑒𝑓 = 𝑇𝑎𝑚𝑏  Reference/ambient temperature 

[𝑇𝑅𝑒𝑓 = 25°𝐶] 

𝑇𝑚𝑎𝑥−𝑐𝑦𝑐𝑙𝑖𝑛𝑔 Maximum temperature on the 

board during the SD’s cycling 

phase (°𝐶)  
Π𝑇ℎ𝑒𝑟𝑚𝑜−𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙  Thermo-electrical acceleration 

factor indicating thermal and 

electrical stress sensitivity on the 

capacitor during operation. 

𝑅𝐻𝑎𝑚𝑏  Ambient relative humidity 

Π𝑇𝐶𝑦 Thermal cycling acceleration 

factor indicating thermal cycling 

stress sensitivity on the capacitor 

during operation. 

𝑃𝐴, 𝑃𝐼𝐺𝐵𝑇
𝐶𝑜𝑛𝑑 , 𝑃𝐼𝐺𝐵𝑇

𝑆𝑊  
 

Total power losses, conduction 

losses, and switching losses in the 

SD 

Π𝑀𝑒𝑐ℎ,𝐶𝑎𝑝 Mechanical acceleration factor 

indicating mechanical stress 

sensitivity on the capacitor during 

operation. 

𝑅𝑡ℎ,ℎ𝑠 , 𝑅𝑡ℎ
𝐼𝐺𝐵𝑇 

 

Thermal resistance of heat sink, 

thermal resistance of SD 

(𝑎𝑠𝑠𝑢𝑚𝑒 = 1.72 𝑊/𝐾) 
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𝛾𝑇𝐻−𝐸𝐿 Thermo-electrical stress 

sensitivity factor of the Cap 

[𝛾𝑇𝐻−𝐸𝐿 = 0.69] 

𝑣𝑐𝑒0 Collector-emitter voltage 

[(@150∘𝐶, 𝑇𝐽) 𝑎𝑛𝑑 (@20𝐴, 𝑖𝑐) =

0.82𝑉] 
𝛾𝑇𝐶𝑌 Thermal cycling stress sensitivity 

factor of the Cap [𝛾𝑇𝐶𝑦 = 0.26] 

𝑅𝑜𝑛,𝑆 On-state resistance of IGBT  

[(@150∘𝐶, 𝑇𝐽) 𝑎𝑛𝑑 (@20𝐴, 𝑖𝑐) =

0.051Ω] 
𝛾𝑀𝑒𝑐ℎ  Mechanical stress sensitivity 

factor of the Cap [𝛾𝑀𝑒𝑐ℎ = 0.05] 

𝑖𝑐,𝑆𝐷, 𝐼𝑟𝑒𝑓 , 𝑉𝑟𝑒𝑓 IGBT collector current, 

reference/nominal current, 

reference/nominal voltage 
𝑆𝑟𝑒𝑓 Reference level of electrical stress 

on the Cap [= 0.3] 

𝐸𝑠𝑤 Total switching energy losses of 

IGBT 

𝐸𝑎 Activation energy of capacitor 

material [assume value for 

ceramic material (= 0.122 𝑒𝑉)] 

𝐸𝑠𝑤,𝑟𝑒𝑓 Reference switching energy 

losses of IGBT (𝑎𝑠𝑠𝑢𝑚𝑒 =

0.625 ×10−3𝐽) 

𝐾𝑏 Boltzmann constant (= 8.617 ×

10−5 𝑒𝑉) 

𝐾𝑖 , 𝐾𝑣 , 𝑇𝐶𝑠𝑤 Exponent modelling current 

dependency (= 0.729), exponent 

modelling voltage dependency 

(= 1.3), temperature coefficient 

of switching losses (= 0.003) 

𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑  Operation voltage 𝑇𝑗,𝑆𝐷,𝑚𝑎𝑥 Maximum temperature 

constrained within the model 

(= 125∘𝐶) 
𝑉𝑟𝑎𝑡𝑒𝑑 Rated blocking voltage of Cap, 

nominal blocking voltage of SD 

(= 650𝑉) 

𝑘ℎ𝑠, 𝑡𝑏,ℎ𝑠 Thermal conductivity of the heat 

sink (assuming aluminum =

160), heat sink base thickness 
𝑁𝑐𝑦 Number of cycles associated with 

each cycling phase of Cap 

(cycles) [= 730] 

𝐴ℎ𝑠, 𝐴ℎ𝑠,𝑆𝐷,𝑚𝑎𝑥 Surface area of heatsink, 

maximum heat sink size (can 

assume different constraint 

values) (= 100 × 10−3 × 100 ×

10−3) 
𝜃𝑐𝑦 Cycle duration of Cap (hours) 

[𝜃𝑐𝑦 = 𝑡𝑃ℎ𝑎𝑠𝑒/𝑁𝑐𝑦] 

𝑘𝑏𝑤,𝑆𝐷 Thermal conductivity of bond 

wire (assuming Cu) (= 390) 

Δ𝑇𝑐𝑦𝑐𝑙𝑖𝑛𝑔,𝐶𝑎𝑝 Amplitude of temperature 

variation associated with the 

Cap’s cycling phase (°𝐶) 

𝜌𝑏𝑤,𝑆𝐷 Resistivity of bond wire 

(assuming Cu) (= 1.68 × 10−8) 

𝑇𝑚𝑎𝑥−𝑐𝑦𝑐𝑙𝑖𝑛𝑔,𝐶𝑎𝑝 Influence of the Cap’s maximum 

temperature on the board during a 

cycling phase (°𝐶) 

𝐷𝑏𝑤,𝑆𝐷 Diameter of bond wire of SD 

𝐼𝑟𝑖𝑝 , 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥  Percent ripple current in the 

application, maximum allowed 

ripple current percent (=50%) 

𝑙𝑏𝑤,𝑆𝐷 Length of bond wire of SD (=

1.7 ∗ 10−3) 

𝐸𝑆𝑅 Equivalent series resistance of 

Cap 

Δ𝑇𝑏𝑤,𝑆𝐷 Temperature variation between 

two ends of bond wire of SD 

(assume constant) = 1.1∘𝐶 

𝑅𝑡ℎ
𝐶𝑎𝑝

 Thermal resistance of Cap 𝐷𝑒𝑟, 𝐷𝑒𝑟𝑚𝑎𝑥 Voltage and current deration, 

maximum deration (assume 0.8) 
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𝑅0 Approximate constant ohmic 

resistance of Cap (𝑅0 = 0.01 Ω) 

𝑆𝑝𝑎𝑐𝑒𝑝𝑐𝑏 Space available on PCB for 

mounting components 

[𝑎𝑠𝑠𝑢𝑚𝑒 𝑆𝑝𝑎𝑐𝑒𝑚𝑎𝑥 = 20 ⋅
(64.3 × 105.7)] 𝑚𝑚2 

𝑅𝑑 Frequency dependent resistance 

of Cap 

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑝 Cost of components 

[𝑎𝑠𝑠𝑢𝑚𝑒 𝐶𝑜𝑠𝑡𝑚𝑎𝑥 = $500/

$750] 
𝑅𝑒 Temperature dependent resistance 

of Cap 

𝑁𝐶𝑎𝑝 Number of capacitors in total 

including redundant Caps 

𝐷𝑜𝑥  Dissipation factor of the Cap’s 

dielectric (assume 0.015) 

𝑁𝑆𝐷 Number of SD in total including 

redundant Caps 

𝑓𝑠𝑤 Switching frequency in 

application 

𝐴𝑅 Aspect ratio constraint [𝐴𝑅 =

𝐿𝐶𝑎𝑝/𝐷𝐶𝑎𝑝] 

𝐶 Capacitance of Cap [𝐶 =

7.312 𝑚𝐹] 

λtot Total failure rate considering only 

SDs or Caps and assuming 

parallel redundancy configuration 
𝑅𝑒0 Temperature dependent resistance 

of Cap at room temperature 

(assume = 0.5Ω) 

𝑅(𝑇), 𝑅, 𝑁 Total reliability in a given period, 

T(assume 𝑇 = 𝑡𝑝ℎ𝑎𝑠𝑒), reliability 

of a single component, number of 

components 
𝑇𝑐,𝐶𝑎𝑝, 𝑇𝑠,𝐶𝑎𝑝 Core temperature of Cap, surface 

temperature of Cap (assume 

maximum model value = 125∘𝐶) 

𝑅𝐶𝑎𝑝, 𝑅𝑆𝐷 Reliability of a single Cap, 

reliability of a single SD 

𝐴𝐶𝑎𝑝 Surface area of Cap 𝐿0 Useful lifetime of the capacitor at 

nominal conditions (hrs) (assume 

1) 

𝐾𝑇 Temperature factor (ambient 

temperature) / model of lifetime 

on temperature 

𝐾𝑅 Ripple current factor (self-

heating) / model of lifetime on 

ripple current 

𝐾𝑉 Voltage factor (operating voltage) 

/ model of lifetime on voltage 

𝐾𝑖 Empirical safety factor (assuming 

maximum core temperature) 

[𝐾𝑖 = 4] 

𝐷𝑢𝐶𝑦 Duty cycle of application [=

0.585] 

𝑛 Exponent for non-linearity of 

deration 0.8 ≤
𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝑉𝑟𝑎𝑡𝑒𝑑
≤ 1 → 

𝑛 = 5 

𝑁𝑓 Number of cycles to failure of the 

IGBT (calculated) 

𝐴, 𝛽1 − 𝛽6 Base number of cycles to failure 

of the IGBT (𝑎𝑠𝑠𝑢𝑚𝑒 = 2.8 ×

104), lifetime model constants 

[𝛽 = (−3.483, 1917, −0.438, 

−0.717, −0.751, −0.564)] 

𝑇𝑗−𝐼𝐺𝐵𝑇 , Δ𝑇𝑗 , 𝑇𝑎 SD’s mean junction temperature, 

junction temperature swing 

(assume constant = 1.1), and 

ambient temperature (= 25∘𝐶) 

𝑡𝑜𝑛 On-time of IGBT (= 𝑡𝑝ℎ𝑎𝑠𝑒) 

duration of the operation and 

maintenance phase [assume a 72-

hr operation (𝑡𝑝ℎ𝑎𝑠𝑒 = 72ℎ𝑟𝑠)] 

𝐼𝐶,𝑆𝐷 IGBT collector current 
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CHAPTER  1 

INTRODUCTION 

The consumption of electricity in the whole world does nothing but increase with the years, 

and the fact that we need to find a balance between energy generation and energy consumption 

while trying to keep greenhouse gas emissions as low as possible is a challenge that we are going 

to face for the next decades.  

The harsh truth is that about 60% of electricity production depends mainly on burning fossil 

fuels like coal and natural gas, with significant greenhouse gas emissions and irreversible fossil 

fuel depletion. Fig. 1.1 from [3] depicts the annual global CO2 emission from fossil fuels. These 

are some reasons why renewable energy is becoming an obvious solution to traditional non-

renewable energy, offering more reliable, eco-friendly, and economically viable energy sources. 

However, connecting renewable energy power systems to the grid is a highly challenging task, 

which might impose challenges related to power quality and stability control [2].  

 

 

 

Fig. 1.1: Annual 𝐶𝑂2 emissions from fossil fuel by world region estimate in gigatons 𝐶𝑂2 per year 

(𝐺𝑡𝐶𝑂2) [3]. 
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Studies were made on the control aspect of renewable energy integration into the grid. [4], [5], 

[6], [7], [8], [9], and [10] elaborate on the control robustness aspect, while focusing on the 

importance of this characteristic when integrating renewables into the energy grid. The integration 

of renewables into the grid was also considered from an adaptive controlling perspective, with 

studies such as [11] and [12]. In addition to the previously mentioned controllers, other controllers 

were analyzed, such as unmatching impedances grids controllers such as [13], unbalanced grids 

controllers such as [14], modernized grid controllers such [15] and [16], three-phase Z-source 

inverters such as [17], and islanded modern microgrids such as [18]. 

One crucial technology that makes it easier to include renewables into the grid is the 

implementation of power electronic converters. Power electronic technologies offer high reliability 

and renewable energy conversion efficiency, thus contributing to energy conservation, improving 

energy efficiency, and helping mitigate harmful global emissions. This is why they are considered 

one of the main solution to tackle carbon emission and global warming problems [3]. Multiple 

studies have analyzed renewable energy applications, especially for solar and wind energy, as 

shown in [19], [20], [21], and [22]. Furthermore, different topologies such as [23], [24], and [25] 

were analyzed with different purposes such as stabilization, robustness, adaptability, and grid 

integration. 

However, a converter’s topology will change depending on its applications, and its 

performance will be strongly related to its reliability. Reliability means that maintenance costs are 

reduced,  and the power distribution is safer. Therefore, finding the most reliable converter is 

important nowadays, as choosing the correct parameters for designing a converter can significantly 

improve its lifetime and performance. 

 

 

1.1 PURPOSE OF STUDY 

In recent years, multiple attempts have been made to accurately model converters’  reliability 

to improve this reliability afterward. Power converters are key in power systems, and their failure 

affects the whole system, translating into shortages in power, supply and the extra cost of 

maintenance. Therefore, this research aims to provide a clear and concise model of the behavior 

of power converters based on their two main components which are the most prone to failure: the 

switching device and the capacitor. Once this model is created, different optimization algorithms 
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such as Harris Hawk Optimization, Particle Swarm Optimization, and Artificial Bee Colony 

Optimization will be used to find the optimal parameters for the design of a converter. This 

optimization in the design will increase the converter’s reliability, increasing the power system’s 

overall reliability. 

 

1.2 CONTRIBUTION 

The main contribution of this study is the reliability modeling of a power converter in a power 

system, sub-system, and component level in terms of the two components that are more prone to 

failure: the capacitor and the switching device. In addition, the reliability of the converter will be 

analyzed and improved based on the parameters that are considered variable, related to the voltage, 

current, frequency, and sizes of the different parts of the power electronic converter.   
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CHAPTER  2 

LITERATURE REVIEWS 

Reliability is a crucial characteristic in every type of system. It is defined as the quality of 

being consistent in performing a certain function over a specific period of time. When talking more 

specifically about power systems, reliability refers to the ability of the system to continuously 

provide consumers with electricity, especially during harsh conditions where its components are 

prone to failure.  

A reliable system is a predictable system, and predictability is the key to its correct functioning. 

This is even more true in power systems, where a failure in any system level could cause a failure 

in the whole system. Because of this, it is important to estimate the reliability of the system at each 

of its levels.  

The concept of reliability analysis consists of estimating a system’s reliability by studying the 

behavior of each component that forms it. In other words, the main objective when analyzing the 

reliability of a system as a whole is to use the knowledge of the reliabilities of individual 

components and how these components interact to investigate the reliability of the system that the 

components constitute [1]. 

A well-known alternative method to analyze a system’s reliability is the Monte Carlo 

simulation, which can estimate the damage the converters experience over the years. Different 

studies have been conducted on the application of the Monte Carlo simulation method in power 

converters, such as [26], [27], and [28].  

Monte Carlo simulation consists of imitating the stochastic behavior of a physical system. In 

general, Monte Carlo simulation methods can be used to imitate any system that exhibits any form 

of random behavior. In the context of reliability evaluation, Monte Carlo simulation is used to 

determine how random failures of the system’s components affect its reliability [1]. 

 

 
2.1 RELIABILITY IN POWER SYSTEMS 

Estimating a power system’s reliability is crucial to our society, as many aspects of it, such as 

the economy, health, quality of life, and several other sectors, depend on it. Power converters are 
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one of the elements on which a power system depends the most when it comes to reliability. Over 

the years, multiple attempts have been made to determine how reliable these components are and 

to try to estimate their lifetime and performance over time.  

On the converter level, the reliability model of a power electronic converter is developed based 

on the power electronic devices that the converter is composed of, for which various hourly-based 

input profiles and converter topologies are considered. The analysis on a component level aims to 

determine the failure rate that a converter exhibits in the useful time phase.  

On the system level, a non-sequential Monte-Carlo simulation estimates reliability metrics 

such as expected energy not served (EENS) and loss of load expectation (LOLE). Machine 

regression models, such as support vector regression (SVR) and random forests (RF), are 

implemented to bridge the nonlinear reliability relationship between two levels [29]. The analysis 

can also be done at a subsystem level, where the capacitor’s lifetime and cycles to failure of the 

switching device could be determined, focusing on the wear-out phase of the converter. 

Many mathematical models have been developed through the years to model the reliability of 

power converters, and these varieties of models mainly differ in the topologies and variables 

considered to model the converters. The main variables that need to be considered when modeling 

a power electronic converter are related to the capacitor’s characteristics and the switching device 

of power converters because these components are highly prone to failure.   

The different characteristics of these main components of the converters will make the 

converter’s lifetime longer or shorter, depending on how carefully their values are picked. Once 

the most effective values are chosen, the manufacturers can design these converters that 

theoretically have a longer lifetime and better performance.  

Fig. 2.1 depicts the aforementioned useful lifetime phase of the converter, where the failure 

rates of the capacitor and switching device are analyzed, as well as the wear-out phase, where the 

lifetime of the capacitor and the cycles to failure of the switching device are analyzed. 
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Fig. 2.1: Typical bathtub curve describing failure rate of an item [30]. 

 

 

2.2 POWER ELECTRONICS IN POWER SYSTEMS 

According to the International Renewable Energy Agency (IRENA), renewable technology is 

the main pathway to reach zero carbon dioxide (𝐶𝑂2) emissions by 2060. Power electronics have 

played and will continue to play a significant role in this transition by providing efficient electrical 

energy conversion, distribution, transmission, and utilization [31]. However, implementing 

converters will add challenges in terms of the control and stability of the system, which need to be 

overcome to ensure that the energy supplied is enough to satisfy the demand. 

Power electronic converters have four main categories: AC to DC converters, DC to DC 

converters, DC to AC converters, and AC to AC converters. In addition, some categories, such as 

AC to DC converters and AC to AC converters, have further classifications. The half-bridge 

converter will be the type of converter analyzed for this work, and one of the most novel converters 

is presented in [32], which uses two half-bridge DC-AC converters in parallel to reduce the number 

of switches used.  This converter topology is illustrated in Fig. 2.2, and it will be like the one used 

for this work, with the difference that the number of switches and capacitors is a variable to be 

optimized by the optimizing algorithms to increase the converter’s reliability.  
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Fig. 2.2: A dual-output half-bridge converter with three switches [32]. 

 

 

2.2.1   AC TO DC CONVERTERS 

AC-to-DC converters convert an AC input signal into a DC output signal. These types of 

converters are also known as rectifiers, and there are two main types in the industry: diode rectifiers 

and phase controller rectifiers. 

Diode rectifiers represent a compact, lightweight superconducting conversion chain that can 

significantly reduce the carbon footprint in critical sectors [33]. These rectifiers can rectify a 

variable AC input signal into a stable, fixed output DC signal. Some examples of diode rectifiers 

are developed in [34], [35], and [36], with applications in wireless power transfer, RF energy 

harvesting, and power distribution. 

On the other hand, phase-controlled rectifiers convert a fixed AC input signal into a variable 

output DC signal. In works like [37], this technology uses the existing variable DC bus voltage 

control strategy based on a two-level AC/DC converter rather than the traditional fixed DC bus 

control. 
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2.2.2   DC TO DC CONVERTERS 

DC-to-DC converters convert a DC input signal into a DC output signal. These converters, 

also known as choppers, use semiconductors such as power transistors to control the output with 

a very low-power signal.  

DC-to-DC converters are widely used in applications such as electric vehicles, electronic 

devices such as phones and laptops, and renewable energy.  These converters can be either step-

up DC to DC converters, also known as boost converters, or step-down DC to DC converters, also 

known as buck converters. Studies such as [38] are a great example of the utilization of DC-DC 

converts to enhance the charging speed of an electric car. On the other hand, applications such as 

[39] show how DC-DC converters are helpful when implementing wind turbines into the DC grid, 

which seems to have advantages such as reactive power harmonics. Furthermore, DC-DC 

converters are essential in HVDC (High voltage direct current) networks, where they interconnect 

two different types (LCC (line commutated converter) / VSC (voltage source converter)) of the 

network, with examples such as [40] and [41]. 

 

2.2.3   AC TO AC CONVERTERS 

AC-to-AC converters convert an AC input signal with fixed frequency into an AC output signal 

with variable voltage. They are classified into two main types: cycloconverters and AC voltage 

controllers. 

Cycloconverters are power electronic devices that produce adjustable voltage and frequency 

AC power from a constant voltage constant frequency AC source without any DC link. 

Cycloconverters produce significant harmonics and non-standard frequency components in their 

output voltage that will depend on their structure [42]. Therefore, different structures could be 

implemented with other purposes, ranging from hybrid cycloconverters [43] to high-frequency 

cycloconverters [44] and cycloconverters to control the power quality of the grid [45]. 

On the other hand, AC voltage regulators function by changing the input AC signal with fixed 

voltage into an output AC signal with variable voltage and the same frequency as the input. The 

topology of AC voltage regulators could vary, depending on the application of the converter. 

Studies such as [46] have developed a topology for an AC voltage regulator with a high-frequency 

link. In contrast, studies such as [47] and [48] explored the efficiency improvement that could be 
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done to an AC voltage regulator.  

 

2.2.4   DC TO AC CONVERTERS 

DC to AC converters are the type of converters that convert a DC input signal to an AC output 

signal. These converters are also known as inverters and are crucial in sectors such as power 

transmission and distribution. In addition, due to the global energy challenge, grid-tied inverters 

for renewable energy sources are becoming widely used nowadays [49]. In this case, DC-AC 

converters will be essential to be able to produce a larger-scale integration of wind and 

photovoltaic power. Studies such as [50] and [51] explore the challenges of integrating wind power 

into the grid. In contrast, study [52] examines the same difficulties regarding integrating 

photovoltaic power into the grid.     

 

2.3 POWER CONVERTER’S ROLE IN MODERNIZED POWER SYSTEMS 

The energy system is undergoing significant changes due to the decentralization of power 

generation. These changes have, as a consequence, the replacement of large synchronous 

generators by the implementation of more power electronics converters. However, introducing 

power converters into the grid can create harmonics/stability issues that increase the loading 

stresses of power electronic components systems, accelerate the wear out, or even induce 

catastrophic failure. Wear out or failure of power electronic components alternate the electrical 

parameters or the system architecture, which is undesirable because it may cause new 

harmonic/stability issues.  

In addition, introducing converters in the power systems industry affects power generation, 

transmission, and distribution. On the generation side, the introduction of converter-interfaced 

generators has features such as intermittent input resources and small unit sizes with low or 

synthetic inertia, replacing the traditional approach used with synchronous generators. When 

talking about transmission, the increasing implementation of FACTS and HVDC converters has 

enhanced power transmission by providing flexibility in controlling power network parameters, 

having the only downside of new control and stability challenges. Regarding the distribution level, 

small-scale converter-interfaced generators, electric vehicles, and inverter-based battery energy 
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storage systems have significantly complicated the distribution and utilization systems [53]. 

 

2.4 POWER CONVERTER’S RELIABILITY ANALYSIS  

Depending on the level of interest of the study, the reliability analysis could relate to the 

individual performance of the device, converter, or power systems in terms of lifetime, availability, 

probability of failure, LOLE, security, and so on. The standard performance measure of a power 

system in terms of LOLE is that it doesn’t exceed 4-8 hours/year.  

Articles such as [54] present a device-level and converter-level analysis of converter failure 

rates according to physics. Therefore, once the weaknesses of the converters are found in terms of 

the design, planning, operation, and maintenance of these power electronic converters, an optimal 

decision-making process needs to be done. Moreover, these modeling systems for the reliability 

analysis of power converters must consider how this random chance of failure and the wear-out 

failures on power systems can affect their performance. 

Moreover, reliability has become a crucial topic in applications such as continuous power 

delivery, low-frequency maintenance, and applications with high safety requirements. The 

challenges faced in the design of converters for these applications are related to the reliability of 

the overall system once these converters are implemented. In many cases, the power electronic 

converters do not have redundant systems in place, which means that a fault in a device, 

component, or subsystem level can cause the entire system to fail [55].  

A failure in the entire system would increase the cost of repairing, which leads to the 

conclusion that the system must be designed while considering the reliability of each one of the 

parts that form that system so that when they are assembled, the overall reliability of the system 

could be determined by analyzing how these parts interact. This approach will help avoid 

unexpected system failures that will cause undesired results related to safety and maintenance. Fig. 

2.3 depicts a general overview of the different aspects of reliability that need to be considered 

when optimizing the reliability improvement of a system.  
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Fig. 2.3: General overview and interconnection of overall reliability-related topics [55]. 

 

 

2.5 METAHEURISTIC OPTIMIZATION METHODS 

Nowadays, many decisions are machine-learning decisions, processing large amounts of data 

to make accurate decisions. However, the data size increases with the years, and this is where many 

machine-learning-based decisions have a weakness. Despite the struggles of increasing the amount 

of data, many artificial intelligence approaches succeeded in the lifetime estimation of power 

electronics such as PV systems [63]. Moreover, algorithms such as the interior-point algorithms 

were proposed to control modernized microgrids [64]. 

The rapid increase in data volume and feature dimensionality negatively influences machine 

learning and many other fields, such as decreasing classification accuracy and increasing 

computational cost [65]. Therefore, applying older but reliable methods, such as the well-known 
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metaheuristic optimization algorithms, is beneficial in many scenarios. These algorithms work 

great when the objective is to find approximate solutions to optimization problems, especially 

when the problem to be optimized is a nonlinear problem, which is the case with power electronic 

converters.  

As seen in Fig. 2.4, metaheuristic optimization methods are divided into multiple categories, 

such as physics-based optimization algorithms, swarm-based optimization algorithms, human-

based optimization algorithms, and evolutionary optimization algorithms. 

 

 

Fig. 2.4: Classification of meta-heuristic techniques (meta-heuristic diamond) [62]. 

 

This study will focus on swarm-based optimization algorithms, which are inspired by natural 

processes such as swarm behavior. The main types of swarm optimization are Particle swarm 

optimization, ant colony optimization, and artificial bee colony optimization. In addition to the 

previously mentioned algorithms, a recently developed swarm-based algorithm called the Harris 

Hawk optimization algorithm, a gradient-free optimization algorithm tested with excellent results 

in non-linear optimization problems, has been created. 

All swarm-based optimization algorithms have the characteristic of having a certain number 

of particles, also called a population, in charge of searching for an optimum solution in a defined 

search space. This search space will be determined by the constraints provided by the user, and in 
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there, the particles will interact with each other, influencing their positions and their neighbors’ 

positions, to collectively find the best solution possible. 

Fig. 2.5 depicts the traditional functioning of swarm intelligence algorithms when searching 

for an optimum solution. 

 

 

 
 

Fig. 2.5: General framework of the swarm intelligence algorithms [94].
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CHAPTER  3 
 

RELIABILITY MODELING 

Reliability modeling can be done at each of the three levels presented in a system. The first 

level is the power system level, governed by system reliability indices and indicators such as 

LOLE, EENS, and LOLP. The second level for analyzing a system is the subsystem level, where 

availability modeling is done to predict the failure probability and failure rate (𝐹, 𝜆, Π). The third 

level is the component level, where wear-out modeling is executed to find lifetime indicators (𝑁𝑓, 

𝐿0).  

Fig. 3.1 from [54] depicts the different levels explained and their correlation. 

 

 

 

Fig. 3.1: Correlation between PE and power system reliability concepts [54]. 

 

 

3.1.   POWER SYSTEM LEVEL RELIABILITY MODELING 

Power system reliability modeling is a crucial aspect of ensuring the correct operation of the 

system without interruptions. The power system level reliability has three widely used reliability 

indicators: LOLP, LOLE, and EENS. In addition, various alternative standard test systems for 

modern power system analysis are proposed in [56]. 
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3.1.1.     LOSS OF LOAD PROBABILITY (LOLP) 

The LOLP is a fundamental index in power systems, especially regarding reliability. This index 

refers to the Loss of Load Probability, and it quantifies the likelihood that the current power supply 

will not be enough to meet the demands at a given time, which, in other words, could be defined 

as a shortage of power supply for the market. The LOLP is defined by [57] as a sum of all 

mathematical expectations for all units defined in Eq. (1). 

 

 𝐿𝑂𝐿𝑃 = ∑ 𝑝𝑖 ∙ 𝑡𝑖
𝑛
𝑖=1         (1) 

 

where 𝑝𝑖 is the probability of loss of capacity and 𝑡𝑖 is the duration of loss of capacity in percent. 

 

3.1.2.     LOSS OF LOAD EXPECTATION (LOLE) 

The LOLE is a probabilistic index used in power system applications for more than 70 years 

and is one of the most well-known ways to measure a system’s shortage risk. This index refers to 

the likelihood that consumption L would not surpass the operating power capability C, where 𝑝𝑖 

is the individual likelihood of capability in an outage, as defined in Eq. (2), described by [58].  

 

 𝐿𝑂𝐿𝐸 = ∑ 𝑝𝑖 ∙ (𝑐𝐼 − 𝐿𝑖−1)
𝑛
𝑖=1         (2) 

 

3.1.3.     EXPECTED ENERGY THAT IS NOT SUPPLIED (EENS) 

The EENS indicator is also one of the crucial indicators used at the power system level to 

indicate the amount of energy demand that is not matched by the sufficient electricity supply. This 

indicator is very important to ensure the constant and reliable functioning of a power system, as 

well as to perform economic analysis and system planning. The classical numerical method to 

calculate the EENS is shown in Eq. (3). 

 

 𝐸𝐸𝑁𝑆 = ∑ 𝑃𝑖 ∙ 𝐸𝑖
𝑛
𝑖=1         (3) 
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where 𝑃𝑖 shows the load loss and 𝐸𝑖 shows the curtailed energy.  

 

More advanced EENS algorithms are proposed in [59] and [60] , where this indicator is 

calculated while considering the total average active loads of transformer substations disconnected 

after the fault for the service time. This modified algorithm to approach the calculation of the 

EENS allows for reducing the ENNS in an MV distribution system by placing sectionalizers 

strategically in the power lines.  

 

3.2.   SUB-SYSTEM LEVEL RELIBIALITY MODELING 

The sub-system and component level reliability modeling were developed using the FIDES 

Guide 2022 for Reliability Methodology for electronic systems [61]. The sub-system level 

reliability modeling is assessed by targeting the formulation of rates, such as 𝐹 and 𝜆 (failure rates) 

and Π (stress coefficients), that will determine the overall reliability on a sub-system level, 

modeling the behavior of a converter regarding its useful lifetime phase. The general aim of the 

modeling at a sub-system level is to develop an equation that describes the total failure rate of the 

system, defined in Eq. (4). 

 

 𝜆𝑡𝑜𝑡 =
−
𝛿

𝛿𝑡
𝑅(𝑇)

𝑅(𝑇)
 

  (4) 

 

where 𝑅(𝑇) is the reliability of a single converter, defined in Eq. (5).  

 

 𝑅(𝑇) = 1 − [1 − 𝑅]𝑁        (5) 

 

where 𝑅 corresponds to the 𝑅𝑆𝐷 (individual reliability of the switching device) and 𝑅𝐶𝑎𝑝 

(individual reliability of the capacitor), defined in Eq. (6) and Eq. (7), respectively. In addition, 𝑁 

is the number of switching devices (𝑁𝑆𝐷) and capacitors (𝑁𝐶) used in the converter. 

 𝑅𝑆𝐷 = 𝑒
−𝜆𝑆𝐷(𝑇)   (6) 
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 𝑅𝐶𝑎𝑝 = 𝑒
−𝜆𝐶𝑎𝑝(𝑇)        (7) 

Eq. (8) and Eq. (9) both model the reliability of the switching device and capacitor, 

respectively, by using 𝜆𝑆𝐷 (switching device useful failure rate) and 𝜆𝐶𝑎𝑝 (capacitor useful failure 

rate). These two coefficients model the random phase of the bathtub curve modeled in Fig. 2.1, 

considering only the operational and maintenance phases.  

As 𝜆𝐶𝑎𝑝 and 𝜆𝑆𝐷 model the failure rate of the capacitor and switching device, they must be 

minimized to increase the reliability of the power converter. However, the model these two 

coefficients must be created for the minimization objective. 

The failure rate of the capacitor 𝜆𝐶𝑎𝑝 depends on the contribution of physical stresses on the 

capacitor (𝜆𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙−𝑐𝑎𝑝), the quality and technical control that goes into the capacitor 

manufacturing (Π𝑃𝑀), and the quality and technical control of the development, manufacturing, 

and operating processes of the converter as a system (Π𝑃𝑟𝑜𝑐𝑒𝑠𝑠), as defined by Eq. (8). 

 

 𝜆𝐶𝑎𝑝 = 𝜆𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙−𝑐𝑎𝑝 ∗ Π𝑃𝑀 ∗ Π𝑃𝑟𝑜𝑐𝑒𝑠𝑠        (8) 

 

On the other hand, the failure rate of the switching device 𝜆𝑆𝐷 depends on the contribution of 

physical stresses on the switching device (𝜆𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙−𝑆𝐷), the acceleration factor related to the 

impact of the component’s development (Π𝑃𝑊), the quality and technical control that goes in the 

switching device manufacturing (Π𝑃𝑀), and the quality and technical control of the development, 

manufacturing, and operating processes of the converter as system (Π𝑃𝑟𝑜𝑐𝑒𝑠𝑠), as defined by Eq.  

(9). 

 

𝜆𝑆𝐷 = 𝜆𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙−𝑆𝐷 ∗ Π𝑃𝑊 ∗ Π𝑃𝑀 ∗ Π𝑃𝑟𝑜𝑐𝑒𝑠𝑠         (9) 

 

The contribution of physical stresses on the capacitor (𝜆𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙−𝑐𝑎𝑝) and physical stresses on 

the switching device (𝜆𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙−𝑆𝐷) are modeled in Eq. (10) and Eq. (11), while the rest of the 

variables related to quality and control are modeled in Eq. (12), Eq. (13), and Eq. (14). 
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 𝜆𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙−𝐶𝑎𝑝 = 𝜆0𝐶𝑎𝑝 [(
𝑡𝑝ℎ𝑎𝑠𝑒
𝑇𝑡𝑜𝑡𝑎𝑙

) (Π𝑇ℎ𝑒𝑟𝑚𝑜−𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 + Π𝑇𝐶𝑦 +Π𝑀𝑒𝑐ℎ,𝐶𝑎𝑝) Π𝐼𝑛𝑑𝑢𝑐𝑒𝑑] 
  (10)  

    𝜆𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙−𝑆𝐷 = (
𝑡𝑝ℎ𝑎𝑠𝑒

𝑇𝑡𝑜𝑡𝑎𝑙
)(

𝜆0𝑇𝐻Π𝑇𝐻 + 𝜆0𝑇𝐶𝑦𝐶𝑎𝑠𝑒Π𝑇𝐶𝑦𝐶𝑎𝑠𝑒 + 𝜆0𝑅𝐻Π𝑅𝐻 

+𝜆0𝑇𝐶𝑦𝑆𝑜𝑙𝑑𝑒𝑟𝑗𝑜𝑖𝑛𝑡𝑠Π𝑇𝐶𝑦𝑆𝑜𝑙𝑑𝑒𝑟𝑗𝑜𝑖𝑛𝑡𝑠 + 𝜆𝑀𝑒𝑐ℎΠ𝑀𝑒𝑐ℎ,𝑆𝐷   
) (Π𝐼𝑛𝑑𝑢𝑐𝑒𝑑)                                 

(11) 

 Π𝑃𝑀 = 𝑒
𝛿1(1−𝑃𝑎𝑟𝑡𝐺𝑟𝑎𝑑𝑒)−𝛼1 (12) 

   Π𝑃𝑊 = 𝑒
𝛿(1−𝑃𝑟𝑜𝑐𝑒𝑠𝑠_𝐺𝑟𝑎𝑑𝑒)−𝛼      (13) 

 Π𝑃𝑟𝑜𝑐𝑒𝑠𝑠 = 𝑒
𝛿2(1−𝑃𝑟𝑜𝑐𝑒𝑠𝑠_𝐺𝑟𝑎𝑑𝑒) (14) 

 

Eq. (12), Eq. (13), and Eq. (14) are calculated using constant values provided in the Table of 

Symbols, where 𝛿1 and 𝛿2 are correlating factors that determine the size of the impact of Π𝑃𝑀 on 

reliability, 𝛿2 is the correlating factor that determines the range of variation of  Π𝑃𝑟𝑜𝑐𝑒𝑠𝑠, 𝛼 and 𝛿 

are correlating factors that determine the size of the impact of Π𝑃𝑊 on reliability, 𝑃𝑎𝑟𝑡𝐺𝑟𝑎𝑑𝑒 is 

the estimation from the audit indicating the buyer’s past experience, and  𝑃𝑟𝑜𝑐𝑒𝑠𝑠_𝐺𝑟𝑎𝑑𝑒  is the 

estimation from an audit indicating how the factors influencing the design rules for the components 

are managed.  

Meanwhile, Eq. (10) and Eq. (11) need some other equations to be developed. For the 

contribution of physical stresses on the capacitor (𝜆𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙−𝑐𝑎𝑝) in Eq. (10), 𝜆0𝐶𝑎𝑝 corresponds to 

the basic failure rate of the capacitor, 𝑡𝑝ℎ𝑎𝑠𝑒 refers to the duration of the operation and maintenance 

phase, 𝑇𝑡𝑜𝑡𝑎𝑙 refers to the reference duration in a year, Π𝑇ℎ𝑒𝑟𝑚𝑜−𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 refers to the thermo-

electrical acceleration factor indicating thermal and electrical stress sensitivity on the capacitor 

during operation, Π𝑇𝐶𝑦 is the thermal cycling acceleration factor indicating thermal cycling stress 

sensitivity on the capacitor during operation, Π𝑀𝑒𝑐ℎ,𝐶𝑎𝑝 refers to the mechanical acceleration factor 

indicating mechanical stress sensitivity on the capacitor during operation, and Π𝐼𝑛𝑑𝑢𝑐𝑒𝑑 refers to 

the contribution of the induced/overstress factors inherent to a particular field of application. 

Some of the afore mentioned variables’ equations are developed below, while some are 

assumed constant (refer to Table of Symbols). 

   Π𝑇ℎ𝑒𝑟𝑚𝑜−𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = 𝛾𝑇𝐻−𝐸𝐿 (
1

𝑆𝑟𝑒𝑓
⋅
𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝑉𝑟𝑎𝑡𝑒𝑑
)

3

⋅ 𝑒
𝐸𝑎
𝐾𝑏
[
1
293

−
1

𝑇𝑎𝑚𝑏+273
]
 

(15) 
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      𝛱𝑇𝐶𝑦 = 𝛾𝑇𝐶𝑦 (
12×𝑁𝑐𝑦

𝑡𝑝ℎ𝑎𝑠𝑒
) ⋅ (

𝑚𝑖𝑛(𝜃𝑐𝑦,2)

2
)

1

3
⋅ (
𝛥𝑇𝑐𝑦𝑐𝑙𝑖𝑛𝑔,𝐶𝑎𝑝

20
)
1.9

⋅ 𝑒
𝐸𝑎
𝐾𝑏
[
1

313
−

1

𝑇𝑚𝑎𝑥−𝑐𝑦𝑐𝑙𝑖𝑛𝑔,𝐶𝑎𝑝+273
]
 

(16) 

      Π𝑀𝑒𝑐ℎ,𝐶𝑎𝑝 = 𝛾𝑀𝑒𝑐ℎ × (
𝐺𝑅𝑀𝑆,𝐶𝑎𝑝

0.5
)
1.5

 
(17) 

    Π𝐼𝑛𝑑𝑢𝑐𝑒𝑑 = (Π𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 × Π𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 × Π𝑅𝑢𝑔𝑔𝑒𝑑𝑖𝑧𝑖𝑛𝑔)
0.511ln (𝐶𝑆𝑒𝑛𝑠)

 (18) 

    Π𝑇𝐻 = 𝑒
11604×0.7(

1

𝑇𝑅𝑒𝑓+273
−

1

𝑇𝑗−𝐼𝐺𝐵𝑇+273
)
 

(19) 

    Π𝑇𝐶𝑦𝐶𝑎𝑠𝑒 = (
12×𝑁𝑐𝑦

𝑡𝑝ℎ𝑎𝑠𝑒
) × (

ΔTcycling,SD

20
)
4

× 𝑒
𝐸𝑎
𝐾𝑏
(
1

313
−

1

𝑇𝑚𝑎𝑥−𝑐𝑦𝑐𝑙𝑖𝑛𝑔+273
)
 

(20) 

    Π𝑇𝐶𝑦𝑆𝑜𝑙𝑑𝑒𝑟𝑗𝑜𝑖𝑛𝑡𝑠 = (
12×𝑁𝑐𝑦

𝑡𝑝ℎ𝑎𝑠𝑒
) × (

min(𝜃𝑐𝑦,2)

2
)

1

3
× (

ΔTcycling,Cap

20
)
1.9

× 𝑒
𝐸𝑎
𝐾𝑏
(
1

313
−

1

𝑇𝑚𝑎𝑥−𝑐𝑦𝑐𝑙𝑖𝑛𝑔+273
)
 

(21) 

   Π𝑀𝑒𝑐ℎ,𝑆𝐷 = (
𝐺𝑅𝑀𝑆,𝑆𝐷

0.5
)
1.5

       
(22) 

 

From Eq. (15), 𝛾𝑇𝐻−𝐸𝐿 is the thermo-electrical acceleration factor indicating thermal and 

electrical stress sensitivity on the capacitor during operation, 𝑆𝑟𝑒𝑓 is the reference level of electrical 

stress on the capacitor, 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 is the operation voltage, 𝑉𝑟𝑎𝑡𝑒𝑑 is the blocking voltage of the 

capacitor and nominal voltage of the switching device,  𝐸𝑎 is the activation energy of the capacitor 

material, 𝐾𝑏 is the Boltzmann constant, and 𝑇𝑎𝑚𝑏 is the ambient temperature. 

From Eq. (16), 𝛾𝑇𝐶𝑦 is the thermal cycling stress sensitivity factor of the capacitor, 𝑁𝑐𝑦 is the 

number of cycles associated with each cycling phase of the capacitor, 𝜃𝑐𝑦 is cycle duration of the 

capacitor in hours, ΔTcycling,Cap is the amplitude of temperature variation associated with the 

capacitor’s cycling phase, and Tmax−cycling,Cap is the influence of the capacitor’s maximum 

temperature on the board during a cycling phase. 

From Eq. (17) and Eq. (18), 𝛾𝑀𝑒𝑐ℎ is the mechanical stress sensitivity factor of the capacitor, 

𝐺𝑅𝑀𝑆,𝐶𝑎𝑝 is the stress associated with the capacitor’s random vibration phase. Π𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 is the 

influence of the capacitor’s and switching device’s functions in the system, Π𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 is the 

influence of the environment of use during application on the converter’s reliability, Π𝑅𝑢𝑔𝑔𝑒𝑑𝑖𝑧𝑖𝑛𝑔 

is the influence of the policy of building overstress tolerance into the capacitor or switching device, 
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and 𝐶𝑆𝑒𝑛𝑠 is the overstress sensitivity coefficient inherent to the technology of the capacitor or 

switching device.  

From Eq. (19), Eq. (20), Eq. (21) and Eq. (22),  𝑇𝑟𝑒𝑓 is the reference temperature, 𝑇𝑗−𝐼𝐺𝐵𝑇 is 

the switching device’s junction temperature during an operating phase, ΔTcycling,SD is the 

amplitude of temperature variation associated with the switching device’s cycling phase, 

Tmax−cycling is the maximum temperature on the board during the switching device’s cycling 

phase, and 𝐺𝑅𝑀𝑆,𝑆𝐷 is the stress associated with the switching device’s random vibration phase. 

The afore mentioned variables that don’t correspond to constant values are defined by the next 

equations.   

 

 ΔTcycling,Cap = 𝐼𝑟𝑖𝑝
2 ⋅ 𝐸𝑆𝑅 ⋅ 𝑅𝑡ℎ

𝐶𝑎𝑝
       (23) 

where,  

 𝐼𝑟𝑖𝑝 =
𝐷𝑢𝐶𝑦

2𝑅0𝐶 𝑓𝑠𝑤
 (24) 

 𝑅𝑑 =
𝐷𝑜𝑥

2𝜋𝑓𝑠𝑤𝐶
 (25) 

 𝑅𝑒 = 𝑅𝑒0 ⋅ 2
−(
𝑇𝑠,𝐶𝑎𝑝−𝑇𝑅𝑒𝑓

40
)
0.6

 
(26) 

 𝐸𝑆𝑅 = 𝑅0 + 𝑅𝑑 + 𝑅𝑒 (27) 

 ℎ𝑓𝑟𝑒𝑒 = 1.32 × (
𝑇𝑠,𝐶𝑎𝑝−𝑇𝑅𝑒𝑓

𝐷𝐶𝑎𝑝
)
0.25

 
(28) 

 ℎ𝑟𝑎𝑑 = 𝜀 ⋅ 𝜎 ⋅ (𝑇𝑠,𝐶𝑎𝑝 + 𝑇𝑅𝑒𝑓)(𝑇𝑠,𝐶𝑎𝑝
2 + 𝑇𝑅𝑒𝑓

2 ) (29) 

 ℎ𝑡𝑜𝑡 = ℎ𝑓𝑟𝑒𝑒 + ℎ𝑟𝑎𝑑 (30) 

 𝐴𝐶𝑎𝑝 =
𝜋

4
⋅ 𝐷𝐶𝑎𝑝 ⋅ (𝐷𝐶𝑎𝑝 + 4𝐿𝐶𝑎𝑝) (31) 

 𝑅𝑡ℎ
𝐶𝑎𝑝 =

1

ℎ𝑡𝑜𝑡⋅𝐴𝐶𝑎𝑝
 (32) 
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From Eq. (23), 𝐼𝑟𝑖𝑝 refers to the percent ripple current in the application, 𝐸𝑆𝑅 refers to the 

equivalent series resistance of the capacitor, 𝑅𝑡ℎ
𝐶𝑎𝑝

 refers to the thermal resistance of the capacitor, 

𝑅0 refers to the approximate constant ohmic resistance of the capacitor, 𝑅𝑑 refers to the frequency 

dependent resistance of the capacitor, 𝑅𝑒 refers to the temperature dependent resistance of the 

capacitor,  𝐷𝑢𝐶𝑦 refers to the duty cycle of application, 𝐶 refers to the capacitance of the capacitor, 

𝑓𝑠𝑤 refers to the switching frequency in application, 𝐷𝑜𝑥 refers to the dissipation factor of the 

capacitor’s dielectric, 𝑅𝑒0 refers to the temperature dependent resistance of the capacitor at room 

temperature, 𝑇𝑠,𝐶𝑎𝑝 refers to the surface temperature of the capacitor, ℎ𝑡𝑜𝑡 refers to the total heat 

transfer coefficient of the capacitor, ℎ𝑓𝑟𝑒𝑒 refers to the convection heat transfer coefficient of the 

capacitor, ℎ𝑟𝑎𝑑 refers to the radiation heat transfer coefficient of the capacitor, 𝐴𝐶𝑎𝑝 refers to the 

surface area of the capacitor, 𝐷𝐶𝑎𝑝 refers to the diameter of the capacitor, and 𝐿𝐶𝑎𝑝 refers to the 

length of the capacitor. 

For the switching device’s junction temperature during an operating phase, 𝑇𝑗−𝐼𝐺𝐵𝑇: 

 

   𝑇𝑗−𝐼𝐺𝐵𝑇 = 𝑃𝐴𝑅𝑡ℎ
𝐼𝐺𝐵𝑇 + 𝑇𝑅𝑒𝑓            (33) 

where 

 𝐸𝑠𝑤 = 𝐸𝑠𝑤,𝑟𝑒𝑓 ⋅ (
𝑖𝑐

𝐼𝑟𝑒𝑓
)
𝐾𝑖

(
𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝑉𝑟𝑒𝑓
)
𝐾𝑣

(1 + 𝑇𝐶𝑠𝑤 ⋅ (𝑇𝑗−𝐼𝐺𝐵𝑇=𝑇𝑗,𝑆𝐷,𝑚𝑎𝑥 − 𝑇𝑎𝑚𝑏))       
(34) 

 𝑃𝐼𝐺𝐵𝑇
𝐶𝑜𝑛𝑑 = 𝑣𝑐𝑒0 ⋅ 𝑖𝑐 + 𝑅𝑜𝑛,𝑆 ⋅ 𝑖𝑐

2       (35) 

 𝑃𝐼𝐺𝐵𝑇
𝑆𝑊 =

𝐸𝑠𝑤⋅𝑓𝑠𝑤

𝜋
⋅
√2∗𝑖𝑐

𝐼𝑟𝑒𝑓
⋅
√2∗𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝑉𝑟𝑒𝑓
 

(36) 

 𝑃𝐴 = 𝑃𝐼𝐺𝐵𝑇
𝐶𝑜𝑛𝑑 + 𝑃(𝑡)𝐼𝐺𝐵𝑇

𝑆𝑊        (37) 

 

From Eq. (38), 𝑃𝐴 refers to the total power losses, 𝑅𝑡ℎ
𝐼𝐺𝐵𝑇 refers to the thermal resistance of the 

switching device, 𝐸𝑠𝑤 refers to the total switching energy losses of the IGBT, 𝐸𝑠𝑤,𝑟𝑒𝑓 refers to the 

reference switching energy losses of the IGBT, 𝑖𝑐 refers to the IBGT collector current, 𝐼𝑟𝑒𝑓 refers 
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to the nominal current, 𝑇𝐶𝑠𝑤 refers to the temperature coefficient of switching losses, 𝑃𝐼𝐺𝐵𝑇
𝐶𝑜𝑛𝑑 refers 

to the conduction losses in the switching device, 𝑃𝐼𝐺𝐵𝑇
𝑆𝑊  refers to the switching losses in the 

switching device, 𝑣𝑐𝑒0 refers to the collector-emitter voltage,  and 𝑅𝑜𝑛,𝑆 refers to the on-state 

resistance of the IGBT. 

The last equations to describe the rest of the variables are Eq. (38), Eq. (39), Eq. (40), and Eq. 

(41). 

 

   Tmax−cycling,Cap = 𝑇𝑐,𝐶𝑎𝑝 +
Δ𝑇𝑐𝑦𝑐𝑙𝑖𝑛𝑔,𝐶𝑎𝑝

2
        (38) 

   Π𝑅𝑢𝑔𝑔𝑒𝑑𝑖𝑧𝑖𝑛𝑔 = 𝑒
0.7(1−𝑅𝑒𝑐𝑜𝑚_𝐺𝑟𝑎𝑑𝑒)         (39) 

 ΔTcycling,SD = 0.1977 − 2.0113 ∗ 𝑇𝑗−𝐼𝐺𝐵𝑇 + 2.01 ∗ 𝑇𝑚𝑎𝑥−𝑐𝑦𝑐𝑙𝑖𝑛𝑔 

 

(40) 

 Tmax−cycling = 𝑇𝑗−𝐼𝐺𝐵𝑇 + 0.2801 (41) 

 

where 𝑅𝑒𝑐𝑜𝑚_𝐺𝑟𝑎𝑑𝑒 refers to the weighted recommendation score assigned to the capacitor or 

switching device. 

 

3.3.   COMPONENT LEVEL RELIABILITY MODELING 

The component level reliability modeling is done through wear-out modeling to find lifetime 

coefficients such as 𝑁𝑓 and 𝐿0, which will determine the overall reliability on a component level. 

The general aim of the modeling at a component level is to be able to develop an equation that 

describes the capacitor’s lifetime in years (𝐿𝐶𝑎𝑝) and an equation that describes the IGBT’s cycles 

to failure (𝑁𝑓,𝐼𝐺𝐵𝑇), defined by Eq. (42) and Eq. (43) respectively. 

 

 𝐿𝐶𝑎𝑝 = 𝐿0 × 𝐾𝑇 × 𝐾𝑅 × 𝐾𝑉  (42) 

 𝑁𝑓,𝐼𝐺𝐵𝑇 = 𝐴 ⋅ ∆𝑇𝑗−𝐼𝐺𝐵𝑇
𝛽1 ⋅ exp (

𝛽2

𝑇𝑗−𝐼𝐺𝐵𝑇+273
) 𝑡𝑜𝑛

𝛽3 ⋅ 𝐼𝐶,𝑆𝐷
𝛽4 ⋅ 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝛽5 ⋅ 𝐷𝑏𝑤
𝛽6  

 (43) 
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where 𝐿0 refers to the useful lifetime of the capacitor at nominal conditions, 𝐾𝑇 refers to the model 

of lifetime on temperature, 𝐾𝑅 refers to the model of lifetime on ripple current, 𝐾𝑉 refers to the 

model of lifetime on voltage, 𝐴 refers to the base number of cycles to failure of the IGBT, 𝛽1 − 𝛽6 

refers to lifetime model constants, ∆𝑇𝑗−𝐼𝐺𝐵𝑇 refers to the junction temperature swing, 𝑇𝑗−𝐼𝐺𝐵𝑇 

defined in Eq. (33) refers to the switching device’s junction temperature during an operating phase, 

𝑡𝑜𝑛 refers to the on-time of the IGBT, 𝐼𝐶−𝑆𝐷 refers to the IGBT collector current, 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 refers to 

the operation voltage, and 𝐷𝑏𝑤 refers to the bond wire diameter. 

The variables aforementioned are defined by Eq. (44), Eq. (45), and Eq. (46), while the rest of 

variables are assumed constant.  

 

 𝐾𝑇 = 2
𝑇𝑐,𝐶𝑎𝑝−𝑇𝑎𝑚𝑏

10  
 (44) 

 𝐾𝑅 = 𝐾𝑖
[1−𝐼𝑟𝑖𝑝

2 ]×
Δ𝑇𝑐𝑦𝑐𝑙𝑖𝑛𝑔,𝐶𝑎𝑝

10  
 (45) 

 𝐾𝑉 = (
𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝑉𝑟𝑎𝑡𝑒𝑑
)
−𝑛

  (46) 

 

where 𝑇𝑐,𝐶𝑎𝑝 is the core temperature of the capacitor defined by Eq. (47), 𝑇𝑎𝑚𝑏 is the ambient 

temperature, 𝐾𝑖 is the empirical safety factor, 𝐼𝑟𝑖𝑝 is the percent ripple current in the application 

defined by Eq. (24), Δ𝑇𝑐𝑦𝑐𝑙𝑖𝑛𝑔,𝐶𝑎𝑝 is the amplitude of temperature variation associated with the 

capacitor’s cycling phase defined by Eq. (23), 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 is the operation voltage, and 𝑉𝑟𝑎𝑡𝑒𝑑 is the 

rated blocking voltage of the capacitor. 

 

 𝑇𝑐,𝐶𝑎𝑝 = Δ𝑇𝑐𝑦𝑐𝑙𝑖𝑛𝑔,𝐶𝑎𝑝 + 𝑇𝑠,𝐶𝑎𝑝  (47) 

 

where 𝑇𝑠,𝐶𝑎𝑝 is the surface temperature of the capacitor. 
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3.4.   RELIABILITY ENHANCEMENT 

Once a system’s reliability modeling is developed at each one of the levels (component level, 

sub-system level, and power system level), the reliability of this system can be predicted by 

studying its behavior. Therefore, the system can be improved by enhancing its reliability, and this 

can be done by taking various approaches.  

One way to improve a system’s reliability is by increasing its maintenance program and 

avoiding possible supply shortcomings in terms of demand. Still, this approach is hardly 

optimizable and efficient. The second approach is done by improving the design of the 

infrastructure used in the power system by targeting each system level to enhance its features. This 

research will focus on optimizing the parameters that could be controlled only at the sub-system 

level and at the component level to get the highest reliability possible for the overall power system. 

The variables regarding the power system that can be controlled, therefore improving the 

overall performance, are the applied voltage (𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑), the switching frequency applied (𝑓𝑠𝑤), the 

length of the capacitor (𝐿𝑒𝑙𝐶𝑎𝑝), the diameter of the capacitor (𝐷𝑒𝑙𝐶𝑎𝑝), the IGBT collector current 

(𝑖𝑐,𝑆𝐷), the diameter of the bond wire of the switching device (𝐷𝑏𝑤,𝑆𝐷), the heat sink base thickness 

(𝑡𝑏,ℎ𝑠.𝑆𝐷), the number of capacitors (𝑁𝐶𝑎𝑝), and the number of switching devices (𝑁𝑆𝐷). More 

variables could be considered, but this research aims to optimize just those. 

These variables will be optimized to find the best possible converter. Still, the designer 

establishes boundaries that need to be considered in the optimization process, so the final goal will 

be to find the most optimum value between these limits. The lower and upper limits for these input 

variables proposed by the designer are presented in Table 3.1. It is essential to mention that the 

designer can change these boundaries depending on the application of the converter to be designed.  
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Table 3.1: Input variables boundaries 

Variable Lower boundary Upper Boundary 

𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 (𝑉) 500  650  

𝑓𝑠𝑤(𝑘𝐻𝑧) 5 40 

𝑖𝑐,𝑆𝐷(𝐴) 10 𝐴 20 𝐴 

𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) [7.5, 17.5, 27.5, 37.5, 47.5, …175]  

𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) [5, 15, 25, 35, 45, 55,… 100]  

𝐷𝑏𝑤,𝑆𝐷(𝜇𝑚) [300, 350,… 500]  

𝑡𝑏,ℎ𝑠.𝑆𝐷 (𝑚𝑚) [25, 30,… 50]  

𝑁𝐶𝑎𝑝(#) [2,4,6,8,10] 

𝑁𝑆𝐷 (#) [2,4,6,8,10] 

 

 

In addition, the optimization problem is subject to certain maximum allowed parameters, 

which will be analyzed next. The parameters are related to the size, cost, space, and temperature 

of certain converter components, which are defined in Table 3.2. 

 

Table 3.2: Parameters constrictions 

Parameter Maximum/Minimum value allowed 

𝐴𝐶𝑎𝑝,𝑚𝑎𝑥 (𝑚
2) 

≤ (
9𝜋

400
)  

𝐴𝑅𝐶𝑎𝑝,𝑚𝑎𝑥 (𝑟𝑎𝑡𝑖𝑜) ≤ 2 

𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 (%) ≤ 50 

𝑇𝐽,𝑆𝐷,𝑚𝑎𝑥(°𝐶) ≤ 125   

𝐴ℎ𝑠,𝑆𝐷,𝑚𝑎𝑥 (𝑚
2)  ≤ [100 × 10−3 × 100 × 10−3]   

𝐼𝑐,𝑆𝐷,𝑟𝑎𝑡𝑒𝑑 (𝐴) ≤ 20  

𝐷𝑒𝑟𝑚𝑎𝑥  (%) ≥ 80 

𝑆𝑝𝑎𝑐𝑒𝑝𝑐𝑏,𝑚𝑎𝑥 ≤ [20 ⋅ (64.3 × 105.7)]𝑚𝑚2 

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑝,𝑚𝑎𝑥 ≤ $ 500 

 



39 
 

CHAPTER  4 

METAHEURISTIC OPTIMIZATION ALGORITHMS 

The reliability model developed in Chapter 3 for a power electronic converter at the 

component, sub-system, and system levels will be used for optimization improvement as objective 

function input for the metaheuristic optimization algorithms previously mentioned: Harris Hawk 

Optimization, Particle Swarm Optimization, and Artificial Bee Colony Optimization.  

In Chapter 5, these algorithms will be compared to find their respective convergence rates and 

determine which reaches the most optimum results. This comparison will be fundamental, as the 

performance of the algorithm will affect the design of the converter, affecting its reliability and 

the performance of the overall system where the converter is implemented. 

 

4.1.    HARRIS HAWK OPTIMIZATION (HHO) ALGORITHM 

The Harris Hawk optimization method is a novel nature-inspired, gradient-free, and 

population-based optimization algorithm that imitates the chasing style of Harris Hawks’ birds. 

HHO is one of the newest metaheuristic optimization algorithms, and it was introduced recently 

by Heidari et al. in 2019 [62]. This algorithm follows the attacking behaviors of Harris hawks on 

the prey in nature, such as preaching, predation, and surprise pounce strategies. Like other meta-

heuristic algorithms, HHO includes two main phases: exploration and exploitation,  shown in Fig. 

4.1. The model implemented in this work was directly developed from [65]. 

HHO has previously been used for optimization with applications in the medical field such as 

[66], applications in EVs such as [67], applications in UAVs such as [68], applications in IoT such 

as [69], and applications in PV emulator control [70]. However, as this algorithm is new, much 

work has yet to be related to power systems and, more specifically, power converters. The power 

of this optimization algorithm is higher than that of other optimization algorithms, and it is 

expected to converge faster and to more optimum values. 
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Fig. 4.1: Exploration and exploitation phases of Harris Hawks optimization (HHO) [65]. 

 

As seen from Fig. 4.1, the HHO’s two main phases (exploration and exploitation) are divided 

into two and four stages, respectively. The exploration phase is composed of perching based on 

random locations stage and the perching based on the position of other hawks. On the other hand, 

the exploitation phase comprises four main stages: Soft Besiege, Hard Besiege, Soft Besiege with 

progressive rapid dives, and Hard Besiege progressive rapid dives. To determine the phase and 

stage in which the Harris Hawk Optimization algorithm is used, the variables |𝐸| (escaping energy 

of the rabbit) and 𝑟 (probability of escaping of the rabbit) are used. Fig. 4.2 shows how the 

algorithm determines the next phase and stage that will be implemented.  

 

 

Fig. 4.2: The exploration phase and the four types of exploitation phases in HHO [65]. 
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4.1.1.   INITIALIZATION PHASE 

During this phase, the Harris Hawk population is initialized randomly between the upper and 

lower bounds provided. In addition, the objective function and its solution space for the population 

members to displace are defined. The equation used to initialize the population follows Eq. (48). 

𝑋𝑖(𝑖 = 1, 2, … ,𝑁)  (48) 

 

4.1.2.   EXPLORATION PHASE 

The exploration phase is where Harris Hawks search for the prey. In this stage, the fitness of 

each population member is calculated for each iteration. Still, as the prey is difficult to see in some 

cases, some members stay in their position, waiting to detect it, following  Eq. (49). 

 

𝑋(𝑡 + 1) = {
𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟1 | 𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)

(𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)))
          

𝑞 ≥ 0.5 
𝑞 ≤ 0.5

 
 (49) 

 

where 𝑋(𝑡 + 1) is the position of the hawks in the next iteration 𝑡, 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) is the rabbit position, 

𝑋(𝑡) is the current position of the Harris Hawk, 𝑋𝑚(𝑡) is the average position of the population, 

𝑟1 , 𝑟2 , 𝑟3 , 𝑟4 , and 𝑞 are random number between 0 and 1. Last but not least, 𝐿𝐵 and 𝑈𝐵 represent 

the lower and upper bound of the variables to be generated.  

 

4.1.3.   TRANSITION FROM EXPLORATION TO EXPLOITATION 

The correct balance between metaheuristic algorithms’ exploration and exploitation phases is 

fundamental for better performance. The variable that determines the transition from the 

exploration phase to the exploitation phase is the prey escaping energy, as defined by Eq. (50). 

 

𝐸 = 2𝐸0 (1 −
𝑡

𝑇
) 

 (50) 

 

where 𝐸 is the escaping energy of the rabbit, 𝐸0 is the initial state of energy which corresponds to 
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a random value between -1 and 1, and 𝑇 is the maximum number of iterations. Whenever the 

absolute value of the energy 𝐸 is greater or equal to a value of 1 (|𝐸| ≥ 1 ), the Hawks will be 

redirected to explore a different region of the plane, entering the exploration phase. However, when 

the absolute value of the energy 𝐸 is less than a value of 1 (|𝐸| < 1 ), the Hawks search nearby 

locations for a possible solution, entering the exploitation phase.  

 

4.1.4.   EXPLOITATION PHASE 

The exploitation phase happens when the Harris Hawks attack the prey based on the position 

detected in the previous phase. During the exploration phase, each Hawk scouts the prey to gather 

information. Once they are in range to attack, they transition to the exploitation phase to avoid the 

rabbit’s attempts to escape. This phase consists of four main stages: Soft Besiege, Hard Besiege, 

Soft Besiege with progressive rapid dives, and Hard Besiege with progressive rapid dives. To 

determine which stage the Hariss Hawk will be in, the two variables used are |𝐸|, referring to the 

escaping energy of the rabbit, and 𝑟, referring to the probability of the rabbit escaping.  

 

4.1.5.   SOFT BESIEGE STAGE 

If the probability of escaping 𝑟 is greater or equal to 0.5 (𝑟 ≥ 0.5) and the escaping energy of 

the rabbit |𝐸| is greater or equal to 0.5 (|𝐸|  ≥ 0.5), the rabbit still has some energy left and a low 

chance of escaping. Hence, the Harris Hawks begin the soft besiege stage to make the rabbit lose 

more energy before attacking it directly. Eq. (51) and Eq. (52) formulate the soft besiege stage. 

  

𝑋(𝑡 + 1) = Δ𝑋(𝑡) − 𝐸 | 𝐽 𝑋𝑟𝑎𝑏𝑏𝑖𝑡 − 𝑋(𝑡)|  (51) 

Δ𝑋(𝑡) = Δ 𝑋𝑟𝑎𝑏𝑏𝑖𝑡 − 𝑋(𝑡)  (52) 

where Δ𝑋(𝑡) represents the difference between the position of the rabbit and the position of the 

Harris Hawk at iteration 𝑡, and 𝐽 represents a random jump strength from the rabbit developed in 

Eq. (53). 

𝐽 = 2(1 − 𝑟5)  (53) 
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4.1.6.   HARD BESIEGE STAGE 

If the probability of escaping 𝑟 is greater or equal to 0.5 (𝑟 ≥ 0.5) and the escaping energy of 

the rabbit |𝐸| is less than 0.5 (|𝐸| < 0.5), then it means that the rabbit doesn’t have much energy 

left, and the chances of escaping are also low. Hence, the Harris Hawks begin the hard besiege 

stage to attack the rabbit directly to find the final solution. The hard besiege stage is formulated by 

Eq. (54). 

 

𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(t) − 𝐸  |Δ𝑋(𝑡)|  (54) 

 

4.1.7.   SOFT BESIEGE WITH PROGRESSIVE RAPID DIVES STAGE  

Suppose the probability of escaping 𝑟 is less than 0.5 (𝑟 < 0.5), and the escaping energy of the 

rabbit |𝐸| is greater or equal to 0.5 (|𝐸|  ≥ 0.5). In that case, the rabbit still has some energy left 

and a high chance of escaping, so the Harris Hawks begin the soft besiege with progressive rapid 

dives before switching to the hard besiege. Another name for this stage is smart soft besiege 

because the Hawks are performing a zigzag movement with multiple dives around the rabbit to 

approach it closer. The Hawk’s position is updated in two steps for this stage. The first step is 

modeled by Eq. (55), where the Hawks decide what the next move should be. The second step is 

modeled by Eq. (56), where the Hawks perform rapid dives based on the Levy flight function. 

 

𝑌 = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(t) − 𝐸  | 𝐽 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋(𝑡)|  (55) 

𝑍 = 𝑌 + 𝑆 × 𝐿𝐹(𝑑𝑖𝑚)  (56) 

where 𝑑𝑖𝑚 refers to the dimensions of the objective problem to be optimized, 𝑆 is a randomly 

generated vector of size 1 × 𝑑𝑖𝑚, and 𝐿𝐹 denotes the Levy flight function shown in Eq. (57) and 

Eq. 

(58). 

𝐿𝐹(𝑥) = 0.01 ×
𝑢 × 𝜎

|𝑣|
1
𝛽

   
 (57) 
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𝜎 =

(

 
Γ(1 + 𝛽) × 𝑠𝑖𝑛 (

𝜋𝛽
2
)

Γ (
1 + 𝛽
2
) × 𝛽 × 2

(
𝛽−1
2
)

)

 

1
𝛽

   

  

(58) 

 

where 𝑢 and 𝑣 are random values between 0 and 1, and 𝛽 = 1.5. 

Consequently, to update the position of the Harris Hawks in the soft besiege with progressive 

rapid dives stage, Eq. (59) is followed. 

 

𝑋(𝑡 + 1) = {
𝑌 𝑖𝑓 𝐹(𝑌) < 𝐹(𝑋(𝑡))

𝑍 𝑖𝑓 𝐹(𝑍) < 𝐹(𝑋(𝑡))
           

 (59) 

 

where 𝐹 is the cost value for Hawks’ position given by the objective function when 𝑌 and 𝑍 are 

evaluated. 

 

4.1.8.   HARD BESIEGE WITH PROGRESSIVE RAPID DIVES STAGE  

If the probability of escaping 𝑟 is less than 0.5 (𝑟 < 0.5) and the escaping energy of the rabbit 

|𝐸| is less than 0.5 (|𝐸| < 0.5), then the rabbit does not have enough energy to escape, even though 

its chances are high. Hence, the Harris Hawks begin the hard besiege with a progressive rapid dive 

stage to approach the prey and then attack it. The change in position of the Hawks is similar to the 

soft besiege but with different modeling equations, depicted by Eq. (60),  Eq. (61), and Eq. (62). 

 

𝑋(𝑡 + 1) = {
𝑌 𝑖𝑓 𝐹(𝑌) < 𝐹(𝑋(𝑡))

𝑍 𝑖𝑓 𝐹(𝑍) < 𝐹(𝑋(𝑡))
           

 (60) 

where 

𝑌 = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(t) − 𝐸  | 𝐽 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)| 

𝑍 = 𝑌 + 𝑆 × 𝐿𝐹(𝑑𝑖𝑚) 

 (61) 

(62) 
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4.1.9.   HHO PSEUDOCODE 

Algorithm 1 Standard HHO Algorithm [65] 

Input: Converter: Function to be optimized, 𝑁: the population size, 𝑇: the maximum number of 

iterations, 𝑙𝑏: lower bound matrix, 𝑢𝑏: upper bound matrix. 

Output: The rabbit’s location and its fitness value. Initialize the population randomly 𝑋𝑖(𝑖 =

1, 2, … ,𝑁) 

While (maximum iteration not reached (𝑡 < 𝑇))  do      

Check the location boundaries and evaluate the fitness of Harris Hawks locations. 

Set the rabbit best location to 𝑋𝑟𝑎𝑏𝑏𝑖𝑡 

For (each hawk 𝑋𝑖(𝑖 = 1 𝑡𝑜 𝑁))  do 

     Update the rabbit initial energy 𝐸0 

     Update the rabbit energy 𝐸 using Eq. (50) 

      If (|𝐸| ≥ 1)  then    %Exploration phase 

  Update the hawk’s position using Eq. (49) 

      if (|𝐸| < 1)   then     %Exploitation phase  

  If (𝑟 ≥ 0.5  𝑎𝑛𝑑 |𝐸| ≥ 0.5)          then %Soft besiege 

       Update the hawk’s position using Eq. (51) 

  Else if (𝑟 ≥ 0.5  𝑎𝑛𝑑 |𝐸| < 0.5)   then %Hard besiege 

       Update the hawk’s position using Eq. (54) 

Else if (𝑟 < 0.5  𝑎𝑛𝑑 |𝐸| ≥ 0.5)   then %Soft besiege with progressive rapid dives. 

       Update the hawk’s position using Eq. (59) 

Else if (𝑟 < 0.5  𝑎𝑛𝑑 |𝐸| < 0.5)   then %Hard besiege with progressive rapid dives. 

       Update the hawk’s position using Eq. (60)  

Return the rabbit location (𝑋𝑟𝑎𝑏𝑏𝑖𝑡)   
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4.2.    PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM 

Particle Swarm Optimization (PSO) was developed by Kennedy and Eberhart in 1995 and 

inspired by biological systems’ behavior, commonly called swarm intelligence algorithms. This is 

a metaheuristic optimization algorithm that resembles the movement of birds that could help find 

the optimum solution in a nonlinear optimization problem, which is the case when analyzing the 

reliability of power electronic converters [71]. PSO is also beneficial when dealing with other 

types of nonlinear optimization problems in the areas of sensing [72], control [73], and RFID 

network planning [74]. Some other applications are presented in Fig. 4.3. 

 

Fig. 4.3: The taxonomy of PSO applications [75]. 

 

 

 

4.2.1.    PSO PRINCIPLES OF EXECUTION 

Classically, the simulation is performed on a two-dimensional grid where the birds search for 

food, the location of which is unknown to them. The birds fly over space, including every possible 

solution in the food search to determine the optimum solution. The motion of the searching agents 

is governed by three aspects: inertia, local optima, and group optima. The first one, inertia, means 

that they will continue moving in the direction they have been moving. The second one, local 

optima, means that they will tend to move towards the position that gives them their personal best 

fitness value. The third one, group optima, means that they tend to move towards the position that 
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offers the best fitness within the same searching group. When simulating the search for an optimum 

solution using PSO in reliability analysis, all the temporal positions of the searching agents are 

recorded to ensure the finding of the most optimum solution at the end [76]. 

As with many biological system-based algorithms, this optimization algorithm relies on 

creating a population of agents that will cooperate using collective intelligence to achieve the most 

optimum results. This method could be adapted to power systems reliability analysis, producing 

excellent results when aiming to find the optimum values for multiple parameters when 

considering power electronic converters [76]. In addition, the particle swarm optimization 

algorithm is excellent for electrical engineering optimization problems that involve optimizing a 

multimodal cost function with continuous variables. Because traditional deterministic optimal 

methods cannot find the global optimal solutions to these problems, stochastic and heuristic 

algorithms are raised as potential solutions. This algorithm has been modified to control premature 

convergence to local values and improve its global search ability [77]. The flowchart of the PSO 

implemented is shown in Fig. 4.4. 

 

 

4.2.2.    DEVELOPMENT OF THE ALGORITHM 

The original PSO algorithm with velocity clamping presented in [78] was modified to include 

a relatively newer concept in PSO called constriction factor, presented in [79] and [80]. However, 

the main steps for the algorithm were preserved. As a traditional PSO algorithm, it has only three 

controlling parameters: the inertia weight, the cognitive ratio, and the social ratio. In addition, this 

algorithm has an outstanding balance between exploration and exploitation, which makes it an 

excellent candidate to find the best possible solution [79]. Any change in these three parameters 

will completely change the performance of the PSO algorithm, as shown in [81] and [82]. 
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Fig. 4.4: The flowchart of PSO [75]. 

 

 

4.2.3.    INITIALIZATION PHASE 

The PSO algorithm starts by initializing a random vector for the velocity of the particles 

initialized as a vector with the dimensions of the objective problem and a random vector for the 

position of the particles defined as Eq. (63). 
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 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑖). 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑢𝑛𝑖𝑓𝑟𝑛𝑑(𝑉𝑎𝑟𝑀𝑖𝑛, 𝑉𝑎𝑟𝑀𝑎𝑥, 𝑉𝑎𝑟𝑆𝑖𝑧𝑒) (63) 

where the function 𝑢𝑛𝑖𝑓𝑟𝑛𝑑 generates random numbers from the continuous uniform distribution, 

𝑉𝑎𝑟𝑀𝑖𝑛 represents the lower bound matrix for the objective function, 𝑉𝑎𝑟𝑀𝑎𝑥 represents the 

upper bound matrix for the objective function, and 𝑉𝑎𝑟𝑆𝑖𝑧𝑒 represents the size of the objective 

function matrix to optimize.  

  

4.2.4.    EXPLORATION AND EXPLOITATION PHASE 

Once the initial values for the position and the velocity are generated, each iteration will 

evaluate and save the best position found by the particle (𝑃𝑏𝑒𝑠𝑡) and the best position found by 

the whole swarm (𝐺𝑏𝑒𝑠𝑡). These two variables will be used to update the velocity and position in 

future iterations, as shown in Eq. (64) and Eq. (65). 

 

𝑣𝑖𝑑(𝑡 + 1) = 𝑣𝑖𝑑(𝑡) + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖𝑑(𝑡) − 𝑥𝑖𝑑(𝑡)) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡𝑖𝑑(𝑡) − 𝑥𝑖𝑑(𝑡)) (64) 

𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑖𝑑(𝑡 + 1)  (65) 

where 𝑐1 and 𝑐2 are the personal and social acceleration coefficient, respectively, and 𝑟1 and 𝑟2 are 

two uniform random values generated between 0 and 1. 

 

4.2.5.    CONSTRICTION COEFFICIENTS 

The careful selection of constriction coefficients to prevent the PSO algorithm from 

accelerating too fast, leading to an explosion, is fundamental. The constriction coefficients used as 

input in the PSO developed are 𝜅, 𝜙1, and 𝜙2. After careful consideration of the objective problem 

and multiple attempts with different coefficients, the following values were selected for each 

coefficient: 𝜅 = 1,  𝜙1 = 2.05,  𝜙2 = 2.05. 

The inertia coefficient 𝜒 could then be calculated using the provided constriction coefficients, 

as shown in Eq. (66). However, as there was no damping in the constriction coefficients, the value 
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was assumed to be 1, 𝜒𝑑𝑎𝑚𝑝 = 1. 

 

𝜒 =
2𝜅

|2 − 𝜙 − √𝜙2 − 4𝜙|
 

(66) 

where 𝜙 = 𝜙1 + 𝜙2 

 

Using the inertia coefficient 𝜒 previously calculated, the personal acceleration coefficient 𝑐1 

and the social acceleration coefficient 𝑐2 are calculated in Eq. (67) and Eq. (68), respectively. 

 

𝑐1 = 𝜒 ∗ 𝜙1 (67) 

𝑐2 = 𝜒 ∗ 𝜙2 (68) 

 

A widespread value to use as input for 𝑐1 and 𝑐2 is 1.49, but in this case, the value 2.05 brought 

better performance to the algorithm. In addition, it is traditionally recommended to ensure that 𝑐1 

is a large value and 𝑐2 is a small value to ensure that the particles perform a complete space search 

without converging into local best values. On the other hand, setting a small 𝑐1 and a large 𝑐2 

would make the algorithm focus more on the exploitation phase, which could be helpful depending 

on the purpose of the optimization problem. The acceleration coefficient could also change with 

the iterations of the PSO algorithm, like the algorithm proposed in [83]. 

 

 

 

 

 

 

 

 

 

 



51 
 

4.2.6.    PSO PSEUDOCODE 

Algorithm 2 Particle Swarm Optimization [79] 

Input: Converter: Function to be optimized, MaxIt: maximum number of iterations, nPop: 

population size, 𝜅, 𝜙1 and 𝜙2: constriction coefficients , nVar: number of decision variables, lb: 

lower bound matrix, ub: upper bound matrix. 

Output: out.BestSol: best fitness position found, out.BestCosts: best cost found for the best 

position.                                                                                                                                                                               

Initialize the particle population randomly: 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑖). 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑖 = 1, 2, … , 𝑛𝑃𝑜𝑝) using Eq. 

(63) 

Initialize the velocity of the particle related to the constriction coefficients: 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑖). 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

(𝑖 = 1, 2, … , 𝑛𝑃𝑜𝑝). 

While (maximum iteration not reached (𝑖 < 𝑀𝑎𝑥𝐼𝑡))  do      

Check the location boundaries for each parameter and input these values into the problem 

function to evaluate the fitness of these particles. 

The best position and cost are set as 𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡, later outputted as 𝑜𝑢𝑡. 𝐵𝑒𝑠𝑡𝑆𝑜𝑙. 

For (each searching agent 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑖)(𝑖 = 1 𝑡𝑜 𝑛𝑃𝑜𝑝)  do 

      Generate 𝑟1 and 𝑟2 

          Update velocity of the particle: 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑖). 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 using Eq. (64) 

      Apply lower and upper bound limits to velocity. 

      Update position: 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑖). 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 using Eq. (65) 

      Apply lower and upper bound limits to position. 

      Reevaluate the fitness of the new particle position: 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑖). 𝐶𝑜𝑠𝑡   

      If 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑖). 𝐶𝑜𝑠𝑡 <  𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑖). 𝐵𝑒𝑠𝑡𝐶𝑜𝑠𝑡  then     

  Update personal best position and cost for the particle: 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑖). 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 &   

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑖). 𝐵𝑒𝑠𝑡𝐶𝑜𝑠𝑡   

      if 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑖). 𝐶𝑜𝑠𝑡 <  𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑖). 𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐶𝑜𝑠𝑡  then     

  Update global best position and cost: 𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 &    

𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡. 𝐶𝑜𝑠𝑡  

Return the 𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 & 𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡. 𝐶𝑜𝑠𝑡   
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4.3.    ARTIFICIAL BEE COLONY (ABC) ALGORITHM 

The Artificial Bee Colony algorithm models the behavior of the bees when searching for food, 

which consists of two modes of behavior: gathering a food source (better solution) and abandoning 

the food source (worse solution) [85]. Karaboga proposed this algorithm in 2005 to solve a 

multivariate function optimization problem given the intelligent foraging behavior of a honeybee 

swarm [86]. An improved version of the algorithm was proposed in [87], but the traditional ABC 

algorithm was used for this work. 

The Artificial Bee Colony algorithm is a powerful algorithm that has found successful 

applications in fields such as remote sensing [88], [89], and [90], construction cost minimization 

[91], and smart grids [92]. 

 

 

4.3.1.    ABC PRINCIPLES OF EXECUTION 

The artificial bee colony algorithm population consists of three different types of agents in 

charge of finding the most optimum results: the employed bees, the scout bees, and the onlooker 

bees. The employed bees are the ones on the location of the food sources. These types of bees have 

the task of exploiting these food sources and informing onlooker bees about the location of the 

food. The scout bees search for food in random locations, and once they find food, they start 

exploiting it, becoming employed bees. Lastly, the onlooker bees are the ones that haven’t yet got 

to explore, and they are resting in the hive, awaiting to be recruited [93]. Fig. 4.5 from [95] depicts 

the functioning of the ABC algorithm when searching for the most optimum solution.  

Like all the optimization algorithms, the ABC algorithm begins by creating a randomly 

distributed initial population between the upper and lower bound provided. This initial population 

is created following Eq. (69). 

 

𝑋𝑖(𝑖 = 1, 2, … , 𝑛𝑃𝑜𝑝)  (69) 

where 𝑛𝑃𝑜𝑝 is the total size of the hive’s population, and each vector has the dimensions of the 

variables to be optimized. 
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Fig. 4.5: Schematic diagram of the artificial bee colony algorithm [95]. 

 

Once the initial population is initialized, the position of a food source will be searched, with 

the most optimum position being where there is more nectar. Here, the hive population is divided 

into one of the three groups mentioned before, which are either an employed bee, an onlooker bee, 

or  a scout bee. ABC algorithm was developed for this work based on [96]. 

 

4.3.2.    EMPLOYED BEES PHASE 

Employed bees modify their position based on visual information. If the amount of food in the 

new position is higher than the old position, the employed bee automatically remembers the new 

position and forgets the old one. If the new position is not better than the old one, the bee keeps 

the old one in memory. Once they finish the search process, they share the information gathered 

with the onlooker bees waiting in the dance area [96]. 

In addition, each employed bee generates a neighbor food source position 𝑖 + 1  using Eq. (70) 

and compares the amount of food in this position to the amount of food in the last position 𝑖. 

 

 𝑥𝑖𝑗
𝑛𝑒𝑤 = 𝑥𝑖𝑗

𝑜𝑙𝑑 + 𝑢(𝑥𝑖𝑗
𝑜𝑙𝑑 − 𝑥𝑘𝑗)  (70) 
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where 𝑘 ≠ 𝑖 and are numbers between 1 and the total number of employed bees, 𝑢 is a random 

number between -1 and 1, and 𝑗 is a number between 1 and the dimensions of the objective function 

to optimize. Therefore, 𝑥𝑖𝑗 is the 𝑗𝑡ℎ parameter of a solution 𝑥𝑖. 

Once all the positions 𝑖 are checked, if the amount of food is not greater than the amount of 

food in the old location, the employed bee transforms into a scout bee. 

 

 4.3.3.    ONLOOKER BEES PHASE 

Onlooker bees will wait for information from the employed bees, and if they receive that 

information, they will evaluate which food source is the most convenient based on the level of 

food. Onlooker bees also select convenient food sources through visual information, and because 

of this, they can only find sources in the neighborhood of previous positions. The onlooker bees 

evaluate the probability 𝑝𝑖 of selecting a food source based on Eq. (71). 

  

𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝐸𝑏
𝑖=1

 
(71) 

 

where 𝑓𝑖𝑡𝑛𝑒𝑒𝑠𝑠𝑖 is the fitness evaluation of a solution 𝑖, and 𝐸𝑏 is the total number of food-source 

positions, corresponding to half of the colony size.  

Using Eq. (71), each onlooker bee will be able to determine the most optimum food source to 

migrate. In addition, each onlooker bee generates a neighbor food source position 𝑖 + 1 using Eq. 

(70) and compares the amount of food in this position to the amount of food in the last position 𝑖. 

Once an onlooker bee selects the most optimum position, it transforms into an employed bee at 

that selected position. 

 

4.3.4.    SCOUT BEES PHASE 

On the other hand, instead of using visual information to search for food, scout bees search for 

new possible positions without any information. In other words, they have the task of finding new 
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sources of food to be exploited by the employed bees. Once a scout bee finds a food source, this 

bee automatically transforms into an employed bee. Once a food position is detected as not worth 

it anymore, the employed bee in that source position transforms into a scout bee.  

The scout bees find a new position for the food based on Eq. (72) 

 

𝑥𝑖
𝑗(𝑛𝑒𝑤)

= min 𝑥𝑖
𝑗
+ 𝑢(max 𝑥𝑖

𝑗
− 𝑥𝑖

𝑗
) (72) 

 

where 𝑗 represents the total number of parameters and 𝑢 is a random number between -1 and 1. 

 

4.3.5.    ABC PSEUDOCODE 

 Algorithm 3 Artificial Bee Colony Algorithm [96] 

Input: Converter: Function to be optimized, 𝑛𝑃𝑜𝑝: the population size (colony size), 𝑀𝑎𝑥𝐼𝑡: the 

maximum number of iterations, 𝐿: abandonment limit parameter, 𝑎: acceleration coefficient upper 

bound, 𝑙𝑏: lower bound matrix, 𝑢𝑏: upper bound matrix. 

Output: out.BestSol: best fitness position found, out.BestCosts: best cost found for the best 

position.               

Initialize the particle population randomly within limits: 𝑝𝑜𝑝(𝑖). 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑖 = 1, 2, … , 𝑛𝑃𝑜𝑝)     

While (maximum iteration not reached (𝑖𝑡 < 𝑀𝑎𝑥𝐼𝑡))  do      

For (𝑖 = 1: 𝑛𝑃𝑜𝑝)  do                   %Employed bees 

Recruit bees for the selected sites and to evaluate fitness        

Select the bee with the best fitness as BestSolution 

Calculate the position for the next iteration using Eq. (70) 

If (𝑝𝑜𝑝(𝑖). 𝐶𝑜𝑠𝑡 ≤ 𝐵𝑒𝑠𝑡𝑆𝑜𝑙. 𝐶𝑜𝑠𝑡)  then 

Update the best solution 

       end 

       For (𝑖 = 1: 𝑛𝑂𝑛𝑙𝑜𝑜𝑘𝑒𝑟)  do        % Onlooker bees 

Select sites for local search using 𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒𝑊ℎ𝑒𝑒𝑙𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃)          

 Calculate selection probability 𝑝𝑖 using Eq. (71) 

Determine position of new bee recruited 𝑛𝑒𝑤𝑏𝑒𝑒. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
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Evaluate fitness of the new bee and compare it to current bee position 𝑝𝑜𝑝(𝑖). 𝐶𝑜𝑠𝑡                                                                                                                                                                                                                                                                                                                   

If (𝑛𝑒𝑤𝑏𝑒𝑒. 𝐶𝑜𝑠𝑡 ≤ 𝑝𝑜𝑝(𝑖). 𝐶𝑜𝑠𝑡)  then      %Selection probabilities 

  Update the current bee position and cost with the ones of the new bee  

  end 

        end 

        For (𝑖 = 1: 𝑛𝑆𝑐𝑜𝑢𝑡)  do       % Scout bees 

Assign the remaining bees to looking for randomly  using Eq. (72) 

Evaluate the fitness of remaining bees 

Update probabilities 

         end 

end        

Return the best position (out. BestSol) and best cost (out. BestCosts)   
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CHAPTER  5 

RELIABILITY STUDIES AND RESULTS 

In previous chapters, reliability improvement optimization for power converters was discussed, 

as well as the approach to achieve this substantial improvement in the design of power converters. 

Multiple metaheuristic optimization algorithms were proposed to find the optimal parameters for 

the design of a power converter, considering the behavior of power converters modeled in Chapter 

3 for each one of its levels. 

It is important to mention that for this study, both the sub-system and component level 

reliability models were used, but not the power system level reliability model. This is because the 

sub-system and component levels are strongly related to the design of the converters, which was 

the main focus of this research, compared with the power system level, which will be more related 

to the design and optimization of the power system itself. 

The metaheuristic optimization algorithms used were the Artificial Bee Colony (ABC) 

optimization algorithm,  the Particle Swarm Optimization (PSO) algorithm, and the Harris Hawk 

Optimization (HHO) algorithm. As mentioned before, the algorithms were tested with the same 

input parameters for the component and sub-system levels and reliability models were developed. 

Firstly, the algorithms will be tested for their performance in each of the levels separately, and 

after, a multiobjective optimization will be made to determine the most efficient converter that 

could be designed. In addition, the convergence rate of each one of the optimization algorithms 

will be measured to compare and determine which algorithm is the most convenient.   

The main indicators of the reliability of a system will be the failure rate 𝜆, measured in 𝐹𝐼𝑇 

(failure in time); the reliability 𝑅, measured in %; the mean time to failure 𝑀𝑇𝑇𝐹 (mean time to 

failure), measured in hours; the lifetime of the component 𝐿, measured in years; and the cycles to 

failure 𝑁𝑓, measured in cycles.  The failure rate (𝜆), the reliability (𝑅), and the mean time to failure 

(𝑀𝑇𝑇𝐹) will correspond to the useful time phase presented in Fig. 2.1, which corresponds to the 

component level modeling presented in Chapter 3. On the other hand, the lifetime of the 

component (𝐿) and the cycles to failure (𝑁𝑓) will correspond to the wear-out phase presented in  

Fig. 2.1, which corresponds to the sub-system level modeling presented in Chapter 3.  

Reliability 𝑅 is defined as the success rate of a component’s operation if operated within the 

specified time frame 𝑡𝑝ℎ𝑎𝑠𝑒, which corresponds to 24 hours. 
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5.1 HARRIS HAWK OPTIMIZATION ALGORITHM RESULTS 

The first optimization algorithm tested was the Harris Hawk Optimization algorithm, which 

focuses on the useful time phase of the converter, modeled at a component level. Table 5.1  models 

the capacitor failure rate optimized parameters using the HHO algorithm, and it analyzes the 

reliability of a single component (capacitor) and the reliability when redundancy of its 

components. In addition, Fig. 5.1 and Fig. 5.2 illustrate the convergence rate for the HHO 

algorithm when a single capacitor is considered and when multiple capacitors are considered 

respectively. 

 

 

Table 5.1: Capacitor failure rate optimized parameters (HHO) 

 Design 
Parameter 

Optimum value Constraint Actual Value Min/Max value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 5.7079

∗ 10−8 
≤ 0.0707 

1𝐶𝑎𝑝 𝑓𝑠𝑤(𝑘𝐻𝑧) 40 𝐴𝑅𝑐𝑎𝑝 1.7632 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 167.5 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 10 ≤ 50 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 95 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝝀𝑪𝒂𝒑[𝑭𝑰𝑻] 0.0650 

 𝑹𝒄𝒂𝒑 [%] 21 

 𝑴𝑻𝑻𝑭[hrs] 15.3796 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 5.7079

∗ 10−8 
≤ 0.0707 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 40 𝐴𝑅𝑐𝑎𝑝 1.7632 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

≥ 2𝐶𝑎𝑝 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 167.5 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 10 ≤ 50% 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 95 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝑁𝑐𝑎𝑝 14 𝑆𝑝𝑎𝑐𝑒𝑝𝑐𝑏[#] 14 ≤ 14 

 - - 𝐵𝑢𝑑𝑔𝑒𝑡𝑐𝑎𝑝[$] 738.64 ≤ 750 

 𝝀𝑪𝒂𝒑[𝑭𝑰𝑻] 0.00926 

 𝑹𝒔𝒚𝒔 [%] 96.314 

 𝑴𝑻𝑻𝑭[hrs] 50.0079 
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Fig. 5.1: Single capacitor failure rate (𝜆𝐶𝑎𝑝) convergence (HHO) 

 

 

 
Fig. 5.2: Capacitor with redundancy failure rate (𝜆𝐶𝑎𝑝) convergence (HHO) 
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Table 5.2: Single Capacitor lifetime optimized parameters (HHO) 

𝚫 Design 
Parameter 

Optimum value Constraint Actual Value Min/Max value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 1.3744

∗ 10−4 
≤ 0.0707 

− 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐴𝑅𝑐𝑎𝑝 1.5 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 7.5 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 50 ≤ 50 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 5 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝑳𝟎[𝒚𝒓𝒔] 1 

 𝑳𝒙,𝑪𝒂𝒑[𝒚𝒓𝒔] 8.8566 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 422.5 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 1.3744

∗ 10−4 
≤ 0.0707 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐴𝑅𝑐𝑎𝑝 1.5 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

𝐷𝑒𝑟 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 7.5 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 50 ≤ 50% 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 5 𝐷𝑒𝑟(𝑉)[%] 65 ≥ 65 

 𝑳𝟎[𝒚𝒓𝒔] 1 

 𝑳𝒙,𝑪𝒂𝒑[𝒚𝒓𝒔] 25.012 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 1.3744

∗ 10−4 
≤ 0.0707 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 6.897 𝐴𝑅𝑐𝑎𝑝 1.5 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

𝐼𝑟𝑖𝑝 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 7.5 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 58 ≤ 58 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 5 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝑳𝟎[𝒚𝒓𝒔] 1 

 𝑳𝒙,𝑪𝒂𝒑[𝒚𝒓𝒔] 19.869 

 

 

On the other hand, Table 5.2 presents the optimized parameters for a single capacitor lifetime 

improvement without considering redundancy. The capacitor’s lifetime will strictly depend on the 

constrictions imposed by the designer, and this can be demonstrated when the minimum deration 

is lowered and the capacitor’s lifetime increases drastically. Another example is when the 

maximum allowed ripple current increases, and the capacitor’s lifetime increases accordingly.  

To illustrate the convergence rate of a single capacitor lifetime using the HHO algorithm Fig. 

5.3 was included. 
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Fig. 5.3: Single capacitor lifetime (𝐿𝑐𝑎𝑝) convergence (HHO) 

 

The switching device is another critical component of the converter on a component level. 

Table 5.3 analyzes the failure rate of the switching device, which will directly impact the overall 

reliability of the power converter. Once again, the possibility of just a single switching device and 

adding more than one switching device to the system to increase its reliability was analyzed.  

From Table 5.3, it is clear that adding more switching devices to the system increases its overall 

reliability. The optimized value for the total number of switching devices in the system was 8, 

which brings the system’s overall reliability up to almost a 100%. 

Fig. 5.4 and Fig. 5.5 show the convergence of the Harris Hawk Optimization algorithm for a 

single switching device and multiple switching devices, respectively.  
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Table 5.3: Switching device failure rate optimized parameters (HHO) 

 Design 
Parameter 

Optimum value Constraint Actual Value Min/Max value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝑇𝑗,𝑆𝐷[℃] 72.9194 ≤ 125 

1𝑆𝐷 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝑖𝑆𝐷,𝑐  (𝐴) 16 𝐷𝑒𝑟(𝐼)[%] 80 ≥ 80 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 25 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 9.0843

∗ 10−5 
≤ 0.01 

 𝐷𝑆𝐷,𝑏𝑤 (𝜇𝑚) 300 𝐼𝑏𝑤,𝑆𝐷[𝐴] 1.0017 ≤ 20 

 𝝀𝑺𝑫[𝑭𝑰𝑻] 6.6792 ∗ 10−3 
 𝑹𝑺𝑫 [%] 85.189 

 𝑴𝑻𝑻𝑭[hrs] 149.7185 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝑇𝑗,𝑆𝐷[℃] 72.9194 ≤ 125 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

≥ 2𝑆𝐷 𝑖𝑆𝐷,𝑐  (𝐴) 16 𝐷𝑒𝑟(𝐼)[%] 80 ≥ 80 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 45 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 1.6352

∗ 10−4 
≤ 0.01 

 𝐷𝑆𝐷,𝑏𝑤 (𝜇𝑚) 350 𝐼𝑏𝑤,𝑆𝐷[𝐴] 1.8292 ≤ 20 

 𝑁𝑆𝐷 8 𝑆𝑝𝑎𝑐𝑒𝑝𝑐𝑏[#] 8 ≤ 20 

 − − 𝐵𝑢𝑑𝑔𝑒𝑡𝑆𝐷[$] 485.04 ≤ 500 

 𝝀𝑺𝑫[𝑭𝑰𝑻] 7.1173 ∗ 10−8 

 𝑹𝒔𝒚𝒔 [%] 99.9999 

 𝑴𝑻𝑻𝑭[hrs] 406.9136 

 

 

Fig. 5.4: Single switching device failure rate (𝜆𝑆𝐷) convergence (HHO) 
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Fig. 5.5: Switching device with redundancy failure rate (𝜆𝑆𝐷) convergence (HHO) 

 

Table 5.4: Single switching device lifetime optimized parameters (HHO) 

𝚫 Design 

Parameter 

Optimum value Constraint Actual Value Min/Max value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝑇𝑗,𝑆𝐷[℃] 72.9194 ≤ 125 

− 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝑖𝑆𝐷,𝑐  (𝐴) 16 𝐷𝑒𝑟(𝐼)[%] 80 ≥ 80 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 25 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 9.0843

∗ 10−5 

≤ 0.01 

 𝐷𝑆𝐷,𝑏𝑤  (𝜇𝑚) 300 𝐼𝑏𝑤,𝑆𝐷[𝐴] 1.0017 ≤ 20 

 𝑵𝒇𝟎,𝑺𝑫[𝒄𝒚𝒄𝒍𝒆𝒔] 28 ∗ 103 

 𝑵𝒇,𝑺𝑫[𝒄𝒚𝒄𝒍𝒆𝒔] 24.581 ∗ 103 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 422.5 𝑇𝑗,𝑆𝐷[℃] 59.4147 ≤ 125 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐷𝑒𝑟(𝑉)[%] 65 ≥ 65 

𝐷𝑒𝑟 𝑖𝑆𝐷,𝑐  (𝐴) 13 𝐷𝑒𝑟(𝐼)[%] 65 ≥ 65 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 25 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 9.0843

∗ 10−5 

≤ 0.01 

 𝐷𝑆𝐷,𝑏𝑤  (𝜇𝑚) 300 𝐼𝑏𝑤,𝑆𝐷[𝐴] 1.0017 ≤ 20 

 𝑵𝒇𝟎,𝑺𝑫[𝒄𝒚𝒄𝒍𝒆𝒔] 28 ∗ 103 

 𝑵𝒇,𝑺𝑫[𝒄𝒚𝒄𝒍𝒆𝒔] 38.141 ∗ 103 
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The last optimization done with the HHO algorithm corresponds to the lifetime optimization 

of the switching device, measured in cycles. These parameters are shown in Table 5.4, where it is 

shown how the lifetime of the component used will depend on the parameters of the designer, as 

stated with the capacitor. When the minimum deration is lowered, the switching device can have 

a longer lifetime with more than 50% extra cycles.  

The convergence was also analyzed for the switching device cycles to failure using the HHO 

algorithm, and it is shown in Fig. 5.6. 

 

 

 

 

Fig. 5.6: Single switching device cycles to failure (𝑁𝑓) convergence (HHO) 
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5.2 PARTICLE SWARM OPTIMIZATION ALGORITHM RESULTS 

The second optimization algorithm tested was the Particle Swarm optimization algorithm, first 

focusing on the converter’s useful time phase, modeled at a component level. Table 5.5 models 

the capacitor failure rate optimized parameters using the PSO algorithm, and it analyzes the 

reliability of a single component (capacitor) and the reliability when the redundancy of this 

component is considered. In addition, Fig. 5.7 and Fig. 5.8 illustrate the convergence rate for the 

PSO algorithm when a single capacitor is considered and when multiple capacitors are considered 

respectively. 

 

 

Table 5.5: Capacitor failure rate optimized parameters (PSO) 

 Design 

Parameter 

Optimum value Constraint Actual Value Min/Max value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 6.2832

∗ 10−8 
≤ 0.0707 

1𝐶𝑎𝑝 𝑓𝑠𝑤(𝑘𝐻𝑧) 40 𝐴𝑅𝑐𝑎𝑝 1.75 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 175 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 10 ≤ 50 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 100 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝝀𝑪𝒂𝒑[𝑭𝑰𝑻] 0.0650 

 𝑹𝒄𝒂𝒑 [%] 21 

 𝑴𝑻𝑻𝑭[hrs] 15.3796 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 6.2832

∗ 10−8 
≤ 0.0707 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 40 𝐴𝑅𝑐𝑎𝑝 1.75 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

≥ 2𝐶𝑎𝑝 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 175 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 10 ≤ 50% 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 100 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝑁𝑐𝑎𝑝 14 𝑆𝑝𝑎𝑐𝑒𝑝𝑐𝑏[#] 14 ≤ 14 

 - - 𝐵𝑢𝑑𝑔𝑒𝑡𝑐𝑎𝑝[$] 738.64 ≤ 750 

 𝝀𝑪𝒂𝒑[𝑭𝑰𝑻] 0.00926 

 𝑹𝒔𝒚𝒔 [%] 96.314 

 𝑴𝑻𝑻𝑭[hrs] 50.0079 
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Fig. 5.7: Single capacitor failure rate (𝜆𝐶𝑎𝑝) convergence (PSO) 

 

 

Fig. 5.8: Capacitor with redundancy failure rate (𝜆𝐶𝑎𝑝) convergence (PSO) 
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Table 5.6: Single capacitor lifetime optimized parameters (PSO) 

𝚫 Design 

Parameter 

Optimum value Constraint Actual Value Min/Max value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 1.3744

∗ 10−4 

≤ 0.0707 

− 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐴𝑅𝑐𝑎𝑝 1.5 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 7.5 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 50 ≤ 50 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 5 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝑳𝟎[𝒚𝒓𝒔] 1 

 𝑳𝒙,𝑪𝒂𝒑[𝒚𝒓𝒔] 8.8566 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 422.5 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 1.3744

∗ 10−4 

≤ 0.0707 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐴𝑅𝑐𝑎𝑝 1.5 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

𝐷𝑒𝑟 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 7.5 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 50 ≤ 50% 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 5 𝐷𝑒𝑟(𝑉)[%] 65 ≥ 65 

 𝑳𝟎[𝒚𝒓𝒔] 1 

 𝑳𝒙,𝑪𝒂𝒑[𝒚𝒓𝒔] 25.012 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 1.3744

∗ 10−4 

≤ 0.0707 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 6.897 𝐴𝑅𝑐𝑎𝑝 1.5 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

𝐼𝑟𝑖𝑝 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 7.5 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 58 ≤ 58 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 5 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝑳𝟎[𝒚𝒓𝒔] 1 

 𝑳𝒙,𝑪𝒂𝒑[𝒚𝒓𝒔] 19.869 

 

 

On the other hand, Table 5.6 presents the optimized parameters for a single capacitor lifetime 

improvement without considering redundancy. From this table, it is clear that when the 

constrictions are changed, the lifetime can also change, as it happened with the changes in the 

minimum deration and maximum ripple current percentage. Because of this, it is implied that the 

converter’s designer will have to choose the constrictions appropriately to get the maximum 

lifetime possible for each component. 

To illustrate the convergence rate of a single capacitor lifetime using the PSO algorithm Fig. 

5.9 was included. 
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Fig. 5.9. Single capacitor lifetime (𝐿𝐶𝑎𝑝) convergence (PSO) 

 

 

 

On the other hand, Table 5.7 analyzes the failure rate of the other crucial component, the 

switching device. Tuning the parameters corresponding to the switching device will directly 

impact the performance of the power electronic converter. As with the capacitor, the possibility of 

just a single switching device was analyzed, and more than one switching device was added to the 

system to increase its reliability.  

Table 5.7 shows that including more components in the system will increase its overall 

reliability because a backup device keeps the system running when one fails. The optimized value 

for the total number of switching devices in the system was 8, which brings the system’s overall 

reliability up to almost 100%. 

Fig. 5.10 and Fig. 5.11 show the convergence of the Particle swarm optimization algorithm for 

a single switching device and multiple switching devices respectively.  
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Table 5.7. Switching device failure rate optimized parameters (PSO) 

 Design 
Parameter 

Optimum value Constraint Actual Value Min/Max value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝑇𝑗,𝑆𝐷[℃] 72.9194 ≤ 125 

1𝑆𝐷 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝑖𝑆𝐷,𝑐  (𝐴) 16 𝐷𝑒𝑟(𝐼)[%] 80 ≥ 80 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 40 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 1.4535

∗ 10−4 
≤ 0.01 

 𝐷𝑆𝐷,𝑏𝑤 (𝜇𝑚) 400 𝐼𝑏𝑤,𝑆𝐷[𝐴] 1.6232 ≤ 20 

 𝝀𝑺𝑫[𝑭𝑰𝑻] 6.6792 ∗ 10−3 

 𝑹𝑺𝑫 [%] 85.189 

 𝑴𝑻𝑻𝑭[hrs] 149.7185 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝑇𝑗,𝑆𝐷[℃] 72.9194 ≤ 125 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

≥ 2𝑆𝐷 𝑖𝑆𝐷,𝑐  (𝐴) 16 𝐷𝑒𝑟(𝐼)[%] 80 ≥ 80 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 40 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 1.4535

∗ 10−4 
≤ 0.01 

 𝐷𝑆𝐷,𝑏𝑤 (𝜇𝑚) 350 𝐼𝑏𝑤,𝑆𝐷[𝐴] 1.7246 ≤ 20 

 𝑁𝑆𝐷 8 𝑆𝑝𝑎𝑐𝑒𝑝𝑐𝑏[#] 8 ≤ 20 

 − − 𝐵𝑢𝑑𝑔𝑒𝑡𝑆𝐷[$] 485.04 ≤ 500 

 𝝀𝑺𝑫[𝑭𝑰𝑻] 7.1173 ∗ 10−8 

 𝑹𝒔𝒚𝒔 [%] 99.9999 

 𝑴𝑻𝑻𝑭[hrs] 406.9136 
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Fig. 5.10. Single switching device failure rate (𝜆𝑆𝐷) convergence (PSO) 

 

Fig. 5.11. Switching device with redundancy failure rate (𝜆𝑆𝐷) convergence (PSO) 
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Table 5.8: Single switching device lifetime optimized parameters (PSO) 

𝚫 Design 

Parameter 

Optimum value Constraint Actual Value Min/Max value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝑇𝑗,𝑆𝐷[℃] 72.9194 ≤ 125 

− 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝑖𝑆𝐷,𝑐  (𝐴) 16 𝐷𝑒𝑟(𝐼)[%] 80 ≥ 80 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 25 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 9.0843

∗ 10−5 
≤ 0.01 

 𝐷𝑆𝐷,𝑏𝑤  (𝜇𝑚) 300 𝐼𝑏𝑤,𝑆𝐷[𝐴] 1.0017 ≤ 20 

 𝑵𝒇𝟎,𝑺𝑫[𝒄𝒚𝒄𝒍𝒆𝒔] 28 ∗ 103 

 𝑵𝒇,𝑺𝑫[𝒄𝒚𝒄𝒍𝒆𝒔] 24.581 ∗ 103 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 422.5 𝑇𝑗,𝑆𝐷[℃] 59.4147 ≤ 125 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐷𝑒𝑟(𝑉)[%] 65 ≥ 65 

𝐷𝑒𝑟 𝑖𝑆𝐷,𝑐  (𝐴) 13 𝐷𝑒𝑟(𝐼)[%] 65 ≥ 65 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 25 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 9.0843

∗ 10−5 
≤ 0.01 

 𝐷𝑆𝐷,𝑏𝑤  (𝜇𝑚) 300 𝐼𝑏𝑤,𝑆𝐷[𝐴] 1.0017 ≤ 20 

 𝑵𝒇𝟎,𝑺𝑫[𝒄𝒚𝒄𝒍𝒆𝒔] 28 ∗ 103 

 𝑵𝒇,𝑺𝑫[𝒄𝒚𝒄𝒍𝒆𝒔] 38.141 ∗ 103 

 

 

The last optimization done with the PSO corresponds to the lifetime optimization of the 

switching device, measured in cycles. These parameters are shown in Table 5.8. As with the 

capacitor, the designer-imposed parameter constrictions could affect the overall lifetime. For 

example, when the minimum deration is lowered, the switching device can have a longer life with 

more than 50% extra cycles, which could be considered to improve reliability when designed. 

The convergence was also analyzed for the switching device cycles to failure using the PSO 

algorithm, shown in Fig. 5.12. 
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Fig. 5.12: Single switching device cycles to failure (𝑁𝑓) convergence (PSO) 

 

 

 

5.3 ARTIFICIAL BEE COLONY OPTIMIZATION ALGORITHM RESULTS 

The third optimization algorithm tested was the Artificial bee colony algorithm, firstly while 

focusing on the useful time phase of the converter, modeled at a component level. Table 5.9 models 

the capacitor failure rate optimized parameters using the ABC algorithm, and it analyzes the 

reliability of a single component (capacitor) as well as the reliability when the redundancy of its 

components is considered. In addition, Fig. 5.13 and Fig. 5.14 illustrate the convergence rate for 

the ABC algorithm when a single capacitor is taken into account and when multiple capacitors are 

taken into account respectively. 
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Table 5.9: Capacitor failure rate optimized parameters (ABC) 

 Design 

Parameter 

Optimum value Constraint Actual Value Min/Max value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 5.7079

∗ 10−8 
≤ 0.0707 

1𝐶𝑎𝑝 𝑓𝑠𝑤(𝑘𝐻𝑧) 40 𝐴𝑅𝑐𝑎𝑝 1.7632 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 167.5 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 10 ≤ 50 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 95 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝝀𝑪𝒂𝒑[𝑭𝑰𝑻] 0.0650 

 𝑹𝒄𝒂𝒑 [%] 21 

 𝑴𝑻𝑻𝑭[hrs] 15.3796 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 6.2832

∗ 10−8 
≤ 0.0707 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 40 𝐴𝑅𝑐𝑎𝑝 1.75 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

≥ 2𝐶𝑎𝑝 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 175 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 10 ≤ 50% 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 100 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝑁𝑐𝑎𝑝 14 𝑆𝑝𝑎𝑐𝑒𝑝𝑐𝑏[#] 14 ≤ 14 

 - - 𝐵𝑢𝑑𝑔𝑒𝑡𝑐𝑎𝑝[$] 738.64 ≤ 750 

 𝝀𝑪𝒂𝒑[𝑭𝑰𝑻] 0.00926 

 𝑹𝒔𝒚𝒔 [%] 96.314 

 𝑴𝑻𝑻𝑭[hrs] 50.0079 
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Fig. 5.13: Single capacitor failure rate (𝜆𝑐𝑎𝑝) convergence (ABC) 

 

 

Fig. 5.14: Capacitor with redundancy failure rate (𝜆𝑐𝑎𝑝) convergence (ABC) 
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Table 5.10: Single capacitor lifetime optimized parameters (ABC) 

𝚫 Design 

Parameter 

Optimum value Constraint Actual Value Min/Max value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 1.3744 ∗ 10−4 ≤ 0.0707 

− 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐴𝑅𝑐𝑎𝑝 1.5 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 7.5 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 50 ≤ 50 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 5 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝑳𝟎[𝒚𝒓𝒔] 1 

 𝑳𝒙,𝑪𝒂𝒑[𝒚𝒓𝒔] 8.8566 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 422.5 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 1.3744 ∗ 10−4 ≤ 0.0707 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐴𝑅𝑐𝑎𝑝 1.5 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

𝐷𝑒𝑟 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 7.5 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 50 ≤ 50% 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 5 𝐷𝑒𝑟(𝑉)[%] 65 ≥ 65 

 𝑳𝟎[𝒚𝒓𝒔] 1 

 𝑳𝒙,𝑪𝒂𝒑[𝒚𝒓𝒔] 25.012 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 1.3744 ∗ 10−4 ≤ 0.0707 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 6.897 𝐴𝑅𝑐𝑎𝑝 1.5 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

𝐼𝑟𝑖𝑝 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 7.5 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 58 ≤ 58 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 5 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝑳𝟎[𝒚𝒓𝒔] 1 

 𝑳𝒙,𝑪𝒂𝒑[𝒚𝒓𝒔] 19.869 

 

 

The lifetime of a single capacitor without considering redundancy was also optimized, and its 

optimized parameters are shown in Table 5.10. Once again, a favorable change in the constrictions 

imposed by the designer can increase the capacitor’s up to almost 200%. This is the case of the 

minimum deration, and maximum ripple current allowed, with noticeable increments in the total 

lifetime of the capacitor.  

To illustrate the convergence rate of a single capacitor lifetime using the ABC algorithm, Fig. 

5.15 was included. 
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Fig. 5.15: Single capacitor lifetime 𝐿𝑐𝑎𝑝 convergence (ABC) 

 

For a global system failure rate and reliability analysis, it is also essential to consider the 

switching device, which was analyzed in Table 5.11. This analysis of the most optimum parameters 

will allow the designer to decrease the failure rate of the switching device as much as possible and, 

therefore, the system’s overall failure rate. As with the capacitor, the possibility of just a single 

switching device was analyzed, and more than one switching device was added to the system to 

increase its reliability.  

As mentioned before, the more backup components a system has, the more reliable it is, and 

this possibility of redundancy is depicted in Table 5.11, where the usage of 8 switching devices 

increases the reliability of the overall system up to almost 100%.  

Fig. 5.16 and Fig. 5.17 show the convergence of the Artificial bee colony algorithm for a single 

switching device and multiple switching devices algorithm respectively.  

 

 

 



77 
 

Table 5.11: Switching device failure rate optimized parameters (ABC) 

 Design 
Parameter 

Optimum value Constraint Actual Value Min/Max value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝑇𝑗,𝑆𝐷[℃] 72.9194 ≤ 125 

1𝑆𝐷 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝑖𝑆𝐷,𝑐  (𝐴) 16 𝐷𝑒𝑟(𝐼)[%] 80 ≥ 80 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 35 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 1.2718 ∗ 10−4 ≤ 0.01 

 𝐷𝑆𝐷,𝑏𝑤 (𝜇𝑚) 400 𝐼𝑏𝑤,𝑆𝐷[𝐴] 2.107 ≤ 20 

 𝝀𝑺𝑫[𝑭𝑰𝑻] 6.6792 ∗ 10−3 

 𝑹𝑺𝑫 [%] 85.189 

 𝑴𝑻𝑻𝑭[hrs] 149.7185 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝑇𝑗,𝑆𝐷[℃] 72.9194 ≤ 125 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

≥ 2𝑆𝐷 𝑖𝑆𝐷,𝑐  (𝐴) 16 𝐷𝑒𝑟(𝐼)[%] 80 ≥ 80 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 40 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 1.4535 ∗ 10−4 ≤ 0.01 

 𝐷𝑆𝐷,𝑏𝑤 (𝜇𝑚) 400 𝐼𝑏𝑤,𝑆𝐷[𝐴] 2.2525 ≤ 20 

 𝑁𝑆𝐷 8 𝑆𝑝𝑎𝑐𝑒𝑝𝑐𝑏[#] 8 ≤ 20 

 − − 𝐵𝑢𝑑𝑔𝑒𝑡𝑆𝐷[$] 485.04 ≤ 500 

 𝝀𝑺𝑫[𝑭𝑰𝑻] 7.1173 ∗ 10−8 

 𝑹𝒔𝒚𝒔 [%] 99.9999 

 𝑴𝑻𝑻𝑭[hrs] 406.9136 
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Fig. 5.16: Single switching device failure rate (𝜆𝑆𝐷) convergence (ABC) 

 

 
Fig. 5.17: Switching device with redundancy failure rate (𝜆𝑆𝐷) convergence (ABC) 
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Table 5.12: Single switching device lifetime optimized parameters (ABC) 

𝚫 Design 

Parameter 

Optimum value Constraint Actual Value Min/Max value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝑇𝑗,𝑆𝐷[℃] 72.9194 ≤ 125 

− 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝑖𝑆𝐷,𝑐  (𝐴) 16 𝐷𝑒𝑟(𝐼)[%] 80 ≥ 80 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 25 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 9.0843

∗ 10−5 
≤ 0.01 

 𝐷𝑆𝐷,𝑏𝑤  (𝜇𝑚) 300 𝐼𝑏𝑤,𝑆𝐷[𝐴] 1.0017 ≤ 20 

 𝑵𝒇𝟎,𝑺𝑫[𝒄𝒚𝒄𝒍𝒆𝒔] 28 ∗ 103 

 𝑵𝒇,𝑺𝑫[𝒄𝒚𝒄𝒍𝒆𝒔] 24.581 ∗ 103 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 422.5 𝑇𝑗,𝑆𝐷[℃] 59.4147 ≤ 125 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0005 𝐷𝑒𝑟(𝑉)[%] 65 ≥ 65 

𝐷𝑒𝑟 𝑖𝑆𝐷,𝑐  (𝐴) 13 𝐷𝑒𝑟(𝐼)[%] 65 ≥ 65 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 35 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 1.2718

∗ 10−4 
≤ 0.01 

 𝐷𝑆𝐷,𝑏𝑤  (𝜇𝑚) 300 𝐼𝑏𝑤,𝑆𝐷[𝐴] 1.1852 ≤ 20 

 𝑵𝒇𝟎,𝑺𝑫[𝒄𝒚𝒄𝒍𝒆𝒔] 28 ∗ 103 

 𝑵𝒇,𝑺𝑫[𝒄𝒚𝒄𝒍𝒆𝒔] 38.141 ∗ 103 

 

 

The last optimization done with the ABC corresponds to the lifetime optimization of the 

switching device, measured in cycles. These parameters are shown in Table 5.12, showing how 

important the designer’s role will be in adequately tuning the parameter constrictions to extend the 

switching device’s lifetime. As with the HHO and the PSO, a change in the deration brought the 

cycles to failure 50% higher, significantly extending the lifetime of the switching device.  

The convergence was also analyzed for the switching device cycles to failure using the ABC 

algorithm, shown in Fig. 5.18. 
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Fig. 5.18: Single switching device cycles to failure (𝑁𝑓) convergence (ABC) 

 

 

5.4 NUMBER OF COMPONENTS VS PERFORMANCE 

The reliability of each system component can be optimized up to a certain point, where 

constrictions such as space and cost or parameters such as maximum current and voltage will 

restrict further optimization. However, even though the reliability of a single component in a 

system is not extremely high, the addition of duplicated components (redundancy) will allow the 

system to keep running if one of them happens to fail. This will allow the people in charge of the 

maintenance of the system to change the defective component for a fully functional one so that the 

system can function at its 100% capabilities again without stopping its functioning. 

Because of the improvement in the overall reliability and lifetime of a system, including 

redundancy, the number of components in a system was analyzed in terms of the performance that 

they bring. Fig. 5.19 illustrates the improvement in a system in terms of system failure rate and 

system mean time to failure when more capacitors are added. The best value optimized for the 

system failure rate was found with 𝑁𝑐𝑎𝑝 = 14, which was restricted by the overall cost of the 

system being $750. The system failure rate was approximately 𝜆𝑠𝑦𝑠 = 0.00926, which translates 

into an overall reliability of 96.314%. 
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Fig. 5.19: Number of capacitors vs performance 

 

 

 

The concept of redundancy also applies to the switching device, where an outstanding 

improvement was made when including redundancy, reaching an overall system’s reliability of 

almost 100%. The number of components in a system was analyzed in terms of the performance 

that they bring. Fig. 5.20 illustrates the improvement in a system in terms of system failure rate 

and system mean time to failure when more switching devices are added. The best value optimized 

for the system failure rate was found with 𝑁𝑆𝐷 = 8, which was restricted by the overall cost of the 

system being $500. The system failure rate was approximately 𝜆𝑠𝑦𝑠 = 7.1173 ∗ 10
−8, translating 

into an overall reliability of 99.9999%. 
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Fig. 5.20: Number of switching devices vs performance 

 

 

 

 

5.5 GLOBAL OPTIMIZATION (USEFUL TIME PHASE) 

The global optimization of the system was firstly done considering the useful time phase, 

directly related to the component level modeling, with 𝜆𝐶𝑎𝑝 and  𝜆𝑆𝐷 as a target to minimize. Table 

5.13 and Table 5.14 show the useful time phase optimized results considering the modeling on a 

component level for each one of the algorithms proposed. The system’s reliability overall was also 

considered, considering the reliability of the capacitor system and the switching device system 

individually. The overall reliability was found to be 96.3139 %, which could be improved if 

designer changes the parameter constrictions.  
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Table 5.13: Useful time phase optimized results 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 Design 

Parameter 

Optimum 

value 

Constraint Actual 

Value 

Min/Max 

value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 5.7079

∗ 10−8 
≤ 0.0707 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0055 𝐴𝑅𝑐𝑎𝑝 1.7632 1 ≤ 𝐴𝑅𝑐𝑎𝑝
≤ 2 

 𝑖𝑆𝐷,𝑐  (𝐴) 16 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 50 ≤ 50 

 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 167.5 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 95 𝐷𝑒𝑟(𝐼)[%] 80 ≥ 80 

𝐻𝐻𝑂 𝐷𝑆𝐷,𝑏𝑤 (𝜇𝑚) 450 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 9.0843

∗ 10−5 
≤ 0.01 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 25 𝐼𝑏𝑤,𝑆𝐷[𝐴] 2.2538 ≤ 20 

 𝑁𝑐𝑎𝑝 14 𝑇𝑗,𝑆𝐷[℃] 72.9194 ≤ 125 

 𝑁𝑆𝐷 8 𝑆𝑝𝑎𝑐𝑒𝑝𝑐𝑏[#] [8 , 14] ≤ 20 

 − − 𝐵𝑢𝑑𝑔𝑒𝑡𝑐𝑎𝑝[$] 738.64 ≤ 750 

 − − 𝐵𝑢𝑑𝑔𝑒𝑡𝑆𝐷[$] 485.04 ≤ 500 

 𝝀𝑪𝒂𝒑[𝑭𝑰𝑻] 0.009264 

 𝑹𝒔𝒚𝒔,𝒄𝒂𝒑 [%] 96.314 

 𝝀𝑺𝑫[𝑭𝑰𝑻] 7.1173 ∗ 10−8 

 𝑹𝒔𝒚𝒔,𝑺𝑫[%] 99.9999 

 𝑹𝒕𝒐𝒕𝒂𝒍[%] 96.3139 
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Table 5.14: Useful time phase optimized results   

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 Design 
Parameter 

Optimum 
value 

Constraint Actual 
Value 

Min/Max 
value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 6.2832

∗ 10−8 
≤ 0.0707 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0055 𝐴𝑅𝑐𝑎𝑝 1.75 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

 𝑖𝑆𝐷,𝑐  (𝐴) 16 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 50 ≤ 50 

 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 175 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

𝑃𝑆𝑂 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 100 𝐷𝑒𝑟(𝐼)[%] 80 ≥ 80 

 𝐷𝑆𝐷,𝑏𝑤  (𝜇𝑚) 300 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 1.2718

∗ 10−4 
≤ 0.01 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 35 𝐼𝑏𝑤,𝑆𝐷[𝐴] 1.1852 ≤ 20 

 𝑁𝑐𝑎𝑝 14 𝑇𝑗,𝑆𝐷[℃] 72.9194 ≤ 125 

 𝑁𝑆𝐷 8 𝑆𝑝𝑎𝑐𝑒𝑝𝑐𝑏[#] [8 , 14] ≤ 20 

 − − 𝐵𝑢𝑑𝑔𝑒𝑡𝑐𝑎𝑝[$] 738.64 ≤ 750 

 − − 𝐵𝑢𝑑𝑔𝑒𝑡𝑆𝐷[$] 485.04 ≤ 500 

 𝝀𝑪𝒂𝒑[𝑭𝑰𝑻] 0.009264 

 𝑹𝒔𝒚𝒔,𝒄𝒂𝒑 [%] 96.314 

 𝝀𝑺𝑫[𝑭𝑰𝑻] 7.1173 ∗ 10−8 

 𝑹𝒔𝒚𝒔,𝑺𝑫[%] 99.9999 

 𝑹𝒕𝒐𝒕𝒂𝒍[%] 96.3139 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 0.0571 ≤ 0.0707 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0055 𝐴𝑅𝑐𝑎𝑝 1.5 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

 𝑖𝑆𝐷,𝑐  (𝐴) 16 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 50 ≤ 50 

 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 167.5 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 95 𝐷𝑒𝑟(𝐼)[%] 80 ≥ 80 

𝐴𝐵𝐶 𝐷𝑆𝐷,𝑏𝑤  (𝜇𝑚) 300 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 9.0843

∗ 10−5 
≤ 0.01 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 25 𝐼𝑏𝑤,𝑆𝐷[𝐴] 1.0017 ≤ 20 

 𝑁𝑐𝑎𝑝 14 𝑇𝑗,𝑆𝐷[℃] 72.9194 ≤ 125 

 𝑁𝑆𝐷 8 𝑆𝑝𝑎𝑐𝑒𝑝𝑐𝑏[#] [8 , 14] ≤ 20 

 − − 𝐵𝑢𝑑𝑔𝑒𝑡𝑐𝑎𝑝[$] 738.64 ≤ 750 

 − − 𝐵𝑢𝑑𝑔𝑒𝑡𝑆𝐷[$] 485.04 ≤ 500 

 𝝀𝑪𝒂𝒑[𝑭𝑰𝑻] 0.009264 

 𝑹𝒔𝒚𝒔,𝒄𝒂𝒑 [%] 96.314 

 𝝀𝑺𝑫[𝑭𝑰𝑻] 7.1173 ∗ 10−8 

 𝑹𝒔𝒚𝒔,𝑺𝑫[%] 99.9999 

 𝑹𝒕𝒐𝒕𝒂𝒍[%] 96.3139 
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In addition, Fig. 5.21 and Table 5.15 elaborate on the convergence rate for each one of the 

algorithms proposed. From the graph and the table, the algorithm with the highest convergence 

rate is the HHO, which converges to the optimal value in 2 iterations out of 20, and with only 50 

population members. However, it is the algorithm that takes the longest to execute each iteration 

with 0.00554 seconds per iteration.  

The slowest convergence algorithm was the ABC, which converged in iteration 12 out of 20, 

also with 50 population members, but with the difference of spending just 0.0012 seconds per 

iteration. In the middle, the most balanced algorithm was the PSO algorithm, which converged in 

5 iterations out of 20, with 50 population members and only 0.00076 seconds per iteration. 

A change in the algorithm’s parameters could change the overall rate of convergence, but it 

could also bring down the performance by adding more time per iteration execution. For example, 

each algorithm could be run with more population members, which would make the algorithm find 

the solution in an earlier iteration, but with the downside of spending more time per iteration. 

 

 

Fig. 5.21: Failure rate optimization convergence. 
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Table 5.15: Failure rate optimization parameters   

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 Total # of 
iterations 

Population 
members 

# of Iterations 
for convergence 

Time per iteration 
(#20) (sec) 

Total time 
(sec) 

      

𝐻𝐻𝑂 20 50 2 0.00554 0.1108 

      

𝑃𝑆𝑂 20 50 5 7.6 ∗ 10−4 0.0152 

      

𝐴𝐵𝐶 20 50 12 0.0012 0.0248 

 

 

 

5.6 GLOBAL OPTIMIZATION (WEAR OUT PHASE) 

The global optimization of the system was secondly done considering the wear-out phase, 

directly related to the sub-system-level modeling, with 𝐿𝑐𝑎𝑝 and  𝑁𝑆𝐷 as a target to maximize. 

Table 5.16 and Table 5.17 show the wear-out phase optimized results considering the modeling on 

a sub-system level for each one of the algorithms proposed.  

 

Table 5.16: Wear out phase optimized results 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 Design 
Parameter 

Optimum 
value 

Constraint Actual Value Min/Max value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 1.3744

∗ 10−4 
≤ 0.0707 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0055 𝐴𝑅𝑐𝑎𝑝 1.5 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

 𝑖𝑆𝐷,𝑐  (𝐴) 16 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 50 ≤ 50 

 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 7.5 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 5 𝐷𝑒𝑟(𝐼)[%] 80 ≥ 80 

𝐻𝐻𝑂 𝐷𝑆𝐷,𝑏𝑤 (𝜇𝑚) 300 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 9.0843

∗ 10−5 
≤ 0.01 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 25 𝐼𝑏𝑤,𝑆𝐷[𝐴] 1.0017 ≤ 20 

 𝑁𝑐𝑎𝑝 − 𝑇𝑗,𝑆𝐷[℃] 72.9194 ≤ 125 

 𝑁𝑆𝐷 − 𝑆𝑝𝑎𝑐𝑒𝑝𝑐𝑏[#] [8 , 14] ≤ 20 

 − − 𝐵𝑢𝑑𝑔𝑒𝑡𝑐𝑎𝑝[$] − ≤ 750 

 − − 𝐵𝑢𝑑𝑔𝑒𝑡𝑆𝐷[$] − ≤ 500 

 𝑳𝒄𝒂𝒑[𝒚𝒓𝒔] 8.8566 

 𝑵𝑺𝑫 [𝒄𝒚𝒄𝒍𝒆𝒔] 24581.153 
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Table 5.17: Wear out phase optimized results  

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 Design 

Parameter 

Optimum 

value 

Constraint Actual Value Min/Max value 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 1.3744

∗ 10−4 
≤ 0.0707 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0055 𝐴𝑅𝑐𝑎𝑝 1.5 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

 𝑖𝑆𝐷,𝑐  (𝐴) 16 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 50 ≤ 50 

 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 7.5 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 5 𝐷𝑒𝑟(𝐼)[%] 80 ≥ 80 

𝑃𝑆𝑂 𝐷𝑆𝐷,𝑏𝑤  (𝜇𝑚) 300 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 1.0901

∗ 10−4 
≤ 0.01 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 30 𝐼𝑏𝑤,𝑆𝐷[𝐴] 1.0973 ≤ 20 

 𝑁𝑐𝑎𝑝 − 𝑇𝑗,𝑆𝐷[℃] 72.9194 ≤ 125 

 𝑁𝑆𝐷 − 𝑆𝑝𝑎𝑐𝑒𝑝𝑐𝑏[#] [8 , 14] ≤ 20 

 − − 𝐵𝑢𝑑𝑔𝑒𝑡𝑐𝑎𝑝[$] − ≤ 750 

 − − 𝐵𝑢𝑑𝑔𝑒𝑡𝑆𝐷[$] − ≤ 500 

 𝑳𝒄𝒂𝒑[𝒚𝒓𝒔] 8.8566 

 𝑵𝑺𝑫 [𝒄𝒚𝒄𝒍𝒆𝒔] 24581.153 

 𝑣𝑎𝑝𝑝𝑙𝑖𝑒𝑑(𝑉) 520 𝐴𝑐𝑎𝑝,𝑚𝑎𝑥[𝑚
2] 1.3744

∗ 10−4 
≤ 0.0707 

 𝑓𝑠𝑤(𝑘𝐻𝑧) 8.0055 𝐴𝑅𝑐𝑎𝑝 1.5 1 ≤ 𝐴𝑅𝑐𝑎𝑝 ≤ 2 

 𝑖𝑆𝐷,𝑐  (𝐴) 16 𝐼𝑟𝑖𝑝,𝑚𝑎𝑥 [%] 50 ≤ 50 

 𝐿𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 7.5 𝐷𝑒𝑟(𝑉)[%] 80 ≥ 80 

 𝐷𝑒𝑙𝐶𝑎𝑝(𝑚𝑚) 5 𝐷𝑒𝑟(𝐼)[%] 80 ≥ 80 

𝐴𝐵𝐶 𝐷𝑆𝐷,𝑏𝑤  (𝜇𝑚) 300 𝐴ℎ𝑠,𝑆𝐷[𝑚
2] 1.6352

∗ 10−4 
≤ 0.01 

 𝑡ℎ𝑠,𝑏 (𝑚𝑚) 45 𝐼𝑏𝑤,𝑆𝐷[𝐴] 1.3439 ≤ 20 

 𝑁𝑐𝑎𝑝 − 𝑇𝑗,𝑆𝐷[℃] 72.9194 ≤ 125 

 𝑁𝑆𝐷 − 𝑆𝑝𝑎𝑐𝑒𝑝𝑐𝑏[#] [8 , 14] ≤ 20 

 − − 𝐵𝑢𝑑𝑔𝑒𝑡𝑐𝑎𝑝[$] − ≤ 750 

 − − 𝐵𝑢𝑑𝑔𝑒𝑡𝑆𝐷[$] − ≤ 500 

 𝑳𝒄𝒂𝒑[𝒚𝒓𝒔] 8.8566 

 𝑵𝑺𝑫 [𝒄𝒚𝒄𝒍𝒆𝒔] 24581.153 
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In addition, Fig. 5.22 and Table 5.18 elaborate on the convergence rate for each one of the 

algorithms proposed. From the graph and the table, the algorithm with the highest convergence 

rate is again the HHO, which converges to the most optimum value in 2 iterations out of 20, and 

with only 50 population members. However, it is the algorithm that takes the longest to execute 

each iteration with 0.00549 seconds per iteration.  

The slowest convergence algorithm was the ABC, which converged in iteration 12 out of 20, 

also with 50 population members, but with the difference of spending just 0.0017 seconds per 

iteration. In the middle, the most balanced algorithm was the PSO algorithm, which converged in 

5 iterations out of 20, with 50 population members and only 0.00065 seconds per iteration. 

When considering other optimization problems, there is a high chance that more iterations will 

be needed, as well as the possibility of more population members needed to find the optimum 

answer. However, for this optimization problem and to find a balance between convergence and 

time of convergence, the parameters were kept to 20 total iterations and 50 total population 

members.  

 

Fig. 5.22: Lifetime optimization convergence. 
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Table 5.18: Lifetime optimization parameters 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 Total # of 

iterations 

Population 

members 

# of Iterations 

for convergence 

Time per iteration 

(#20) (sec) 

Total time 

(sec) 

      

𝐻𝐻𝑂 20 50 2 0.00549 0.1098 

      

𝑃𝑆𝑂 20 50 5 6.5 ∗ 10−4 0.0130 

      

𝐴𝐵𝐶 20 50 12 0.0017 0.0335 
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CHAPTER  6 

CONCLUSION AND FUTURE WORKS 
 

This work introduced the concept of reliability in power electronic converters and the 

importance of improving this reliability for the overall functioning of the power system. Reliability 

modeling was done for a power converter at its component and subsystem levels by analyzing its 

useful time and wear-out phases. This modeling was successfully used to determine the reliability 

of a power converter under certain conditions and to improve this reliability by using optimization 

algorithms such as HHO, PSO, and ABC algorithms. From the proposed algorithms, the HHO was 

the algorithm that demonstrated a superior convergence rate while consuming more computational 

resources. On the other hand, the PSO was the algorithm that demonstrated a balance between 

convergence rate and computational resources consumed. 

The methods used in this research should be employed as a base for further optimization into 

more detailed parameters that could model the converter’s behavior under other critical 

circumstances. The modeling done in this work just covers failures resulting from errors in 

development or manufacturing, as well as overstresses (electrical, mechanical, and thermal). 
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