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CHAPTER 1

INTRODUCTION

The objective of this thesis is to prove the following theorem:

(1.1) Theorem. Let H be a dense subgroup of a Lie group G with Lie algebra g. The

(diffeological) de Rham cohomology of G/H equals the Lie algebra cohomology of g/h,

where h is the ideal {Z ∈ g : etZ ∈ H for all t ∈ R}.

Done for 1-forms in [B24, 8.14], this theorem generalizes this result to k-forms.

We will go into some detail of Diffeology in chapter 7, but we will first give some

motivation on why it is necessary for us. It is known that for a Lie group G and a subgroup

H that the quotient space G/H is a manifold if and only if H is closed. So under the frame-

work of differential geometry, our object of study G/H in Theorem (1.1) is not guaranteed

to be a manifold, and hence will not have a defined de Rham cohomology. Diffeology is a

generalization of differential geometry where given a set X one defines which maps from

U to X are smooth, where U is any open subset Rn for any n. An important feature of dif-

feology is that quotients of diffeological spaces always inherit a diffeological structure. In

addition, there is a notion of differential forms, the exterior derivative and thus a complex

with a corresponding cohomology, the so called (diffeological) de Rham complex.

In this thesis we are inspired in large part by Claude Chevalley and Samuel Eilen-

berg’s 1948 paper Cohomology theory of Lie groups and Lie algebras which introduced the

so-called Chevalley-Eilenberg complex and Lie algebra cohomology. In what we take from

their work, we do our best to simplify and update. The primary example of this being proof

of Chevalley-Eilenberg coboundary formula [C48, 9.1], i.e, (5.5). In [C48] the formula

is proven with a puzzling induction, which obfuscates how one can discover the formula

oneself. With the help of a few simple lemmas, we give an easier, much more revealing

proof of this important formula.
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Part 1 will give some necessary background on homological algebra, exterior alge-

bra, the de Rham Complex, Lie algebra cohomology and diffeology. Then in part 2, which

constitutes the majority of the forthcoming [C24], we will prove (1.1).
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Part I

Background



6

CHAPTER 2

HOMOLOGICAL ALGEBRA

(2.1) Definition. Let C be a sequence of abelian group homomorphisms

(2.2) 0 C0 C1 · · · Cn−1 Cn · · ·d1 dn dn+1

(i) The sequence C is a called a cochain complex if dn+1 ◦ dn = 0 for all n.

Members of Cn are called n-cochains. We call n-cochains that are in ker dn+1 n-

cocycles and n-cochains that are in Im dn are called n-coboundaries.

(ii) If C is a cochain complex, its nth cohomology group is the quotient group

(2.3) Hn(C) =
Ker dn+1

Im dn
.

(2.4) Definition. Let A = {An} and B = {Bn} be cochain complexes. A homomorphism

of complexes α : A → B is a set of homomorphisms αn : An → Bn such that for every n

the diagram commutes

(2.5)

· · · An An+1 · · ·

· · · Bn Bn+1 · · ·

d

αn αn+1

d

(2.6) Proposition. A homomorphism α : A → B of complexes induces group homomor-

phisms Hn(A) → Hn(B) for n ≥ 0 of the respective cohomology groups.

Proof. See [D04] Proposition 17.1.
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CHAPTER 3

EXTERIOR ALGEBRA

(3.1) Definition. An exterior k-form on a vector space V over R is an alternating multilin-

ear map ω : V × · · · × V︸ ︷︷ ︸
k times

→ R. We denote the space of exterior k-forms by
∧k(V∗).

(3.2) Definition. The wedge product of exterior forms is the map ∧ :
∧k(V∗)×

∧l(V∗) →∧k+l(V∗) defined by

(3.3) (ω ∧ η)(v1, . . . , vk+l) =
∑
σ

sgn(σ)ω(vσ(1), . . . , vσ(k))η(vσ(k+1), . . . , vσ(k+l)),

where we are summing over (k, l)-shuffles σ, i.e., members of the symmetric group Sk+l

such that σ(1) < . . . < σ(k) and σ(k + 1) < . . . < σ(k + l).

(3.4) Proposition. The wedge product is graded commutative, i.e., if ω ∈
∧k(V∗) and

η ∈
∧l(V∗) then

(3.5) ω ∧ η = (−1)klη ∧ ω.

In particular, notice that 2-forms commute with everything.

Proof. See [T11] Proposition 3.21.

(3.6) Definition. For each v in V, we define the interior product with v as the map ιv :∧k(V∗) → Vk−1(V∗) defined by

(3.7) ιvω(v2, . . . , vk) := ω(v, v2, . . . , vk).

The following proposition, coupled with the linearity of various maps will stream-

line many of the proofs to come.

(3.8) Proposition. Let {b1, . . . , bn} be a basis of V, and {e1, . . . , en} be the dual basis of

V∗. Then products of the form ei1 ∧ · · · ∧ eik with i1 < i2 < · · · < ik form a basis of∧k(V∗). Thus we have dim
∧k(V∗) =

(
n
k

)
.



8

Proof. See [T11] Proposition 3.29.

The following lemma spells out the special cases k = 1 and 2 of (3.3).

(3.9) Lemma. (a) If θ is a 1-form and ω is a k-form, then

(3.10) θ ∧ ω(v0, . . . , vk) =
k∑

m=0

(−1)mθ(vm)ω(v0, . . . , v̂m, . . . , vk)

where the hat ·̂ denotes a term to be omitted.

(b) If α is a 2-form and β is a k − 1-form, then

(3.11)

(α ∧ β)(v0, . . . , vk) =
∑

0≤i<j≤k

(−1)i+j−1α(vi, vj)β(v0, . . . , v̂j, . . . v̂j, . . . , vk).

(Proof of Lemma (3.9a)). By (3.3) we have that

(3.12) (θ ∧ ω)(v0, . . . , vk) =
k∑

m=0

sgn(σ)θ(vm)(v0, . . . , v̂m, . . . , vk),

where σ is the permutation given by

(3.13)

0 1 · · · m− 1 m m+ 1 · · · k

m 0 1 · · · m− 1 m+ 1 · · · k




We count m crossings, hence sgn(σ) = (−1)m. Thus the claim follows.

(Proof of Lemma (3.9b)). We have

(α ∧ β)(v0, . . . , vk) =
∑

0≤i<j≤k

sgn(σ)α(vi, vj)β(v0, . . . , v̂i, . . . , v̂j, . . . , vk) by (3.3)

(3.14)

where we are summing over (2, k − 1) shuffles in Sk+1, and σ is the permutation given by
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(3.15)

0 1 · · · i− 1 i i+ 1 · · · j − 1 j j + 1 · · · k

i j 0 1 · · · i− 1 i+ 1 · · · j − 1 j + 1 · · · k





We count i+ j − 1 crossings, hence sgn(σ) = (−1)i+j−1. Thus the claim follows

(3.16) Lemma. Let θi be 1-forms. Then it follows that

(3.17) (θ1 ∧ · · · ∧ θk)(v1, . . . , vk) = det[θi(vj)]i,j=1,...,k.

Proof. We prove by induction on k. The case when k = 1 is clear. Suppose that (3.17)

holds (I.H) 1. Now we show that the case of k + 1 holds.

(θ0 ∧ θ1 ∧ · · · ∧ θk) =
k∑

m=0

(−1)mθ0(vm)(θ1 ∧ · · · ∧ θk)

(3.18)

(v1, . . . , v̂m, . . . , vk) by (3.10)

=
k∑

m=0

(−1)mθ0(vm) det

 θ1(v0) ··· θ̂(vm) ··· θ1(vk)

...
...

...
θk(v0) ··· θ̂(vm) ··· θk(vk)

 by (I.H)(3.19)

= det

( θ0(v0) ··· θ0(vk)

...
...

θk(v0) ··· θk(vk)

) by cofactor

expansion

along row 1.

(3.20)

1When using induction, we will occasionally label the base case and induction hypothesis by B.C. and

I.H. respectively.
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CHAPTER 4

THE DE RHAM COMPLEX OF A EUCLIDEAN OPEN SET

By a Euclidean open set, we mean an open set inside Rn for some n ∈ N.

(4.1) Definition. Let U ⊂ Rn be an Euclidean open set. A differential k-form on U is a

smooth map x 7→ ωx assigning to each x ∈ U an exterior k-from ωx ∈
∧k((Rn)∗). We

denote the space of such maps Ωk(U). One typically drops the subscript in ωx and just

writes ω. When we need to emphasize that the form is evaluated at some point y other than

x, however, we may denote that value by ωy.

The wedge product of differential forms on U is defined pointwise, that is, for a

k-form ω and an l-form η their wedge product is the (k + l)-form ω ∧ η such that for each

y ∈ U we have that

(4.2) (ω ∧ η)y = ωy ∧ ηy.

(4.3) Definition. Let F : U → V be a smooth map of Euclidean open sets. The pull-back

F∗ω of a k-form ω on V by F is defined by

(4.4) (F∗ω)x(v1, . . . , vk) := ωF(x)(DF(x)(v1), . . . ,DF(x)(vk)).

for vi ∈ Rn.

(4.5) Remarks. We will occasionally denote DF(x)(v) using either F∗(v) or when y =

F(x) by ∂y
∂x
(v).

(4.6) Definition. Let ω be a k-form and V be a vector field on U. Then we define the

interior product of ω by V to be the k − 1-form defined by

(4.7) (ιVω)x(v2, . . . , vk) := ω(V(x), v2, . . . , vk)
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(4.8) Definition. Let ω be a k-form on U. The exterior derivative of ω is the k + 1-form

defined by

(4.9) dω(v0, . . . , vk) :=
k∑

i=0

(−1)i
∂ω

∂x
(vi)(v0, . . . v̂i, . . . vk).

Where the hat ·̂ indicates a term to be omitted. For ease of computation, we introduce the

following notation δω := ∂ω
∂x
(δx). Hence

(4.10) dω(δ0x, . . . , δkx) =
k∑

i=0

(−1)i(δiω)(δ0x, . . . δ̂ix, . . . δkx).

(4.11) Definition. If V and ω are a vector field and a k-form on U, then we define the Lie

derivative of ω along V to be the k-from on U defined by

(4.12) (LVω)(v1, . . . , vk) :=
d

dt

(
etV∗ω

)
(v1, . . . , vk)

∣∣∣∣
t=0

.

where etV is the flow of the vector field V.

(4.13) Proposition. The exterior derivative has the following properties:

(a) (Graded Leibniz) If ω ∈ Ωk(U) and η ∈ Ωl(U) then

(4.14) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

(b) (Naturality) The exterior derivative commutes with pull-backs, i.e.,F∗[dω] = d[F∗ω].

(c) (Poincaré’s Theorem) Im d ⊂ Ker d, i.e., d2 = 0.

Proof. See [T11] Proposition 4.7, Proposition 19.5.

Poincaré’s Theorem tell us that (Ω•(U), d) is a complex hence we use (2.1ii) to

define the kth de Rham cohomology group

(4.15) Hk
dR(U) :=

k-cocycles on U

k-coboundaries on U
.

As a corollary to (a), we have the following which will prove to be useful later.
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(4.16) Corollary. Let each θi be a 1-form. Then we have

(4.17) d(θ1 ∧ · · · ∧ θk) =
k∑

m=1

(−1)m+1dθm ∧ θ1 ∧ · · · ∧ θ̂m ∧ · · · ∧ θk.

Proof. We prove it by induction on k. The case of k = 1 is clear. Now as inductive

hypothesis, suppose the following holds

(4.18) d(θ1 ∧ · · · ∧ θk−1) =
k−1∑
m=1

(−1)m+1dθm ∧ θ1 ∧ · · · ∧ θ̂m ∧ · · · ∧ θk−1.

We view θ1 ∧ · · · ∧ θk−1 as a k − 1-form and θk as a 1-form. It then follows that

d(θ1 ∧ · · · ∧ θk−1 ∧ θk) = d(θ1 ∧ · · · ∧ θk−1) ∧ θk by (4.14)

(4.19)

+ (−1)k−1(θ1 ∧ · · · ∧ θk−1) ∧ dθk

=

(
k−1∑
m=1

(−1)m+1dθm ∧ θ1 ∧ · · · ∧ θ̂m ∧ · · · ∧ θk−1

)
∧ θk(4.20)

+ (−1)k−1(θ1 ∧ · · · ∧ θk−1) ∧ dθk by (4.18)

=
k−1∑
m=1

(−1)m+1dθm ∧ θ1 ∧ · · · ∧ θ̂m ∧ · · · ∧ θk−1 ∧ θk(4.21)

+ (−1)k+1(θ1 ∧ · · · ∧ θk−1) ∧ dθk

=
k−1∑
m=1

(−1)m+1dθm ∧ θ1 ∧ · · · ∧ θ̂m ∧ · · · ∧ θk−1 ∧ θk(4.22)

+ (−1)k+1dθk ∧ θ1 ∧ · · · ∧ θk−1 by (3.5)

=
k∑

m=1

(−1)m+1dθm ∧ θ1 ∧ · · · ∧ θ̂m ∧ · · · ∧ θk.(4.23)

(4.24) Proposition. If F : U → V is a smooth map of Euclidean open sets and ω ∈ Ωk(V)

and η ∈ Ωl(V), then F∗(ω ∧ η) = F∗ω ∧ F∗η
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Proof. See [T11] Proposition 18.11.

(4.25) Proposition. Let ω ∈ Ωk(U) and η ∈ Ωl(U) and V be a vector field on U. Then the

Lie derivative has the following properties :

(a) We have

(4.26) LV(ω ∧ η) = LVω ∧ η + ω ∧ LVη

(b) The Lie derivative commutes with the exterior derivative, i.e., LV(dω) = d(LVω).

(c) (Cartan’s magic formula) We have the following formula for computing the Lie deriva-

tive

(4.27) LV = dιV + ιVd.

Proof. See [T11] Proposition 20.10.

As an easy corollary to (c) we have the following,

(4.28) Corollary. If ω is a cocyle form, then LVω is a coboundary.

Proof. If ω satisfies dω = 0, then

(4.29) LVω = (dιV + ιVd)ω = dιVω + ιVdω = dιVω.

Hence LXω is the coboundary of ιVω.
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CHAPTER 5

SUBCOMPLEXES OF INVARIANT FORMS

The theory of differential forms, consequently the de Rham complex, and vector

fields applies to general manifolds thanks to propositions (4.13b) and (4.24) where F is the

transition map between charts on the manifold. In particular, we want to consider the case

when the manifolds are Lie groups.

Let G be a Lie group with Lie algebra g = TeG, and let g ∈ G. We define the

left translation map Lg : G → G by Lg(q) = gq. For a tangent vector v at q, we will use

gv to denote DLg(q)(v) where DLg(q) : TqG → TgqG. We follow a similar notation for

the right translation map Rg : G → G defined by Rg(q) = qg. For a tangent vector v,

we will use vg to denote DRg(q)(v) where DRg(q) : TqG → TqgG. A k-form on G is

called left-invariant if L∗
gω = ω for each g ∈ G. If ω is a left-invariant k form, and δig are

members of TgG, then it follows that

ω(δ1g, . . . , δkg) = (Lg−1)∗ω(δ1g, . . . , δkg)(5.1)

= ωe(g
−1δ1g, . . . , g

−1δkg),(5.2)

telling us that ω is uniquely determined by its value at TeG = g. Hence we have the

following proposition,

(5.3) Proposition. The ring of left-invariant forms on G, denoted Ω•(G)G and the ring∧•(g∗) (with multiplication given by the wedge product) are isomorphic as graded algebras

via the map ω 7→ ωe.

Now we will compute what becomes of the exterior derivative d under this isomor-

phism.
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(5.4) Proposition. Let ω ∈ Ωk(G)G, then we have

(5.5) dω(Z0, . . . ,Zk) =
∑

0≤i<j≤k

(−1)i+jω([Zi,Zj],Z0, . . . , Ẑi, . . . , Ẑj, . . . ,Zk)

for Zi ∈ g.

(5.6) Remarks. Proposition (5.4) is [B72, III.3.14, Prop.51], or [M08, Lemma 14.14] or

with different normalization [C48, Thm.9.1]. In [B72] and [M08] it is proven using "Palais’

formula" while [C48] proves it using induction on k, the base case being the well known

Maurer-Cartan formula

(5.7) dω(Z0,Z1) = −ω([Z0,Z1]).

Restricted to the case of matrix groups we will give an easier, more direct proof based on

the Maurer-Cartan formula for which we have the following.

Proof of Proposition (5.4). We first prove (5.7). To prove it we compute the exterior deriva-

tive of the g-valued Maurer-Cartan 1-form Θ defined by Θ(δg) = g−1δg. Let’s first com-

pute the derivative of the inversion map g 7→ g−1. Deriving both sides of e = g.g−1 we get

that

(5.8) 0 = δ(g.g−1) = δg.g−1 + gδ[g−1],

where in the second equality follows by the product rule. Hence we see that

(5.9) δ[g−1] = −g−1δg.g−1.

Now with this, using (4.10) we compute the exterior derivative of Θ as

dΘ(δ0g, δ1g) = δ0[g
−1]δ1g − δ1[g

−1]δ0g(5.10)

= −g−1δ0g.g
−1δ1g + g−1δ1g.g

−1δ0g(5.11)

= [g−1δ1g, g
−1δ0g](5.12)
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= [Θ(δ1g),Θ(δ0g)].(5.13)

Let ω(δg) = ⟨ωe, g
−1δg⟩ = ⟨ωe,Θ(δg)⟩ (5.2) be a left-invariant 1-form. Taking g = e and

δig = Zi ∈ g, (5.13) implies that

(5.14) dω(Z0,Z1) = ⟨ωe, dΘ(Z0,Z1)⟩ = ⟨ωe, [Z1,Z0]⟩ = −ω([Z0,Z1]).

Now we argue it is enough to prove (5.4) when ω = θ1 ∧ · · · ∧ θk where each θi is

a left-invariant 1-form on G. Indeed by Proposition (3.8) each member of
∧k g∗ may be

expressed as a linear combination of products of the form ei1 ∧ · · · ∧ eik . By linearity of

the exterior derivative it is enough to prove (5.4) on the k-form ω = θ1 ∧ · · · ∧ θk obtained

when ωe in (5.3) is a single such product. Then

(dω)(Z0, . . . ,Zk)

=
k∑

m=1

(−1)m+1(dθm ∧ θ1 ∧ . . . ∧ θ̂m ∧ . . . ∧ θk)(Z0, . . . ,Zk) by (4.16)

=
k∑

m=1

(−1)m+1
∑

0≤i<j≤k

(−1)i+j−1dθm(Zi,Zj)(θ1 ∧ . . . ∧ θ̂m ∧ . . . ∧ θk) by (3.9b)
(Z0, . . . , Ẑi, . . . , Ẑj, . . . ,Zk)

=
∑

0≤i<j≤k

(−1)i+j

k∑
m=1

(−1)m+1θm([Zi,Zj])(θ1 ∧ . . . ∧ θ̂m ∧ . . . ∧ θk) by (5.14)
(Z0, . . . , Ẑi, . . . , Ẑj, . . . ,Zk)

=
∑

0≤i<j≤k

(−1)i+j det

 θ1([Zi,Zj ]) ··· θ̂1(Zi) ···θ̂1(Zj) ···θ1(Zk)

...
...

...
...

θk([Zi,Zj ]) ··· θ̂k(Zi) ···θ̂k(Zj) ···θk(Zk)


by cofactor

expansion

along col. 1

and (3.16)

=
∑

0≤i<j≤k

(−1)i+j(θ1 ∧ · · · ∧ θk)([Zi,Zj],Z0, . . . , Ẑi, . . . , Ẑj, . . . ,Zk) by (3.16)

=
∑

0≤i<≤j

(−1)i+jω([Zi,Zj],Z0, . . . , Ẑi, . . . , Ẑj, . . . ,Zk).

Hence the proposition is proved.



17

CHAPTER 6

LIE ALGEBRA COHOMOLOGY

Let g be a Lie algebra over R. We use
∧k(g∗) to denote the space of all k-linear, al-

ternating real valued functions g× · · · × g︸ ︷︷ ︸
k times

→ R, and we will call such functions k-cochains.

The definitions and results of Chapter 4 still apply since g∗ is a vector space over R. In

particular, we have a notion of a wedge and interior product of cochains from (3.3) and

(3.6).

(6.1) Definition. For each cochain f ∈
∧k(g∗) we take inspiration from (5.5) to define the

coboundary of f to be the k + 1 cochain df defined by

(6.2) df(Z0, . . . ,Zk) =
∑

0≤i<j≤k

(−1)i+jf([Zi,Zj],Z0, . . . , Ẑi, . . . , Ẑj, . . . ,Zk).

When k = 0, we define df to be 0.

(6.3) Proposition. When g is a Lie algebra of a Lie group G, the coboundary operator d

in (6.2) satisfies

(a) (Graded Leibniz) Let f ∈
∧k(g∗) and g ∈

∧l(g∗) then

(6.4) d(f ∧ g) = df ∧ g + (−1)kf ∧ dg

(b) (Poincaré’s Theorem) Im d ⊂ Ker d, i.e., d2 = 0.

(c) The cohomology ring of (Ω•(G)G, d) is isomorphic to the cohomology ring of (
∧•(g), d),

the so-called Lie algebra cohomology ring H•(g) := Z•(g)
B•(g)

.

Proof. These properties follow immediately from results of earlier chapters. In particular,

(4.24) shows that (Ω•(G)G, d) is a subcomplex of (Ω•(G), d), which by (5.4) and (2.6) is

isomorphic to (
∧•(g), d). Hence (a) and (b) follow from (4.13a) and (4.13c).
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To prove (c) we note by (5.5) and (6.2) the following diagram commutes

(6.5)

Ωk(G)G Ωk+1(G)G

∧k(g∗) Ck+1(g).

(·)e

d

(·)e

d

Hence ω 7→ ωe defines a isomorphism of complexes and hence by (2.6) it induces a iso-

morphism between the cohomoloiges.

The above proof relies on the assumption of existence of a Lie group G. We choose

to give direct proofs of (6.3a) and (6.3b) without the assumption of G. We first establish an

analogue of (4.16).

(6.6) Lemma. Let each θi be in g∗. Then (6.2) satisfies

d(θ1 ∧ · · · ∧ θk) =
k∑

m=1

(−1)m+1dθm ∧ θ1 ∧ · · · ∧ θ̂m ∧ · · · ∧ θk(6.7)

=
k∑

m=1

(−1)m+1θ1 ∧ · · · ∧ dθm ∧ · · · ∧ θk.(6.8)

The following proof reverses the argument of proving (5.5) using (4.16) and (5.7).

Proof of the lemma. Write h = θ1 ∧ · · · ∧ θk. Then (6.2) gives

dh(Z0, . . . ,Zk) =
∑

0≤i<j≤k

(−1)i+j(θ1 ∧ · · · ∧ θk)([Zi,Zj],Z0, . . . , Ẑi, . . . , Ẑj, . . . ,Zk)

=
∑

0≤i<j≤k

(−1)i+j det

 θ1([Zi,Zj ]) θ1(Z0) ··· θ̂1(Zi) ··· θ̂1(Zj) ··· θ1(Zk)

...
...

...
...

...
θk([Zi,Zj ]) θk(Z0) ··· θ̂k(Zi) ··· θ̂k(Zj) ··· θk(Zk)


=

∑
0≤i<j≤k

(−1)i+j

k∑
m=1

(−1)m+1θm([Zi,Zj])(θ1 ∧ · · · ∧ θ̂m ∧ · · · ∧ θk)
(Z0, . . . , Ẑi, . . . , Ẑj, . . . ,Zk)

=
k∑

m=1

(−1)m+1
∑

0≤i<j≤k

(−1)i+j−1dθm(Zi,Zj)(θ1 ∧ · · · ∧ θ̂m ∧ · · · ∧ θk)
(Z0, . . . , Ẑi, . . . , Ẑj, . . . ,Zk)
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=
k∑

m=1

(−1)m+1(dθm ∧ θ1 ∧ · · · ∧ θ̂m ∧ · · · ∧ θk)(Z0, . . . ,Zk),

where the second equality is the exterior algebra lemma (3.16), the third is cofactor expan-

sion along the first column, the fourth is the k = 1 case dθ(Z0,Z1) = −θ([Z0,Z1]), and the

fifth is the exterior algebra lemma (3.9). This proves (6.7). Then (6.8) follows the fact that

the 2-forms dθm wedge-commute with everything by (3.5).

Proof of graded Leibniz (6.3a). By the usual argument (3.8), it is enough to prove it for

monomials f = θ1 ∧ · · · ∧ θk and g = θk+1 ∧ · · · ∧ θk+l. Then (6.8) gives

d(f ∧ g) = d(θ1 ∧ · · · ∧ θk+l)

=
k+l∑
m=1

(−1)m+1θ1 ∧ · · · ∧ dθm ∧ · · · ∧ θk+l

=
k∑

m=1

(−1)m+1θ1 ∧ · · · ∧ dθm ∧ · · · ∧ θk ∧ g

+
k+l∑

m=k+1

(−1)m+1f ∧ θk+1 ∧ · · · ∧ dθm ∧ · · · ∧ θk+l

= df ∧ g + f ∧
l∑

i=1

(−1)k+i+1θk+1 ∧ · · · ∧ dθk+i ∧ · · · ∧ θk+l

= df ∧ g + (−1)kf ∧ dg.

Proof of (6.3b). We will induct on k. If f ∈ C1(g) we have that

d2f(Z0,Z1,Z2) = −df([Z0,Z1],Z2) + df([Z0,Z2],Z1)− df([Z1,Z2],Z0) by (6.2)

(6.9)

= f([Z2, [Z0,Z1]])− f([Z1, [Z0,Z2]]) + f([Z0, [Z1,Z2]]) by (6.2)(6.10)

= f([Z0, [Z1,Z2]] + [Z1, [Z2,Z0]] + [Z2, [Z0,Z1]])
by antisymm

of [·, ·]
(6.11)

= f(0) by Jacobi id.(6.12)
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= 0.(6.13)

Hence if f ∈ C1(g), d2f = 0 (B.C). Since the exterior derivative d is a linear map, by

Proposition (3.8) it is enough to prove d2f = 0 when f = e ∧ h where e ∈ C1(g) and

h = ei1 ∧ · · · ∧ eik−1
∈ Ck−1(g). Now suppose that d2h = 0 (I.H). Then we have that

d2(e ∧ h) = d(de ∧ h− e ∧ dh) by (6.4)(6.14)

= d2e ∧ h+ de ∧ dh− de ∧ dh+ de ∧ d2h by (6.4)(6.15)

= 0 + de ∧ dh− de ∧ dh+ 0 by (B.C), (I.H)(6.16)

= 0.(6.17)

Hence by induction (b) is proved.

6.1. RELATIVE LIE ALGEBRA COHOMOLOGY

As we did with the exterior derivative d (4.8) in (6.2), we recast the Lie Derivative

(4.11) into the setting of
∧k(g∗) with the following definition.

(6.18) Definition. Let f be in
∧k(g∗). For each X ∈ g we define the Lie derivative of f by

X to be the linear map LX :
∧k(g∗) →

∧k(g∗) defined by

(6.19) (LXf)(Z1, . . . ,Zk) =
k∑

j=1

(−1)jf([X,Zj],Z1, . . . , Ẑj, . . . ,Zk).

(6.20) Remarks. As in Proposition (6.3), the upcoming propositions follow from the anal-

ogous results in chapter 3. In particular (6.21), (6.30), (6.33), (6.35) follow from (4.25c),

(4.25b), (4.28), (4.25a) respectively. In addition we choose to give direct proofs.

(6.21) Proposition. We have the following formula for computing the Lie derivative

(6.22) LX = dιX + ιXd.
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Proof. We have that

d(ιZ0f)(Z1, . . . ,Zk) =
∑

1≤i<j≤k

(−1)i+jιZ0f([Zi,Zj],Z1, . . . , Ẑi, . . . , Ẑj, . . . ,Zk) by (6.2)

(6.23)

=
∑

1≤i<j≤k

(−1)i+jf(Z0, [Zi,Zj],Z1, . . . , Ẑi, . . . , Ẑj, . . . ,Zk) by (3.6)(6.24)

= −
∑

1≤i<j≤k

(−1)i+jf([Zi,Zj],Z0,Z1, . . . , Ẑi, . . . , Ẑj, . . . ,Zk)
by anti-

sym. of f ,
(6.25)

while on the other hand

ιZ0df(Z1, . . . ,Zk) = df(Z0, . . . ,Zk) by (3.6)

(6.26)

=
∑

0≤i<j≤k

(−1)i+jf([Zi,Zj],Z0, . . . , Ẑi, . . . , Ẑj, . . . ,Zj) by (6.2)(6.27)

=
k∑

j=1

(−1)jf([Z0,Zj],Z1 . . . , Ẑj, . . . ,Zk)(6.28)

+
∑

1≤i<j≤k

(−1)i+jf([Zi,Zj],Z0,Z1, . . . , Ẑi, . . . , Ẑj, . . . ,Zk).(6.29)

Adding the results together we see that (6.24) and (6.29) cancel out, leaving us with (6.28)

which is equal to LZ0f(Z1, . . . ,Zk). This proves (6.22).

(6.30) Proposition. The Lie derivative commutes with the coboundary, i.e., LXd = dLX.

Proof. Let f be a cochain. Recalling that d2 = 0, by (6.22) we have that

(6.31) LXd = (dιX + ιXd)df = dιXd+ ιXd
2 = dιXd,

while at the same time

(6.32) dLX = d(dιX + ιXd) = d2ιX + dιXd = dιXd.

Hence we see that LXd = dLX.
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(6.33) Proposition. If f is a cocycle then LXf a coboundary.

Proof. This also follows immediately from (6.22). Indeed if f satisfies df = 0, then

(6.34) LXf = (dιX + ιXd)f = dιXf + ιXdf = dιXf.

Hence LXf is the coboundary of ιXf .

(6.35) Proposition. For cochains f and g, we have that

(6.36) LX(f ∧ g) = LX(f) ∧ g + f ∧ LX(g).

To prove the previous proposition, first we have a lemma.

(6.37) Lemma. Let each θi be a one form, then we have

(6.38) LX(θ1 ∧ . . . ∧ θk) =
k∑

m=1

θ1 ∧ . . . ∧ LXθm ∧ . . . ∧ θk.

Proof of the lemma. Write h = θ1 ∧ · · · ∧ θk. Then by (6.19) we have

LXh(Z0, . . . ,Zk) =
k∑

m=1

(θ1 ∧ · · · ∧ θk)([X,Zm],Z1, . . . , Ẑm, . . . ,Zk)

=
k∑

m=1

det

 θ1([X,Zm]) θ1(Z1) ··· ̂θ1(Zm) ··· θ1(Zk)

...
...

...
...

θk([X,Zm]) θk(Z1) ··· ̂θk(Zm) ··· θk(Zk)


=

k∑
m=1

k∑
j=1

(−1)j+1θj([X,Zm])(θ1 ∧ · · · ∧ θ̂m ∧ · · · ∧ θk)
(Z1, . . . , Ẑm, . . . ,Zk)

=
k∑

j=1

(−1)j
k∑

m=1

LXθj(Zm)(θ1 ∧ · · · ∧ θ̂m ∧ · · · ∧ θk)
(Z1, . . . , Ẑm, . . . ,Zk)

=
k∑

j=1

(−1)j(LXθj ∧ θ1 ∧ · · · ∧ θ̂j ∧ · · · ∧ θk)(Z1, . . . ,Zk),

=
k∑

j=1

θ1 ∧ . . . ∧ LXθj ∧ . . . ∧ θk(Z1, . . . ,Zk).
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where the second equality is the exterior algebra lemma (3.16), the third is cofactor expan-

sion along the first column, the fourth is the k = 1 case LXθ(Z1) = −θ([X,Z1]), the fifth is

the exterior algebra lemma (3.9), and the sixth follows from the graded commutativity of

the wedge product. This proves (6.38).

Now with this lemma we can prove (6.35)

Proof of (6.35). By the usual argument (3.8), it is enough to prove it for monomials f =

θ1 ∧ · · · ∧ θk and g = θk+1 ∧ · · · ∧ θk+l. Then (6.38) gives

LX(f ∧ g) = LX(θ1 ∧ · · · ∧ θk+l)

=
k+l∑
m=1

θ1 ∧ · · · ∧ LXθm ∧ · · · ∧ θk+l

=
k∑

m=1

θ1 ∧ · · · ∧ LXθm ∧ · · · ∧ θk ∧ g

+
k+l∑

m=k+1

f ∧ θk+1 ∧ · · · ∧ LXθm ∧ · · · ∧ θk+l

= LXf ∧ g + f ∧
l∑

i=1

θk+1 ∧ · · · ∧ LXθk+i ∧ · · · ∧ θk+l

= LXf ∧ g + f ∧ LXg.

(6.39) Definition. Let h be a Lie subalgebra of g. We call a cochain f ∈
∧k(g∗) an h-basic

if it is h-horizontal and h-invariant. Respectively this means that

f(Z1, . . . ,Zk) = 0 whenever one of the Zj ∈ g belongs to h.(6.40)

LXf = 0 for X ∈ h.(6.41)

The space of h-basic cochains
∧k(g∗)basic forms a subspace of

∧k(g∗). We note

that the wedge product of h-basic cochains is h-basic cochain. Indeed if f ∈
∧k(g∗)basic
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and g ∈
∧l(g∗)basic then clearly f ∧ g satisfies (6.40) and it satisfies (6.41) by (6.35).

Furthermore the coboundary of a h-basic cochain is also h-basic, for if X ∈ h we have by

(6.30)

(6.42) LX(df) = d(LXf) = d(0) = 0.

hence df is h-invariant. If Z0 ∈ h then

df(Z0, . . . ,Zk) =
∑

0≤i<j≤k

(−1)i+jf([Zi,Zj],Z0, . . . , Ẑi, . . . , Ẑj, . . . ,Zk)

(6.43)

Each summand with i ̸= 0 evaluates to 0 since f is h-horizontal, hence

=
∑

1≤j≤k

(−1)jf([Z0,Zj],Z1, . . . , Ẑj, . . . ,Zk)(6.44)

= LZ0f(Z1, . . . ,Zk) by (6.19)(6.45)

= 0(6.46)

where the last equality follows from f being h-invariant and Z0 ∈ h. Hence df is h-

horizontal.

In other words (
∧•(g∗)basic, d) is a subcomplex of (

∧•(g), d) and its cohomology

is called the relative cohomology Hk(g, h) with

(6.47) Hk(g, h) :=
Zk(g) ∩ Ck(g, h)

Bk(g) ∩ Ck(g, h)
.

Let G be a Lie group and H be a closed connected subgroup of G. Then (Ω•(G/H)G, d)

is a subcomplex of (Ω•(G/H), d); while we won’t use it we note that the following propo-

sition is analogous to (6.3c).

(6.48) Proposition. The cohomology ring of (Ω•(G/H)G, d) is isomorphic to the relative

Lie algebra cohomology H•(g, h).
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Proof. See [B00, 1.6]

(6.49) Proposition. When h is an ideal of g, all h-horizontal cochains are automatically

h-basic.

Proof. Suppose that f is a h-horizontal cochain and let X ∈ h. Then by the definition of

LXf

(6.50) (LXf)(Z1, . . . ,Zk) =
k∑

j=1

(−1)j+1f([X,Zj],Z1, . . . , Ẑj, . . . ,Zk).

Since h is an ideal we have that [X,Zj] ∈ h for each j, and since f is h-horizontal, each

summand will evaluate to 0. Hence LXf = 0.

(6.51) Proposition. If h is an ideal of g, then the relative Lie algebra cohomology H•(g, h)

and the Lie algebra cohomology H•(g/h) are isomorphic as graded rings.

Proof. We will use Zi to denote the coset Zi + h. Consider the projection π : g → g/h :

Zi 7→ Zi, then dual to this we have the injective map π∗ :
∧k(g/h)∗ →

∧k(g∗) defined by

(6.52) π∗(f)(Z1, . . . ,Zk) := f(π(Z1), . . . , π(Zk)).

We will prove that the image of π∗ is exactly
∧k(g)basic,whence π∗ defines an isomorphism

of complexes between (
∧•(g/h)∗, d) and (

∧•(g∗)basic, d). For any f ∈
∧k(g/h)∗ we must

show that π∗(f) is h-basic. By the previous proposition this can be achieved by showing

that π∗(f) is h-horizontal. Indeed, if Zi ∈ h, then π(Zi) = 0. It then follows that

π∗(f)(Z1, . . . ,Zi, . . . ,Zk) = f(π(Z1), . . . , π(Zi), . . . , π(Zk))(6.53)

= f(Z1, . . . , 0, . . . ,Zk)(6.54)

= 0.(6.55)
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Hence we have proven that π∗(f) is h-horizontal, and thus h-basic. We have then proven

that the image of π∗ is exactly
∧k(g)basic. So π∗ :

∧k(g/h)∗ →
∧k(g∗)basic defines a

isomorphism of the complexes (
∧•(g/h)∗, d) and (

∧•(g∗)basic, d).

(6.56) Remarks. As an isomorphism, π∗ has a well defined inverse that we will denote by

π∗ :
∧k(g∗)basic →

∧k(g/h)∗, and which we will be use to prove (1.1).
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CHAPTER 7

DIFFEOLOGY

For any set X, we call a map P : U → X a parameterization of X if U is a Euclidean

open set, which we recall is any open subset of Rn for any n. We denote the set of all

parameterizations of X by P(X).

(7.1) Definition. A diffeology on a set X is a subset D of P(X) that satisfies the following

axioms:

1. (Covering) D contains each constant parameterization. For each x ∈ X and n ∈ N,

D contains P : Rn → {x}.

2. (Locality) If (P : U → X) ∈ P(X) is such that for each point u ∈ U there is an open

neighborhood V ⊂ U of u such that P|V ∈ D, then P ∈ D.

3. (Smooth compatibility) Let (P : U → X) ∈ D. Then for each n ∈ N and open

subset V ⊂ Rn, and every smooth map F : V → U, we have that P ◦ F ∈ D.

The elements of D are called plots. A diffeological space is a pair (X,D) where X is any

set and D is a diffeology on X.

(7.2) Definition. Let D and D′ be two diffeologies on a set X. We say that D′ is finer that

D if D′ ⊂ D. Also in this case we would call D coarser than D′.

Each diffeology on X is coarser than the discrete diffeology, that is the diffeology

consisting of all locally constant parameterizations. Each diffeology on X is finer than the

trivial diffeology, that is the diffeology consisting of all parameterizations.

(7.3) Example. Every manifold X is naturally a diffeological space with its plots being the

smooth maps from an Euclidean open set to X.

(7.4) Definition. Let (X,D) and (X′,D′) be diffeological spaces, and let F : X → X′ be a
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map. We call F (diffeologically) smooth if for each P ∈ D, we also have F ◦ P ∈ D′.

(7.5) Proposition. Let (X,D) be a diffeological space, X′ be a set, and F : X → X′ be

a map. There exist a finest diffeology on X′ that will make F smooth. Denoted F∗(D), we

call it the pushforward diffeology of D.

Proof. See [I13, 1.43]

(7.6) Definition. Let π : X → X′ be a surjective map of diffeological spaces. If the

pushforward of D coincides with the diffeology on X′, then π is called a subduction.

(7.7) Proposition. Let (X′,D′) be a diffeological space, X be a set, and F : X → X′ be a

map. There exist a coarsest diffeology on X that will make F smooth. Denoted F∗(D′), we

call it the pull-back diffeology of D′.

Proof. See [I13, 1.26]

(7.8) Definition. Let ψ : X → X′ be a injective map of diffeological spaces. If the pull-

back of D′ coincides with the diffeology of X, then ψ is called a induction.

(7.9) Definition. Let X be a diffeological space and let ∼ be an equivalence relation on X.

The quotient diffeology on X/∼ is the pushforward of the diffeology of X by the natural

map π : X → X/∼. By [I13, 1.43], its plots are the maps P : U → X/∼ such that

around each point in U there is a neighborhood V ⊂ U and a plot Q : V → X such that

P|V = π ◦Q.

(7.10) Definition. Let X be a diffeological space and let Y be a subset of X. The subset

diffeology on Y is the pull-back of the diffeology of X by the inclusion map i. By [I13,

1.26], its plots are the maps P : U → Y such that i ◦ P is a plot of X.
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CHAPTER 8

THE DE RHAM COMPLEX OF A DIFFEOLOGICAL SPACE

Let us call ordinary the k-forms on Euclidean open sets and operations on them

(pull-back, exterior derivative).

(8.1) Definition. Let X be a diffeological space. A (diffeological) differential k-form on X

is a functional α, that associates to each plot (P : U → X) an ordinary k-form (4.1) on U,

denoted P∗α, with the compatibility condition:

(8.2) (P ◦ F)∗α = F∗P∗α

for all smooth F : V → U where V is any other Euclidean open set, and where F∗ denotes

the pullback as in (4.3) Note that P ◦ F is also a plot by Definition (7.1). We denote the set

of differential k-forms on X by Ωk(X).

(8.3) Definition. Let X and Y be diffeological spaces, and α be a k-form on Y. Its pull-

back F∗α by a smooth map F : X → Y is the k-form on X defined by: if P is a plot of X

(so F ◦ P is a plot of Y), then

(8.4) P∗F∗α = (F ◦ P)∗α.

(8.5) Proposition. If G : W → X is another smooth map, then (F ◦G)∗α = G∗F∗α.

Proof. See [I13, 6.32].

(8.6) Remarks. If X is a manifold (7.3), forms (8.1) correspond 1-to-1 to forms of Chapter

4, by using ordinary pull-back. Furthermore, conditions (8.2) and (8.4) become special

cases of (8.5).

The following is a criterion for when a k-form descends to a quotient.
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(8.7) Theorem. Let X,X′ be diffeological spaces, π : X → X′ be a subduction, and

α ∈ Ωk(X). Then α is the pull-back of some β, i.e., α = π∗(β) if and only if for any two

plots P,Q of X such that π ◦ P = π ◦Q, we have that P∗(α) = Q∗(α).

Proof. See [S85, 2.5c] or [I13, 6.38].

(8.8) Proposition. Let X and X′ be diffeological spaces and let π : X → X′ be a subduc-

tion. Then the pull-back π∗ : Ωk(X′) → Ωk(X) is injective.

Proof. See [S85, 2.5b] or [I13, 6.39].

(8.9) Definition. Let X be a diffeological space. The exterior derivative is the linear map

d : Ωk(X) → Ωk+1(X) defined as follows: If α is a k-form on X, then

(8.10) P∗(dα) = d(P∗α)

for all plots P of X. Note that on the right hand side of we are taking the exterior derivative

of the ordinary k-form P∗α as defined in definition (4.8).

(8.11) Proposition. The exterior derivative d and F∗ commute for all smooth F.

Proof. See [I13, 6.34]

(8.12) Remarks. When X is a manifold (7.3), the exterior derivative d (8.10) is the same

as the ordinary exterior derivative d (4.8) of chapter 4.

On ordinary differential forms, by Proposition (4.13), the exterior derivative com-

mutes with pull-backs and satisfies d2 = 0. These properties extend to the exterior deriva-

tive of differential forms, and we can thus define the (diffeological) kth de Rham cohomol-

ogy group of X by
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(8.13) Hk
dR(X) =

Kernel d ∩ Ωk(X)

Image d ∩ Ωk(X)
.
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Part II

Main Result
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CHAPTER 9

DIFFERENTIAL FORMS ON X = G/H FOR A DENSE SUBGROUP H

Let G be a Lie group and H a dense subgroup. It is known that H is a Lie group,

with Lie algebra given by h = {Z ∈ g : etZ ∈ H ∀ t ∈ R} (see [B72, III.4.5] or [H12,

9.6.13]). Endow X = G/H with the quotient diffeology, and write Π : G → X for the

natural projection, Π(q) = qH.

(9.1) Proposition. Pull-back via Π defines a bijection Π∗ from Ωk(X) onto the set of those

µ ∈ Ωk(G) that are

(a) right-invariant: R∗
gµ = µ for all g ∈ G, where Rg : G → G maps q to qg;

(b) horizontal: µ(gZ1, . . . , gZk) = 0 whenever one of the Zj ∈ g belongs to h.

Proof. First, X having the quotient diffeology means that Π is a subduction, and this im-

plies that Π∗ is one-to-one by (8.8). Next we recall that H is canonically a Lie group, with

Lie algebra h = {Z ∈ g : etZ ∈ H for all t ∈ R}. As in [B24, 8.11], a key property is that

(9.2) G normalizes h: ghg−1 = h for all g ∈ G.

Indeed one knows that the normalizer NG(h) is always a closed subgroup containing H

[B72, III.9.4, Prop. 10], so it must be G by our density assumption. By deriving (9.2) at e

one deduces that h is an ideal, i.e., [g, h] ⊂ h.

Suppose µ = Π∗α for some α ∈ Ωk(X). We must prove (a) and (b). Now, the

relation Π ◦ Rh = Π implies R∗
hΠ

∗α = Π∗α for all h ∈ H, and since H is dense, the same

follows for all g ∈ G: so µ is right-invariant. To see that it is horizontal, fix g ∈ G and

consider the two plots P,Q : g× h → G sending u = (Z,W) to

(9.3) P(u) = geZeW, resp. Q(u) = geZ.
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(For these to be literally plots, use bases to identify U := g × h with some Rn.) Then

clearly Π ◦ P = Π ◦Q, so by the criterion of theorem (8.7) we have P∗µ = Q∗µ, i.e.,

(9.4) µ(P∗(δ1u), . . . ,P∗(δku)) = µ(Q∗(δ1u), . . . ,Q∗(δku))

for all choices of tangent vectors δiu ∈ TuU. Taking u = (0, 0), δ1u = (0,W1) and δiu =

(Zi, 0) for i ⩾ 2, we obtain P∗(δ1u) = gW1, Q∗(δ1u) = 0 and P∗(δiu) = Q∗(δiu) = gZi.

So (9.4) says that µ(gW1, gZ2, . . . , gZk) = 0, whence (by antisymmetry) our claim that µ

is horizontal.

Conversely, suppose that µ ∈ Ωk(G) satisfies (a) and (b), and let P,Q : U → G

be any two plots with Π ◦ P = Π ◦ Q. By (8.7) we must show that P∗µ = Q∗µ. Since

Π ◦ P = Π ◦ Q it follows that R(u) := P(u)−1Q(u) defines a plot R : U → H. So

(g, gh, h) := (P(u),Q(u),R(u)) are ordinary smooth functions of u, and given tangent

vectors δiu ∈ TuU we may compute e.g. Q∗(δiu)Q(u)−1 ∈ g as

(9.5)
δi[gh].(gh)

−1 = [δig.h+ gδih](gh)
−1

= δig.g
−1 + gδih.h

−1g−1.

By (9.2), the second term here (call it Wi) is in h. Therefore we obtain

(Q∗µ)(δ1u, . . . , δku) = µ(Q∗(δ1u), . . . ,Q∗(δku))

= µ(δ1[gh], . . . , δk[gh])

= µ(δ1[gh].(gh)
−1, . . . , δk[gh].(gh)

−1) by (a)

= µ(δ1g.g
−1 +W1, . . . , δkg.g

−1 +Wk) by (9.5)

= µ(δ1g.g
−1, . . . , δkg.g

−1) by (b)(9.6)

= µ(δ1g, . . . , δkg) by (a)

= µ(P∗(δ1u), . . . ,P∗(δku))

= (P∗µ)(δ1u, . . . , δku)

as desired.
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CHAPTER 10

PASSAGE TO LEFT-INVARIANT FORMS

In chapter 6 we constructed the Lie algebra cohomology using left-invariant rather

than right-invariant forms. Here we pass from right-invariant forms to left-invariant forms.

To accomplish this we simply pull back by the inversion map, inv(g) = g−1:

(10.1) Corollary. In the setting of (9.1), pull-back via Π̃ = Π ◦ inv defines a bijection

Π̃∗ = inv∗Π∗ from Ωk(X) onto the set of those ω ∈ Ωk(G) that are

(a) left-invariant: L∗
gω = ω for all g ∈ G, where Lg : G → G maps q to gq;

(b) horizontal: ω(gZ1, . . . , gZk) = 0 whenever one of the Zj ∈ g belongs to h.

Proof. This is simply a matter of checking that µ ∈ Ωk(G) is right-invariant and horizontal

(9.1a,b) iff ω := inv∗ µ is left-invariant and horizontal (10.1a,b). Now the elementary

relation inv ◦Lg = Rg−1 ◦ inv show and (8.5) that (9.1a) implies (10.1a):

(10.2) L∗
gω = L∗

g inv
∗ µ = inv∗R∗

g−1µ = inv∗ µ = ω

(and conversely). Also, the relation inv∗(Zg) = d
dt
inv(etZg)

∣∣
t=0

= −g−1Z shows that

(9.1b) implies

(10.3) ω(Z1g, . . . ,Zkg) = µ(−g−1Z1, . . . ,−g−1Zk) = 0

whenever one of the Zj belongs to h; whence (10.1b) since we have gh = hg (9.2) (and

conversely).
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CHAPTER 11

H•
DR(X) AND H•(g/h)

(11.1) Theorem. Let H be a dense subgroup of a Lie group G with Lie algebra g. The

(diffeological) de Rham cohomology of G/H equals the Lie algebra cohomology of g/h,

where h is the ideal {Z ∈ g : etZ ∈ H for all t ∈ R}.

Proof. We will use Ω•(G)GHor to denote the set

(11.2)
{
ω ∈ Ω•(G) : ω satisfies (10.1a, b)

}
.

Then (Ω•(G)GHor, d) forms a subcomplex of (Ω•(G)G, d), and we have the following iso-

morphisms of complexes

Π̃∗ : (Ω•(X), d) → (Ω•(G)GHor, d) by (10.1) and (8.11)(11.3)

ω 7→ ωe : (Ω
•(G)GHor, d) → (

•∧
(g∗)basic, d)


by (6.3), (6.49), and

(10.1b) for ω implies (6.40) for

ωe

(11.4)

π∗ : (
•∧
(g∗)basic, d) → (

•∧
(g/h)∗, d) by (6.51).(11.5)

Composing these together we get an isomorphism of complexes (Ω•(X), d) to (
∧•(g/h)∗, d)

which induces an isomorphism between H•
dR(X) and H•(g/h) by (2.6).
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