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ACCOUNTING FOR VARIABILITY DUE TO RESAMPLING USING

BOOTSTRAPPING

by

DIPENDRA PHUYAL

(Under the Direction of Charles W .Champ)

ABSTRACT

Bradley Efron (1979) introduced bootrapping. Typically a researcher is interested in study-

ing a process which generates individuals. The collection of individuals the process has

(actual) or could have (conceptual) generated is the population. The collection of concep-

tual members of the population is an uncountable collection. Hence, the population is an

uncountable collection of individuals. The collection of individuals the process has gen-

erated (actual individuals) is representative of what the process can generate and will be

referred to as the representative sample. The size of this sample is a nonnegative integer

valued random variable N which may be a constant random variable such as in statistically

designed experiments in which the researcher decides the value of N before collecting the

data. In general, the variable N is a random variable N whose value is generated by the pro-

cess. We note that in the design of experiments the researcher becomes a part of the process

that generates “actual” individuals in the population. There is variability that must be ac-

counted for among the measurement on the individuals in the representative sample. From

the representative sample, the researcher using a sampling method will select a sample re-



ferred to as the researcher’s sample. There is variability of among the measurements that

must be accounted for in the researcher’s sample. A bootstrap sample introduces further

variability that must be accounted for. We will study bootstrapping in which we account

for the variability in the bootstrap sample.

INDEX WORDS: bootstrap sample mean, bootstrap sample variance, independent sam-
ples, random sample, variability
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Typically a researcher is interested in studying a process which generates individuals. The

collection of individuals the process has or could have generated is the population. The

collection of conceptual members of the population is an uncountable collection. Hence,

the population is an uncountable collection of individuals. The collection of individuals

the process has generated (actual individuals) is representative of what the process can

generate and will be referred to as the representative sample. The size of this sample is a

non-negative integer valued random variable N which may be a constant random variable

such as in statistically designed experiments in which the researcher decides the value of

N before collecting the data. In general, the variable N is a random variable N whose

value is generated by the process. We note that in the design of experiments the researcher

becomes a part of the process that generates ”actual” individuals in the population.

On each individual, let’s assume we are interested in taking the measurement X (as

opposed to some vector of measurements). We assume here that X is either a discrete or

continuous measurement (random variable). If X is discrete (continuous), the distribution

of X can be described by the probability mass (density) function P (X = x)(fX(x)). The

mean µX and variance σ2
X of the distribution of X are defined by
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µX =


∑

x xP (X = x), if X is discrete;∫∞
−∞ xfX(x)dx, if X is continuous;

σ2
X =


∑

x(x− µx)
2P (X = x), if X is discrete;∫∞

−∞(x− µx)
2fX(x)dx, if X is continuous.

(1.1)

Other parameters of the distribution of X that are of interest to researchers are the

quantiles of the distribution. The 100γ th quantile x1−γ of the distribution satisfies the

inequalities

P (X ≤ x1−γ) ≥ γ and P (X < x1−γ) ≤ γ

In order to gain information about the distribution of X , assume that the researcher

is allowed to select n individuals from the N individuals in the representative sample with

1 ≤ n ≤ N . Note that it is possible for n=N. We refer to this case as a census. As we have

noted, the researcher may be part of the process that generates individuals which occurs in

the statistical design of experiments. The value of n may be fixed by the researcher, but in

some applications the size n of the researcher’s sample is a random variable. However, in

our discussion here, we will assume that n has a known value. For convenience of discus-

sion, we represent the measurements on the N individuals in the representative sample by

X1, ..., Xn, Xn + 1, ..., XN with the first n of these denoting the X measurements on the

individuals in the researcher’s sample. Assume that the process is generating individuals

such that one may assume that the measurements X1, ..., Xn, Xn + 1, ..., XN are indepen-

dent and identically distributed with common distribution described by P (X = x) (fX(x)).

(Note that if X is a continuous measurement, we are not considering any process in which

the probability density function fX(x) does not exist.



3

One commonly recommended method for the researcher generating the researcher’s

sample is a method known as a simple random sampling method. This sampling method

gives each of the
(
N
n

)
possible researcher’s samples of size n with the equal chance of being

selected. The resulting sample is called a simple random sample (SRS). If the researcher

can argue that X measurements in the representative sample are stochastically independent

and have the same distribution, then it follows that the X measurements to be obtained on

the individuals in a simple random sample would be stochastically independent and have

the same distribution. This will be stated more concisely by stating that the sample is a

random sample. In what follows, we require that the X measurements to be taken on the

n individuals in the researcher’s sample are stochastically independent and have the same

distribution. That is, the collection of the N random variables X1, ...Xn, Xn + 1, ...XN is

a random sample and the collection of the n random variables X1, ...Xn is also a random

sample.

The following schematic is used to summarize the previous paragraph to this point in

our discussion.

Population
X∼P (X=x) or (fX(x)

Process Generates from the Population−−−−−−−−−−−−−−−−−−→ Representative Sample
MeasurementsX1,...Xn,Xn+1,...XN

⊂ Population

ResearcherGeneratesfromtheRepresentativeSample−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Researcher’s Sample ⊆ Representative Sample
MeasurementsX1,...Xn

Note that,

Researcher’s Sample ⊆ Representative Sample ⊂ Population.

The probability mass (density ) function P (X = x)(fX(x)) is typically not known. It is

usually modelled by a probability mass (density) function PModel(X = x) (fModel
X (x)).

One of the most commonly used family of models for the distribution of a continuous

measurements X is the family of Normal distributions. A Normal distribution is described
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by a probability density function of the form

fModel
X (x) =

1√
2πσ

exp
−1
2
(x−µ

σ
)2

Where −∞ < ∞ and σ > 0 are distributional parameters. One can show that

(1) fModel
X (x) > 0

(2)

∫ ∞

−∞
fModel
X (x) dx = 1

and when used as a model it describes(models) the distribution of X It can be shown the

mean and variance of the distribution of X under this model are respectively,

µX = µ and σ2
X = σ2

The following statistics are of interest. The representative samples mean and variance

are

XN =
1

N

N∑
i=1

Xi and S2
N =

1

N − 1

N∑
i=1

(Xi −XN)
2

The sample mean and sample variance of the researcher’s sample are

Xn =
1

n

n∑
i=1

Xi and S2
n =

1

n− 1

n∑
i=1

(Xi −Xn)
2

Also, we will be interested in the following statistics.

XN−n =
1

N − 1

N∑
i=1

(Xi − nX) and S2
N−n =

1

N − n− 1

N∑
i=n+1

(Xi −XN−n)
2

The statistics the researcher will be allowed to observe are Xn ,S2
n. To make inferences

about such population values as µX and σ2
X using the numerical information X1, ...Xn in

the researcher’s sample, are estimation methods. One can also use this same numerical
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information to ”predict” the values of statistics such as XN and S2
N describing the repre-

sentative sample. For example,the observed value of Xn is often used as a point estimator

of the parameter µX and the observed value of the random interval(
Xn − tn−1

α

2

Sn√
n
,Xn + tn−1

α

2

Sn√
n

)
as an interval estimate (confidence interval) of µX , where tn−1,

α
2

is the 100(1− α
2
)th

percentile of a t-distribution with n-1 degree of freedom. The margin of error (MOECI)

and (LCI) of this random interval are, respectively,

MOECI = tn−1
α

2

Sn√
n

LCI = 2tn−1
α

2

Sn√
n

Note that both (MOECI) and (LCI) are random variables.

The statistics Xn can also be used as a point predictor for statistics X̄N . One can

show that E(Xn|XN , N) = XN . A 100(1− α)th prediction interval for the statistics XN

conditioned on size N of representative sample is the observed value of the random interval(
Xn − tn−1

α

2

√
N − n

N

Sn√
n
,Xn + tn−1

α

2

√
N − n

N

Sn√
n

)

If N is not given this interval cannot be observed. However, since the factor
√

N−n
N

< 1

then this interval is contained in the interval(
Xn − tn−1

α

2

Sn√
n
,Xn + tn−1

α

2

Sn√
n

)
So for large value of N, removing the factor

√
N−n
N

gives the prediction interval for XN in

which one can be more confident than 100(1− α)% that XN is in the interval. The margin

of error (MOEPI) and length (LPI) of this interval are, respectively,

MOECI = tn−1
α

2

√
N − n

N

Sn√
n
≤ tn−1

α

2

Sn√
n

LCI = 2tn−1
α

2

√
N − n

N

Sn√
n
≤ 2tn−1

α

2

Sn√
n
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We see that LCI − LPI = 2tn−1
α
2
(1−

√
N−n
N

) Sn√
n
> 0

But as n approaches N, LPI approaches 0. Hence , in this case, the confidence interval

is wider. It is also interesting to note that a prediction interval for the statistics XN−n is

(
Xn − tn−1

α

2

√
N

N −N

Sn√
n
,Xn + tn−1

α

2

√
N

N − n

Sn√
n

)
Where Xn and Sn are observed values of researcher’s sample mean and standard devi-

ation, respectively. One can see the confidence interval for µX is wider than the prediction

interval XN

1.2 CONCLUSION

We have discussed a meaning for population, representative sample, and the researcher’s

sample. In what follows, we examine the concept of bootstrapping and its use in point and

interval estimation and prediction methods as well as test of significance and hypothesis. It

will be shown that ’Bootstrapping’ adds extra unneeded variability to these methods.
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CHAPTER 2

BOOTSTRAPPING

2.1 INTRODUCTION

The bootstrap method has been discussed by several authors which include among others

Efron (1979), Efron (1981), Efron (1982), Schenker (1985), Wu (1986), Efron and Tibshi-

rani (1993), Mooney and Duval (1993), Shao and Tu (1995), Davison and Hinkely (1997),

Moore, McCabe, Duckworth, and Sclove (2003), Hesterberg, Moore, Monaghan, Clipson,

and Epstein (2003), and Good (2005). We examine the concept of bootstrapping and its

use in point and interval estimation and prediction methods. It will be shown that “boot-

strapping” adds extra, unneeded variability to these methods. Schenker (1985) states “The

percentile method and bias-corrected method of Efron (1981, 1982) are discussed. When

these methods are used to construct nonparameteric confidence intervals for the variance of

a normal distribution, the coverage probabilities are substantially below the nominal level

for small to moderate samples. This is due to the inapplicability of assumptions underlying

the methods. These assumptions are difficult or impossible to check in complicated situa-

tions for which the bootstrap is intended. Therefore, bootstrap confidence intervals should

be used with caution in complex problems.” Efron and Tibshirani (1993) states “Dissus-

sions of some of the issues concerning bootstrap confidence intervals appear in Schenker

(1985), Robinson (1986, 1987), Peters (and Freedman (1987), Hinkley (1988), and in the

psychology literature, Lunneborg (1985), Rasmussen (1987), and Efron (1988).”

After observing the n measurements X1, . . . , Xn on the n individuals in the sample,

the researcher decides to select m groups of n numbers as follows. For the ith sample,
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an individual is randomly selected from the n individuals in the researher’s sample and

the X-measurement X∗ on the individual is recorded. Again from the n individuals in

the researcher’s sample (the first individual selected has been placed back into the group),

an individual is randomly selected and the individual’s X-measurement X∗ is recorded,

and so forth. The n X-measurements are X∗
1 , . . . , X

∗
n, to be more compactly denoted by

X∗ = [X∗
1 , . . . , X

∗
n]

T. This is a bootstrap sample. We summarize as follows.

Population

X ∼ P (X = x) or fX (x)

Process Generates from the Population−→

Representative Sample ⊂ Population

Measurements: X1, X2, . . . , XN

Researcher Generates from the Representative Sample−→

Researcher’s Sample ⊆ Representative Sample

Measurements: X1, . . . , Xn

Researcher Generates from the Researcher’s sample−→

Bootstrap Sample ⊆ Researcher’s Sample

Measurements: X∗
1 , . . . , X

∗
n

Note that

Bootstrap Sample(n) ⊆ Researcher’s Sample(n) ⊆ Representative Sample(N) ⊂

Population(∞)

It is interesting to note that there are only a finite number of different possible boot-

strap samples of size n that can be generated from the n measurements on a sample of



9

individuals. There are two ways to count the bootstrap samples. For example for n = 3,

we may count the two samples as

{X∗
i,1 = x1, X

∗
i,2 = x1, X

∗
i,3 = x2} and {X∗

i,1 = x1, X
∗
i,2 = x2, X

∗
i,3 = x1}

as distinct samples. If this is the case then there are nn possible bootstrap samples for a

sample of size n. On the other hand, we could view both of these samples as the same

sample,{x1, x1, x2}. In this case, there is 1 bootstrap sample for n = 1 and there are

m =
∑n

k=0
k

(
2n− k − 2

n− k

)
=

(
2n− 1

n

)
bootstrap samples for n > 1. This can be found in literature. It is not difficult see that

m ≤ nn for all positive integers n. Some example of m are given in the following table.

Table 2.1: Values of m

n m =
(
2n−1
n

)
4 35

5 126

10 92,378

15 77,558,760

20 68,923,264,410

25 63,205,303,218,876

30 59,132,290,782,430,712

35 56,093,138,908,331,422,716

40 53,753,604,366,668,088,230,810

50 50,445,672,272,782,096,667,406,248,628
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For example if n = 20, then there are 68,923,264,410 possible bootstrap samples.

It is also worth noting that it is possible to obtain a sample in which all the elements

are the same value xi, where i = 1, 2, ...n. Thus , there are

m − n =

(
2n− 1

n

)
− n

bootstrap samples that have at least two distinct values from the values x1, ...xn. Also note,

the researcher’s sample is one of the m bootstrap samples.

A bootstrap sample containing f1 value(s) of x1, f2 value(s) of x2,..., fn value(s) of

xn, has probability
n!

f1! f2! ...fn!

nn

of occurring. For example, for the case in which n = 3, we have

P (x1, x1, x3) =
3!

2! 1! 0!

33
=

1

9

Whereas,

P (x1, x2, x3) =
3!

1! 1! 1!

33
=

2

9

Given that X1 = x1, ..., Xn = xn, the measurements X∗
i,1, ..., X

∗
i,n to be selected from

the n measurements in the sample is a set of n independent discrete random variables.

Furthermore, the measurements to be taken in each of the m sample are independent with

common distribution expressed in tabular form by X∗ : X1 X2 . . . Xn

P (X∗|X1, ..., Xn) :
1

n

1

n
. . .

1

n


and in functional form by

P (X∗|X1, . . . , Xn) =
1

n
I{X1,...,Xn}(X

∗)
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, Where IA(w) = 1 if w ∈ A and zero otherwise. It is important to note that X∗ is a

discrete random variable whose conditional distribution given X1 = X1, . . . , Xn = Xn

describes the variability introduced by researcher’s bootstrap sampling method. The con-

ditional mean and variance of this distribution are

µX∗|X1, . . . , Xn =
n∑

i=1

Xi ×
1

n
= X̄n

σ2
X∗|X1, . . . , Xn =

n∑
i=1

(Xi − X̄n)
2 × 1

n
=

n− 1

n
S2
n = (1− 1

n
)S2

n

Before the measurements X1, . . . , Xn on the individuals in the researcher’s sample are

made the values

µX∗|X1,...,Xn = Xn and σ2
X∗|X1,...,Xn

=

(
1− 1

n

)
S2
n

are random variables.

2.2 BOOTSTRAP SAMPLES

The bootstrap sampling method used in our example results in the random variables X∗
1 , . . . , X

∗
nB

being conditionally stochastically independent with identical distribution that of the distri-

bution of X∗ given X1, . . . , Xn. We let X
∗

and S2∗ represent the mean and variance of the

bootstrap sample of size nB. Define

X
∗
nB

=
1

nB

∑nB

i=1
(X∗

i |X1, . . . , Xn ) and S2∗
nB

=
1

nB − 1

∑nB

i=1

[(
X∗

i −X
∗
nB

)2
|X1, . . . , Xn

]
.

One can show that

E
(
X

∗
nB

|X1, . . . , Xn

)
= Xn and E

(
S2∗
nB

|X1, . . . , Xn

)
=

(
1− 1

n

)
S2
n.

Further, we have

V
(
X

∗
nB

|X1, . . . , Xn

)
=

V (X∗ |X1, . . . , Xn )

nB

=
n− 1

n

S2
n

nB

.
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Using the law of total expection, we have the unconditional expectation of X
∗
nB

E
(
X

∗
nB

)
= E

[
E
(
X

∗
nB

|X1, . . . , Xn

)]
= E

(
Xn

)
= µ.

and using the total law of variance the unconditional variance of X
∗
nB

V
(
X

∗
nB

)
= E

[
V
(
X

∗
nB

|X1, . . . , Xn

)]
+ V

[
E
(
X

∗
nB

|X1, . . . , Xn

)]
=

n− 1

n (nB)
E
(
S2
n

)
+ V

(
Xn

)
=

n− 1

nB

σ2

n
+

σ2

n

=

(
n− 1

nB

+
nB

nB

)
σ2

n
=

nB + n− 1

nB

σ2

n
.

2.3 DUPLICATION WHEN BOOTSTRAPPING

For nB > n, we would expect duplicate bootstrap values for X∗. Let X1:n, . . . , Xn:n be the

order statistics of the random sample X1, . . . , Xn. Here nB is the bootstrap sample size.

Let fi:n represent the frequency that Xi:n appears in the sample. Further, let a be a positive

integer for a given 0 < α ≤ 0.5 such that∑a
i=1 fi:n
nB

≥ α/2.

This would suggest that Xa:n is the estimated 100 (α/2)th percentile using bootstrapping.

Now let b be a positive integer such that∑n
i=b fi:n
nB

≥ 1− α/2.

This would suggest that Xb:n is the estimated 100 (1− α/2)th percentile using bootstrap-

ping.
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2.4 CONCLUSION

Bootstrapping was introduced. We have discussed the distribution of a bootstrap random

variable X∗ and its distribution. We have shown that the mean and variance of the dis-

tribution of X∗ are, respectively, the sample mean Xn of the researcher’s sample and

(n− 1)S2
n/n with S2

n the variance of the researcher’s sample.
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CHAPTER 3

DISTRIBUTION OF THE BOOTSTRAP SAMPLE MEAN X
∗

3.1 INTRODUCTION

A random sample of size nB with X∗ measurement X∗
1 , . . . , X

∗
nB

is to be taken from the

distribution of X∗ given by X∗ : X1 X2 . . . Xn

P (X∗ |X1, . . . , Xn ) :
1
n

1
n

. . . 1
n

 .

The bootstrap samples mean and variance of the distribution of X∗
1 , . . . , X

∗
nB

are, respec-

tively, of this sample are

X
∗
=

1

nB

∑nB

i=1
X∗

i and S2∗ =
1

nB − 1

∑nB

i=1

(
X∗

i −X
∗
)2

Since the bootstrap sample is a random sample, we have

E
(
X

∗ |X1, . . . , Xn

)
= Xn and V

(
X

∗ |X1, . . . , Xn

)
=

V (X∗)

n
,

where V (X∗) = (n− 1)S2/n. It follows that the unconditional mean and variance are

E
[
E
(
X

∗ |X1, . . . , Xn

)]
= E

(
X
)
= µ

using the law of total expectations and

V
(
X

∗
)
= E

[
V
(
X

∗ |X1, . . . , Xn

)]
+ V

[
E
(
X

∗ |X1, . . . , Xn

)]
= E

[
(n− 1)S2

n2

]
+ V

(
X
)
=

(
1

n
− 1

n2

)
E
(
S2
)
+ V

(
X
)

=

(
σ2

n
− σ2

n2

)
+

σ2

n
=

(
2− 1

n

)
σ2

n

=

(
2− 1

n

)
V
(
X
)
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using the law total of variance. Thus, as the sample size n increases, the variance V
(
X

∗
)

of the bootstrap sample mean becomes almost twice the variance of the sample mean with

lim
n→∞

V
(
X

∗
)
= lim

n→∞

(
2− 1

n

)
V
(
X
)
= 2V

(
X
)

.

3.2 STANDARD ERROR OF THE SAMPLE MEAN

For a sample X1, . . . , Xn of measurements, the standard error of the sample mean Xn is

seX = σ/
√
n. An estimator for seX is ŝeX = Sn/

√
n, where Sn is the standard deviation

of the sample. On page 42 of Efron and Tibsharani (1993), the authors suggest estimating

σ by

σ̂ =

√
1

n

∑n

i=1

(
Xi −Xn

)2
.

Efron and Tibshirani (1993) also suggest using

σ̂ =

√
1

n− 1

∑n

i=1

(
Xi −Xn

)2
.

For the ith bootstrap sample X∗
i , an estimator for σ is

σ̂∗
i =

√
1

n

∑n

j=1

(
X∗

i,j −X
∗
i

)2
or σ̂∗

i =

√
1

n− 1

∑n

j=1

(
X∗

i,j −X
∗
i

)2
where

X
∗
=

1

n

∑n

j=1
X∗

i,j .

The statistic σ̂ under the independent Normal model is the maximum likelihood estimator

for σ. It follows using σ̂ as an estimator of σ that

ŝeX =

√
1

n2

∑n

i=1

(
Xj −Xn

)2
or ŝeX =

√
1

n (n− 1)

∑n

i=1

(
Xj −Xn

)2
.

The ith bootstrap estimator ŝe∗i,X of seX is as follows. We have

ŝe∗i,X =

√
1

n2

∑n

j=1

(
X∗

i,j −X
∗
i

)2
or ŝe∗i,X =

√
1

n (n− 1)

∑n

j=1

(
X∗

i,j −X
∗
i

)2
,
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where

X
∗
i =

1

n

∑n

j=1
X∗

i,j .

A bootstrap estimator for the seX is based on nB bootstrap samples X∗
1, . . . ,X

∗
nB

. For

the ith bootstrap sample X∗
i , we calculate X

∗
i . The bootstrap estimator of the standard error

of the sample mean according to Efron and Tibsharani (1993) on page 47 is

ŝe∗X =

√
1

nB − 1

∑nB

i=1

(
X

∗
i −X

∗)2
,

where

X
∗
=

1

nB

∑nB

i=1
X

∗
i .

3.3 POSSIBLE BOOTSTRAP SAMPLES

For a given sample of size n as previously shown, there are

m =

(
2n− 1

n

)
possible bootstrap samples. The ith bootstrap sample mean X

∗
i can now be expressed as

X
∗
i =

1

n

∑n

j=1
X∗

i,j =
1

n

∑n

j=1
L∗
i,jXj ,

where X∗
i,j is the jth X value selected for the ith bootstrap sample and L∗

i,j is the number

of times Xj appears in the ith sample with

∑n

j=1
L∗
i,j = n.
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The matrix L∗ has ith row L∗
i,1, . . . , L

∗
i,n, where i = 1, . . . ,

(
2n−1
n

)
. Define the

(
2n−1
n

)
× n

matrix L∗ by

L∗ =



L∗
1,1 L∗

1,2 . . . L∗
1,n

L∗
2,1 L∗

2,2 . . . L∗
2,n

...
... . . . ...

L∗
m,1 L∗

m,2 . . . L∗
m,n


.

The rows of L∗ are the possible bootstrap samples of size n. For example, if n = 3, we

have

L∗ =



0 0 3

0 1 2

0 2 1

0 3 0

1 1 1

1 0 2

1 2 0

2 0 1

2 1 0

3 0 0



.
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For the case in which n = 3, we have

1

3
L∗


X1

X2

X3

 =
1

3



0 0 3

0 1 2

0 2 1

0 3 0

1 1 1

1 0 2

1 2 0

2 0 1

2 1 0

3 0 0




X1

X2

X3

 =



X
∗
1

X
∗
2

X
∗
3

X
∗
4

X
∗
5

X
∗
6

X
∗
7

X
∗
8

X
∗
9

X
∗
10



=



X3

(X2 + 2X3) /3

(2X2 +X3) /3

X2

(X1 +X2 +X3) /3

(X1 + 2X3) /3

(X1 + 2X2) /3

(2X1 +X3) /3

(2X1 +X2) /3

X1



.

It follows that, for n = 3, the possible values of bootstrap sample mean X
∗

are X3,

(X2 + 2X3) /3, (2X2 +X3) /3, X2, (X1 +X2 +X3) /3, (X1 + 2X3) /3, (X1 + 2X2) /3,

(2X1 +X3) /3, (2X1 +X2) /3, and X1. Each of these values are equally likely to occur

with probability 1/
(
2(3)−1

3

)
= 1/10. This gives us the distribution of the bootstrap sample

mean as follows. X
∗
: X3

X2+2X3

3
2X2+X3

3
X2

X1+X2+X3

3
X1+2X3

3
X1+2X2

3
2X1+X3

3
2X1+X2

3
X1

P
(
X

∗
)
: 1

10
1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10


The mean of this discrete distribution is determined as follows.

E
(
X

∗
)
=

1

10
[X3 +

X2 + 2X3

3
+

2X2 +X3

3
+X2 +

X1 +X2 +X3

3
+

X1 + 2X3

3

+
X1 + 2X2

3
+

2X1 +X3

3
+

2X1 +X2

3
+X1]

=
10X1 + 10X2 + 10X3

3 (10)

=
X1 +X2 +X3

3
= X3.
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The variance of the distribution of X
∗

is determined as follows.

V
(
X

∗
)
=

1

10

∑10

i=1

(
X

∗
i −X3

)2
.

Theorem 3.1: Each of the Xi’s appears
(
2n−1
n−1

)
times in the matrix L∗.

Proof: The proof can be found in Wilf and Zeilberger (1990). See the Appendix for a proof

of this theorem.

Theorem 3.2: For a sample of size n, the average of the possible bootstrap sample means

is Xn.

Proof: We see that

1(
2n−1
n−1

)∑(2n−1
n−1 )

i=1
X

∗
i =

(
2n−1
n−1

)
X1 + . . .+

(
2n−1
n−1

)
Xn

n
(
2n−1
n−1

) = Xn.

In general for a given sample size n, we have the distribution of X
∗

described as

follows.  X
∗
: X

∗
1 X

∗
2 . . . X

∗
m

P
(
X

∗
)
: 1

m
1
m

. . . 1
m

 ,

where m =
(
2n−1
n−1

)
. The mean of this distribution is Xn and the variance of the distribution

is expressed as

V
(
X

∗
)
=

1

m

∑m

i=1

(
X

∗
i −Xn

)2
.

3.4 CONCLUSION

We have discussed the distribution of the bootstrap sample mean X
∗
. It was shown that the

variance of the distribution of the bootstrap sample mean is almost twice the variance of

the mean of the researcher’s sample.
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CHAPTER 4

DISTRIBUTION OF THE BOOTSTRAP SAMPLE VARIANCE S2∗

A bootstrap sample X∗
1 , . . . , X

∗
nB

of size nB is taken from the distribution of X∗. The

bootstrap sample variance is defined by

S2∗ =
1

nB − 1

∑nB

i=1

(
X∗

i −X
∗
)2

,

where

X
∗
=

1

nB

∑nB

i=1
X∗

i

is the bootsrap sample mean. The expectation E (S2∗) of S2∗ is determined as follows.

E
(
S2∗) = 1

nB − 1

∑nB

i=1
E

[(
X∗

i −X
∗
)2]

.

Note that

E

[(
X∗

i −X
∗
)2]

= V
(
X∗

i −X
∗
)
+
[
E
(
X∗

i −X
∗
)]2

.

One can easily show that E
(
X∗

i −X
∗
)
= 0. Hence,

E

[(
X∗

i −X
∗
)2]

= V
(
X∗

i −X
∗
)

.

We can write

X∗
i −X

∗
=

nB − 1

nB

X∗
i −

1

nB

∑nB

j=1,j ̸=i
X∗

j .

It follows that

V
(
X∗

i −X
∗
)
=

(
nB − 1

nB

)2

V (X∗
i ) +

1

n2
B

∑n

j=1,j ̸=i
V
(
X∗

j

)
=

(
nB − 1

nB

)2

V (X∗) =

(
nB − 1

nB

)2

V (X∗) +
nB − 1

n2
B

V (X∗)

=

[(
nB − 1

nB

)2

+
nB − 1

n2
B

]
V (X∗) =

nB − 1

nB

V (X∗) .
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Therefore,

E
(
S2∗) = 1

nB − 1

∑nB

i=1

nB − 1

nB

V (X∗) = V (X∗) =
n− 1

n
S2.

Hence, the bootstrap sample variance S2∗ is unbiased in estimating variance of the distri-

bution of X∗.

The sample variance S2 of the n > 1 measurements X1, . . . , Xn is defined by

S2 =
1

n− 1

∑n

i=1

(
Xi −X

)2
,

where

X =
1

n

∑n

i=1
Xi.

The sample standard deviation S is the principal square root of the sample variance, where

S =

√
1

n− 1

∑n

i=1

(
Xi −X

)2
.

One can show that

S2 =
n
∑n

i=1X
2
i − (

∑n
i=1Xi)

2

n (n− 1)
.

Hence,

S =

√
n
∑n

i=1X
2
i − (

∑n
i=1Xi)

2

n (n− 1)
.

Using the aforementioned results, we can express the ith bootstrap sample variance as

S2∗
i =

n
∑n

j=1 L
∗
i,jX

2
j −

(∑n
j=1 L

∗
i,jXj

)2
n (n− 1)

,

where L∗
i is the ith row of the

(
2n−1
n

)
× n matrix L∗ of possible bootstrap samples. The ith

bootstrap sample standard deviation is

S∗
i =

√√√√n
∑n

j=1 L
∗
i,jX

2
j −

(∑n
j=1 L

∗
i,jXj

)2
n (n− 1)

.



22

There are m =
(
2n−1
n

)
possible bootstrap samples. Hence, there are m possible bootstrap

sample variances (sample standard deviations) denoted by S2∗
1 , . . . , S2∗

m (S∗
1 , . . . , S

∗
m). We

can express the distribution of the bootstrap sample variances by S2∗
1 : S2∗

1 S2∗
2 . . . S2∗

m

P (S2∗ |X1, . . . , Xn ) :
1
m

1
m

. . . 1
m

 .

The mean and variance of this distribution are

E
(
S2∗) = 1

m

∑n

i=1
S2∗
i = S

2∗
and V

(
S2∗) = 1

m

∑n

i=1

(
S2∗
i − S

2∗
)2

,

with

S
2∗

=
1

m

∑m

j=1
S∗2
i and S

∗
=

1

m

∑m

j=1
S∗
i .

The ith row of L∗ are the n frequencies fj that indicate the number of times Xj appears

in the ith bootstrap sample. This is the average of the possible bootstrap sample variances

and standard deviations, where m =
(
2n−1
n

)
. The expectation and variance of S

∗
are

E
(
S
∗2
)
=

1

m

∑m

j=1
E
(
S∗2
i

)
and V

(
S
∗2
)
=

1

m2

∑m

j=1
V
(
S∗2
i

)
and

E
(
S
∗
)
=

1

m

∑m

j=1
E (S∗

i ) and V
(
S
∗
)
=

1

m2

∑m

j=1
V (S∗

i ) .

We do not know in general how to obtain E
(
S
∗2
)

, V
(
S
∗2
)

, E
(
S
∗
)

, and V
(
S
∗
)

analytically. However, we can obtain simulated estimates of these parameters for a given

model. We assume the data is generated from a N (10, 4) distribution. The following table

gives the estimates of E
(
S
∗
)

and V
(
S
∗
)

for n = 7, 8.

Table of Estimates of E
(
S
∗
)

and V
(
S
∗
)


n Ê

(
S
∗
)

V̂
(
S
∗
)

7 0.77785793 0.052265

8 0.8056029 0.04762375

 .
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Under the independent Normal model, we have for the variance and standard deviation

of the researcher’s sample,

E
(
S2
n

)
= σ2, V

(
S2
n

)
=

2σ4

n− 1
, V (Sn) = c4σ,

V (S) = V
(
σW 1/2/

√
n− 1

)
=

σ2

n− 1
V
(
W

1/2
i

)
=

σ2

n− 1

[
E (Wi)− E2 (Wi)

]
=

σ2

n− 1

[
σ2 − c24σ

2
]

=
(1− c24)σ

4

n− 1
,

with W = (n− 1)S2
n/σ

2 ∼ χ2
n−1 and

c4 =

√
2Γ
(
n−2
2

)
√
n− 1Γ

(
n−1
2

) .

The function c4 of n is an unbiasing constant for the researcher’s sample standard deviation.

The distribution of the bootstrap sample standard deviation S∗ is the discrete distribu-

tion  S∗ : S∗
1 S∗

2 . . . S∗
m

P (S∗) : 1
m

1
m

. . . 1
m

 ,

where m =
(
2n−1
n

)
. The mean and variance of the distribution of S∗ are

µS∗ =
1

m

∑m

i=1
S∗
i = S

∗
and σ2

S∗ =
1

m

∑m

i=1

(
S∗
i − S

∗
)2

.

The question that arises from the aforementioned analysis is “why bootstrap?” It has

been stated that bootstrapping causes the estimation method to be more “stable.” At this

point, we do not have a definition of what is meant by a method being “stable.” Our example

shows that “bootstrapping” does not provide the researcher with more information about
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the process that generated the data than the information found in the sample. It simply adds

more variability to the statistics used to summarize the information in the sample.

4.1 CONCLUSION

We have discussed the distribution of the bootstrap sample variance and the boostrap sam-

ple standard deviation.



25

CHAPTER 5

CONFIDENCE AND PREDICTION INTERVALS FOR µ AND XN

5.1 INTRODUCTION

Suppose we generate a (pseudo) random sample X1, . . . , Xn of size n from a N (µ, σ2).

One method for constructing a 100 (1− α)% confidence interval for µ is the observed

value of the random interval(
Xn − tn−1,α/2

Sn√
n
,Xn + tn−1,α/2

Sn√
n

)
(1).

This the typically recommend t-interval. Suppose we generated a random sample of size

n = 5 from a N (10, 4) distribution and obtain the following data: 7.800671, 9.33206464,

8.15044618, 12.96949046, and 10.42013007. A 95% confidence interval for µ = 10 using

this method is (7.149, 12.320) rounded to three decimal places.

On page 160 in Efron and Tibshirani (1993), the authors present a method for obtain-

ing a bootstrap confidence interval for the population mean µ. Suppose we generate nB

independent bootstrap samples X∗
1, . . . ,X

∗
nB

and calculate for each one

T ∗
i =

X
∗
i −Xn

ŝe∗i,X
,

where X
∗
i is the bootstrap sample mean the ith bootstrap sample X∗

i = [X∗
i1, . . . , X

∗
in]

T and

ŝe∗i,X =

√
1

n (n− 1)

∑n

j=1

(
X∗

i,j −X
∗
i

)2
=

S∗
i√
n

,

for i = 1, . . . , nB. The nB values T ∗
i values are ordered T ∗

1:nB
, . . . , T ∗

nB :nB
. A method is

used to obtain the a bootstrap estimator t̂∗n−1,α/2 of tn−1,α/2. The authors suggest a method

when nB (α/2) is not an integer. For α ≤ 0.5, define

k = ⌈(nB + 1) (α/2)⌉ .
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The bootstrap estimators for −tn−1,α/2 and tn−1,α/2 are, respectively, −t̂∗n−1,α/2 = T ∗
k:nB

and

t̂∗n−1,α/2 = T ∗
nB+1−k:nB

. The 100 (1− α)% bootstrap confidence interval of the population

mean µ is(
Xn − T ∗

k:nB

Sn√
n
,Xn − T ∗

B+1−k:nB

Sn√
n

)
=

(
Xn − t̂∗n−1,α/2

Sn√
n
,Xn + t̂∗n−1,α/2

Sn√
n

)
.

For nB = 1000, we obtained a 95% bootstrap confidence interval for µ of (7.973, 11.152)

rounded to three decimal places. This gives us a interval of length smaller than the standard

t-interval of (7.148877245, 12.32024388).

In Chapter 13 of Efron and Tibshirini (1993), they discuss confidence intervals based

on bootstrap-t, bootstrap percentiles, bias-corrected (BC), and the approximate bias-corrected

methods (ABC). For the data, 7.800671, 9.33206464, 8.15044618, 12.96949046, and 10.42013007,

a 95% bootstrap confidence interval based on nB = 1000 for µ is (8.179, 11.515). This in-

terval is included in the bootstrap t-interval which is included in the standard t-interval.

The authors also discuss the bias-corrected method (BC) and the approximate bootstrap

confidence (ABC) method. For nB = 1000 and these data, the BC method yields a 95%

confidence interval for µ of (8.317, 11.946). The ABC method will give the same results

as the BC method. The ABC method requires less computation than the BC method. As

pointed out, Schenker (1985) states it is for confidence intervals “difficult or impossible to

check in the complicated situations for which the bootstrap is intended.”

5.2 BOOTSTRAP PREDICTION INTERVAL FOR XN

There is a process that generates individuals in a researcher’s study. Let X1, . . . , XN be the

X measurements on these N individuals. Assume this sample is a random sample. We refer
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to this sample as the representative sample of size N . The mean of these measurements is

XN =
1

N

∑N

i=1
Xi.

Many believe that the representative sample is the “population.” Hence, the “population”

mean would be XN . From this sample, the researcher is allowed to select a sample of size

1 ≤ n ≤ N of individuals with X measurements X1, . . . , Xn. We refer to this sample

as the researcher’s sample. Assuming the representative sample is a random sample, then

the researcher’s sample is a random sample. If n = N , the researcher’s sample is called a

census. The mean of the researcher’s sample is defined by

Xn =
1

n

∑n

i=1
Xi.

We represent the mean of the remaining X measuements by XN−n. Under the assumption

that the representative sample is a random sample, the means Xn and XN−n are indepen-

dent.

Observe that

XN =
n

N
Xn +

N − n

N
XN−n =

nXn + (N − n)XN−n

n
.

It follows that

Xn −XN =
N − n

N

(
Xn +XN−n

)
.

If we assume Xi ∼ N (µ, σ2), then it can be shown that Xn − XN ∼ N
(
0, N−n

N
σ2/n

)
.

One can show that

Z =
Xn −XN√

N−n
N

σ√
n

∼ N (0, 1) .
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It follows that

T =
Xn −XN√

N−n
N

Sn√
n

=

Xn−XN√
N−n
N

σ√
n√

(n−1)S2
n

σ2 / (n− 1)

=
Z√

χ2
n−1/ (n− 1)

∼ tn−1,

where the random variables Z and χ2
n−1 are independent. Hence, we have

−tn−1,α/2 <
Xn −XN√

N−n
N

Sn√
n

< tn−1,α/2 or

Xn − tn−1,α/2

√
N − n

N

Sn√
n
< XN < Xn + tn−1,α/2

√
N − n

N

Sn√
n

.

The observed value of the random interval(
Xn − tn=1,α/2

√
N − n

N

Sn√
n
,Xn + tn=1,α/2

√
N − n

N

Sn√
n

)

is a 100 (1− α)% prediction interval for XN . Here we are assuming that N is known. If N

is not known, one can assume that (N − n) /N is approximately equal to 1 if N is “large”

relative to n, we have the observed value of the random interval(
Xn − tn−1,α/2

Sn√
n
,Xn + tn−1,α/2

Sn√
n

)
is an approximate 100 (1− α)% prediction interval for XN .

The following data was simulated from a N (10, 4) distribution: 7.80067147, 9.33206464,

8.15044618, 12.96949046, and 10.42013007. A 95% prediction interval for XN for our

given sample of size n = 5 is

(7.149, 12.320)

rounded to three decimal places.
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A bootstrap prediction interval would have the form(
Xn − T ∗

k:nB

Sn√
n
,Xn − T ∗

nB+1−k:nB

Sn√
n

)
.

For data, we have a 95% prediction interval of(
9.73456− 2.082765

2.082434√
5

, 9.73456 + 1.676555
2.082434√

5

)
= (7.795, 11.296)

rounded to three decimal places. We see that the 95% bootstrap prediction interval (7.795, 11.296)

for XN is narrower than the 95% prediction interval (7.149,12.320) for XN .

5.3 CONCLUSION

In this chapter, we have looked at examples of methods for calculating confidence intervals

for the population mean µ. Also, we examined prediction intervals for the representative

sample mean XN .
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CHAPTER 6

TEST OF HYPOTHESIS

6.1 INTRODUCTION

A statistical hypothesis is a statement about the distribution of a random variable X . For

example, a researcher may believe that the population mean µ is greater than a give value

µ0. This hypothesis is referred to as the researcher’s (also the althernative) hypothesis and

it is expressed by Ha : µ > µ0. In a test of hypothesis, one assumes that the opposite

in truth value to the researcher’s hypothesis is true. This hypothesis is referred to as the

null hypothesis which is commonly expressed as H0. In our example, H0 : µ ≤ µ0.A

random sample of size n is to be taken whose X-values are X1, . . . , Xn. The collection of

all possible samples of size n is the sample space S. The researcher selects a subcollection

C of the sample space and uses the decision rule to reject H0 if the observed sample is in

C. The subcollection C is selected such that the maximum probability the random sample

X1, . . . , Xn is in C is α. The value α is called the size of the test. The possible null and

alternative hypotheses about the population mean are given in the following table.

Table 6.1: Hypotheses about the Population Mean

Null Hypothesis Researcher’s (Alternative) Hypothesis

Case 1 H0 : µ ≤ µ0 Ha : µ > µ0

Case 2 H0 : µ = µ0 Ha : µ ̸= µ0

Case 3 H0 : µ ≥ µ0 Ha : µ < µ0

The researcher is allowed to take a random sample X1, . . . , Xn of a fixed sample size

n. The t-test is a likelihood ratio test. The following decision rules are based on the test
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statistic

T =
X − µ0

S/
√
n

,

where X and S are respectively the mean and standard deviation of the sample. The null

hypothesis is rejected if the observed value of T

Table 6.2: Decision Rules

Case Decision Rule

Case 1 T ≥ tn−1,α

Case 2 |T | ≥ tn−1,α/2

Case 3 T ≤ −tn−1,α

Note that T has a non-central t-distribution with n − 1 degrees of freedom and non-

centrality parameter θ = (µ−µ0)
σ√
n

, where µ and σ are respectively the population mean and

standard deviation.

The significance levels (SL) for each of the three case are given in the following table

Table 6.3: Decision Rules

Case Decision Rule

Case 1 1− Ftn−1,0(T )

Case 2 2
[
1− Ftn−1,0(|T |)

]
Case 3 Ftn−1,0(T )

where Ftn−1,0 (t) is the cumulative distribution function of a t-distribution with n− 1

degrees of freedom. The significance level and its observed value are statistics. On the

other hand, the p-value is a probability. Assuming the null hypothesis is true, it is the
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probability that the observed significance level of another sample of size n will be less than

or equal to the observed significance level of the researcher’s sample. The magnitude of

the p-value is equal to the observed significance level of the researcher’s sample.

A major car manufacturer wants to test a new engine to determine whether it meets

new air-pollution standards. The mean emission µ of all engines of this type must be less

than 20 parts per million of carbon. Five engines are manufactured for testing purposes,

and the emission level of each are determined. The data (in parts per million) are[
19.4 16.6 17.9 12.7 13.9

]
Do the data supply sufficient evidence to allow the manufacturer to conclude that this type

of engine meets the pollution standard? Assume that the manufacturer is willing to risk a

Type I error with maximum probability α = 0.05.

A Normal probability plot of these data suggest that one can assume that the process

that generated these data has an approximate Normal distribution. We will use a t-test to

analyze these data. The null and alternative hypotheses are

H0 : µ ≥ 20 and Ha : µ < 20.

The test statistic we will use is

T =
X − 20

S/
√
n

.

The observed significance level (OSL) is 0.01736 (rounded to five decimal places). The

p-value is 0.01736. Since the OSL ≤ α, implies the engine manufacture is meeting omis-

sion standards. Further, we note that Monnu (2024) showed that as n increases the OSL

decreases.

In the two sample case, the sample space S is the collection of all possible combined
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of the two samples of the form

X1,1, . . . , X1,n1 , X2,1, . . . , X2,n2 ,

where Xi,j is the X measurement on the jth individual for j = 1, . . . , ni and population

i = 1.2.

Possible null and researcher’s hypotheses are

Table 6.4: Hypotheses about the Population Means

Null Hypothesis Researcher’s (Alternative) Hypothesis

Case 1 H0 : µ1 ≤ µ2 Ha : µ1 > µ2

Case 2 H0 : µ1 = µ2 Ha : µ1 ̸= µ2

Case 3 H0 : µ1 ≥ µ2 Ha : µ1 < µ2

The researcher selects a subcollection C of the sample space and uses the decision rule

to reject H0 if the observed combined sample is in C. The subcollection C is selected such

that the maximum probability the combined random sample X1,1, . . . , X1,n1 , X2,1, . . . , X2,n2

is in C is α.

If one assume that X1,1, . . . , X1,n1

iid∼ N (µ1, σ
2
1), X2,1, . . . , X2,n2

iid∼ N (µ2, σ
2
2), and

σ2
1 = σ2

2 = σ2, then the recommended test statistic

T =
X1 −X2

Sp

√
1/n1 + 1/n2

,

where X i and S2
i are respectively the sample mean and sample variance with

Sp =

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

(n1 − 1) + (n2 − 1)
.
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Under our model, the statistic T has a non-central t-distribution with n1 + n2 − 2 degrees

of freedom and non-centrality parameter θ, where

θ =
(µ1 − µ2) /σ√
1/n1 + 1/n2

.

The significance level (SL) is for each case is given in the following table.

Table 6.5: Estimated Approximate Significance Level

Case Significance Level

Case 1 1− Ftn1+n2−2,0(T )

Case 2 2
[
1− Ftn1+n2−2,0 (|T |)

]
Case 3 Ftn1+n2−2,0(T )

where Ftn1+n2−2,0 (t) is the cumulative distribution function of a central t-distribution

with degrees of freedom.

Welch (1938) developed an estimated, approximate method for testing the aforemen-

tioned hypothesis based on the test statistic

T =
X1 −X2√

S2
1/n1 + S2

2/n2

,

where X i and S2
i are the mean and variance of the sample from population i = 1, 2. The

distribution of T is has an estimated, approximate t-distribution with estimated degrees of

freedom

ν̂ =
(S2

1/n1 + S2
2/n2)

2

1
n1−1

(
S2
1

n1

)2
+ 1

n2−1

(
S2
2

n2

)2 .

Note that T has an estimated approximat non-central t-distribution with ν̂ degrees of free-

dom and noncentrality parameter

θ =
(µ1 − µ2)√

σ2
1/n1 + σ2

2/n2

=
δ√

λ2/n1 + 1/n2

,
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where δ = (µ1 − µ2) /σ2 and λ2 = σ2
1/σ

2
2 . The estimated approximate significance level

(SL) is for each case is given in the following table.

Table 6.6: Estimated Approximate Significance Level

Estimated Approximate Significance Level

Case 1: 1− Ftν̂,0(T )

Case 2: 2
[
1− Ftν̂,0(|T |)

]
Case 3: Ftν̂,0(T )

Champ and Hu (2024) derived the exact distribution of

T =
X1 −X2√

S2
1/n1 + S2

2/n2

.

They recommended an estimation exact method for computing a confidence interval for

µ1 − µ2. Their method will not be examined further in our research.

Efron and Tibshironi (1993) give an example in which 16 mice where randomly as-

signed to a treatment and control groups. Their survival times, in days, following a test

surgery are given in the following table.

Table 6.7: Treatment vs. Control Data

1 2 3 4 5 6 7 8 9

Treatment 94 38 23 197 99 16 141

Control 52 10 40 104 51 27 146 30 46

The question they posed “did the treatment prolong survival?” They assume that The

observed value of T is t = 1.121 (rounded to three decimal places), with 14 degrees of free-

dom. The observed significance level (OSL) is 0.14061 (rounded to five decimal places).
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The p-value is equal in magnitude to 0.14061. If we do not assume the population variances

are equal, then using Welch (1938) method we have the observed value of T is t = 1.059

(rounded to three decimal places). The observe value of ν̂ = 9.654 (rounded to three dec-

imal places). The estimated approximate observed significance level (OSL) is 0.15775

(rounded to five decimal places). The estimated approximate p-value is equal in magnitude

the OSL of 0.15775.

6.2 BOOTSTRAP TEST OF HYPOTHESIS

Let X∗ = [X1, . . . , Xn]
T be a bootstrap random sample. Our interest is testing H0 : µ ≥ µ0

versus Ha : µ < µ0. Suppose we generate nB independent bootstrap samples X∗
1, . . . ,X

∗
nB

and calculate for each one

T ∗
i =

X
∗
i −Xn

ŝe∗i
,

where X
∗
i is the bootstrap sample mean the ith bootstrap sample X∗

i = [X∗
1 , . . . , X

∗
n]

T, for

i = 1, . . . , nB. On page 43 of Efron and Tibsharoni (1993), the authors define the estimated

standard error by

ŝe =

√∑n
i=1

(
Xi −X

)2
n2

.

It follows that the bootstrap estimated standard error for the ith bootstrap sample is

ŝe∗i =

√√√√∑n
j=1

(
X∗

i,j −X
∗
i

)2
n (n− 1)

= S∗
i /
√
n.

The nB values T ∗
i values are ordered T ∗

1:nB
, . . . , T ∗

nB :nB
. A method is used to obtain the

bootstrap estimator t̂∗n−1,α/2 of tn−1,α/2. The authors suggest a method when nB (α/2) is

not an integer. For α ≤ 0.5, define

k = ⌈(nB + 1)α⌉ .
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The bootstrap estimators for −tn−1,α/2 is −t̂∗n−1,α/2 = T ∗
k:nB

. Our decision rule is to reject

H0 if the observed value of

T =
Xn − µ0

Sn/
√
n

≤ −t̂∗n−1,α = T ∗
k:nB

.

Similarly, for the other two cases with

T =
Xn − µ0

Sn/
√
n
,

we reject H0 if the observed value of T is where k in Case 2 is k = ⌈(nB + 1) (α/2)⌉.

Table 6.8: Hypotheses about the Population Mean

Decision Rule ÂSL
∗

Case 1: T ≥ t̂∗n−1,α = T ∗
nB+1−k:nB

P
(
T ≥ t̂∗n−1,α

)
Case 2: |T | ≥ t̂∗n−1,α/2 = T ∗

nB+1−k:nB
2P
(
|T | ≥ t̂∗n−1,α/2

)
For our example, we have H0 : µ ≥ 20 versus Ha : µ < 20. The available data is[

19.4 16.6 17.9 12.7 13.9

]
.

Base on nB = 1000, we approximate −t̂∗4,05 = −1.961742 and the observed statistics

T = −3.14373.

The

ÂSL
∗
= P (Ti ≤ T ) = P (Ti ≤ −3.14373) = 0.018.

rounded to five decimal places. The ÂSL
∗

is akin to the observed significance level. For

these data, the OSL = 0.0173614

On page 203 of Efron and Tibshirani (1993) having observed θ̂, the authors define the

achieved sginificance level (ASL) as the probability of observing at least that large a value
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when the null hypothesis is true. That is,

ASL = P
(
θ̂∗ ≥ θ̂

)
.

The ASL appears to be akin to the p-value. The smaller the value of ASL, the stronger the

evidence against the null hypothesis. Using bootstrapping, the ASL is estimated by

ÂSL
∗
= #

(
θ̂∗ ≥ θ̂

)
/nB,

where θ̂∗ is based on a bootstrap sample. This is a statistic since it can be observed from

the data and is akin to the significance level (SL).

In the two sample case, Efron and Tibshirani (1993) compute an estimate of the ASL

as follows. Compute

T ∗
j =

X
∗
1,j −X

∗
2,i√

S2∗
1,j/n1 + S2∗

1,j/n2

,

where X
∗
i,j and S2∗

i,j are the mean and variance of the ith bootstrap sample, i = 1, . . . , nB.

They approximate ASL by

ÂSL = #(T ∗
i ≥ t) /nB,

where t is the observed value of

T =
X1 −X2√

S2
1/n1 + S2

1/n2

from the researcher’s samples X1,1, . . . , X1,n1 and X2,1, . . . , X2,n2 .

For the treatment and control data, the observed treatment mean is x1 = 86.857

(rounded to three decimal places) and the observed control mean is x2 = 56.222 (rounded

to three decimal places). The mean of the combined samples is y = 143.079 (rounded to

three decimal places). On page 224 of Efron and Tibshirani (1993), the authors define

X̃1i = X1i −X1 + Y and X̃2i = X2i −X2 + Y .
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For the treatment and control data,

Table 6.9: Table of Transformed Values

i x̃1i x̃2i

1 150.222 138.857

2 94.222 96.857

3 79.222 126.857

4 253.222 190.857

5 155.222 137.857

6 72.222 113.857

7 197.222 232.857

8 116.857

9 132.857

Now we form the nB bootstrap data sets (X∗
1,X

∗
2), where X∗

i =
[
X̃i,1, . . . , X̃i,ni

]T
.

Next evaluate T ∗
i defined by

T ∗
i =

X
∗
1i −X

∗
2i√

S2∗
1i /n1 + S2∗

2i /n2

for i = 1, . . . , nB. Approximate ÂSL
∗

by

ÂSL
∗
= #(T ∗

i ≥ t) /nB,

where

t =
x1 − x2√

s21/n1 + s21/n2

.

For these data, t = 1.059 (rounded to three decimal places). For these data and nB = 1000,

we have ÂSL
∗
= 0.129. The OSL = 0.158 (rounded to three decimal places. How does
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one compare ÂSL
∗

and the OSL?. Following Schenker (1985), it would be difficult to

compare ÂSL
∗

and the OSL.

6.3 CONCLUSION

We have examined parametric and bootstrap confidence intervals. Also, we examined para-

metric and bootstrap test of hypothesis. It seems that it would be difficult to compare

parametric and bootstrap methods.
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CHAPTER 7

CONCLUSION

7.1 GENERAL CONCLUSION

As was our intent, we have accounted for the added variability when taking a bootstrap

sample from the researcher’s sample. We have shown that the bootstrap sample mean is

unbiased in estimating the population mean. However, the variability of the estimator is

almost twice that of the sample mean.

7.2 AREAS FOR FURTHER RESEARCH

We are interested in studying bootstrap regression methods, bootstrap multivariate meth-

ods, and bootstrap methods in quality control. One of the measurements of interest in

studying control charts is the run length distribution. It will be of interest to see how one

could effectively use bootstrapping to study the performance measures of a control chart

such as the average run length and standard deviation of the run length as well as percentiles

of the run length distribution.
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APPENDIX

Definition: A weak-composition of n into k parts is a k-tuple of non-negative integers that

sum to n.

Definition: Let c(n, k) denote the number of weak-compositions of n into k parts.

The next theorem requires the following result, which we will present as a lemma.

Lemma: For n ≥ 1, ∑n

k=0
k

(
2n− k − 2

n− k

)
=

(
2n− 1

n− 1

)
.

Proof: We will instead prove the summation in the equivalent form∑n

k=0
k

(
2n− k − 2

n− k

)
/

(
2n− 1

n− 1

)
= 1 (7.1)

for n = 1, 2, 3, . . .. The method of proof is that of Wilf and Zeilberger (1990). Let

F (n, k) = k

(
2n−k−2
n−k

)(
2n−1
n

) = k
n!(n− 1)!(2n− k − 2)!

(n− k)!(2n− 1)!
,

R(n, k) = −(nk − k + n)(2n− k − 1)

kn(n− 1)
,

G(n, k) = F (n, k)R(n, k) = −(2n− k − 1)!(n− k + kn)(n− 1)!

(2n− 1)!(n− k)!
.

Notice that F (n, k) is the summand in (7.1). First, we wish to show that F (n, k) =

G(n, k + 1)−G(n, k).

F (n, k) = G(n, k + 1)−G(n, k) iff

F (n, k)

F (n, k)
=

G(n, k + 1)

F (n, k)
− G(n, k)

F (n, k)
iff

1 =
F (n, k + 1)R(n, k + 1)

F (n, k)
−R(n, k) iff

1 =
(k − n)(nk + 2n− k − 1)

kn(n− 1)
+

(nk − k + n)(2n− k − 1)

kn(n− 1)
iff

1 = 1,
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which is clearly true. Now that we have established that F (n, k) = G(n, k+ 1)−G(n, k),

we will sum both sides of this equation for k = 1, 2, 3, . . . , n. Thus we obtain

∑n

k=1
F (n, k) =

∑n

k=1
[G(n, k + 1)−G(n, k)]

= G(n, n+ 1)−G(n, 1)

= 0− (−1)

= 1

where the penultimate equality follows because the summation telescopes.

Noting the k = 0 term in (7.1) is 0, we obtain

∑n

k=1
F (n, k) =

∑n

k=0
F (n, k) = 1∑n

k=0
k

(
2n− k − 2

n− k

)
/

(
2n− 1

n

)
= 1

and the result follows.
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