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ABSTRACT

Classical statistical supervised learning optimization techniques like the Gauss-Newton It-
erative Method (GNIM), Weighted Gauss-Newton Iterative Method (WGNIM), Reweighted
Gauss-Newton Iterative Method (RGNIM), and Levenberg-Marquart (LM) algorithm ex-
tend the nonlinear least squares method. The WGNIM improves model fitting by control-
ling heteroscedasticity in the linear and nonlinear models. A comparative analysis of the
GNIM, WGNIM, RGNIM, and LM methods for fitting nonlinear models is presented. A
step-wise diagnosis for structural multicollinearity in the reweighted linearized model is
investigated via the Variance Inflation Factor (VIF) to determine variance inflation in the
sequence of estimators for the model parameters. Under restricted multicollinearity levels
in simulated experiments, the RGNIM outperforms the GNIM with respect to precision,
while the LM is most flexible for selecting the initial parameter estimate among all of the

algorithms. Meanwhile, RGNIM and WGNIM have longer computational times.
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CHAPTER 1
INTRODUCTION

In supervised learning, techniques for optimization are indispensable for statistical
modeling where accurate model fitting is required. Notable strategies that effectively im-
prove the nonlinear least squares approach are the Levenberg-Marquardt (LM) method, the
Gauss-Newton Iterative Method (GNIM), the Weighted Gauss-Newton Iterative Method
(WGNIM), and the Reweighted Gauss-Newton Iterative Method (RGNIM) [1]. When
dealing with complicated data structures and model dynamics, these methods are vital for
optimizing model fits through parameter value adjustment.

A classic approach, the GNIM method systematically adjusts a model’s parameters
to reduce the sum of squared differences between the observed and predicted values [3],
[6], [10]. Heteroscedasticity, in which the residuals’ variability is not constant across mul-
tiple levels of an explanatory variable, can be a challenge for this effective strategy [7].
Inefficient parameter estimations and incorrect statistical inferences might be caused by
heteroscedasticity [8], [9].

In response to this difficulty, the WGNIM improves the reliability and robustness
of the model fitting process by introducing a weighting mechanism that accounts for het-
eroscedasticity. The WGNIM improves model performance and produces more precise
parameter estimates by using weights obtained from the observed data to scale the impact
of each observation. That means the heteroscedasticity was effectively mitigated by the
WGNIM, which produced more consistent variance and, consequently, more dependable
confidence intervals. In comparison to the GNIM, the WGNIM needed fewer iterations to
converge to an optimal solution, making it more efficient overall, even if it took more time
per iteration [2], [3], [7].

Conversely, the adaptability of the LM approach is well known when choosing pre-

liminary approximations of the parameters. It is a well-rounded method that successfully
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explores complicated parameter spaces by integrating the best features of gradient descent
and the Gauss-Newton method. Since the selection of initial values is pivotal for con-
vergence in extremely nonlinear models, the LM technique becomes invaluable in such
cases [10], [11], [12], [13].

Additionally, the Variance Inflation Factor (VIF) was employed to systematically
identify structural multicollinearity in the reweighted linearized model. This analysis iden-
tified and controlled for variance inflation in the sequence of estimators, ensuring the sta-
bility and reliability of parameter estimates in simulated experiments with restricted multi-
collinearity levels. In contrast, the LM method exhibited greater adaptability when estimat-
ing parameters, whereas the RGNIM demonstrated superior performance over the GNIM
in managing heteroscedasticity and enhancing model fit [11], [12], [14].

These techniques are used to examine a dataset of ultrasonic calibrations provided
by the National Institute of Standards and Technology (NIST) in this research [15]. Ultra-
sonic calibration is the process of fine-tuning ultrasonic instruments so that they provide
reliable measurement results. The dataset utilized for this research illustrates a real-world
situation where the metal distance (predictor variable) affects the ultrasonic response (re-
sponse variable). The initial analysis using the GNIM highlighted the presence of het-

eroscedasticity, which impaired the accuracy of the parameter estimates.

1.1 OUTLINE

This study is comprised of six chapters, each addressing a specific aspect of the
research:

Chapter 1 will provide a detailed background on the work and offer a comprehen-
sive overview of key concepts in statistical learning.

Chapter 2 will provide a comprehensive explanation of the multiple linear regres-

sion model, including its assumptions, ordinary least squares (OLS) regression, parameter
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estimation, and their properties, as well as the method of maximum likelihood estimation
of the parameters.

Chapter 3 will focus on multicollinearity, covering its different types, consequences,
techniques for identification, and remedies. It will also include a complete derivation of
generalized least squares estimation, followed by the derivation of weighted least squares
estimation, and will discuss their assumptions and the selection of weights in detail.

Chapter 4 will introduce the concepts of nonlinear regression models, discussing
their assumptions, differences from linear regression models, different types of nonlinear
regression, and parameter estimation using the nonlinear least squares method. It will
cover a complete derivation of the Gauss-Newton Iterative Method (GNIM) for nonlinear
regression, with an example using the logistic growth model.

Chapter 5 will discuss the RGNIM and its application, using the logistic growth
model as an example.

Chapter 6 will address heteroscedasticity and explore the application of GNIM and
WGNIM to real-life data, specifically an ultrasonic calibration dataset. It includes the
interpretation of maximum likelihood estimates for the regression coefficients. Finally, it

will provide the findings of this study.

1.2 SOME CONCEPTS IN STATISTICAL LEARNING

This section will provide a brief overview of key ideas in statistical learning and

establish their relationship to the research methodologies utilized in this study.

1.2.1 WHAT IS STATISTICAL LEARNING?

Data scientists can analyze and predict outcomes from datasets with the use of sta-
tistical learning. It is a branch of machine learning concerned with finding connections and

patterns in data using statistical techniques. In other words, statistical learning is a collec-
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tion of methods for making data-driven estimates of the relationship between variables. Its
purpose is to help with data comprehension and prediction.

A common objective in statistical learning is to refine a model to reliably use pre-
viously unknown data to generate predictions or decisions. A training dataset of samples
with known input variables and their corresponding output variables is used to understand
these underlying patterns or correlations in the data. In general, the symbol X is used to
represent the input variables, accompanied by a subscript to differentiate them. These in-
puts are referred to by several names: predictors, features, independent variables, or
simply variables. Most commonly, the output variable is represented by the letter Y. It is
also referred to as the response or dependent variable [13].

Consider a quantitative response variable denoted by Y and p distinct predictors,
denoted by X, X, ..., X}, We make the assumption that a relationship exists between Y’

and X = (Xj, X, ..., X,,), which can be expressed in the most general sense as
Y = f(X)+e (1.1)

In this context, f represents an unidentified fixed function of X, X, ..., X, and € denotes
a random error term with a mean of zero that is independent of X. The formula denotes f
as the systematic information provided by X regarding Y.

Fundamentally, statistical learning represents a collection of methodologies utilized
to approximate f.

Principal purposes for statistical modeling are as follows:
1. Prediction

2. Inference
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Prediction

There are numerous cases, despite the availability of a set of inputs X, the output
Y is not always easy to produce. Given this configuration, where the error term averages

to zero, we can use the following formula to forecast Y:

A

Y = f(X), (1.2)

where f is our estimate of f and Y denotes the final prediction for Y [13].
The precision of Y asa prediction for Y relies on two factors: the reducible error

and the irreducible error.

Reducible Error

In statistical modeling, the term “reducible error” describes the portion of the to-
tal error in prediction that may be mitigated by model improvement. The situation occurs
due to the model’s imperfect representation of the basic relationship that exists between the
predictors and the response variable. Generally, the estimate f will not be an exact repre-
sentation of f, leading to some degree of error. This error is called a reducible error [13].
This error can be minimized by enhancing the accuracy of f by utilizing the most suitable
statistical learning approach to estimate f.

For example, it is possible to reduce the inaccuracy produced by oversimplification
in a medical study that attempts to predict the risk of heart disease based on cholesterol
levels by limiting the model to only include total cholesterol and ignoring other important
factors such as age, blood pressure, and family history. Including these extra components

in the model can help reduce this error.
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Irreducible Error

Irreducible error in statistical modeling is the part of the total error that cannot be
reduced by improving the model. It is caused by inherent randomness, variability, or un-
predictability in the data or the underlying process being modeled. That means, even with
a precise estimate for f as Y = f (X), the prediction would still contain some inaccuracy.
Y is a function of ¢, which cannot be predicted given X. Thus, the variability linked to ¢
impacts the precision of our predictions. This is referred to as the irreducible error, as it
cannot be minimized regardless of how well estimate f is due to the inaccuracy caused by
e [13].

An explicit illustration of irreducible error can be observed when trying to predict
the precise arrival time of a vehicle at a designated stop. There are elements that cannot
be precisely anticipated or controlled, including traffic congestion, road conditions, and
unanticipated delays, despite the utilization of the most sophisticated prediction models.
The unpredictability of these factors and the impossibility of eliminating them through
model enhancements contribute to the irreducible error in the arrival time prediction.

The prediction Y = f (X)) is obtained by utilizing a set of predictors X and a
given estimate f . Consider that f and X are both fixed, with random error term ¢. Then

mathematically,

~

E(Y — V) = Bl[f(2) + e - f(@)]’

— Elf(x) — f(a) + P

= Bl(f(x) — f(@))” + 2(f(2) — f(2))e + ¢
(2)? + 2(f(x) — f(a)) E(e) + E(e)

Il
~
—~
=

|
~~»

[Note: Since E(Z +¢) = E(Z) + ¢, E(cZ) = cE(Z) and E(c) = ¢, where Z is random
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and c is a constant.]

[Note: Since Var(¢) = E(¢?) — E(¢)* = E(e?) — 0 = E(¢%)]
Therefore,

~

E(Y =Y)? = (f(x) = f(z))* + Var(e),

where E(Y — Y)? represents the average or expected value of the squared difference
between the predicted and actual value of Y, the term (f(z) — f(z))? represents reducible
error and Var(e) represents the variance associated with the random error term, which is

irreducible error [13].

Remark 1.1. Although the independent variables or predictors in linear regression and
nonlinear regression are usually considered to be fixed, the predictors cannot be fixed in
some cases. For instance, in the case of time-related observations, the predictors will

change over time.

Inference

In some circumstances, it is crucial to comprehend the manner in which a change in
X influences variable Y. Although estimating f is the objective in this circumstance, mak-
ing predictions for Y is not necessarily the aim. Understanding the relationship between X
and Y is the primary focus at this time, and the precise form of f is the subject of concern
in this instance. It is referred to as an inference [13].

For instance, instead of trying to predict an individual’s blood pressure using the
medication dose, research investigating the effects of a new medicine (X) on blood pres-

sure (Y') may aim to understand how changes in the dosage of the drug influence blood
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pressure. The primary focus here is on the specific shape of the function f, which repre-
sents the link between medicine dose and blood pressure.

Let us assume a simple linear regression equation:
Y =0+ 58X +e¢,

where Y represents the dependent variable (e.g. blood pressure), X represents the indepen-
dent variable (e.g. medicine dosage), 3, represents the intercept term, in the above example
it expressing the expected blood pressure when the medicine dosage is 0, 3; represents the
slope coefficient, in the above example it representing the change in blood pressure for a
one-unit change in medicine dosage, ¢ represents the error term, which is the difference
between the observed blood pressure and the predicted blood pressure.

The purpose of inference in this equation is to approximate the values of 3, and
(1 in order to comprehend the impact of drug dosage variations on blood pressure. As an
example, if 3, is expected to be —3.5, it means that blood pressure typically drops by 3.5
units for every extra unit of medicine dosage. To ascertain the efficacy and safety of the
medicine, the inference is necessary to comprehend the connection between the dose and

blood pressure.

1.2.2 SUPERVISED AND UNSUPERVISED LEARNING

There are two main types of statistical learning problems [13]:

1. Supervised Learning

2. Unsupervised Learning

The usage of labeled datasets is the key distinctive feature between the supervised
and unsupervised learning. A supervised learning algorithm relies on labelled input and
output data, whereas an algorithm for unsupervised learning does not does not utilized the

labelled input and output data.
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In addition to, there are more types of learning, such as ‘“‘semi-supervised” learn-
ing that employs both labelled and unlabeled data, and “reinforcement” learning that is

sequential decision-making to maximize long-term reward [13].

Supervised Learning

Supervised learning is a problem type in machine learning. Supervised learning
involves using labeled datasets to train algorithms to forecast the output. In supervised
learning a corresponding response measurement y;, Vi = 1,2, ..., n is connected with each
observation of the predictor measurement(s) z;,Vi = 1,2,...,n. The goal of supervised
learning is to establish a connection between the response and the predictors, either for
improved understanding of the relationship between the response and predictor (inference)

or for more accurate prediction of the response for future observations (prediction) [13].

Unsupervised Learning

A second type of machine learning problem is unsupervised learning. In unsuper-
vised learning, there are no response values available, that means, there is no predefined
labels for the input data; we only have a set of predictor values z;,Vi = 1,2, ....,n. De-
tecting concealed patterns or intrinsic structures within the data is the salient purpose of
unsupervised learning. In unsupervised learning, clustering is a commonly used technique
in which the algorithm clusters together data elements that are similar [13]. Dimensionality
reduction is another problem where the algorithm reduces the number of input variables by
keeping important information. Popular techniques for unsupervised learning are K-means

clustering, hierarchical clustering, and principal component analysis (PCA).
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1.2.3 REGRESSION AND CLASSIFICATION PROBLEMS

There are two main types of variables: quantitative and qualitative (often called
categorical). Numerical values are assigned to quantitative variables. As for example the
market price of a house, the stock price, and a person’s age, height, and income [13].

Qualitative variables, on the other hand, may only take on values that belong to one
of a set of K distinct groups [13]. As for example, the brand of a product (A, B, or C),
marital status of a person (married or unmarried), and so on.

Based on input data, regression algorithms forecast continuous values. In regres-
sion problems, input and output variables are used to estimate a function of a model. The
regression model is appropriate for quantities like salary, height, or weight, age, value of
property. Depending on the different problems and situations, data scientists and the engi-
neers of machine learning utilize different regressions in statistical issues. There are differ-
ent types of regression algorithm like simple linear regression, multiple linear regression,
polynomial regression, nonlinear regression and so on.

Now the question is why nonlinear regression is a regression problem? Like linear
regression, nonlinear regression predicts a continuous outcome variable from one or more
predictor factors. The main distinction is that nonlinear regression doesn’t assume a linear
connection between predictor and response variables. It always follows different types of
nonlinear pattern. Nonlinear regression attempts to determine the parameters of a selected
nonlinear model that most precisely fits the data. This is usually achieved by reducing the
gap between the actual values and the values predicted by the nonlinear model, employing
techniques like the Gauss-Newton algorithm or the Levenberg-Marquardt algorithm and so
on.

On the other hand, classification is a kind of predictive modeling that uses input
variables to estimate a mapping function that identifies discrete labels or categories as out-

put variables. Predicting the category or label of the input variables is the vital role of
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the mapping function in classification algorithms. Regardless of whether the variables in
a classification method are discrete or real-valued, it is necessary for the instances to be
categorized into at least two classes. There are different types of classification algorithms
like random forest classification, decision tree classifications, K-nearest neighbour classi-

fication etc. [13].

1.2.4 ASSESSING ACCURACY AND PRECISION IN THE REGRESSION MODEL

Evaluating the Accuracy and Precision of the Fit

To assess the efficacy of a technique on a certain collection of dataset, it is necessary
to estimate the discrepancy between the actual and anticipated response. That means, the
residuals are the discrepancies between the model’s predicted values and the observed data
values that occur when attempting to fit a regression model to predict a continuous response
variable and then uses that model to forecast the values of some data. In regression analysis,
Mean Squared Error (MSE) is the most widely used metric [13]. MSE is measured as the

average of the residuals of a model which is given by

MSE =+ > (i — fla)” (1.3)

n -
=1

n

In the above equation (1.3), the forecast value f that provides for the i** observation is

denoted as f(z;).

Remark 1.2. The Mean Squared Error (MSE) will be minimized when the expected re-
sponses closely match the actual responses, and will be maximized when there is a signifi-

cant difference between the predicted and true responses for some observations.

Training Dataset
A machine learning model is trained using a subset of a dataset known as the train-
ing dataset. A collection of input-output pairs is utilized to instruct the model on the re-

lationship between inputs and outputs. The model gains knowledge from this dataset by



23

modifying its internal parameters in response to the input data and the corresponding accu-

rate output.

Example 1.2.1. Consider a database that contains house-related data, such as dimensions,
number of bedrooms, geographical location, and their respective costs. This is one possible

structure for a machine learning dataset that might be used to forecast home prices:

Table 1.1: Training Dataset

Size (sq ft) | Bedrooms | Location | Price (Dollar)

1500 3 Suburban 250,000
2000 4 Urban 300,000

By utilizing the provided training dataset, the model shall assimilate knowledge re-
garding the association between the output (price) and the input attributes (size, bedrooms,

location).

Test Dataset

To evaluate the efficacy of a machine learning model that has been trained, a distinct
subset of the dataset is designated as the “test dataset”. It comprises pairings of inputs
and outputs that were not seen by the model during the training process. A performance
evaluation of the model is conducted by comparing the accuracy of its predictions to the

observed outputs, which are generated using the test dataset.

Example 1.2.2. To further elaborate on the example of house price prediction, consider

the following as a possible test dataset:
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Table 1.2: Test Dataset

Size (sq ft) | Bedrooms | Location | Price (Dollar)

1500 3 Suburban ?

1200 4 Rural ?

The price predictions for these houses will be generated by the model utilizing the
learned parameters. The model’s performance will be assessed according to the degree of

correspondence between these forecasts and the real prices.

Training MSE

This is the mean squared error (MSE) obtained on the identical dataset that was
utilized for training the model. The metric calculates the mean squared deviation between
the observed values and the predicted values generated by the model using the training
dataset. A low training mean squared error (MSE) suggests that the model is effectively
capturing the patterns in the training data [13].
Test MSE

The Mean Squared Error (MSE) is computed on a distinct dataset, referred to as the
test dataset, which the model has not been shown during the training process. It assesses the
extent to which the model can effectively apply its learned knowledge to unfamiliar data.
A low mean squared error (MSE) suggests that the model has the capability to generate
precise predictions on unfamiliar data.

In general, it is desirable to have a low MSE for both the training and test phases.
“Overfitting”” may occur when the training mean square error (MSE) is significantly smaller
than the test MSE [13]. This occurs when the model becomes overly intricate with the train-

ing data, thereby capturing extraneous noise rather than the true pattern. The presence of
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an underfitting condition, wherein the model fails to represent the underlying pattern in the
data, may be suggested if the test MSE is significantly greater than the training MSE.
Bias-Variance Trade-Off

What is Bias?

Bias refers to the model’s incapacity to accurately predict values, resulting in dif-
ferences or errors between the average prediction of the model and the actual values. The
disparities between the actual or anticipated values and the projected values are referred to
as errors, specifically bias errors or errors resulting from bias [13].

What is Variance?

A data set’s variance indicates how far individual values deviate from the mean.
A predictive model’s variance in machine learning is the degree to which its performance
deviates from the mean when trained on various data subsets. In particular, the model’s
variance is its sensitivity to a different subset of the training dataset, or its ability to adapt
to the new subset [13].

The expected test MSE of a technique is rely on its variance and bias. Consider that
2 and y, are fixed and E[(yo — f(x0))?] is the average test MSE, where f is estimated by

using different training datasets. Then

El(yo — f(20))*] = El(y — f)*]
=EBly—f+f-H)
= Elly— 7+ (=’ =20y- N =)
= El(y— )’ + El(f = /)"l = 2E[(y — )(f = /)]

= E[@] + E[(f = /)] = 2E[ly = /)(f = ])]
= Var(e) + E[(f - f)’] = 2El(y - /)(f = /)]. (1.4)
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E[(f = )] = El(f = E(/) + E(f) = f)7]
= E[(f = E(N)* + (E(f) = /) +2(f = EDES) = /)]
= E[(f = E()] + E(E(f) = £)°] + 2E[(f = ED)ES) - 1)]
= Var(f) + [Bias(f)] +2E[(f — E(/))(E(f) - /). (1.5)

2B((f — E(NI(E(f) = )] =2B[fE[f] - | f — EIf1E[f] + E[/]/]

= E[fIE[f] - FELf) — EI|Elf] + [E[f)
-0 (1.6)

using (1.6), in equation (1.5),

~

E[(f — f)*] = Var(f) + [Bias(/)] (1.7)

Elly—(f = D =Elyf —yf = 1>+ I]]
= f* = f* = Elyf] + FE[]]
= —E[(y+ o) f] + [E[f]
= —E[ff] - Elef] + fE[f]
= —fE[f] - Elef] + fE[f]
=0 (1.8)

using (1.7) and (1.8) in equation (1.4),
E[(yo — f(x0))?] = Var(f(z0)) + [Bias(f(x))] + Var(e). (1.9)

From equation (1.9) observe that the expected test MSE for a given value of x( can

be decomposed into three fundamental quantities [13], [17]:

* The squared bias of the predicted functional form of f (xo).
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* The variance of the predicted functional form of f (o).

¢ The variance of the error terms e.

Thus, in order to minimize the expected test error, we need to select a statistical
learning method that simultaneously achieves low variance and low bias.

Low Bias: Low bias value means fewer assumptions are taken to build the target function.
In this case, the model will closely match the training dataset [13].

High Bias: High bias value means more assumptions are taken to build the target function.
In this case, the model will not match the training dataset closely [13].

Variance refers to the amount by which the predicted functional form of f would
change if we estimated it using a different training data set. Since the training data are used
to fit the statistical learning method, different training data sets will result in a different f .

In general, more flexible statistical methods have higher variance. As a general rule,
as we use more flexible methods, the variance will increase and the bias will decrease. The
relative rate of change of these two quantities determines whether the test MSE increases
or decreases.

As we increase the flexibility of a class of methods, the bias tends to initially de-
crease faster than the variance increases. Consequently, the expected test MSE declines.
However, at some point increasing flexibility has little impact on the bias but starts to sig-
nificantly increase the variance. When this happens the test MSE increases.

The relationship between bias, variance, and test set MSE outlined above is referred

to as the bias-variance trade-off [13].

Coefficient of Determination

The proportion of the variance in the dependent variable that can be predicted from
the independent variables in a regression model is represented by the statistical measure

known as the coefficient of determination, which is denoted as R?. In simple terms, it
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signifies the extent to which the variability of the dependent variable can be explained by
the independent variables.
It is known that, the model provides an explanation for some variability but does

not do so for all. The overall variability is given by the sum of these two factors.

Z(?Ji -9 = Z@z -9+ Z(yz — :)°. (1.10)
Equation (1.10) can be written as

SST = SSR + SSE. (1.11)

In the above equation (1.10) the left hand side term > (y; —%)? is called total sum of
squared which represents the total variation, in the right hand side the first term > (9; — 7)*
is called residual sum of squared which represents explained variation and the second term
S~ (y; — ;)? is called error sum of squared which represents unexplained variation [12].

SST is a measure of the uncertainty in predicting y when x is not considered.
Similarly, SS E' measures the variation in y; when a regression model utilizing the predictor
variable x is employed. A natural measure of the effect of x in reducing the variation in
Y, 1.e., in reducing the uncertainty in predicting ¥, is to express the reduction in variation
(SST — SSE = SSR) as a proportion of the total variation [12], [14]:

SSR SSE S (yi — 9:)?
2 _ =1 - = 1= 1.12
=557 SST Sy — 52 (1.12)

where ¢; is the predicted value of the dependent variable for observation, 7 is the mean of
the observed values of the dependent variable, y; is the observed value of the dependent
variable for observation, 7 is the number of observations.

The measure R? is called the coefficient of determination, which is the statistical
measure for evaluating the goodness of fit a regression model. Since 0 < SSE < SST,

then the range of the values of R? lies between 0 and 1, i.e.,

0<R’<1
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¢ R? = ( indicates that the independent variables do not explain any of the variability

of the dependent variable.

e R? = 1 indicates that the independent variables explain all the variability of the

dependent variable [12], [14].

Adjusted Coefficient of Determination

2

In aregression model, the adjusted coefficient of determination, represented as g

is a revised form of the original coefficient of determination, R, that adjusts for the number
of predictors. Its primary function is to offer a more precise assessment of the regres-
sion model’s goodness of fit, particularly in cases where contrasting models have varying
numbers of predictors.

Although the value of R tends to increase with the number of predictors added to

a model, even if those predictors are irrelevant, the inclusion of extraneous predictors is

2

a¢j- This feature serves to prevent overfitting and offers a more accurate

penalized by R

evaluation of the model’s performance.

The formula for calculating k2, is:

adj

ssp
oy =1~ 51
n—1

_SSE (n—1)

SST (n—p)

_ R2 _

_, 1=B)-1) (1.13)
n—p

where n is the number of observations, p is the number of predictors in the model.
When adding additional predictors does not enhance the performance of the model,
Ridj will consistently be equal to or less than R?. For comparing the goodness of fit of

different models, it is generally favored over RR? because it provides a more conservative

estimate of the proportion of variance explained by the model [12], [14].
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CHAPTER 2
THE MULTIPLE LINEAR REGRESSION MODEL

2.1 MULTIPLE REGRESSION MODELS

We consider the linear regression model with a single predictor (regressor) variable.

The model is stated as

y=Po+ iz +e 2.1)

It is commonly referred to as the simple linear regression model because only one predictor
variable is involved. The intercept (3, and the slope 3; are unknown constants and ¢ is a
random error component. The errors are assumed to have mean zero and unknown variance
o%. Additionally we usually assume that the errors are uncorrelated. This means that the
value of one error does not depend on the value of any other error.

Consider, n pairs of dataset, say (x1,41), (z2,y2), -, (Zn,yn). Then the above

model (2.1) can be stated as
v = Po + b +€,Vi=1,2,...,n. (2.2)

Equation (2.1) called as a population regression model while (2.2) is a sample regression
model [12], written in terms of the n pairs of data (z1,v1), (2, Y2), ..., (T, Yn ), Where y;
is the value of the response variable in the i'* observation, 3, and 3, are parameters, x; is
a known constant (the value of the predictor variable in the i*" observation), ¢; is a random
error term with mean E(e;) = 0 and variance Var(e;) = o°.

The extension of the linear regression model is the multiple linear regression model.
Analysis of the association between a dependent variable and two or more independent
variables is accomplished through the use of a statistical technique multiple regression

model. The simplified form linear regression is essentially extended to situations involving

multiple predictors.
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In the multiple regression model, the response y is associated to k regressors or

predictor variables. The model

y = Bo+ Prx1r + Boxa + -+ + Bray + € (2.3)

is called a multiple linear regression model with & regressors. The sample regression model

corresponding to equation (2.3) can be written as
Yi = Po+ brxi + Paio + -+ + BrTik + €
k
= Bo+ Y Biwij+€,Vi=1,2,--n, (2.4)
j=1

where error terms ¢; identical, independent and normally distributed with mean 0 and vari-

. . jid .
ance o2, which can be written as ¢, ~ N (0,0%). In vector form equation (2.4) can be

written as,
j=XB+e (2.5)

In matrix terms, it can be defined by the following matrices

n I z11 12 ... T B €1

o Y2 I Zor Xaa ... Tor| - B2 . €2

y = ) X = b /8 - M) E - )
Yn 1 Tn1 Tp2 ... Tpp /Bk €n

where ¢/ is an n X 1 vector of responses, X is an n X p matrix of the levels of the regressor
variables (constant), 5 is a vector of parameters or the regression coefficients, and € is a
vector of independent normal random errors.

The expectation of random error is £'(€) = 0 and variance-covariance matrix is

o?l.

Var(e) =
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Consequently, the expectation of the random variable y is

E(y) = Xp
and the variance-covariance matrix of y is

Var(y) = o*I.

2.1.1 ASSUMPTIONS

It is important to check a number of assumptions before applying a multiple regres-

sion. The assumptions are following [18]:

1. The values of the predictors, z;1, %2, - , Ty, Vi = 1,2,--- n, can be taken as

constants; they are not random variables.

2. The expected value of € is, E(¢;) =0,Vi =1,2,---  n.

3. The errors, €;, at each set of values of the predictors, z;1, T2, - - , Ti, are normally
distributed.
4. Var(e;) = 0, Vi =1,2,--- ,n, is constant. This implies that the variances Var(y) =

o? are all the same. All observations have the same precision.

5. The different random errors ¢; and ¢;, and their corresponding different responses y;

and y; are independent. This implies that Cov (e;, €;) = 0, for i # j.

2.2  ESTIMATION OF PARAMETERS IN THE MULTIPLE LINEAR REGRESSION MODEL

This section will describe the OLS method for estimating parameters in the multiple

linear regression model.
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2.2.1 ORDINARY LEAST SQUARES (OLS) REGRESSION

The method of “least squares” is a versatile mathematical technique employed to
determine the optimal curve that best fits a given set of data points. It reduces the sum of
the squared differences between the values that were seen and those that were projected.
This approach is applicable to many kinds of equations and models.

The terms “ordinary least squares” (OLS) and “least squares” (LS) are often used in-
terchangeably, but “ordinary least squares” (OLS) is a specific type of least squares method
that is commonly used in the context of linear regression. A technique for estimating
the unknown parameters in a linear regression model in statistics is called ordinary least
squares (OLS) or linear least squares. Ordinary Least Squares (OLS) specifically refers
to the method of linear regression that minimizes the sum of the squared differences be-
tween the responses predicted by the linear approximation and the observed responses in

the dataset.

Ordinary Least Squared Estimation of the regression coefficient

Regression parameters of equation (2.3) can be estimated by using the method of
least squares. Assume that there are more than &k observations; for each iteration of the
regressor x;, let y; represent the observed response and z;; stand for the 7' observation.
Consider that the errors are uncorrelated and that the model’s error term € has E(e) = 0
and Var(e) = o2

For given y and X, the object is to find out the vector of least-squared estimators,

~

B, that minimizes the sum of squared of ¢, i.e,
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Remark 2.1. Here gis ap x 1 vector, (B)/ isal x pvector, X isan x pmatrix, X isa
p X n matrix, ij is a n x 1 vector. So the dimension of the matrix (g)/Xlgis 1 x 1, which is
a scalar; and its transpose ((B) X'§) = (§) X 3 has the same dimension, that is, the same

-,

scalar. S(B) is a real valued and differentiable function.

-,

Now after differentiating on both sides of S(f) with respect to (3 yields

oS / PR
— =-2Xy+2X Xj,
op
>SS
o(B)? ’
where 8‘9(252 is non-negative definite. Then the least squared estimator must satisfy
oS ' -
—| =2Xy+2X X5 =0,
9B 15
which simplifies to
X'XG3=Xx'j. (2.6)

Equations (2.6) are called the least squares normal equations. If the predictors are linearly
independent, that is, if columns of the X matrix can not be expressed as a linear combina-
tion of the other columns, which mathematically can be written as rank(X') = k(full rank),

then X' X is a positive definite. So, there exist a inverse matrix of X 'X.
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To figure out the least-squares estimator of g , solve the normal equation (2.6). Now,

multiplying on both sides of equation (2.6) by (X' X)~! yields
(X' X)'X' X5 =(X'X)"'X§
or, I = (X' X)"'X'q
or,f = (X' X)'X'7,

which is the required ordinary least squares estimator (OLSE) of 6’ Since 852252 is non-

=

negative definite, so § minimize S (6).

Fitted values and Residuals

Fitted Values:

The fitted regression model is as follows

l)

y=XPp, (2.7)
where B is the estimator of 5 . Then
j=Xp
= X(X' X)Xy
- Hy

where H = X (X' X)™' X" is n x n matrix and which is called “Hat matrix”. It transforms
or maps the vector of observed values into a vector of fitted values [12], [19].

Properties of H:

* H is symmetric matrix.
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* H is idempotent matrix, i.e, HH = H.

HH = (X(X' X)X (X(X'X)'X")
= X(X'X)'(X' X)) (X' X)X

=H.

Residuals:
It is known that the difference between the observed and fitted values is called

residual, which mathematically can be written as [20]

F=j-§

Here,
* (I — H) is a symmetric matrix.
* (I — H) is an Idempotent matrix, i.e, (/ — H)(I — H) = (I — H).

(I-H)I—-H)=I—-IH—-HI+HH
=1 —2H+HH
— [ —2H+H (. HH = H)

=1—-H.

Properties of Least-Squares Estimators

The properties of least-squares estimators B can be represented as follows [12], [18]:
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Bias:
The expected value of 5 :

~
=,

E(f) = B(X'X)"'X'y)

= B((X' X)X (XB +¢))

— B(X'X)"'X' X3+ (X' X)"'X'¢)

= (X' X)X XG + (X' X)X E(e)

(Here (X' X) ' X' X Fand (X' X)~' X' is a matrix of constant.)
13400 (X'X)'X'X =1,E(e)=0.)

B.

Thus, the required expected value of B is,

~
-

E(B) = 6. (2.8)

Therefore if the model is accurate, then 5 is the unbiased estimator of E .

Variance:

~ ~
=, =,

Var(3) = COV(E, )
= (X'X)7'X Cov (7, (X X) XY

= (X' X)X Var(9) (X' X)7'X).
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— B(XB(A) X + XB@ +eB)X +&@) — 283X’

= = . ’

HO0+O0BEE)) - XB(B) X

I
e
=3
S

Now,
Var(5) = (X' X)X To2((X' X) ' X)
= (X' X)X X) (X' X)!
= (X' X)\.
Therefore,
Var(5) = o2(X'X)". 2.9)

In equation (2.9) the matrix contains the variances and co-variances of the estimated co-
efficients where the co-variances are in the off-diagonal elements and the variances of the
estimated coefficients are in the diagonal elements [18].

Let C = (X' X)~'. Then
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2.2.2  THE METHOD OF MAXIMUM LIKELIHOOD ESTIMATION (MLE)

It is considered that, in the regression model (2.5), the errors are independently
distributed as well as follow the normal distribution with mean zero and constant variance,
o2, ie., e ~ N(0,0°1).

For the errors the normal density function is as follows:

1 1,
)= —— ———e | Vi=1,2,-- -, 2.10
fle) =~ %exp( 20262) i n (2.10)
with the joint density of €1, €5, - - - , €,, the likelihood function can be written as:

i=1

L( _)70'2) — Hf(e» = Wexp (—%ZE?)

1 1 !
= —(27r02)"/2 exp (—T‘QE E)
1 1 _, .
= rory P (—T‘Q(?J—Xﬁ) (?J—Xﬂ)) (2.11)

(2mo?
It is known that a log transformation is monotonic, because in original dataset, it
preserves the order of the values and it is easy to deal with the log of the likelihood, so

In L(ﬁ, 0?) is maximized instead of L(g, 0?). Now taking In on both sides of equation

(2.11),
. 1. o .
In L(5,0%) = —5 In(2n0%) — — (7~ X3) (7 - XF)
1 -
_ _g In(270?) — 5037 Xf)2. (2.12)

Differentiating on both sides of equation (2.12) with respect to 5 and 02,

olnL(B, 0% 1 ... o=
- Lx'G-xp). (2.13)
g
dIn L(3,0?) on 1 1 o9, o
5 = g V= XB) (- X)
(G- xB) G- xP). (2.14)
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Now by equating the first order derivative (2.13) and (2.14), the maximum likeli-

hood estimator ﬁ and &2 given as following:

=0
ap i=6
1 =
o, —X (J—XB)=0
o

or, Xij—XXF=0
o, X'X3=X7§
or, (XX)X'X3=(XX)Xg

or, F=(XX)X'j (2.15)

907 | "
o~ 2((}2)2@— XB) (57— XB) =0
on o= g T X G- XD
or =7~ XF) (7~ X7
or, 6% = %(y*— XB) (7 — XP). (2.16)

Since rank(X) = k, so 73 and 62 is the required maximum likelihood estimator (m.l.e) of
3 and o2. The second order partial derivative of In L(3, 02) with respect to 3 and o2 is as
follows:

PL(B,o?) 1,

= =—-——XX

032 o’
9 1In L(3,0?) n 1, -
I C e e
9%In L(B, o2 1 . =
M = ——X'(7- XB).

85002 o
P L(f,0%) n 1

D020 202 ot
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The Hessian matrix can be written as:

02 1In L(E,OQ) 0% 1In L(/;,az)

H— 052 953002
02InL(B,02) 02InL(B,02)
9(o?)? 00208
—H=X'X — 45X (7 - XP)

- (G- XB)? 5~ X (7 XB)

The determinant of leading principal minor of order 2 is,

—LX'X —LX'(y- X3
Dy(H) = o X ) s

-, -,

so1 — (U= XB)? —502 — 2 X(§— XB)

Since the leading principal minors are alternative signs, i.e., Di(H) < 0 and Dy(H) > 0,
so the Hessian H is negative definite at 5 = 5 and 0> = 2. This confirms that the
likelihood function is maximized at these values.

After comparing between ordinary least-squared estimator and maximum likeli-
hood estimator, conclude that ordinary least-squared estimator and maximum likelihood

estimator are identical and maximum likelihood estimator of (3 is also an unbiased estima-

tor of 3 [12], [20].
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CHAPTER 3
ADVANCED METHODS FOR MODEL INADEQUACIES

3.1 MULTICOLLINEARITY

In multiple regression analysis, the term multicollinearity refers to the presence of
a linear relationship among the independent variables. Collinearity indicates two variables
that are close perfect linear combinations of one another. Multicollinearity occurs when the
regression model includes several variables that are significantly correlated not only with

the dependent variable but also to each other.

3.1.1 TYPES OF MULTICOLLINEARITY

Multicollinearity can be divided into two parts. One is “Data-based multicollinear-
ity”’ and another one is “Structural multicollinearity”’, which are discussed with an ex-

ample in the following way:

1. Data-based multicollinearity: Data-based multicollinearity occurs when there is
intercorrelation among the predictor variables in the sample data. This phenomenon
is due to the specific dataset and may not accurately represent the characteristics
of the overall population. It arises because of a poorly designed experiment by the

researchers or because of purely observational data [22].

Example 3.1.1. In example 1.2.1 of chapter 1, we have a dataset with information
about home sales; in this case, the sale price serves as the dependent variable, while
the number of bedrooms and the house’s size in square feet serve as the independent
variables. Now, assume a dataset where there is a strong correlation between house
of the size and the number of the bedroom. Thus, it stands to reason that larger

houses also tend to have more bedrooms.
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It is possible to find multicollinearity in a regression model that uses house size and
number of bedrooms as independent variables to forecast the selling price of a prop-
erty. This is due to the fact that the coefficient estimates become unstable when one
variable (size, for example) provides information that is repetitive with another vari-

able (bedrooms, for example).

Remark 3.1. It is possible that this correlation will not hold true after collecting a

new sample or additional data.

. Structural multicollinearity: It occurs when the researcher generates new indepen-
dent variable from one or more existing variables, for example creating 2 from z ,

it is in fact mathematical artifact which leads to multicollinearity [22].

Example 3.1.2. Consider the following scenario, to fit a polynomial regression model
of the following form onto a dataset containing a single independent variable x and

a dependent variable y:
yi = Bia; + Pt} + €.

The independent variables in this model are x and x3. Nevertheless, multicollinearity
problems may arise if the model incorporates both x and x>, this is due to the strong

correlation between the two variables in the majority of datasets.

The design matrix is given below:

1z 23
1 = ay
1 x, 22

Here, the i'" observation is represented by x; for the independent variable x. There
is a structural multicollinearity in the model due to the mathematical relationship

between v and x°.
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Because of this, problems like unstable coefficient estimates and inflated standard
errors might arise, which inflate the confidence interval of estimated coefficients and

make it hard to tell whether the coefficients are significant.

3.1.2 CONSEQUENCES OF MULTICOLLINEARITY

Multicollinearity is the event of great inter-correlations among the factors in a mul-
tiple regression model. Multicollinearity can lead to biased or misleading findings when
a researcher tries to determine the best way to use each component in order to predict
or understand the response variable in a statistical model. Multicollinearity in regression

analysis can have several consequences, including [4], [12]:

1. Multicollinearity inflates the standard errors of the regression coefficients, making
them larger than they would be without multicollinearity. As a result, confidence
intervals for the coefficients become wider, reducing the precision of the estimates.

That is, the findings from a model with multicollinearity may not be trustworthy.

2. Multicollinearity can lead to instability in the estimation of coefficients. Small changes
in the data or model specification can result in significant changes in the estimated

coefficients, making them difficult to interpret and potentially misleading.

3. In the presence of multicollinearity, the significance tests for individual coefficients
may be unreliable. Variables that are actually important predictors of the outcome
variable may appear to be statistically insignificant due to multicollinearity. That is,
multicollinearity makes some of the significant variables under study to be statisti-

cally insignificant.

4. Multicollinearity can lead to misleading interpretations of the relationships between

predictor variables and the outcome variable. It becomes challenging to assess the
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unique contribution of each predictor variable to the model and obscure the identifi-

cation of important predictors in the model.

3.1.3 TECHNIQUES FOR IDENTIFYING MULTICOLLINEARITY

Multicollinearity among the variables is examined using different methods. In this

study we will discuss the following three methods [4], [12].
1. Pairwise scatterplot
2. Pearson’s Correlation Coefficients

3. Variance Inflation Factor

Pairwise scatterplot

A scatterplot is used to observe the relationship between the variables. The scat-
terplot is a graphical method that signifies the linear relationship between pairs of inde-
pendent variables. It is important to look for any scatterplots that seem to indicate a linear
relationship between pairs of independent variables. It uses dots to represent values for
two different variables. The location of each dot on the horizontal and vertical axis denotes
values for an individual data point. It is useful to find outliers and observe the patterns

between some dimensions.

Pearson’s Correlation Coefficients

Pearson’s correlation coefficient is a statistical measure of the strength of a linear
relationship between paired data. The correlation coefficient is calculated using the for-
mula:

n(QXY) - X)QY)
VX X2 = (S X)) Y = (Y)Y
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where,
7 is the correlation coefficient,
n 1s the number of observations,
X 1s the first variable in a sample,
Y is the second variable in a sample.

Correlation can take on any value in the range [—1, 1]. The sign of the correlation
coefficient indicates the direction of the relationship, while the magnitude of the correlation
(how close it is to —1 or +1) indicates the strength of the relationship.

If the correlation coefficient value is higher with the pairwise variables, it indicates

possibility of multicollinearity.

Variance Inflation Factor (VIF)

Variance inflation factor is used to measure how much the variance of the estimated
regression coefficient is inflated if the independent variables are correlated. When correla-
tion exists among predictors, the standard error of predictors coefficients will increase and

consequently the variance of predictor’s coefficients are inflated. That is, in the absence of

~

multicollinearity, the co-variance matrix Var(3) = (X7X) o2 and the variance of the

™ estimator 3;,Vj = 1,2, .- , k is written as Var(§;) = [(XTX)™1];;02), where [- - -],

indicates the j*" diagonal elements of Var(f3). Given that the j*" predictor X; is correlated

with other predictors (21, xa, -+, %;_1,Z;+1,- - -, Zk), then the variance
2, 1
o T —1 2
Var(3;) = [(X" X) 70" x e
where
1
VIF; =
714+ R?

J
is the variance inflation factor for the variance of Ejj and RJQ- is the coefficient of determi-

nation, obtained by regressing x; against (1, T2, -+ ,Zj_1,Tj41, " , Tk).
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The value of VIF; = 1,Vj = 1,2,--- , k indicates that the independent variables
are not correlated to each other. If the value of VI F};is 1 < VIF; < 5, it specifies that the
predictor variables are moderately correlated to each other. The challenging value of VI F
is between 5 to 10 as it specifies the highly correlated variables. If 5 < VIF; < 10,Vj =
1,2,--- , k, there will be multicollinearity among the predictors in the regression model
and VI F; > 10 indicate the regression coefficients are feebly estimated with the presence

of multicollinearity [4].

3.1.4 SUGGESTED REMEDY FOR MULTICOLLINEAITY

There are several ways to fix this multicollinearity problem. Some of the techniques

are briefly described in the following [14]:

1. Centering Variables: Multicollinearity among the first-order, second-order, and
higher-order terms for any given predictor variable can be reduced in polynomial

regression models by using centered data for the predictor variable’s (or variables).

2. Variable Selection: Reducing the standard errors of the predicted regression coef-
ficients of the remaining predictor variables and reducing multicollinearity can be
achieved by dropping one or more predictor variables from the model. Two signifi-

cant restrictions exist with this corrective technique.
* The first issue is that the deleted predictor variables are not directly analyzed.
* Secondly, the extraneous correlated predictor variables have an effect on the

magnitudes of the remaining predictor variables’ regression coefficients.

3. Combine Variables: It is more efficient to use a single composite variable to reflect
the underlying construct than to use numerous associated variables. Use Body Mass

Index (BMI) rather than height and weight as an example.
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4. Principal Component Analysis (PCA): To minimize the amount of variables in
a dataset while retaining the maximum amount of variability, one dimensionality
reduction technique is Principal Component Analysis (PCA). Principal component
analysis does this by converting the input variables into a new set of variables that

are linear combinations of the input variables.

Identifying the directions (or principle components) in which the data differs most is
the primary objective of PCA. The data variation that can be explained by the first
principal component is the greatest; the variance that can be explained by the second
principal component is the second highest; and so on. The relationships between

each major component are orthogonal, or uncorrelated.

5. Two stage least-squares: In certain economic research, multicollinearity issues can
be avoided by estimating the regression coefficients for various predictor variables

from various data sets. For instance, in demand study a model is given as
Yi = Po + brza + Tio + w3 + €,

where the predictor variables are “income” which is denoted by z1, “price” which is
denoted by x5, and the response variable is “demand” which is denoted by y; for i*"
observations. From cross-section data the coefficient of the predictor variable income

x1 can be estimated and the demand variable can be adjusted as:

y; =¥ — PiTi.

Then the coefficient of the predictor price s, is estimated by regressing the adjusted

. !
response variable y, on z5.

6. Regularization: Apply regularization methods like Ridge Regression or Lasso Re-
gression to decrease the size and variation of the regression coefficients by adding a

penalty term to them.
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3.2 THE GENERALIZED LEAST SQUARES ESTIMATION
In this section, the assumptions of the generalized least squares method, its deriva-

tion, and generalized least squares estimators for a linear model will be discussed in detail.

Consider the following model

j=XB+e
E(e) = 0, Var(e) = V. (3.1
In the above model (3.1), Var(¢) = o2V, where V is a n x n non-singular, positive

definite and symmetric matrix [12], [21]. It violates the usual assumptions Var(e) = o2l
of the multiple regression model (2.5). In this model the matrix V' can be interpreted in the

following way [21]:

1. If V is diagonal but unequal variances, then observations ¥ are uncorrelated but con-

tain unequal variances.

2. The observations are correlated, when some of the off-diagonal elements of V' are

nonzero.

In this case the ordinary least-squares estimators ﬁ = (X' X)~' X'y is not appli-
cable. Because ordinary least-squares estimates provides unbiased estimates but has more

variability, which can be shown as

-,

Var(3) = (X' X)X Var(j) X (X X) ™!

=X X' X)X VX(X X)L
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This situation is defined as “heteroscedasticity”. So a new approach must be
adopted to solve this issue. In order to address this issue, the model can be converted
into a new set of observations that agree to the conventional least-squares assumptions.
Then following the transformation, the transformed data can be evaluated by ordinary least

squares.

3.2.1 DERIVATION OF THE GENERALIZED LEAST SQUARES METHOD FOR A LINEAR

MODEL

Since V' is a positive definite, symmetric, so there exists a n X n non-singular,

symmetric matrix K such that [12], [21],
KK=KK=YV,

So the matrix K can be called the square root of V. Premultiply by K ~! on both

sides of the model (3.1) yields that,
K=K 'X3+ K¢ (3.2)
Now define new variables
KYW=72 K'X=B, K'e=g
Equation (3.2) can be written as

= BB+, (3.3)

Y

which is the required transformed new linear model of the above linear model (3.1).

Now observe that,

E(g) = E(K™'¢) = K"'E(6) =0,
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= KWVar(@) K1 ( K' = K, Var(@) = B((#) - (E@)?)
=K 'o®VK™!
=o’K'WK™!
=0’ (K'K)(KK™)
= o°I.
Therefore, the value of mean of the elements of § is zero, the elements of § has
constant variances and are uncorrelated. Since the error ¢ of the model (3.3) satisfied the

usual assumptions, so ordinary least squares would be applicable. So the least squares

function is

= (@ (KK)'¢(: K = K)
= @v)e
= (- XB)V 'y - XB). (3.4)

Now differentiate on both sides of equation (3.4) with respect to 3 yields that,

05 = XV XA+ (@)~ (B XX

= 22XV i+ 2X VX},
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and
2
o5 —2X' VX,
(5)?
where ‘?i is non-negative definite. Then the least squared estimator must satisfy

oS / , 2
—| = 2XV 42X V1Xg =0,

B3

which simplifies to
(X'VX)F=XVy. (3.5)

Equation (3.5) are called the least squares normal equations.

3.2.2 GENERALIZED LEAST SQUARES ESTIMATORS FOR A LINEAR MODEL

Now to find out the least-squares estimator of 5, solve the normal equations by

multiplying on both sides of equation (3.5) by (X' V~1X)~!

(X'VIX) X' XE =XV X)X

~
—

or, [ = (X' V1X)'X'y

~
—

or,f=(XVX)' X'y

which is the required ordinary least squares estimator (OLSE) of 6 Since 8( f is non-
negative definite, so 6 minimize S ().

Alternatively, after applying OLS to the transformed new linear model (3.3) the
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generalized least-squared estimator can be written as

~

3= (BB)'Bz
= [(K7'X) (K" X)) N(E'X) Ky

’

= (X (K K'X) XK
= (X'(K)'K' X)X (K) TR
= (X (KK)"'X)'X(KK)"'§(. K =K)
= (XVIX)'IX'V 1y
Therefore,
G=(XV X)XV (3.6)
This equation (3.6) is called the Generalized Least-Squared Estimator (GLSE) of 5 .
Now it is very easy to prove that 5 is an unbiased estimator of E . The expected
value of GLSE is,
B(B) = B(XVIX) X'V g)
= (X VX)X VE®)
= (XVIX)(X'VIX)E
= 4.
Thus this finding demonstrates that GLSE serves as an unbiased estimator of ﬁ . The
GLSE covariance matrix is provided by
Var( ;) = Var(X VIX)"LX' V1)
= (X' VX)XV YHVar(y) (X VIX)LX VLY
= (X VX)XV IIVVIIX (X VX))
=X VX)XV IVVTIX(XVTIX)TY

= XX VX)L
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Therefore, GLSE can be considered the most optimal linear unbiased estimator of 5 [12], [21].

3.3 WEIGHTED LEAST SQUARES ESTIMATION

When the error € are uncorrelated but have unequal variances, then the covariance

matrix of € can be written as:

UfOO...O vy 0 0 ... O
0 2 0 ... 0 0 vy 0 ... O
Var(e) = 0%V = ? = “
0O 0 O afL 0 0 O Unn
That means,
V:(Uij)nxn:
0 ifi # 7

where the reciprocal of each variance, 01-2, is defined as the weight, which mathematically
can be expressed as [2]

1
_2.

(3.7

Ww; =
o

Then consider a diagonal matrix W that contains the these weights in its leading or main

diagonal:
wy 0 0 ... 0
W =
0 0 0 ... w,

o2 = —. (3.8)
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Then V' can be expressed by the following way [12]:

o2 0 0 ... 0 2 0.0 ... 0
0 o2 0 0 0 L o 0

V= = w2 =W
0 0 0 ... o2 0 0 0 .. =+

Therefore, the relation between variance and weight matrix can be expressed as,
V=Wlor,W=V""1

Since V' is a diagonal matrix, so IV is also a diagonal matrix, where diagonal ele-
ments of the matrix W are the weights wy, ws, - - - , w,. From equation (3.5), the weighted

least-squares normal equations are
(X'WX)3=XW§g. (3.9)

Therefore the weighted least-square estimator is

B=XWX)"'X'Wy. (3.10)
Alternatively, it is possible to find out the weighted least-squared estimates by trans-
forming the model to a new set of observations. After multiplying each of the observed

values for the i'* observation (including the 1 for the intercept) by the square root of the



weight for that observation, the transformed set of data [12], [14]:

Vv W1 X11\/w1

\/ W2 X21\/w2

0

0

0 g 0

0 0

0

Xlk\/wl
Xog/Ws

0

Thus B = W'2X,or X = (W'/2)~1B.

Y
Il

Y14/ W1
Y24/ W2

| Yn/Wn

v W1
0

Thus 7 = W23, or i = (W1/2)~12,

Q
I

Thus § = W'/2¢, or €= (WY?)"1g.

€14/ W1
€924/ W2

€ny/ Wn |

Wy XpiA/Wn .. Xppa/ Wy

i

I Xi
1 Xy

1 an

0 ... Jw,

Xk
Xog

€2

€n

= W'2x.
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Now after applying this transformation in equation (3.1), a new transformed linear

model will be found which is given as below:

(WI/Q)_lz_’: (W1/2)—1Bg+ <W1/2)—1§»
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Now observed that, the errors have zero expectation in the above new transformed model,
1.e.,
E(§) = EW'?®)
= W'2EB(e)
—0( E(&) = 0),

and the covariance matrix of errors of the new transformed model is

Var(g) = Elg - E(G)][g — E(9)
= E(g9')
= E(W'ew%ey)
= B(W2eey(w'))
= W2E(Ee) )W/
= E(W'*Var(eW'/?)
= E(WY252vwi/?)
= E(W'2e*W'w/?)
_ 02W1/2(W1/2W1/2)_1W1/2
_ 02W1/2(W1/2)_1(W1/2)_1W1/2
=0’

The weighted least square estimate of 5 ,

~

3= (B'B)'Bz
= (W'2X) (WY2X)) " (WX (W)
= (X' (WYY (WH2X))~H (X (W) ) (W/2g)
= (X'WYEWY2X) T X WE) (W)

= (X'WX) "1 (X'W)y.
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Thus, § = (X'WX)~}(X'W)7 is the required weighted least-squared estimates of /3.

3.3.1 SELECTING THE WEIGHT FOR WLS REGRESSION

OLS does not discriminate between the quality of the observations, giving equal
weight to each, irrespective of whether they are good or poor guides to the location of the
line. Thus, it may be concluded that if we can find a way of assigning more weight to
high-quality observations and less to the unreliable ones, we are likely to obtain a better
fit. In other words, our estimators for coefficients will be more efficient. WOLS works by
incorporating extra non-negative constants (weights) associated with each data point into
the fitting criterion.

Suppose the true relationship is
Yi = 60 + ﬂlxi + Ei,Vi = 17 27 ey Ty

where E[¢;] = 0 and Var(¢;) = o2, which is a heteroscedastic model.

In ordinary least squares, the estimated coefficients provide the regression equation
that minimizes SSE = Y e?. In weighted least squares (WLS), the estimated equation
minimizes > w;e? where w; is a weight given to the i’* observation. The object is to
minimize the sum of the squares of the random factors of the estimated residuals. If the
weights are all the same constant, then we have ordinary least squares (OLS) regression.
However, if the structure of the data suggests unequal weights are appropriate, then it would

be inappropriate to ignore the regression weights.

Error Variance Unknown

Utilizing weighted least squares with weights w; is a very simple process if the
variances o7 are either known or can be determined by a proportional constant. However,

in reality, these variances, a?, are rarely known, therefore requiring the use of estimated



59

variances. The use of some possible variance and standard deviation functions are as fol-

lows [14]:

1. If a residual plot against a predictor exhibits a megaphone shape, then regress the
absolute values of the residuals against that predictor. The resulting fitted values of

this regression are estimates of o;.

2. If aresidual plot against the fitted values exhibits a megaphone shape, then regress the
absolute values of the residuals against the fitted values. The resulting fitted values

of this regression are estimates of ;.

3. If aresidual plot of the squared residuals against a predictor exhibits an upward trend,
then regress the squared residuals against that predictor. The resulting fitted values

of this regression are estimates of 2.

4. If a residual plot of the squared residuals against the fitted values exhibits an upward
trend, then regress the squared residuals against the fitted values. The resulting fitted

values of this regression are estimates of o?.

5. If the predictors are discrete or continuous with many replications for each z; value,
then arrange the dataset in descending to ascending order and cluster the datasets
with replications for each z; values. Find out the mean values of the predictors and
sample variance of the response variables for each cluster. Then regress the sample

variances, Sg, against the average values, 7, i.e.,
2 —
Sy ~ Y0 + "z,

where 7 and ~; are the intercept and slope of this regression model respectively.
After that substituting each x; value into the above equation will give the estimate

of the variance 62 (which is the fitted value of the above variance function) of the
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corresponding observation y; and the required weights will be the reciprocal of this

6—?, which mathematically can be written as,

1
W; = <3,
o7

or, if v; is fitted value from standard deviation function, then the above equation can

be written as

After using one of these methods to estimate the weights, w;, these weights can be

used in weighted least squares regression model.
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CHAPTER 4
GAUSS NEWTON ITERATIVE METHOD (GNIM) FOR NONLINEAR LEAST
SQUARES ESTIMATION

4.1 THE NONLINEAR REGRESSION MODEL

Regression analysis in which the relationship between the independent and depen-
dent variables is not linear, that means, it does not follow a linear relationship with the

unknown parameters is considered a nonlinear regression model. For instance, the model
Yy = 916792‘70 + € “4.1)

is not linear with respect to unknown parameters 6; and 5. In general, the nonlinear re-

gression model can be written as,

—

y=[f(z,0)+e, (4.2)

where fis a px 1 vector of parameters and for any nonlinear regression model, f(z, 5) is the
expectation function, which is a nonlinear function of the parameters. Consider the above
nonlinear model (4.1), the expectation function is f(x, 5) = 61e~%%, Then the derivatives

of this expectation function with respect to parameters ¢, and 6, are

—

01(2.0) _ .

06, ’

Since the derivatives are functions of the unknown parameters 6; and 65, the above

stated model (4.1) is a nonlinear [12].

4.1.1 DIFFERENCE BETWEEN LINEAR AND NONLINEAR REGRESSION MODEL

The key differences between the linear and nonlinear regression model are given

below:
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* In linear regression model, the expectation function is a linear function of the pa-
rameters, while in nonlinear regression model this expectation function is nonlinear

function with respect to parameters.

* In linear regression model, the derivatives of expectation function with respect to the

parameters are not functions of the unknown parameters.

For instance, consider the regression model (2.3), where the expectation function is

as follows:
f(z, ﬁ) = Bo + B1z1 + Baxa + - + Bray
k
= Bo+ Y _ Bix;.
j=1
Now the derivatives with respect to the parameters (31, 3s, - - - , B are
0fw@.0) | of@f) _ ofwp) - ofwh) _
9B © 0B © 0B b OB
In general,
of(x, 5) .
I —1.2 ... k.
aﬂ] x]avj ) “y

It is clear that the derivatives are not functions of the parameters 3. So the regression

model (2.3) is a linear regression model.

On the other hand, at least one of the expectation function’s derivatives with respect
to the parameters in a nonlinear regression model is dependent on at least one of the

parameters, which has already been discussed in section 4.1.

4.1.2 ASSUMPTIONS

In the following, the assumptions of the nonlinear model will be briefly discussed.

Similar to the linear model, the nonlinear model assumes [14] that
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1. The expected value of error terms, E(¢;) = 0, Vi.
2. The variances of error terms are homogeneous, Var(¢;) = o2, Vi.

3. The random error terms are uncorrelated, that means, the error terms are independent,

Cov(e;,€;) =0,Vi, j.

4. The error terms are normally distributed.

4.1.3 TYPES OF NONLINEAR REGRESSION MODEL

The classification of the nonlinear regression model, which will be briefly dis-

cussed, is given below. There are two types of nonlinear regression models. They are
1. Parametric nonlinear regression model

2. Non-parametric nonlinear regression model

Parametric Nonlinear Regression:

If the dependent and independent variables can be related by a particular non-linear
mathematical function with unknown constants, then the regression model can be called
parametric non-linear. An exponential function, for instance, can be used to model the
relationship between a country’s population and time. The polynomial regression, logistic
regression, exponential regression, power regression and so on are the common examples

of parametric nonlinear regression model.

Non-Parametric Nonlinear Regression:

Unlike parametric non-linear regression, non-parametric non-linear regression does
not presume that a particular mathematical function can express the relationship between

the dependent and independent variables. In non-parametric linear regression machine
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learning algorithms are used to learn the association between the dependent and indepen-
dent variables. Kernel smoothing, local polynomial regression, nearest neighbor regression

and so on are the common examples of non-parametric regression model.

4.1.4 THE NONLINEAR LEAST SQUARES METHOD FOR PARAMETER ESTIMATION

Consider a sample of n observations, where the regressors are x;;, Zj2, - - - , T;p, for
1=1,2,---  n and the response are y;, forv = 1,2,--- ,n.
Now consider the nonlinear regression model (4.2), where x; = (T, Tio. -+, Tip),
for: =1,2,--- ,n. The sum of squares error function is
n
SO) = "y — f(xi, 0)]*. (4.3)

i=1
After differentiating on both sides of the equation (4.3) with respect to each element

of 0, i.e., 01,05, - ,0, and equating the resulting equations to zero yields that,

05 (6' : o | Of (2,0 ,
©) 93 i S0 ) [—fg; )] SOV — L2 (34
‘ i Josg

After simplifying equation (4.4), the normal equations are

—

- A 0 iae .
J 6=6

i=1

In the normal equations (4.5) of the nonlinear regression model (4.1), the expecta-
tion function is a nonlinear function and the derivatives would be the functions of unknown
parameters. Thus the nonlinear equations (4.5) are not in a closed-form to be solved as
was the case for linear regression. In this case it is very difficult to solve the normal equa-
tions [12]. Iterative methods (such as Newton method, Gauss-Newton iteration method,
method of steepest descent, Marquardt’s method, direct search, etc) must be applied to find

values of the parameters of 6,65, --- | 6,,.
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4.2 GAUSS NEWTON ITERATIVE METHOD FOR NONLINEAR REGRESSION

A method widely used for nonlinear regression is linearization of the nonlinear
function followed by the Gauss-Newton iterative method of parameter estimation. The
Gauss-Newton method, so named in honor of mathematicians Carl Friedrich Gauss and
Isaac Newton, is an iterative optimization strategy used to reduce the residuals in a non-
linear least squares problem. When an initial estimate of the parameters is available, it
works especially well [24]. By iteratively improving the parameter estimations, the Gauss-
Newton approach converges to values that minimize the sum of squared residuals. The
method is computationally efficient since it uses a linear approximation of the nonlinear

model at each iteration. Consider the following model

—

yi = f(Z;,0) + € (4.6)

—

Linearization is accomplished by a Taylor series expansion of f(Z;,6) about the
point #1 = [650), 650), - 0,(30)], which is called the starting values of the parameters, with
only the linear terms retained [12].

Thus, this produces

p

Loz LA Of (#,0) 0)
0 ’
f(@.0) = @0+ ) 1= ] (0, -67). (4.7)
Jj=1 6=0(0)
Now, consider
fz(O) = f(fu 5(0))7
Lo _ |2/(.09)
A 00, ]
0=6(0)

B =0, — 6.

Now using equation (4.7) and the above new defining variable in nonlinear model (4.6), the
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nonlinear regression model (4.6) can be written as
04 Z B; @0 1 ¢

; Z B0 1 e 4.8)

or,y; — f

That is, a linear regression model has been developed. This developed linear regression

model (4.8) can be written in the following way:

N~ 20).0)]
_ _ c 2 _
©) Z;ﬁ’ &
yi— i J; €1
(0) _(0)
- fQ(O) Z ﬁj 2 €2
= | j=1 +
(0) P
_yn — Jn ] Z B(O)Z(Ol) _En_
Y
L j=1 J
AR R S
Y — (0) Bl 221 + ﬂ zég) ot B z2p €9
or, = +
0 0) (0
_yn - 12)_ _B( Zn1 +5§) ( ) "‘Bp np _En_
[ 0] [ 0 ol [ L0 [ ]
] [ ][]
(0) 0) (0 (0) (0)
Yo — f. z Z R €9
or, 2 _ P 2 2 . 7 4.9)
L] B O ) L
where
- A0 L0 L © .
. (0) 0) (0 (0) (0)
70 — b2 70 = 2 fm - P G ICU RS Rt (- “

L] I P -
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Equation (4.9) can be written as
jO =2z050 & (4.10)
Hence, the estimated value of 3 ©) is
O = (20) 20)1(ZOyO. @.11)
Since 5 = § — 010, the revised estimates of § can be defined as:

—

§= 30 4o = o

D>

)

~

where sometimes 3(¥) is called the vector of increments. Similarly, 61) will play the same
role like initial estimates §(°) and after plugging this in equation (4.7), another set of revised

estimates would be found, say 5(2), and so forth. i.e.,

G0 4 g = o

@ 4 g — g

@

9

GO 4 g® — g,

G®) 4 gy — guet),

Therefore, in general at the k' iteration it can be written as

~
—

glk+1) — é“(k) + ((Z(k))/Z(k))fl(Z(k))/(y*_ ﬂk))7 (4.12)

where
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This iterative process continues until there is no noticea