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GNIM, WGNIM, RGNIM, and LM methods for fitting nonlinear models is presented. A

step-wise diagnosis for structural multicollinearity in the reweighted linearized model is

investigated via the Variance Inflation Factor (VIF) to determine variance inflation in the
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CHAPTER 1

INTRODUCTION

In supervised learning, techniques for optimization are indispensable for statistical

modeling where accurate model fitting is required. Notable strategies that effectively im-

prove the nonlinear least squares approach are the Levenberg-Marquardt (LM) method, the

Gauss-Newton Iterative Method (GNIM), the Weighted Gauss-Newton Iterative Method

(WGNIM), and the Reweighted Gauss-Newton Iterative Method (RGNIM) [1]. When

dealing with complicated data structures and model dynamics, these methods are vital for

optimizing model fits through parameter value adjustment.

A classic approach, the GNIM method systematically adjusts a model’s parameters

to reduce the sum of squared differences between the observed and predicted values [3],

[6], [10]. Heteroscedasticity, in which the residuals’ variability is not constant across mul-

tiple levels of an explanatory variable, can be a challenge for this effective strategy [7].

Inefficient parameter estimations and incorrect statistical inferences might be caused by

heteroscedasticity [8], [9].

In response to this difficulty, the WGNIM improves the reliability and robustness

of the model fitting process by introducing a weighting mechanism that accounts for het-

eroscedasticity. The WGNIM improves model performance and produces more precise

parameter estimates by using weights obtained from the observed data to scale the impact

of each observation. That means the heteroscedasticity was effectively mitigated by the

WGNIM, which produced more consistent variance and, consequently, more dependable

confidence intervals. In comparison to the GNIM, the WGNIM needed fewer iterations to

converge to an optimal solution, making it more efficient overall, even if it took more time

per iteration [2], [3], [7].

Conversely, the adaptability of the LM approach is well known when choosing pre-

liminary approximations of the parameters. It is a well-rounded method that successfully
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explores complicated parameter spaces by integrating the best features of gradient descent

and the Gauss-Newton method. Since the selection of initial values is pivotal for con-

vergence in extremely nonlinear models, the LM technique becomes invaluable in such

cases [10], [11], [12], [13].

Additionally, the Variance Inflation Factor (VIF) was employed to systematically

identify structural multicollinearity in the reweighted linearized model. This analysis iden-

tified and controlled for variance inflation in the sequence of estimators, ensuring the sta-

bility and reliability of parameter estimates in simulated experiments with restricted multi-

collinearity levels. In contrast, the LM method exhibited greater adaptability when estimat-

ing parameters, whereas the RGNIM demonstrated superior performance over the GNIM

in managing heteroscedasticity and enhancing model fit [11], [12], [14].

These techniques are used to examine a dataset of ultrasonic calibrations provided

by the National Institute of Standards and Technology (NIST) in this research [15]. Ultra-

sonic calibration is the process of fine-tuning ultrasonic instruments so that they provide

reliable measurement results. The dataset utilized for this research illustrates a real-world

situation where the metal distance (predictor variable) affects the ultrasonic response (re-

sponse variable). The initial analysis using the GNIM highlighted the presence of het-

eroscedasticity, which impaired the accuracy of the parameter estimates.

1.1 OUTLINE

This study is comprised of six chapters, each addressing a specific aspect of the

research:

Chapter 1 will provide a detailed background on the work and offer a comprehen-

sive overview of key concepts in statistical learning.

Chapter 2 will provide a comprehensive explanation of the multiple linear regres-

sion model, including its assumptions, ordinary least squares (OLS) regression, parameter
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estimation, and their properties, as well as the method of maximum likelihood estimation

of the parameters.

Chapter 3 will focus on multicollinearity, covering its different types, consequences,

techniques for identification, and remedies. It will also include a complete derivation of

generalized least squares estimation, followed by the derivation of weighted least squares

estimation, and will discuss their assumptions and the selection of weights in detail.

Chapter 4 will introduce the concepts of nonlinear regression models, discussing

their assumptions, differences from linear regression models, different types of nonlinear

regression, and parameter estimation using the nonlinear least squares method. It will

cover a complete derivation of the Gauss-Newton Iterative Method (GNIM) for nonlinear

regression, with an example using the logistic growth model.

Chapter 5 will discuss the RGNIM and its application, using the logistic growth

model as an example.

Chapter 6 will address heteroscedasticity and explore the application of GNIM and

WGNIM to real-life data, specifically an ultrasonic calibration dataset. It includes the

interpretation of maximum likelihood estimates for the regression coefficients. Finally, it

will provide the findings of this study.

1.2 SOME CONCEPTS IN STATISTICAL LEARNING

This section will provide a brief overview of key ideas in statistical learning and

establish their relationship to the research methodologies utilized in this study.

1.2.1 WHAT IS STATISTICAL LEARNING?

Data scientists can analyze and predict outcomes from datasets with the use of sta-

tistical learning. It is a branch of machine learning concerned with finding connections and

patterns in data using statistical techniques. In other words, statistical learning is a collec-
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tion of methods for making data-driven estimates of the relationship between variables. Its

purpose is to help with data comprehension and prediction.

A common objective in statistical learning is to refine a model to reliably use pre-

viously unknown data to generate predictions or decisions. A training dataset of samples

with known input variables and their corresponding output variables is used to understand

these underlying patterns or correlations in the data. In general, the symbol X is used to

represent the input variables, accompanied by a subscript to differentiate them. These in-

puts are referred to by several names: predictors, features, independent variables, or

simply variables. Most commonly, the output variable is represented by the letter Y . It is

also referred to as the response or dependent variable [13].

Consider a quantitative response variable denoted by Y and p distinct predictors,

denoted by X1, X2, ..., Xp. We make the assumption that a relationship exists between Y

and X = (X1, X2, ..., Xp), which can be expressed in the most general sense as

Y = f(X) + ϵ. (1.1)

In this context, f represents an unidentified fixed function of X1, X2, ..., Xp, and ϵ denotes

a random error term with a mean of zero that is independent of X . The formula denotes f

as the systematic information provided by X regarding Y .

Fundamentally, statistical learning represents a collection of methodologies utilized

to approximate f .

Principal purposes for statistical modeling are as follows:

1. Prediction

2. Inference
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Prediction

There are numerous cases, despite the availability of a set of inputs X , the output

Y is not always easy to produce. Given this configuration, where the error term averages

to zero, we can use the following formula to forecast Y :

Ŷ = f̂(X), (1.2)

where f̂ is our estimate of f and Ŷ denotes the final prediction for Y [13].

The precision of Ŷ as a prediction for Y relies on two factors: the reducible error

and the irreducible error.

Reducible Error

In statistical modeling, the term “reducible error” describes the portion of the to-

tal error in prediction that may be mitigated by model improvement. The situation occurs

due to the model’s imperfect representation of the basic relationship that exists between the

predictors and the response variable. Generally, the estimate f̂ will not be an exact repre-

sentation of f , leading to some degree of error. This error is called a reducible error [13].

This error can be minimized by enhancing the accuracy of f̂ by utilizing the most suitable

statistical learning approach to estimate f .

For example, it is possible to reduce the inaccuracy produced by oversimplification

in a medical study that attempts to predict the risk of heart disease based on cholesterol

levels by limiting the model to only include total cholesterol and ignoring other important

factors such as age, blood pressure, and family history. Including these extra components

in the model can help reduce this error.
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Irreducible Error

Irreducible error in statistical modeling is the part of the total error that cannot be

reduced by improving the model. It is caused by inherent randomness, variability, or un-

predictability in the data or the underlying process being modeled. That means, even with

a precise estimate for f as Ŷ = f̂(X), the prediction would still contain some inaccuracy.

Y is a function of ϵ, which cannot be predicted given X . Thus, the variability linked to ϵ

impacts the precision of our predictions. This is referred to as the irreducible error, as it

cannot be minimized regardless of how well estimate f is due to the inaccuracy caused by

ϵ [13].

An explicit illustration of irreducible error can be observed when trying to predict

the precise arrival time of a vehicle at a designated stop. There are elements that cannot

be precisely anticipated or controlled, including traffic congestion, road conditions, and

unanticipated delays, despite the utilization of the most sophisticated prediction models.

The unpredictability of these factors and the impossibility of eliminating them through

model enhancements contribute to the irreducible error in the arrival time prediction.

The prediction Ŷ = f̂(X) is obtained by utilizing a set of predictors X and a

given estimate f̂ . Consider that f̂ and X are both fixed, with random error term ϵ. Then

mathematically,

E(Y − Ŷ )2 = E[f(x) + ϵ− f̂(x)]2

= E[f(x)− f̂(x) + ϵ]2

= E[(f(x)− f̂(x))2 + 2(f(x)− f̂(x))ϵ+ ϵ2]

= (f(x)− f̂(x))2 + 2(f(x)− f̂(x))E(ϵ) + E(ϵ2)

[Note: Since E(Z + c) = E(Z) + c, E(cZ) = cE(Z) and E(c) = c, where Z is random
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and c is a constant.]

= (f(x)− f̂(x))2 + 2(f(x)− f̂(x))(0) + E(ϵ2)

= (f(x)− f̂(x))2 + E(ϵ2)

= (f(x)− f̂(x))2 +Var(ϵ)

[Note: Since Var(ϵ) = E(ϵ2)− E(ϵ)2 = E(ϵ2)− 0 = E(ϵ2)]

Therefore,

E(Y − Ŷ )2 = (f(x)− f̂(x))2 +Var(ϵ),

where E(Y − Ŷ )2 represents the average or expected value of the squared difference

between the predicted and actual value of Y, the term (f(x)− f̂(x))2 represents reducible

error and Var(ϵ) represents the variance associated with the random error term, which is

irreducible error [13].

Remark 1.1. Although the independent variables or predictors in linear regression and

nonlinear regression are usually considered to be fixed, the predictors cannot be fixed in

some cases. For instance, in the case of time-related observations, the predictors will

change over time.

Inference

In some circumstances, it is crucial to comprehend the manner in which a change in

X influences variable Y. Although estimating f is the objective in this circumstance, mak-

ing predictions for Y is not necessarily the aim. Understanding the relationship between X

and Y is the primary focus at this time, and the precise form of f is the subject of concern

in this instance. It is referred to as an inference [13].

For instance, instead of trying to predict an individual’s blood pressure using the

medication dose, research investigating the effects of a new medicine (X) on blood pres-

sure (Y ) may aim to understand how changes in the dosage of the drug influence blood
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pressure. The primary focus here is on the specific shape of the function f , which repre-

sents the link between medicine dose and blood pressure.

Let us assume a simple linear regression equation:

Y = β0 + β1X + ϵ,

where Y represents the dependent variable (e.g. blood pressure), X represents the indepen-

dent variable (e.g. medicine dosage), β0 represents the intercept term, in the above example

it expressing the expected blood pressure when the medicine dosage is 0, β1 represents the

slope coefficient, in the above example it representing the change in blood pressure for a

one-unit change in medicine dosage, ϵ represents the error term, which is the difference

between the observed blood pressure and the predicted blood pressure.

The purpose of inference in this equation is to approximate the values of β0 and

β1 in order to comprehend the impact of drug dosage variations on blood pressure. As an

example, if β1 is expected to be −3.5, it means that blood pressure typically drops by 3.5

units for every extra unit of medicine dosage. To ascertain the efficacy and safety of the

medicine, the inference is necessary to comprehend the connection between the dose and

blood pressure.

1.2.2 SUPERVISED AND UNSUPERVISED LEARNING

There are two main types of statistical learning problems [13]:

1. Supervised Learning

2. Unsupervised Learning

The usage of labeled datasets is the key distinctive feature between the supervised

and unsupervised learning. A supervised learning algorithm relies on labelled input and

output data, whereas an algorithm for unsupervised learning does not does not utilized the

labelled input and output data.
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In addition to, there are more types of learning, such as “semi-supervised” learn-

ing that employs both labelled and unlabeled data, and “reinforcement” learning that is

sequential decision-making to maximize long-term reward [13].

Supervised Learning

Supervised learning is a problem type in machine learning. Supervised learning

involves using labeled datasets to train algorithms to forecast the output. In supervised

learning a corresponding response measurement yi,∀i = 1, 2, ..., n is connected with each

observation of the predictor measurement(s) xi,∀i = 1, 2, ..., n. The goal of supervised

learning is to establish a connection between the response and the predictors, either for

improved understanding of the relationship between the response and predictor (inference)

or for more accurate prediction of the response for future observations (prediction) [13].

Unsupervised Learning

A second type of machine learning problem is unsupervised learning. In unsuper-

vised learning, there are no response values available, that means, there is no predefined

labels for the input data; we only have a set of predictor values xi,∀i = 1, 2, ..., n. De-

tecting concealed patterns or intrinsic structures within the data is the salient purpose of

unsupervised learning. In unsupervised learning, clustering is a commonly used technique

in which the algorithm clusters together data elements that are similar [13]. Dimensionality

reduction is another problem where the algorithm reduces the number of input variables by

keeping important information. Popular techniques for unsupervised learning are K-means

clustering, hierarchical clustering, and principal component analysis (PCA).
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1.2.3 REGRESSION AND CLASSIFICATION PROBLEMS

There are two main types of variables: quantitative and qualitative (often called

categorical). Numerical values are assigned to quantitative variables. As for example the

market price of a house, the stock price, and a person’s age, height, and income [13].

Qualitative variables, on the other hand, may only take on values that belong to one

of a set of K distinct groups [13]. As for example, the brand of a product (A, B, or C),

marital status of a person (married or unmarried), and so on.

Based on input data, regression algorithms forecast continuous values. In regres-

sion problems, input and output variables are used to estimate a function of a model. The

regression model is appropriate for quantities like salary, height, or weight, age, value of

property. Depending on the different problems and situations, data scientists and the engi-

neers of machine learning utilize different regressions in statistical issues. There are differ-

ent types of regression algorithm like simple linear regression, multiple linear regression,

polynomial regression, nonlinear regression and so on.

Now the question is why nonlinear regression is a regression problem? Like linear

regression, nonlinear regression predicts a continuous outcome variable from one or more

predictor factors. The main distinction is that nonlinear regression doesn’t assume a linear

connection between predictor and response variables. It always follows different types of

nonlinear pattern. Nonlinear regression attempts to determine the parameters of a selected

nonlinear model that most precisely fits the data. This is usually achieved by reducing the

gap between the actual values and the values predicted by the nonlinear model, employing

techniques like the Gauss-Newton algorithm or the Levenberg-Marquardt algorithm and so

on.

On the other hand, classification is a kind of predictive modeling that uses input

variables to estimate a mapping function that identifies discrete labels or categories as out-

put variables. Predicting the category or label of the input variables is the vital role of
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the mapping function in classification algorithms. Regardless of whether the variables in

a classification method are discrete or real-valued, it is necessary for the instances to be

categorized into at least two classes. There are different types of classification algorithms

like random forest classification, decision tree classifications, K-nearest neighbour classi-

fication etc. [13].

1.2.4 ASSESSING ACCURACY AND PRECISION IN THE REGRESSION MODEL

Evaluating the Accuracy and Precision of the Fit

To assess the efficacy of a technique on a certain collection of dataset, it is necessary

to estimate the discrepancy between the actual and anticipated response. That means, the

residuals are the discrepancies between the model’s predicted values and the observed data

values that occur when attempting to fit a regression model to predict a continuous response

variable and then uses that model to forecast the values of some data. In regression analysis,

Mean Squared Error (MSE) is the most widely used metric [13]. MSE is measured as the

average of the residuals of a model which is given by

MSE =
1

n

n∑
i=1

(yi − f̂(xi))
2. (1.3)

In the above equation (1.3), the forecast value f̂ that provides for the ith observation is

denoted as f̂(xi).

Remark 1.2. The Mean Squared Error (MSE) will be minimized when the expected re-

sponses closely match the actual responses, and will be maximized when there is a signifi-

cant difference between the predicted and true responses for some observations.

Training Dataset

A machine learning model is trained using a subset of a dataset known as the train-

ing dataset. A collection of input-output pairs is utilized to instruct the model on the re-

lationship between inputs and outputs. The model gains knowledge from this dataset by
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modifying its internal parameters in response to the input data and the corresponding accu-

rate output.

Example 1.2.1. Consider a database that contains house-related data, such as dimensions,

number of bedrooms, geographical location, and their respective costs. This is one possible

structure for a machine learning dataset that might be used to forecast home prices:

Table 1.1: Training Dataset

Size (sq ft) Bedrooms Location Price (Dollar)

1500 3 Suburban 250,000

2000 4 Urban 300,000
...

...
...

...

By utilizing the provided training dataset, the model shall assimilate knowledge re-

garding the association between the output (price) and the input attributes (size, bedrooms,

location).

Test Dataset

To evaluate the efficacy of a machine learning model that has been trained, a distinct

subset of the dataset is designated as the “test dataset”. It comprises pairings of inputs

and outputs that were not seen by the model during the training process. A performance

evaluation of the model is conducted by comparing the accuracy of its predictions to the

observed outputs, which are generated using the test dataset.

Example 1.2.2. To further elaborate on the example of house price prediction, consider

the following as a possible test dataset:
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Table 1.2: Test Dataset

Size (sq ft) Bedrooms Location Price (Dollar)

1500 3 Suburban ?

1200 4 Rural ?
...

...
...

...

The price predictions for these houses will be generated by the model utilizing the

learned parameters. The model’s performance will be assessed according to the degree of

correspondence between these forecasts and the real prices.

Training MSE

This is the mean squared error (MSE) obtained on the identical dataset that was

utilized for training the model. The metric calculates the mean squared deviation between

the observed values and the predicted values generated by the model using the training

dataset. A low training mean squared error (MSE) suggests that the model is effectively

capturing the patterns in the training data [13].

Test MSE

The Mean Squared Error (MSE) is computed on a distinct dataset, referred to as the

test dataset, which the model has not been shown during the training process. It assesses the

extent to which the model can effectively apply its learned knowledge to unfamiliar data.

A low mean squared error (MSE) suggests that the model has the capability to generate

precise predictions on unfamiliar data.

In general, it is desirable to have a low MSE for both the training and test phases.

“Overfitting” may occur when the training mean square error (MSE) is significantly smaller

than the test MSE [13]. This occurs when the model becomes overly intricate with the train-

ing data, thereby capturing extraneous noise rather than the true pattern. The presence of
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an underfitting condition, wherein the model fails to represent the underlying pattern in the

data, may be suggested if the test MSE is significantly greater than the training MSE.

Bias-Variance Trade-Off

What is Bias?

Bias refers to the model’s incapacity to accurately predict values, resulting in dif-

ferences or errors between the average prediction of the model and the actual values. The

disparities between the actual or anticipated values and the projected values are referred to

as errors, specifically bias errors or errors resulting from bias [13].

What is Variance?

A data set’s variance indicates how far individual values deviate from the mean.

A predictive model’s variance in machine learning is the degree to which its performance

deviates from the mean when trained on various data subsets. In particular, the model’s

variance is its sensitivity to a different subset of the training dataset, or its ability to adapt

to the new subset [13].

The expected test MSE of a technique is rely on its variance and bias. Consider that

x0 and y0 are fixed and E[(y0 − f̂(x0))
2] is the average test MSE, where f̂ is estimated by

using different training datasets. Then

E[(y0 − f̂(x0))
2] = E[(y − f̂)2]

= E[(y − f + f − f̂)2)]

= E[(y − f)2 + (f − f̂)2 − 2(y − f)(f − f̂)]

= E[(y − f)2] + E[(f − f̂)2]− 2E[(y − f)(f − f̂)]

= E[ϵ2] + E[(f − f̂)2]− 2E[(y − f)(f − f̂)]

= Var(ϵ) + E[(f̂ − f)2]− 2E[(y − f)(f − f̂)]. (1.4)
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E[(f̂ − f)2] = E[(f̂ − E(f̂) + E(f̂)− f)2]

= E[(f̂ − E(f̂))2 + (E(f̂)− f)2 + 2(f̂ − E(f̂))(E(f̂)− f)]

= E[(f̂ − E(f̂))2] + E[(E(f̂)− f)2] + 2E[(f̂ − E(f̂))(E(f̂)− f)]

= Var(f̂) + [Bias(f̂)] + 2E[(f̂ − E(f̂))(E(f̂)− f)]. (1.5)

2E[(f̂ − E(f̂))(E(f̂)− f)] = 2E[f̂E[f̂ ]− f̂f − E[f̂ ]E[f̂ ] + E[f̂ ]f ]

= E[f̂ ]E[f̂ ]− fE[f̂ ]− E[f̂ ]E[f̂ ] + fE[f̂ ]

= 0 (1.6)

using (1.6), in equation (1.5),

E[(f̂ − f)2] = Var(f̂) + [Bias(f̂)] (1.7)

E[(y − f)(f − f̂)] = E[yf − yf̂ − f 2 + ff̂ ]

= f 2 − f 2 − E[yf̂ ] + fE[f̂ ]

= −E[(y + ϵ)f̂ ] + fE[f̂ ]

= −E[ff̂ ]− E[ϵf̂ ] + fE[f̂ ]

= −fE[f̂ ]− E[ϵf̂ ] + fE[f̂ ]

= 0 (1.8)

using (1.7) and (1.8) in equation (1.4),

E[(y0 − f̂(x0))
2] = Var(f̂(x0)) + [Bias(f̂(x0))] +Var(ϵ). (1.9)

From equation (1.9) observe that the expected test MSE for a given value of x0 can

be decomposed into three fundamental quantities [13], [17]:

• The squared bias of the predicted functional form of f̂(x0).
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• The variance of the predicted functional form of f̂(x0).

• The variance of the error terms ϵ.

Thus, in order to minimize the expected test error, we need to select a statistical

learning method that simultaneously achieves low variance and low bias.

Low Bias: Low bias value means fewer assumptions are taken to build the target function.

In this case, the model will closely match the training dataset [13].

High Bias: High bias value means more assumptions are taken to build the target function.

In this case, the model will not match the training dataset closely [13].

Variance refers to the amount by which the predicted functional form of f̂ would

change if we estimated it using a different training data set. Since the training data are used

to fit the statistical learning method, different training data sets will result in a different f̂ .

In general, more flexible statistical methods have higher variance. As a general rule,

as we use more flexible methods, the variance will increase and the bias will decrease. The

relative rate of change of these two quantities determines whether the test MSE increases

or decreases.

As we increase the flexibility of a class of methods, the bias tends to initially de-

crease faster than the variance increases. Consequently, the expected test MSE declines.

However, at some point increasing flexibility has little impact on the bias but starts to sig-

nificantly increase the variance. When this happens the test MSE increases.

The relationship between bias, variance, and test set MSE outlined above is referred

to as the bias-variance trade-off [13].

Coefficient of Determination

The proportion of the variance in the dependent variable that can be predicted from

the independent variables in a regression model is represented by the statistical measure

known as the coefficient of determination, which is denoted as R2. In simple terms, it
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signifies the extent to which the variability of the dependent variable can be explained by

the independent variables.

It is known that, the model provides an explanation for some variability but does

not do so for all. The overall variability is given by the sum of these two factors.∑
(yi − ȳ)2 =

∑
(ŷi − ȳ)2 +

∑
(yi − ŷi)

2. (1.10)

Equation (1.10) can be written as

SST = SSR + SSE. (1.11)

In the above equation (1.10) the left hand side term
∑

(yi− ȳ)2 is called total sum of

squared which represents the total variation, in the right hand side the first term
∑

(ŷi− ȳ)2

is called residual sum of squared which represents explained variation and the second term∑
(yi − ŷi)

2 is called error sum of squared which represents unexplained variation [12].

SST is a measure of the uncertainty in predicting y when x is not considered.

Similarly, SSE measures the variation in yi when a regression model utilizing the predictor

variable x is employed. A natural measure of the effect of x in reducing the variation in

y, i.e., in reducing the uncertainty in predicting y, is to express the reduction in variation

(SST − SSE = SSR) as a proportion of the total variation [12], [14]:

R2 =
SSR

SST
= 1− SSE

SST
= 1−

∑
(yi − ŷi)

2∑
(yi − ȳ)2

, (1.12)

where ŷi is the predicted value of the dependent variable for observation, ȳ is the mean of

the observed values of the dependent variable, yi is the observed value of the dependent

variable for observation, n is the number of observations.

The measure R2 is called the coefficient of determination, which is the statistical

measure for evaluating the goodness of fit a regression model. Since 0 ≤ SSE ≤ SST ,

then the range of the values of R2 lies between 0 and 1, i.e.,

0 ≤ R2 ≤ 1
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• R2 = 0 indicates that the independent variables do not explain any of the variability

of the dependent variable.

• R2 = 1 indicates that the independent variables explain all the variability of the

dependent variable [12], [14].

Adjusted Coefficient of Determination

In a regression model, the adjusted coefficient of determination, represented as R2
adj ,

is a revised form of the original coefficient of determination, R, that adjusts for the number

of predictors. Its primary function is to offer a more precise assessment of the regres-

sion model’s goodness of fit, particularly in cases where contrasting models have varying

numbers of predictors.

Although the value of R tends to increase with the number of predictors added to

a model, even if those predictors are irrelevant, the inclusion of extraneous predictors is

penalized by R2
adj . This feature serves to prevent overfitting and offers a more accurate

evaluation of the model’s performance.

The formula for calculating R2
adj is:

R2
adj = 1−

SSE
n−p

SST
n−1

= 1− SSE

SST
.
(n− 1)

(n− p)

= 1− (1−R2)(n− 1)

n− p
, (1.13)

where n is the number of observations, p is the number of predictors in the model.

When adding additional predictors does not enhance the performance of the model,

R2
adj will consistently be equal to or less than R2. For comparing the goodness of fit of

different models, it is generally favored over R2 because it provides a more conservative

estimate of the proportion of variance explained by the model [12], [14].
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CHAPTER 2

THE MULTIPLE LINEAR REGRESSION MODEL

2.1 MULTIPLE REGRESSION MODELS

We consider the linear regression model with a single predictor (regressor) variable.

The model is stated as

y = β0 + β1x+ ϵ. (2.1)

It is commonly referred to as the simple linear regression model because only one predictor

variable is involved. The intercept β0 and the slope β1 are unknown constants and ϵ is a

random error component. The errors are assumed to have mean zero and unknown variance

σ2. Additionally we usually assume that the errors are uncorrelated. This means that the

value of one error does not depend on the value of any other error.

Consider, n pairs of dataset, say (x1, y1), (x2, y2), · · · , (xn, yn). Then the above

model (2.1) can be stated as

yi = β0 + β1xi + ϵi,∀i = 1, 2, ..., n. (2.2)

Equation (2.1) called as a population regression model while (2.2) is a sample regression

model [12], written in terms of the n pairs of data (x1, y1), (x2, y2), ..., (xn, yn), where yi

is the value of the response variable in the ith observation, β0 and β1 are parameters, xi is

a known constant (the value of the predictor variable in the ith observation), ϵi is a random

error term with mean E(ϵi) = 0 and variance Var(ϵi) = σ2.

The extension of the linear regression model is the multiple linear regression model.

Analysis of the association between a dependent variable and two or more independent

variables is accomplished through the use of a statistical technique multiple regression

model. The simplified form linear regression is essentially extended to situations involving

multiple predictors.
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In the multiple regression model, the response y is associated to k regressors or

predictor variables. The model

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ϵ (2.3)

is called a multiple linear regression model with k regressors. The sample regression model

corresponding to equation (2.3) can be written as

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi

= β0 +
k∑

j=1

βjxij + ϵi, ∀i = 1, 2, · · ·n, (2.4)

where error terms ϵi identical, independent and normally distributed with mean 0 and vari-

ance σ2, which can be written as ϵi
iid∼ N(0, σ2). In vector form equation (2.4) can be

written as,

y⃗ = Xβ⃗ + ϵ⃗. (2.5)

In matrix terms, it can be defined by the following matrices

y⃗ =



y1

y2
...

yn


, X =



1 x11 x12 . . . x1k

1 x21 x22 . . . x2k

...
...

... . . . ...

1 xn1 xn2 . . . xnp


, β⃗ =



β1

β2

...

βk


, ϵ⃗ =



ϵ1

ϵ2
...

ϵn


,

where y⃗ is an n× 1 vector of responses, X is an n× p matrix of the levels of the regressor

variables (constant), β⃗ is a vector of parameters or the regression coefficients, and ϵ⃗ is a

vector of independent normal random errors.

The expectation of random error is E (⃗ϵ) = 0 and variance-covariance matrix is

Var(ϵ) =



σ2 0 · · · 0

0 σ2 · · · 0

...
... . . . ...

0 0 · · · σ2


= σ2I.
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Consequently, the expectation of the random variable y is

E(y) = Xβ

and the variance-covariance matrix of y is

Var(y) = σ2I.

2.1.1 ASSUMPTIONS

It is important to check a number of assumptions before applying a multiple regres-

sion. The assumptions are following [18]:

1. The values of the predictors, xi1, xi2, · · · , xik, ∀i = 1, 2, · · · , n, can be taken as

constants; they are not random variables.

2. The expected value of ϵ is, E(ϵi) = 0,∀i = 1, 2, · · · , n.

3. The errors, ϵi, at each set of values of the predictors, xi1, xi2, · · · , xik, are normally

distributed.

4. Var(ϵi) = σ2,∀i = 1, 2, · · · , n, is constant. This implies that the variances Var(y⃗) =

σ2 are all the same. All observations have the same precision.

5. The different random errors ϵi and ϵj , and their corresponding different responses yi

and yj are independent. This implies that Cov(ϵi, ϵj) = 0, for i ̸= j.

2.2 ESTIMATION OF PARAMETERS IN THE MULTIPLE LINEAR REGRESSION MODEL

This section will describe the OLS method for estimating parameters in the multiple

linear regression model.
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2.2.1 ORDINARY LEAST SQUARES (OLS) REGRESSION

The method of “least squares” is a versatile mathematical technique employed to

determine the optimal curve that best fits a given set of data points. It reduces the sum of

the squared differences between the values that were seen and those that were projected.

This approach is applicable to many kinds of equations and models.

The terms “ordinary least squares” (OLS) and “least squares” (LS) are often used in-

terchangeably, but “ordinary least squares” (OLS) is a specific type of least squares method

that is commonly used in the context of linear regression. A technique for estimating

the unknown parameters in a linear regression model in statistics is called ordinary least

squares (OLS) or linear least squares. Ordinary Least Squares (OLS) specifically refers

to the method of linear regression that minimizes the sum of the squared differences be-

tween the responses predicted by the linear approximation and the observed responses in

the dataset.

Ordinary Least Squared Estimation of the regression coefficient

Regression parameters of equation (2.3) can be estimated by using the method of

least squares. Assume that there are more than k observations; for each iteration of the

regressor xj , let yi represent the observed response and xij stand for the ith observation.

Consider that the errors are uncorrelated and that the model’s error term ϵ has E(ϵ) = 0

and Var(ϵ) = σ2.

For given y and X , the object is to find out the vector of least-squared estimators,

β̂, that minimizes the sum of squared of ϵ, i.e,
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S(β⃗) =
n∑

i=1

ϵ2i = (⃗ϵ)
′
ϵ⃗ = (y⃗ −Xβ⃗)

′
(y⃗ −Xβ⃗)

= ((y⃗)
′ − (Xβ⃗)

′
)(y⃗ −Xβ⃗)

= ((y⃗)
′ − (β⃗)

′
X

′
)(y⃗ −Xβ⃗)

= (y⃗)
′
y⃗ − (y⃗)

′
Xβ⃗ − (β⃗)

′
X

′
y⃗ + (β⃗)

′
X

′
Xy⃗

= (y⃗)
′
y⃗ − 2(β⃗)

′
X

′
y⃗ + (β⃗)

′
X

′
Xy⃗.

Remark 2.1. Here β⃗ is a p× 1 vector, (β⃗)
′

is a 1× p vector, X is a n× p matrix, X
′

is a

p× n matrix, y⃗ is a n× 1 vector. So the dimension of the matrix (β⃗)
′
X

′
y⃗ is 1× 1, which is

a scalar, and its transpose ((β⃗)
′
X

′
y⃗)

′
= (y⃗)

′
Xβ⃗ has the same dimension, that is, the same

scalar. S(β⃗) is a real valued and differentiable function.

Now after differentiating on both sides of S(β⃗) with respect to β yields

∂S

∂β⃗
= −2X

′
y⃗ + 2X

′
Xβ⃗,

∂2S

∂(β⃗)2
= 2X

′
X,

where ∂2S

∂(β⃗)2
is non-negative definite. Then the least squared estimator must satisfy

∂S

∂β⃗

∣∣∣∣ ˆ⃗
β

= −2X
′
y⃗ + 2X

′
X

ˆ⃗
β = 0,

which simplifies to

X
′
X

ˆ⃗
β = X

′
y⃗. (2.6)

Equations (2.6) are called the least squares normal equations. If the predictors are linearly

independent, that is, if columns of the X matrix can not be expressed as a linear combina-

tion of the other columns, which mathematically can be written as rank(X) = k(full rank),

then X
′
X is a positive definite. So, there exist a inverse matrix of X ′

X .
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To figure out the least-squares estimator of β⃗, solve the normal equation (2.6). Now,

multiplying on both sides of equation (2.6) by (X
′
X)−1 yields

(X
′
X)−1X

′
X

ˆ⃗
β = (X

′
X)−1X

′
y⃗

or, I ˆ⃗β = (X
′
X)−1X

′
y⃗

or, ˆ⃗β = (X
′
X)−1X

′
y⃗,

which is the required ordinary least squares estimator (OLSE) of β⃗. Since ∂2S

∂(β⃗)2
is non-

negative definite, so ˆ⃗
β minimize S(β⃗).

Fitted values and Residuals

Fitted Values:

The fitted regression model is as follows

ŷ = X
ˆ⃗
β, (2.7)

where ˆ⃗
β is the estimator of β⃗. Then

ŷ = X
ˆ⃗
β

= X(X
′
X)−1X

′
y⃗

= Hy⃗,

where H = X(X
′
X)−1X

′ is n× n matrix and which is called “Hat matrix”. It transforms

or maps the vector of observed values into a vector of fitted values [12], [19].

Properties of H:

• H is symmetric matrix.
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• H is idempotent matrix, i.e, HH = H .

HH = (X(X
′
X)−1X

′
)(X(X

′
X)−1X

′
)

= X(X
′
X)−1(X

′
X)(X

′
X)−1X

′

= H.

Residuals:

It is known that the difference between the observed and fitted values is called

residual, which mathematically can be written as [20]

e⃗ = y⃗ − ˆ⃗y

= y⃗ −X
ˆ⃗
β

= y⃗ −X(X
′
X)−1X

′
y⃗

= y⃗ −Hy⃗

= (I −H)y⃗.

Here,

• (I −H) is a symmetric matrix.

• (I −H) is an Idempotent matrix, i.e, (I −H)(I −H) = (I −H).

(I −H)(I −H) = I − IH −HI +HH

= I − 2H +HH

= I − 2H +H (∵ HH = H)

= I −H.

Properties of Least-Squares Estimators

The properties of least-squares estimators β̂ can be represented as follows [12], [18]:
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Bias:

The expected value of ˆ⃗
β:

E(
ˆ⃗
β) = E((X

′
X)−1X

′
y⃗)

= E((X
′
X)−1X

′
(Xβ⃗ + ϵ))

= E((X
′
X)−1X

′
Xβ⃗ + (X

′
X)−1X

′
ϵ)

= (X
′
X)−1X

′
Xβ⃗ + (X

′
X)−1X

′
E(ϵ)

(Here (X
′
X)−1X

′
Xβ⃗ and (X

′
X)−1X

′
is a matrix of constant.)

= Iβ⃗ + 0 (∵ (X
′
X)−1X

′
X = I, E(ϵ) = 0.)

= β⃗.

Thus, the required expected value of ˆ⃗
β is,

E(
ˆ⃗
β) = β⃗. (2.8)

Therefore if the model is accurate, then ˆ⃗
β is the unbiased estimator of β⃗.

Variance:

Var(
ˆ⃗
β) = Cov(

ˆ⃗
β,

ˆ⃗
β)

= (X
′
X)−1X

′
Cov(y⃗, y⃗)((X

′
X)−1X

′
)
′

= (X
′
X)−1X

′
Var(y⃗)((X

′
X)−1X

′
)
′
.
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Var(y⃗) = E(y⃗(y⃗)
′
)− E(y⃗)E(y⃗)

′

= E((Xβ⃗ + ϵ)(Xβ⃗ + ϵ)
′
)− xβ⃗(Xβ⃗)

′

= E(Xβ⃗(β⃗)
′
X

′
+Xβ⃗(⃗ϵ)

′
+ ϵ⃗(β⃗)

′
X

′
+ ϵ⃗(⃗ϵ)

′
)− xβ⃗(β⃗)

′
X

′

= Xβ⃗(β⃗)
′
X

′
+ 0 + 0E (⃗ϵ(⃗ϵ)

′
))−Xβ⃗(β⃗)

′
X

′

= E((β⃗)2)

= Var(β⃗) + E(β⃗)2

= Var(β⃗)

= Iσ2.

Now,

Var(
ˆ⃗
β) = (X

′
X)−1X

′
Iσ2((X

′
X)−1X

′
)
′

= σ2(X
′
X)−1(X

′
X)(X

′
X)−1

= σ2(X
′
X)−1.

Therefore,

Var(
ˆ⃗
β) = σ2(X

′
X)−1. (2.9)

In equation (2.9) the matrix contains the variances and co-variances of the estimated co-

efficients where the co-variances are in the off-diagonal elements and the variances of the

estimated coefficients are in the diagonal elements [18].

Let C = (X
′
X)−1. Then

Var(
ˆ⃗
β) = σ2cii,

Cov(
ˆ⃗
βi,

ˆ⃗
βj) = σ2cij,

Corr(
ˆ⃗
βi,

ˆ⃗
βj) =

cij√
ciicjj

.
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2.2.2 THE METHOD OF MAXIMUM LIKELIHOOD ESTIMATION (MLE)

It is considered that, in the regression model (2.5), the errors are independently

distributed as well as follow the normal distribution with mean zero and constant variance,

σ2, i.e., ϵ ∼ N(0, σ2I).

For the errors the normal density function is as follows:

f(ϵi) =
1

σ
√
2π

exp

(
− 1

2σ2
ϵ2i

)
,∀i = 1, 2, · · · , n (2.10)

with the joint density of ϵ1, ϵ2, · · · , ϵn, the likelihood function can be written as:

L(β⃗, σ2) =
n∏

i=1

f(ϵi) =
1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑
i=1

ϵ2i

)

=
1

(2πσ2)n/2
exp

(
− 1

2σ2
ϵ
′
ϵ

)
=

1

(2πσ2)n/2
exp

(
− 1

2σ2
(y⃗ −Xβ⃗)

′
(y⃗ −Xβ⃗)

)
. (2.11)

It is known that a log transformation is monotonic, because in original dataset, it

preserves the order of the values and it is easy to deal with the log of the likelihood, so

lnL(β⃗, σ2) is maximized instead of L(β⃗, σ2). Now taking ln on both sides of equation

(2.11),

lnL(β⃗, σ2) = −n

2
ln(2πσ2)− 1

2σ2
(y⃗ −Xβ⃗)

′
(y⃗ −Xβ⃗)

= −n

2
ln(2πσ2)− 1

2σ2
(y⃗ −Xβ⃗)2. (2.12)

Differentiating on both sides of equation (2.12) with respect to β⃗ and σ2,

∂ lnL(β⃗, σ2)

∂β⃗
=

1

2σ2
2X

′
(y⃗ −Xβ⃗)

=
1

σ2
X

′
(y⃗ −Xβ⃗). (2.13)

∂ lnL(β⃗, σ2)

∂β⃗
= −n

2

1

2πσ2
2π − 1

2
(−1)(σ2)−2(y⃗ −Xβ⃗)

′
(y⃗ −Xβ⃗)

= − n

2σ2
+

1

2(σ2)2
(y⃗ −Xβ⃗)

′
(y⃗ −Xβ⃗). (2.14)
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Now by equating the first order derivative (2.13) and (2.14), the maximum likeli-

hood estimator ˆ⃗
β and σ̂2 given as following:

∂ lnL(β⃗, σ2)

∂β⃗

∣∣∣∣
β⃗=

ˆ⃗
β

= 0

or,
1

σ2
X

′
(y⃗ −Xβ⃗) = 0

or, X
′
y⃗ −X

′
X

ˆ⃗
β = 0

or, X
′
X

ˆ⃗
β = X

′
y⃗

or, (X
′
X)

′
X

′
X

ˆ⃗
β = (X

′
X)

′
X

′
y⃗

or, ˆ⃗
β = (X

′
X)

′
X

′
y⃗. (2.15)

∂ lnL(β⃗, σ2)

∂σ2

∣∣∣∣
σ2=σ̂2

= 0

or, − n

2σ̂2
+

1

2(σ̂2)2
(y⃗ −Xβ⃗)

′
(y⃗ −Xβ⃗) = 0

or,
n

2σ̂2
=

1

2(σ̂2)2
(y⃗ −Xβ⃗)

′
(y⃗ −Xβ⃗)

or, n =
1

σ̂2
(y⃗ −Xβ⃗)

′
(y⃗ −Xβ⃗)

or, σ̂2 =
1

n
(y⃗ −Xβ⃗)

′
(y⃗ −Xβ⃗). (2.16)

Since rank(X) = k, so ˆ⃗
β and σ̂2 is the required maximum likelihood estimator (m.l.e) of

β⃗ and σ2. The second order partial derivative of lnL(β⃗, σ2) with respect to β⃗ and σ2 is as

follows:

∂2 lnL(β⃗, σ2)

∂β⃗2
= − 1

σ2
X

′
X.

∂2 lnL(β⃗, σ2)

∂(σ2)2
=

n

2σ4
− 1

σ6
(y⃗ −Xβ⃗)2.

∂2 lnL(β⃗, σ2)

∂β⃗∂σ2
= − 1

σ4
X

′
(y⃗ −Xβ⃗).

∂2 lnL(β⃗, σ2)

∂σ2∂β⃗
= − n

2σ2
− 1

σ4
X(y⃗ −Xβ⃗).
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The Hessian matrix can be written as:

H =

∂2 lnL(β⃗,σ2)

∂β⃗2

∂2 lnL(β⃗,σ2)

∂β⃗∂σ2

∂2 lnL(β⃗,σ2)
∂(σ2)2

∂2 lnL(β⃗,σ2)

∂σ2∂β⃗


=

 − 1
σ2X

′
X − 1

σ4X
′
(y⃗ −Xβ⃗)

n
2σ4 − 1

σ6 (y⃗ −Xβ⃗)2 − n
2σ2 − 1

σ4X(y⃗ −Xβ⃗)

 .

The determinant of leading principal minor of order 1 is,

D1(H) =

∣∣∣∣− 1
σ2X

′
X

∣∣∣∣ < 0.

The determinant of leading principal minor of order 2 is,

D2(H) =

∣∣∣∣∣∣∣
− 1

σ2X
′
X − 1

σ4X
′
(y⃗ −Xβ⃗)

n
2σ4 − 1

σ6 (y⃗ −Xβ⃗)2 − n
2σ2 − 1

σ4X(y⃗ −Xβ⃗)

∣∣∣∣∣∣∣ > 0.

Since the leading principal minors are alternative signs, i.e., D1(H) < 0 and D2(H) > 0,

so the Hessian H is negative definite at β⃗ =
ˆ⃗
β and σ2 = σ̂2. This confirms that the

likelihood function is maximized at these values.

After comparing between ordinary least-squared estimator and maximum likeli-

hood estimator, conclude that ordinary least-squared estimator and maximum likelihood

estimator are identical and maximum likelihood estimator of β⃗ is also an unbiased estima-

tor of β⃗ [12], [20].
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CHAPTER 3

ADVANCED METHODS FOR MODEL INADEQUACIES

3.1 MULTICOLLINEARITY

In multiple regression analysis, the term multicollinearity refers to the presence of

a linear relationship among the independent variables. Collinearity indicates two variables

that are close perfect linear combinations of one another. Multicollinearity occurs when the

regression model includes several variables that are significantly correlated not only with

the dependent variable but also to each other.

3.1.1 TYPES OF MULTICOLLINEARITY

Multicollinearity can be divided into two parts. One is “Data-based multicollinear-

ity” and another one is “Structural multicollinearity”, which are discussed with an ex-

ample in the following way:

1. Data-based multicollinearity: Data-based multicollinearity occurs when there is

intercorrelation among the predictor variables in the sample data. This phenomenon

is due to the specific dataset and may not accurately represent the characteristics

of the overall population. It arises because of a poorly designed experiment by the

researchers or because of purely observational data [22].

Example 3.1.1. In example 1.2.1 of chapter 1, we have a dataset with information

about home sales; in this case, the sale price serves as the dependent variable, while

the number of bedrooms and the house’s size in square feet serve as the independent

variables. Now, assume a dataset where there is a strong correlation between house

of the size and the number of the bedroom. Thus, it stands to reason that larger

houses also tend to have more bedrooms.
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It is possible to find multicollinearity in a regression model that uses house size and

number of bedrooms as independent variables to forecast the selling price of a prop-

erty. This is due to the fact that the coefficient estimates become unstable when one

variable (size, for example) provides information that is repetitive with another vari-

able (bedrooms, for example).

Remark 3.1. It is possible that this correlation will not hold true after collecting a

new sample or additional data.

2. Structural multicollinearity: It occurs when the researcher generates new indepen-

dent variable from one or more existing variables, for example creating x3 from x ,

it is in fact mathematical artifact which leads to multicollinearity [22].

Example 3.1.2. Consider the following scenario, to fit a polynomial regression model

of the following form onto a dataset containing a single independent variable x and

a dependent variable y:

yi = β1xi + β2x
3
i + ϵi.

The independent variables in this model are x and x3. Nevertheless, multicollinearity

problems may arise if the model incorporates both x and x3; this is due to the strong

correlation between the two variables in the majority of datasets.

The design matrix is given below: 

1 x1 x3
1

1 x1 x3
1

...
...

...

1 xn x3
n


Here, the ith observation is represented by xi for the independent variable x. There

is a structural multicollinearity in the model due to the mathematical relationship

between x and x3.
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Because of this, problems like unstable coefficient estimates and inflated standard

errors might arise, which inflate the confidence interval of estimated coefficients and

make it hard to tell whether the coefficients are significant.

3.1.2 CONSEQUENCES OF MULTICOLLINEARITY

Multicollinearity is the event of great inter-correlations among the factors in a mul-

tiple regression model. Multicollinearity can lead to biased or misleading findings when

a researcher tries to determine the best way to use each component in order to predict

or understand the response variable in a statistical model. Multicollinearity in regression

analysis can have several consequences, including [4], [12]:

1. Multicollinearity inflates the standard errors of the regression coefficients, making

them larger than they would be without multicollinearity. As a result, confidence

intervals for the coefficients become wider, reducing the precision of the estimates.

That is, the findings from a model with multicollinearity may not be trustworthy.

2. Multicollinearity can lead to instability in the estimation of coefficients. Small changes

in the data or model specification can result in significant changes in the estimated

coefficients, making them difficult to interpret and potentially misleading.

3. In the presence of multicollinearity, the significance tests for individual coefficients

may be unreliable. Variables that are actually important predictors of the outcome

variable may appear to be statistically insignificant due to multicollinearity. That is,

multicollinearity makes some of the significant variables under study to be statisti-

cally insignificant.

4. Multicollinearity can lead to misleading interpretations of the relationships between

predictor variables and the outcome variable. It becomes challenging to assess the
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unique contribution of each predictor variable to the model and obscure the identifi-

cation of important predictors in the model.

3.1.3 TECHNIQUES FOR IDENTIFYING MULTICOLLINEARITY

Multicollinearity among the variables is examined using different methods. In this

study we will discuss the following three methods [4], [12].

1. Pairwise scatterplot

2. Pearson’s Correlation Coefficients

3. Variance Inflation Factor

Pairwise scatterplot

A scatterplot is used to observe the relationship between the variables. The scat-

terplot is a graphical method that signifies the linear relationship between pairs of inde-

pendent variables. It is important to look for any scatterplots that seem to indicate a linear

relationship between pairs of independent variables. It uses dots to represent values for

two different variables. The location of each dot on the horizontal and vertical axis denotes

values for an individual data point. It is useful to find outliers and observe the patterns

between some dimensions.

Pearson’s Correlation Coefficients

Pearson’s correlation coefficient is a statistical measure of the strength of a linear

relationship between paired data. The correlation coefficient is calculated using the for-

mula:

r =
n(
∑

XY )− (
∑

X)(
∑

Y )√
(n
∑

X2 − (
∑

X)2)(n
∑

Y 2 − (
∑

Y )2)
,



46

where,

r is the correlation coefficient,

n is the number of observations,

X is the first variable in a sample,

Y is the second variable in a sample.

Correlation can take on any value in the range [−1, 1]. The sign of the correlation

coefficient indicates the direction of the relationship, while the magnitude of the correlation

(how close it is to −1 or +1) indicates the strength of the relationship.

If the correlation coefficient value is higher with the pairwise variables, it indicates

possibility of multicollinearity.

Variance Inflation Factor (VIF)

Variance inflation factor is used to measure how much the variance of the estimated

regression coefficient is inflated if the independent variables are correlated. When correla-

tion exists among predictors, the standard error of predictors coefficients will increase and

consequently the variance of predictor’s coefficients are inflated. That is, in the absence of

multicollinearity, the co-variance matrix Var(
ˆ⃗
β) = (XTX)−1σ2 and the variance of the

jth estimator β̂j,∀j = 1, 2, · · · , k is written as Var(
ˆ⃗
βj) = [(XTX)−1]jjσ

2), where [· · · ]jj

indicates the jth diagonal elements of Var(
ˆ⃗
β). Given that the jth predictor Xj is correlated

with other predictors (x1, x2, · · · , xj−1, xj+1, · · · , xk), then the variance

Var( ˆ⃗βj) = [(XTX)−1]jjσ
2 × 1

1 +R2
j

,

where

V IFj =
1

1 +R2
j

is the variance inflation factor for the variance of ˆ⃗
βjj and R2

j is the coefficient of determi-

nation, obtained by regressing xj against (x1, x2, · · · , xj−1, xj+1, · · · , xk).
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The value of V IFj = 1,∀j = 1, 2, · · · , k indicates that the independent variables

are not correlated to each other. If the value of V IFj is 1 < V IFj < 5, it specifies that the

predictor variables are moderately correlated to each other. The challenging value of V IFj

is between 5 to 10 as it specifies the highly correlated variables. If 5 ≤ V IFj ≤ 10,∀j =

1, 2, · · · , k, there will be multicollinearity among the predictors in the regression model

and V IFj > 10 indicate the regression coefficients are feebly estimated with the presence

of multicollinearity [4].

3.1.4 SUGGESTED REMEDY FOR MULTICOLLINEAITY

There are several ways to fix this multicollinearity problem. Some of the techniques

are briefly described in the following [14]:

1. Centering Variables: Multicollinearity among the first-order, second-order, and

higher-order terms for any given predictor variable can be reduced in polynomial

regression models by using centered data for the predictor variable’s (or variables).

2. Variable Selection: Reducing the standard errors of the predicted regression coef-

ficients of the remaining predictor variables and reducing multicollinearity can be

achieved by dropping one or more predictor variables from the model. Two signifi-

cant restrictions exist with this corrective technique.

• The first issue is that the deleted predictor variables are not directly analyzed.

• Secondly, the extraneous correlated predictor variables have an effect on the

magnitudes of the remaining predictor variables’ regression coefficients.

3. Combine Variables: It is more efficient to use a single composite variable to reflect

the underlying construct than to use numerous associated variables. Use Body Mass

Index (BMI) rather than height and weight as an example.
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4. Principal Component Analysis (PCA): To minimize the amount of variables in

a dataset while retaining the maximum amount of variability, one dimensionality

reduction technique is Principal Component Analysis (PCA). Principal component

analysis does this by converting the input variables into a new set of variables that

are linear combinations of the input variables.

Identifying the directions (or principle components) in which the data differs most is

the primary objective of PCA. The data variation that can be explained by the first

principal component is the greatest; the variance that can be explained by the second

principal component is the second highest; and so on. The relationships between

each major component are orthogonal, or uncorrelated.

5. Two stage least-squares: In certain economic research, multicollinearity issues can

be avoided by estimating the regression coefficients for various predictor variables

from various data sets. For instance, in demand study a model is given as

yi = β0 + β1xi1 + xi2 + xi3 + ϵi,

where the predictor variables are “income” which is denoted by x1, “price” which is

denoted by x2, and the response variable is “demand” which is denoted by yi for ith

observations. From cross-section data the coefficient of the predictor variable income

x1 can be estimated and the demand variable can be adjusted as:

y
′

i = yi − β1xi1.

Then the coefficient of the predictor price β2, is estimated by regressing the adjusted

response variable y
′
i on x2.

6. Regularization: Apply regularization methods like Ridge Regression or Lasso Re-

gression to decrease the size and variation of the regression coefficients by adding a

penalty term to them.
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3.2 THE GENERALIZED LEAST SQUARES ESTIMATION

In this section, the assumptions of the generalized least squares method, its deriva-

tion, and generalized least squares estimators for a linear model will be discussed in detail.

Consider the following model

y⃗ =Xβ⃗ + ϵ⃗,

E(ϵ) = 0,Var(ϵ) = σ2V. (3.1)

In the above model (3.1), Var(ϵ) = σ2V , where V is a n × n non-singular, positive

definite and symmetric matrix [12], [21]. It violates the usual assumptions Var(ϵ) = σ2I

of the multiple regression model (2.5). In this model the matrix V can be interpreted in the

following way [21]:

1. If V is diagonal but unequal variances, then observations y⃗ are uncorrelated but con-

tain unequal variances.

2. The observations are correlated, when some of the off-diagonal elements of V are

nonzero.

In this case the ordinary least-squares estimators β⃗ = (X
′
X)−1X

′
y⃗ is not appli-

cable. Because ordinary least-squares estimates provides unbiased estimates but has more

variability, which can be shown as

E(β⃗) = (X
′
X)−1X

′
E(y⃗)

= (X
′
X)−1X

′
Xβ⃗

= β⃗,

Var(β⃗) = (X
′
X)−1X

′
Var(y⃗)X(X

′
X)−1

= σ2(X
′
X)−1X

′
V X(X

′
X)−1.
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This situation is defined as “heteroscedasticity”. So a new approach must be

adopted to solve this issue. In order to address this issue, the model can be converted

into a new set of observations that agree to the conventional least-squares assumptions.

Then following the transformation, the transformed data can be evaluated by ordinary least

squares.

3.2.1 DERIVATION OF THE GENERALIZED LEAST SQUARES METHOD FOR A LINEAR

MODEL

Since V is a positive definite, symmetric, so there exists a n × n non-singular,

symmetric matrix K such that [12], [21],

K ′K = KK = V.

So the matrix K can be called the square root of V . Premultiply by K−1 on both

sides of the model (3.1) yields that,

K−1y⃗ = K−1Xβ⃗ +K−1ϵ⃗. (3.2)

Now define new variables

K−1y⃗ = z⃗, K−1X = B, K−1ϵ⃗ = g⃗.

Equation (3.2) can be written as

z⃗ = Bβ⃗ + g⃗, (3.3)

which is the required transformed new linear model of the above linear model (3.1).

Now observe that,

E(g⃗) = E(K−1ϵ) = K−1E (⃗ϵ) = 0,
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Var(g⃗) = [⃗g − E(g⃗)][⃗g − E(g⃗)]
′

= E(g⃗g⃗
′
)

= E(K−1ϵ⃗(K−1ϵ⃗)
′
)

= K−1E (⃗ϵ(⃗ϵ)
′
)(K

′
)−1

= K−1Var(⃗ϵ)K−1(∵ K ′ = K,Var(⃗ϵ) = E((⃗ϵ)2)− (E (⃗ϵ))2)

= K−1σ2V K−1

= σ2K−1V K−1

= σ2(K−1K)(KK−1)

= σ2I.

Therefore, the value of mean of the elements of g⃗ is zero, the elements of g⃗ has

constant variances and are uncorrelated. Since the error g⃗ of the model (3.3) satisfied the

usual assumptions, so ordinary least squares would be applicable. So the least squares

function is

S(β⃗) = (g⃗)
′
g⃗

= (K−1ϵ⃗)
′
K−1ϵ⃗

= (⃗ϵ)
′
(K−1)

′
K−1ϵ⃗

= (⃗ϵ)
′
(K

′
)−1K−1ϵ⃗

= (⃗ϵ)
′
(KK)−1ϵ⃗ (∵ K

′
= K)

= (⃗ϵ)
′
(V )−1ϵ⃗

= (y⃗ −Xβ⃗)
′
V −1(y⃗ −Xβ⃗). (3.4)

Now differentiate on both sides of equation (3.4) with respect to β yields that,

∂S

∂β⃗
= −X

′
V −1(y⃗ −Xβ⃗) + ((y⃗)

′ − (β⃗)
′
X

′
)V −1(−X)

= −2X
′
V −1y⃗ + 2X

′
V −1Xβ⃗,
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and

∂2S

∂(β⃗)2
= 2X

′
V −1X,

where ∂2S

∂(β⃗)2
is non-negative definite. Then the least squared estimator must satisfy

∂S

∂β⃗

∣∣∣∣ ˆ⃗
β

= −2X
′
V −1y⃗ + 2X

′
V −1X

ˆ⃗
β = 0,

which simplifies to

(X
′
V −1X)

ˆ⃗
β = X

′
V −1y⃗. (3.5)

Equation (3.5) are called the least squares normal equations.

3.2.2 GENERALIZED LEAST SQUARES ESTIMATORS FOR A LINEAR MODEL

Now to find out the least-squares estimator of β⃗, solve the normal equations by

multiplying on both sides of equation (3.5) by (X
′
V −1X)−1.

(X
′
V −1X)−1X

′
X

ˆ⃗
β = (X

′
V −1X)−1X

′
y⃗

or, I ˆ⃗β = (X
′
V −1X)−1X

′
y⃗

or, ˆ⃗β = (X
′
V −1X)−1X

′
y⃗,

which is the required ordinary least squares estimator (OLSE) of β⃗. Since ∂2S

∂(β⃗)2
is non-

negative definite, so ˆ⃗
β minimize S(β⃗).

Alternatively, after applying OLS to the transformed new linear model (3.3) the
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generalized least-squared estimator can be written as

ˆ⃗
β = (B

′
B)−1B

′
z⃗

= [(K−1X)
′
(K−1X)]−1(K−1X)

′
K−1y⃗

= (X
′
(K−1)

′
K−1X)−1X

′
(K−1)

′
K−1y⃗

= (X
′
(K

′
)−1K−1X)−1X

′
(K

′
)−1K−1y⃗

= (X
′
(KK)−1X)−1X

′
(KK)−1y⃗ (∵ K

′
= K)

= (X
′
V −1X)−1X

′
V −1y⃗.

Therefore,

ˆ⃗
β = (X

′
V −1X)−1X

′
V −1y⃗. (3.6)

This equation (3.6) is called the Generalized Least-Squared Estimator (GLSE) of β⃗.

Now it is very easy to prove that ˆ⃗
β is an unbiased estimator of β⃗. The expected

value of GLSE is,

E(
ˆ⃗
β) = E((X

′
V −1X)−1X

′
V −1y⃗)

= (X
′
V −1X)−1X

′
V −1E(y⃗)

= (X
′
V −1X)−1(X

′
V −1X)β⃗

= β⃗.

Thus this finding demonstrates that GLSE serves as an unbiased estimator of β⃗. The

GLSE covariance matrix is provided by

Var(
ˆ⃗
β) = Var((X

′
V −1X)−1X

′
V −1y⃗)

= ((X
′
V −1X)−1X

′
V −1)Var(y⃗)((X

′
V −1X)−1X

′
V −1)

′

= (X
′
V −1X)−1X

′
V −1σ2V (V −1X(X

′
V −1X)−1)

= σ2(X
′
V −1X)−1X

′
V −1V (V −1X(X

′
V −1X)−1)

= σ2(X
′
V −1X)−1.
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Therefore, GLSE can be considered the most optimal linear unbiased estimator of β⃗ [12], [21].

3.3 WEIGHTED LEAST SQUARES ESTIMATION

When the error ϵ are uncorrelated but have unequal variances, then the covariance

matrix of ϵ can be written as:

Var(⃗ϵ) = σ2V =



σ2
1 0 0 . . . 0

0 σ2
2 0 . . . 0

...
...

... . . . ...

0 0 0 . . . σ2
n


=



v11 0 0 . . . 0

0 v22 0 . . . 0

...
...

... . . . ...

0 0 0 . . . vnn


.

That means,

V = (vij)n×n =


vii = σ2

i if i = j

0 if i ̸= j

where the reciprocal of each variance, σ2
i , is defined as the weight, which mathematically

can be expressed as [2]

wi =
1

σ2
i

. (3.7)

Then consider a diagonal matrix W that contains the these weights in its leading or main

diagonal:

W =



w1 0 0 . . . 0

0 w2 0 . . . 0

...
...

... . . . ...

0 0 0 . . . wn


.

The relation between variance and weight can also be written as:

σ2
i =

1

wi

. (3.8)
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Then V can be expressed by the following way [12]:

V =



σ2
1 0 0 . . . 0

0 σ2
2 0 . . . 0

...
...

... . . . ...

0 0 0 . . . σ2
n


=



1
w1

0 0 . . . 0

0 1
w2

0 . . . 0

...
...

... . . . ...

0 0 0 . . . 1
wn


= W−1.

Therefore, the relation between variance and weight matrix can be expressed as,

V = W−1 or,W = V −1.

Since V is a diagonal matrix, so W is also a diagonal matrix, where diagonal ele-

ments of the matrix W are the weights w1, w2, · · · , wn. From equation (3.5), the weighted

least-squares normal equations are

(X
′
WX)

ˆ⃗
β = X

′
Wy⃗. (3.9)

Therefore the weighted least-square estimator is

ˆ⃗
β = (X

′
WX)−1X

′
Wy⃗. (3.10)

Alternatively, it is possible to find out the weighted least-squared estimates by trans-

forming the model to a new set of observations. After multiplying each of the observed

values for the ith observation (including the 1 for the intercept) by the square root of the
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weight for that observation, the transformed set of data [12], [14]:

B =



√
w1 X11

√
w1 . . . X1k

√
w1

√
w2 X21

√
w2 . . . X2k

√
w2

...
... . . . ...

√
wn Xn1

√
wn . . . Xnk

√
wn



=



√
w1 0 0 . . . 0

0
√
w2 0 . . . 0

...
...

... . . . ...

0 0 0 . . .
√
wn





1 X11 . . . X1k

1 X21 . . . X2k

...
... . . . ...

1 Xn1 . . . Xnk


= W 1/2X.

Thus B = W 1/2X , or X = (W 1/2)−1B.

z⃗ =



y1
√
w1

y2
√
w2

...

yn
√
wn


=



√
w1 0 0 . . . 0

0
√
w2 0 . . . 0

...
...

... . . . ...

0 0 0 . . .
√
wn





y1

y2
...

yn


= W 1/2y⃗.

Thus z⃗ = W 1/2y⃗, or y⃗ = (W 1/2)−1z⃗.

g⃗ =



ϵ1
√
w1

ϵ2
√
w2

...

ϵn
√
wn


=



√
w1 0 0 . . . 0

0
√
w2 0 . . . 0

...
...

... . . . ...

0 0 0 . . .
√
wn





ϵ1

ϵ2
...

ϵn


= W 1/2ϵ⃗.

Thus g⃗ = W 1/2ϵ⃗, or ϵ⃗ = (W 1/2)−1g⃗.

Now after applying this transformation in equation (3.1), a new transformed linear

model will be found which is given as below:

(W 1/2)−1z⃗ = (W 1/2)−1Bβ⃗ + (W 1/2)−1g⃗

or,W 1/2(W 1/2)−1z⃗ = W 1/2(W 1/2)−1Bβ⃗ +W 1/2(W 1/2)−1g⃗

or, z⃗ = Bβ⃗ + g⃗.
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Now observed that, the errors have zero expectation in the above new transformed model,

i.e.,

E(g⃗) = E(W 1/2ϵ⃗)

= W 1/2E (⃗ϵ)

= 0 (∵ E (⃗ϵ) = 0),

and the covariance matrix of errors of the new transformed model is

Var(g⃗) = E [⃗g − E(g⃗)][⃗g − E(g⃗)]′

= E(gg′)

= E(W 1/2ϵ⃗(W 1/2ϵ⃗)′)

= E(W 1/2ϵ⃗(⃗ϵ)′(W 1/2)′)

= W 1/2E (⃗ϵ(⃗ϵ)′)W 1/2

= E(W 1/2Var(⃗ϵ)W 1/2)

= E(W 1/2σ2VW 1/2)

= E(W 1/2σ2W−1W 1/2)

= σ2W 1/2(W 1/2W 1/2)−1W 1/2

= σ2W 1/2(W 1/2)−1(W 1/2)−1W 1/2

= σ2I.

The weighted least square estimate of β⃗,

ˆ⃗
β = (B′B)−1B′z⃗

= ((W 1/2X)′(W 1/2X))−1(W 1/2X)′(W 1/2y⃗)

= (X ′(W 1/2)′(W 1/2X))−1(X ′(W 1/2)′)(W 1/2y⃗)

= (X ′W 1/2W 1/2X)−1(X ′W 1/2)(W 1/2y⃗)

= (X ′WX)−1(X ′W )y⃗.
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Thus, ˆ⃗β = (X ′WX)−1(X ′W )y⃗ is the required weighted least-squared estimates of β⃗.

3.3.1 SELECTING THE WEIGHT FOR WLS REGRESSION

OLS does not discriminate between the quality of the observations, giving equal

weight to each, irrespective of whether they are good or poor guides to the location of the

line. Thus, it may be concluded that if we can find a way of assigning more weight to

high-quality observations and less to the unreliable ones, we are likely to obtain a better

fit. In other words, our estimators for coefficients will be more efficient. WOLS works by

incorporating extra non-negative constants (weights) associated with each data point into

the fitting criterion.

Suppose the true relationship is

yi = β0 + β1xi + ϵi,∀i = 1, 2, ..., n,

where E[ϵi] = 0 and Var(ϵi) = σ2
i , which is a heteroscedastic model.

In ordinary least squares, the estimated coefficients provide the regression equation

that minimizes SSE =
∑

e2i . In weighted least squares (WLS), the estimated equation

minimizes
∑

wie
2
i where wi is a weight given to the ith observation. The object is to

minimize the sum of the squares of the random factors of the estimated residuals. If the

weights are all the same constant, then we have ordinary least squares (OLS) regression.

However, if the structure of the data suggests unequal weights are appropriate, then it would

be inappropriate to ignore the regression weights.

Error Variance Unknown

Utilizing weighted least squares with weights wi is a very simple process if the

variances σ2
i are either known or can be determined by a proportional constant. However,

in reality, these variances, σ2
i , are rarely known, therefore requiring the use of estimated
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variances. The use of some possible variance and standard deviation functions are as fol-

lows [14]:

1. If a residual plot against a predictor exhibits a megaphone shape, then regress the

absolute values of the residuals against that predictor. The resulting fitted values of

this regression are estimates of σi.

2. If a residual plot against the fitted values exhibits a megaphone shape, then regress the

absolute values of the residuals against the fitted values. The resulting fitted values

of this regression are estimates of σi.

3. If a residual plot of the squared residuals against a predictor exhibits an upward trend,

then regress the squared residuals against that predictor. The resulting fitted values

of this regression are estimates of σ2
i .

4. If a residual plot of the squared residuals against the fitted values exhibits an upward

trend, then regress the squared residuals against the fitted values. The resulting fitted

values of this regression are estimates of σ2
i .

5. If the predictors are discrete or continuous with many replications for each xi value,

then arrange the dataset in descending to ascending order and cluster the datasets

with replications for each xi values. Find out the mean values of the predictors and

sample variance of the response variables for each cluster. Then regress the sample

variances, S2
y , against the average values, x̄, i.e.,

S2
y ∼ γ0 + γ1x̄,

where γ0 and γ1 are the intercept and slope of this regression model respectively.

After that substituting each xi value into the above equation will give the estimate

of the variance σ̂2
i (which is the fitted value of the above variance function) of the
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corresponding observation yi and the required weights will be the reciprocal of this

σ̂2
i , which mathematically can be written as,

wi =
1

σ̂2
i

,

or, if v̂i is fitted value from standard deviation function, then the above equation can

be written as

wi =
1

v̂i
.

After using one of these methods to estimate the weights, wi, these weights can be

used in weighted least squares regression model.
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CHAPTER 4

GAUSS NEWTON ITERATIVE METHOD (GNIM) FOR NONLINEAR LEAST

SQUARES ESTIMATION

4.1 THE NONLINEAR REGRESSION MODEL

Regression analysis in which the relationship between the independent and depen-

dent variables is not linear, that means, it does not follow a linear relationship with the

unknown parameters is considered a nonlinear regression model. For instance, the model

y = θ1e
−θ2x + ϵ (4.1)

is not linear with respect to unknown parameters θ1 and θ2. In general, the nonlinear re-

gression model can be written as,

y⃗ = f(x, θ⃗) + ϵ, (4.2)

where θ⃗ is a p×1 vector of parameters and for any nonlinear regression model, f(x, θ⃗) is the

expectation function, which is a nonlinear function of the parameters. Consider the above

nonlinear model (4.1), the expectation function is f(x, θ⃗) = θ1e
−θ2x. Then the derivatives

of this expectation function with respect to parameters θ1 and θ2 are

∂f(x, θ⃗)

∂θ1
= e−θ2x,

∂f(x, θ⃗)

∂θ2
= −θ1xe

−θ2x.

Since the derivatives are functions of the unknown parameters θ1 and θ2, the above

stated model (4.1) is a nonlinear [12].

4.1.1 DIFFERENCE BETWEEN LINEAR AND NONLINEAR REGRESSION MODEL

The key differences between the linear and nonlinear regression model are given

below:
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• In linear regression model, the expectation function is a linear function of the pa-

rameters, while in nonlinear regression model this expectation function is nonlinear

function with respect to parameters.

• In linear regression model, the derivatives of expectation function with respect to the

parameters are not functions of the unknown parameters.

For instance, consider the regression model (2.3), where the expectation function is

as follows:

f(x, β⃗) = β0 + β1x1 + β2x2 + · · ·+ βkxk

= β0 +
k∑

j=1

βjxj.

Now the derivatives with respect to the parameters β1, β2, · · · , βk are

∂f(x, β⃗)

∂β0

= 1,
∂f(x, β⃗)

∂β1

= x1,
∂f(x, β⃗)

∂β2

= x2, · · · ,
∂f(x, β⃗)

∂βk

= xk.

In general,

∂f(x, β⃗)

∂βj

= xj,∀j = 1, 2, · · · k.

It is clear that the derivatives are not functions of the parameters β. So the regression

model (2.3) is a linear regression model.

On the other hand, at least one of the expectation function’s derivatives with respect

to the parameters in a nonlinear regression model is dependent on at least one of the

parameters, which has already been discussed in section 4.1.

4.1.2 ASSUMPTIONS

In the following, the assumptions of the nonlinear model will be briefly discussed.

Similar to the linear model, the nonlinear model assumes [14] that
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1. The expected value of error terms, E(ϵi) = 0,∀i.

2. The variances of error terms are homogeneous, Var(ϵi) = σ2,∀i.

3. The random error terms are uncorrelated, that means, the error terms are independent,

Cov(ϵi, ϵj) = 0,∀i, j.

4. The error terms are normally distributed.

4.1.3 TYPES OF NONLINEAR REGRESSION MODEL

The classification of the nonlinear regression model, which will be briefly dis-

cussed, is given below. There are two types of nonlinear regression models. They are

1. Parametric nonlinear regression model

2. Non-parametric nonlinear regression model

Parametric Nonlinear Regression:

If the dependent and independent variables can be related by a particular non-linear

mathematical function with unknown constants, then the regression model can be called

parametric non-linear. An exponential function, for instance, can be used to model the

relationship between a country’s population and time. The polynomial regression, logistic

regression, exponential regression, power regression and so on are the common examples

of parametric nonlinear regression model.

Non-Parametric Nonlinear Regression:

Unlike parametric non-linear regression, non-parametric non-linear regression does

not presume that a particular mathematical function can express the relationship between

the dependent and independent variables. In non-parametric linear regression machine
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learning algorithms are used to learn the association between the dependent and indepen-

dent variables. Kernel smoothing, local polynomial regression, nearest neighbor regression

and so on are the common examples of non-parametric regression model.

4.1.4 THE NONLINEAR LEAST SQUARES METHOD FOR PARAMETER ESTIMATION

Consider a sample of n observations, where the regressors are xi1, xi2, · · · , xip, for

i = 1, 2, · · · , n and the response are yi, for i = 1, 2, · · · , n.

Now consider the nonlinear regression model (4.2), where x
′
i = (xi1, xi2. · · · , xip),

for i = 1, 2, · · · , n. The sum of squares error function is

S(θ⃗) =
n∑

i=1

[yi − f(xi, θ⃗)]
2. (4.3)

After differentiating on both sides of the equation (4.3) with respect to each element

of θ⃗, i.e., θ1, θ2, · · · , θp and equating the resulting equations to zero yields that,

∂S(θ⃗)

∂θ⃗
= 2

n∑
i=1

[yi − f(xi, θ⃗)]

[
∂f(xi, θ⃗)

∂θj

]
θ⃗=

ˆ⃗
θ

= 0, ∀j = 1, 2, · · · , p. (4.4)

After simplifying equation (4.4), the normal equations are

n∑
i=1

[yi − f(xi, θ⃗)]

[
∂f(xi, θ⃗)

∂θj

]
θ⃗=

ˆ⃗
θ

= 0,∀j = 1, 2, · · · , p. (4.5)

In the normal equations (4.5) of the nonlinear regression model (4.1), the expecta-

tion function is a nonlinear function and the derivatives would be the functions of unknown

parameters. Thus the nonlinear equations (4.5) are not in a closed-form to be solved as

was the case for linear regression. In this case it is very difficult to solve the normal equa-

tions [12]. Iterative methods (such as Newton method, Gauss-Newton iteration method,

method of steepest descent, Marquardt’s method, direct search, etc) must be applied to find

values of the parameters of θ1, θ2, · · · , θn.
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4.2 GAUSS NEWTON ITERATIVE METHOD FOR NONLINEAR REGRESSION

A method widely used for nonlinear regression is linearization of the nonlinear

function followed by the Gauss-Newton iterative method of parameter estimation. The

Gauss-Newton method, so named in honor of mathematicians Carl Friedrich Gauss and

Isaac Newton, is an iterative optimization strategy used to reduce the residuals in a non-

linear least squares problem. When an initial estimate of the parameters is available, it

works especially well [24]. By iteratively improving the parameter estimations, the Gauss-

Newton approach converges to values that minimize the sum of squared residuals. The

method is computationally efficient since it uses a linear approximation of the nonlinear

model at each iteration. Consider the following model

yi = f(x⃗i, θ⃗) + ϵ⃗. (4.6)

Linearization is accomplished by a Taylor series expansion of f(x⃗i, θ⃗) about the

point θ⃗(0) = [θ
(0)
1 , θ

(0)
2 , ..., θ

(0)
p ], which is called the starting values of the parameters, with

only the linear terms retained [12].

Thus, this produces

f(x⃗i, θ⃗) = f(x⃗i, θ⃗
(0)) +

p∑
j=1

[
∂f(x⃗i, θ⃗)

∂θj

]
θ⃗=θ⃗(0)

(θj − θ
(0)
j ). (4.7)

Now, consider

f
(0)
i = f(x⃗i, θ⃗

(0)),

z
(0)
ij =

[
∂f(x⃗i, θ⃗

(0))

∂θj

]
θ⃗=θ⃗(0)

,

β
(0)
j = θj − θ

(0)
j .

Now using equation (4.7) and the above new defining variable in nonlinear model (4.6), the
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nonlinear regression model (4.6) can be written as

yi = f
(0)
i +

p∑
j=1

β
(0)
j z

(0)
ij + ϵi

or, yi − f
(0)
i =

p∑
j=1

β
(0)
j z

(0)
ij + ϵi. (4.8)

That is, a linear regression model has been developed. This developed linear regression

model (4.8) can be written in the following way:



y1 − f
(0)
1

y2 − f
(0)
2

...

yn − f
(0)
n


=



p∑
j=1

β
(0)
j z

(0)
1j

p∑
j=1

β
(0)
j z

(0)
2j

...
p∑

j=1

β
(0)
j z

(0)
nj


+



ϵ1

ϵ2
...

ϵn



or,



y1 − f
(0)
1

y2 − f
(0)
2

...

yn − f
(0)
n


=



β
(0)
1 z

(0)
11 + β

(0)
2 z

(0)
12 + ...+ β

(0)
p z

(0)
1p

β
(0)
1 z

(0)
21 + β

(0)
2 z

(0)
22 + ...+ β

(0)
p z

(0)
2p

...

β
(0)
1 z

(0)
n1 + β

(0)
2 z

(0)
n2 + ...+ β

(0)
p z

(0)
np


+



ϵ1

ϵ2
...

ϵn



or,



y1 − f
(0)
1

y2 − f
(0)
2

...

yn − f
(0)
n


=



z
(0)
11 z

(0)
12 . . . z

(0)
1p

z
(0)
21 z

(0)
22 . . . z

(0)
2p

...
... . . . ...

z
(0)
n1 z

(0)
n2 . . . z

(0)
np





β
(0)
1

β
(0)
2

...

β
(0)
p


+



ϵ1

ϵ2
...

ϵn


, (4.9)

where

y⃗(0) =



y1 − f
(0)
1

y2 − f
(0)
2

...

yn − f
(0)
n


, Z(0) =



z
(0)
11 z

(0)
12 . . . z

(0)
1p

z
(0)
21 z

(0)
22 . . . z

(0)
2p

...
... . . . ...

z
(0)
n1 z

(0)
n2 . . . z

(0)
np


, β⃗(0) =



β
(0)
1

β
(0)
2

...

β
(0)
p


, ϵ⃗ =



ϵ1

ϵ2
...

ϵn


.
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Equation (4.9) can be written as

y⃗(0) = Z(0)β⃗(0) + ϵ⃗. (4.10)

Hence, the estimated value of β(0) is

ˆ⃗
β(0) = ((Z(0))′Z(0))−1(Z(0))′y⃗(0). (4.11)

Since β⃗(0) = θ⃗ − θ⃗(0), the revised estimates of θ⃗ can be defined as:

θ⃗ =
ˆ⃗
β(0) + θ⃗(0) =

ˆ⃗
θ(1),

where sometimes ˆ⃗
β(0) is called the vector of increments. Similarly, ˆ⃗θ(1) will play the same

role like initial estimates θ⃗(0) and after plugging this in equation (4.7), another set of revised

estimates would be found, say ˆ⃗
θ(2), and so forth. i.e.,

ˆ⃗
β(1) +

ˆ⃗
θ(1) =

ˆ⃗
θ(2),

ˆ⃗
β(2) +

ˆ⃗
θ(2) =

ˆ⃗
θ(3),

ˆ⃗
β(3) +

ˆ⃗
θ(3) =

ˆ⃗
θ(4),

...

ˆ⃗
β(k) +

ˆ⃗
θ(k) =

ˆ⃗
θ(k+1).

Therefore, in general at the kth iteration it can be written as

ˆ⃗
θ(k+1) =

ˆ⃗
θ(k) + ((Z(k))′Z(k))−1(Z(k))′(y⃗ − f⃗ (k)), (4.12)

where

Z⃗(k) =

[
z
(k)
ij

]
,

f⃗ (k) =

[
f
(k)
1 f

(k)
2 ... f

(k)
n

]′
,

ˆ⃗
θ(k) =

[
θ
(k)
1 θ

(k)
2 · · · θ

(k)
p

]′
.
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This iterative process continues until there is no noticeable difference between two

consecutive estimated coefficients and this convergence can be measured by the following

convergence metric [12], i.e.,

θ̂
(k+1)
j − θ̂

(k)
j

θ̂
(k)
j

< δ,∀j = 1, 2, ..., p, (4.13)

where δ is a tiny number, say 0.000001. The residual sum of squares, S(ˆ⃗θ(k)), should

be determined after every iteration to make sure that the reduction in its value has been

achieved.

4.2.1 APPLICATION OF THE GAUSS-NEWTON TO A LOGISTIC GROWTH MODEL

In this section, the “Logistic growth model” with three parameters θ⃗ = (θ1, θ2, θ3),

and one regressor variable x is considered. An attempt to fit the nonlinear model to data is

made by applying the Gauss-Newton iterative Method (GNIM) derived in Section 4.2. The

nonlinear model is given in following Example 4.2.1.

Example 4.2.1. The following nonlinear function is a Logistic Growth Model [12]. The

model is

y =
θ1

1 + θ2e−θ3x
+ ϵ, (4.14)

where ϵ ∼ N(E(ϵ) = 0,Var(ϵ) = σ2, consider here σ2 is a constant), will be fitted to the

paired data [16] by applying the Gauss-Newton Iterative Method (GNIM).
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Table 4.1: Nonlinear least square dataset, where x represents “predictor variable” and y

represents “response variable ”.

Obs. No. Predictor, x Response, y

1 1 5.308

2 2 7.24

3 3 9.638

4 4 12.866

5 5 17.069

6 6 23.192

7 7 31.443

8 8 38.558

9 9 50.156

10 10 62.948

11 11 75.995

12 12 91.972

Solution 4.2.1. The model is

y =
θ1

1 + θ2e−θ3x
+ ϵ = f(x, θ⃗) + ϵ, (4.15)

where f(x, θ⃗) is the expectation function for the above nonlinear regression model. In

general form model (4.15) can be expressed as,

yi = f(xi, θ⃗) + ϵi,∀i = 1, 2, ..., n, (4.16)

where

θ⃗ = (θ1 θ2 θ3)
′
,

and f(xi, θ⃗) =
θ1

1 + θ2eθ3xi
,∀i = 1, 2, ..., n. (4.17)
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Equation (4.16) can be written as,

ϵi = yi − f(xi, θ⃗).

Then the sum of squares of the residuals is,

S(θ⃗) =
n∑

i=1

ϵ2i =
n∑

i=1

[yi − f(xi, θ⃗)]
2.

Equation (4.10) can be obtained after converting the given nonlinear regression

model to linear regression model using linearization method which has already been dis-

cussed in the above section 4.2.

In equation (4.10) for this problem, for n = 12, p = 3 ( p is the number of parame-

ters), the Jacobian matrix consists of the following components.

zi1 =
∂f(xi, θ⃗)

∂θ1
=

1

1 + θ2e−θ3xi
,

zi2 =
∂f(xi, θ⃗)

∂θ2
=

−θ1e
−θ3xi

1 + θ2e−θ3x2
i

,

zi3 =
∂f(xi, θ⃗)

∂θ3
=

θ1θ2xi

eθ3xi (1 + θ2eθ3xi)2
, (4.18)

where ∀i = 1, 2, · · · , n. In general the Jacobian matrix can be expressed by

Z =



z11 z12 z13

z21 z22 z23
...

...
...

zn1 zn2 zn3


= (zij),∀i = 1, 2, . . . n,∀j = 1, 2, . . . , p, (4.19)

where “i” represents “observations” and “j” represents “parameters”. For this particular

“Logistic growth” model (4.16) the Jacobian matrix is given below:

Z =



∂f(x1,θ⃗)
∂θ1

∂f(x1,θ⃗)
∂θ2

∂f(x1,θ⃗)
∂θ3

∂f(x2,θ⃗)
∂θ1

∂f(x2,θ⃗)
∂θ2

∂f(x2,θ⃗)
∂θ3

...
...

...

∂f(xn,θ⃗)
∂θ1

∂f(xn,θ⃗)
∂θ2

∂f(xn,θ⃗)
∂θ3


=



1
1+θ2e−θ3x1

−θ1e−θ3x1

1+θ2e
−θ3x

2
1

θ1θ2x1

eθ3x1(1+θ2eθ3x1)
2

1
1+θ2e−θ3x2

−θ1e−θ3x2

1+θ2e
−θ3x

2
2

θ1θ2x2

eθ3x2(1+θ2eθ3x2)
2

...
...

...

1
1+θ2e−θ3xn

−θ1e−θ3xn

1+θ2e−θ3x
2
n

θ1θ2xn

eθ3xn(1+θ2eθ3xn)
2


.
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The residual vector is given by

y⃗ − f⃗ =



y1 − f1

y2 − f2
...

yn − fn


=



y1 − f(x1, θ⃗)

y2 − f(x2, θ⃗)

...

yn − f(xn, θ⃗)


=



y1 − θ1
1+θ2e−θ3x1

y2 − θ1
1+θ2e−θ3x2

...

yn − θ1
1+θ2e−θ3xn


. (4.20)

and the Gauss-Newton recursion equation is given as follows:

ˆ⃗
θ(k+1) =

ˆ⃗
θ(k) + ((Z(k))′Z(k))−1(Z(k))′(y⃗ − f⃗ (k)),∀k = 1, 2, ...,

where “k” represents the number of iterations.

The computation process of GNIM algorithm is summarized step by step in the

following:

Step 1: Select an initial approximation for θ⃗(0) = (θ
(0)
1 = 200, θ

(0)
2 = 50.50, θ

(0)
3 = 0.3035)

in equation (4.17). Set the maximum number of iteration nsim = 5.

Step 2: Simultaneously compute zi1, zi2 and zi3, ∀i = 1, 2, . . . , n using equation (4.18).

Step 3: Estimate the residual (y⃗ − f⃗ (k)) using (4.20) at each iteration k = 1, 2, . . . , nsim.

Step 4: Estimate the parameter θ⃗(k+1) using Gauss-Newton recursion formula (4.12) at each

iteration k = 1, 2, . . . , nsim.

Computation-Output: 4.2.1.
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1. The Jacobian matrix at each iteration k = 1, 2, . . . , 5 is given below.

Z(1) =



z
(1)
i1 z

(1)
i2 z

(1)
i3

0.02739643 -0.1064444 5.173672

0.03713290 -0.1428295 13.884311

0.05015122 -0.1902956 27.747654

0.06741403 -0.2511493 48.827924

0.09005560 -0.3273545 79.554485

0.11932851 -0.4198082 122.427365

0.15648039 -0.5272880 179.399912

0.20253898 -0.6452245 250.886424

0.25800785 -0.7647597 334.536740

0.32252396 -0.8728683 424.253081

0.39459329 -0.9543105 510.221431

0.47155749 -0.9954631 580.607611



, Z(2) =



z
(2)
i1 z

(2)
i2 z

(2)
i3

0.02712164 -0.1054408 5.175333

0.03674397 -0.1414367 13.884221

0.04960607 -0.1883965 27.741087

0.06665893 -0.2486183 48.811538

0.08902487 -0.3240800 79.533784

0.11794687 -0.4157340 122.432351

0.15466962 -0.5224754 179.511922

0.20023049 -0.6399255 251.274730

0.25516115 -0.7594711 335.492756

0.31914783 -0.8683186 426.195139

0.39076232 -0.9513357 513.636512

0.46741446 -0.9947773 585.917580



,

Z(3) =



z
(3)
i1 z

(3)
i2 z

(3)
i3

0.02711662 -0.1054282 5.175637

0.03673681 -0.1414187 13.884936

0.04959597 -0.1883715 27.742364

0.06664488 -0.2485846 48.813641

0.08900559 -0.3240362 79.537241

0.11792091 -0.4156798 122.438251

0.15463544 -0.5224126 179.522396

0.20018674 -0.6398592 251.293595

0.25510698 -0.7594108 335.526071

0.31908333 -0.8682776 426.251184

0.39068883 -0.9513289 513.724571

0.46733467 -0.9948165 586.045310



, Z(4) =



z
(4)
i1 z

(4)
i2 z

(4)
i3

0.02711658 -0.1054282 5.175642

0.03673674 -0.1414187 13.884948

0.04959588 -0.1883714 27.742382

0.06664474 -0.2485844 48.813666

0.08900539 -0.3240359 79.537273

0.11792062 -0.4156794 122.438293

0.15463505 -0.5224121 179.522463

0.20018622 -0.6398588 251.293720

0.25510631 -0.7594104 335.526317

0.31908251 -0.8682775 426.251650

0.39068788 -0.9513292 513.725381

0.46733361 -0.9948174 586.046586



,
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Z(5) =



z
(5)
i1 z

(5)
i2 z

(5)
i3

0.02711658 -0.1054282 5.175642

0.03673674 -0.1414187 13.884948

0.04959588 -0.1883714 27.742382

0.06664474 -0.2485844 48.813666

0.08900539 -0.3240359 79.537273

0.11792062 -0.4156794 122.438293

0.15463505 -0.5224121 179.522463

0.20018622 -0.6398588 251.293721

0.25510631 -0.7594104 335.526319

0.31908250 -0.8682775 426.251654

0.39068787 -0.9513292 513.725387

0.46733360 -0.9948174 586.046596



.

2. The parameter estimates at each iteration k = 1, 2, . . . , 5 is given below.

ˆ⃗
θ =


θ̂1

θ̂2

θ̂3

 =


k=1 k=2 k=3 k=4 k=5

194.164167 196.138915 196.18578 196.18626 196.18626

48.604481 49.082809 49.09158 49.09164 49.09164

0.314152 0.313582 0.31357 0.31357 0.31357

 .

3 The error margin (EM) over consecutive iterations is given by EM (k+1) = | ˆ⃗θ(k+1) − ˆ⃗
θ(k)|

for convergence of the algorithm is given below.

EM (k+1) =

∣∣∣∣∣∣∣∣

θ̂
(k+1)
1

θ̂
(k+1)
2

θ̂
(k+1)
3

−


θ̂
(k)
1

θ̂
(k)
2

θ̂
(k)
3


∣∣∣∣∣∣∣∣ =


k=1 k=2 k=3 k=4 k=5

5.835833 1.974748 0.046865 0.00048 0

1.895519 0.478328 0.008771 0.00006 0

0.010652 0.00057 0.000012 0 0

 .

4. It is easy to form the error margin matrix that the algorithm converges after 5 iterations.

Hence, the Maximum Likelihood Estimate for the parameter vector θ⃗ is given by

ˆ⃗
θ =


θ̂1

θ̂2

θ̂3

 =


196.18626

49.09164

0.31357

 .
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Remark 4.1. The final iterative result derived from the GNIM in nonlinear regression can

be considered as the maximum likelihood estimates (MLE’s) under specific conditions.

The iterative optimization process known as the GNIM is applied to resolve non-

linear least squares problems. The GNIM attempts to reduce the sum of squared residuals

between the predicted and observed values.

If the errors in the model are considered to be independent and identically dis-

tributed (i.i.d.) as well as normally distributed with a mean of zero and constant variance

in the context of nonlinear regression, minimizing the sum of squared residuals is equiv-

alent to maximizing the likelihood function. The GNIM’s estimates can be considered as

MLE’s under these assumptions [23].

Testing for Multicollinearity

The variance inflation factors among the columns of jacobian matrix zi1, zi2, and

zi3 (which are the partial derivatives of the model function with respect to the parameters)

at each iteration k = 1, 2, . . . , 5 is given below:


V IFzi1

V IFzi2

V IFzi3

 =



k=1 k=2 k=3 k=4 k=5

360.6293 372.24835 372.47772 372.48094 372.48097

43.6020 43.23491 43.22759 43.22747 43.22747

536.2783 545.20741 545.38129 545.38371 545.38373


.

In the above table, the VIF (Variance Inflation Factor) values for each iteration in-

dicate the presence of multicollinearity in the given data. According to the discussion in

subsection 3.1.3, VIF measures how much the variance of an estimated regression coeffi-

cient is increased due to multicollinearity in the model.

In the final iteration, VIF for zi1 is 372.48097, indicating a high degree of multi-

collinearity between zi1 and the other independent variables in the model. VIF for zi2 is

43.22747, which is lower than zi1 but still suggests some multicollinearity. VIF for zi3 is
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545.38373, indicating a high degree of multicollinearity involving zi3 and the other inde-

pendent variables.

Generally, VIF values above 10 are considered indicative of multicollinearity. In

this case, both zi1, zi2, and zi3 have VIF values well above these thresholds, suggesting that

multicollinearity is likely influencing the regression results.
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CHAPTER 5

WEIGHTED GAUSS-NEWTON ITERATIVE METHOD (WGNIM)

To get the most accurate parameter estimations, it’s important to use weighted least

squares regression to give each data point the weight it deserves. When estimating the

parameters, the weighted least squares fitting criterion is used to minimize

S(β⃗) =
n∑

i=1

wi[yi − f(x⃗i,
ˆ⃗
β)]. (5.1)

In order to achieve optimal outcomes that reduce uncertainty in the parameter esti-

mators, it is necessary to assign weights, denoted as wi, to the unknown parameters. These

weights should be inversely proportional to the variances associated with each combination

of predictor variable values, i.e.,

wi ∝
1

σ2
i

. (5.2)

5.1 DERIVATION OF WEIGHTED GAUSS-NEWTON ITERATIVE METHOD (WGNIM)

The issue is that the actual variances of the data points, which determine these

optimal weights, are rarely known. It is necessary to substitute the estimated weights.

The optimality properties linked to known weights are no longer strictly applicable when

estimated weights are utilized. Weights, if they can be computed with enough precision,

can greatly improve the value of estimated coefficients as compared to the results that would

be obtained if all data points were weighted equally.

In this section, the method of weighted least squares, which was discussed in sec-

tion 3.3 will be applied to extend the Gauss-Newton iterative method, which was already

discussed in section 4.2.

Consider the model (4.6) of section 4.2. Recall the Gauss-Newton iterative method,

where, after applying the linearization method to the function f(x⃗i, θ⃗), the linear regression

model (4.10) has already been found in section 4.2.
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Now to apply weighted least square method define the following new variables:

B = W 1/2Z(0) ⇒ Z(0) = (W 1/2)−1B,

z⃗ = W 1/2y⃗(0) ⇒ y⃗(0) = (W 1/2)−1z⃗,

g⃗ = W 1/2ϵ⃗ ⇒ ϵ⃗ = (W 1/2)−1g⃗.

After applying the above transformation in equation (4.10) yields that,

(W 1/2)−1z⃗ = (W 1/2)−1Bβ⃗ + (W 1/2)−1g⃗

or,W 1/2(W 1/2)−1z⃗ = W 1/2(W 1/2)−1Bβ⃗ +W 1/2(W 1/2)−1g⃗

or, z⃗ = Bβ⃗ + g⃗, (5.3)

which is the required new linear regression model. Then the weighted least square estimate

of β⃗ is,

ˆ⃗
β = (B′B)−1B′z⃗

= ((W 1/2Z(0))′(W 1/2Z(0)))−1(W 1/2Z(0))′(W 1/2y⃗(0))

= ((Z(0))′(W 1/2)′W 1/2Z(0))−1(Z(0))′(W 1/2)′W 1/2y⃗(0)

= ((Z(0))′WZ(0))−1(Z(0))′Wy⃗(0).

Therefore, the required estimate of β⃗ using GNIM with weights is

ˆ⃗
β = ((Z(0))′WZ(0))−1(Z(0))′Wy⃗(0). (5.4)

Since β⃗(0) = θ⃗ − θ⃗(0), the revised estimates of θ can be defined as:

θ⃗ =
ˆ⃗
β(0) + θ⃗(0) =

ˆ⃗
θ(1),

where sometimes ˆ⃗
β(0) is called the vector of increments. Similarly, ˆ⃗θ(1) will play the same

role like initial estimates θ⃗(0) and after plugging this in equation (4.7), another set of revised
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estimates will be obtained, say ˆ⃗
θ(2), and so forth. i.e.,

ˆ⃗
β(1) +

ˆ⃗
θ(1) =

ˆ⃗
θ(2),

ˆ⃗
β(2) +

ˆ⃗
θ(2) =

ˆ⃗
θ(3),

ˆ⃗
β(3) +

ˆ⃗
θ(3) =

ˆ⃗
θ(4),

...

ˆ⃗
β(k) +

ˆ⃗
θ(k) =

ˆ⃗
θ(k+1).

Therefore, in general at the kth iteration the Weighted Gauss-Newton recursion

formula can be written as

ˆ⃗
θ(k+1) =

ˆ⃗
θ(k) + ((Z(k))′WZ(k))−1(Z(k))′W (y⃗ − f⃗ (k)), (5.5)

where

Z⃗(k) =

[
z
(k)
ij

]
,

f⃗ (k) =

[
f
(k)
1 f

(k)
2 ... f

(k)
n

]′
,

ˆ⃗
θ(k) =

[
θ
(k)
1 θ

(k)
2 · · · θ

(k)
p

]′
,

and the diagonal weight matrix is given by

W =



w1 0 · · · 0

0 w2 · · · 0

...
... . . . ...

0 0 · · · wn


.

This iterative process continues until there is no noticeable difference between two

consecutive estimated coefficients, and this convergence can be measured by the following

convergence metric,

θ̂
(k+1)
j − θ̂

(k)
j

θ̂
(k)
j

< δ,∀j = 1, 2, ..., p, (5.6)
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where δ is a tiny number, say 0.000001. The residual sum of squares, S(ˆ⃗θk), should be de-

termined after every iteration to make sure that the reduction in its value has been achieved.

Remark 5.1. Equation (5.5) is the required recursion formula for the “Weighted Gauss-

Newton Iterative Method (WGNIM)”. In this process, throughout the iterations, the

weights remain constant. The weighted sum of squared residuals is minimized by employ-

ing these initial weights. More precisely, WGNIM takes into account heteroscedasticity

using a predetermined weighting scheme and uses fixed weights that are determined before

iterations start.

In the rare circumstance that the estimated coefficients are significantly different

from the estimated regression coefficients obtained by ordinary least squares, it is generally

recommended to iterate the weighted least squares process. This involves reestimating the

variance or standard deviation function using the residuals from the weighted least squares

fit and then obtaining revised weights. Most often, the estimated regression coefficients can

be stabilized with just one or two iterations. This iterative technique is often referred to as

iteratively reweighted least squares [14].

At iteration k, the computed weighted residuals can be defined by

r
(k)
i = yi − f(xi, θ⃗

(k)). (5.7)

Recalculate the weights by using these residuals (5.7) after each iteration and the inverse

of the squared residuals is a commonly used method, which is defined as follows:

w
(k+1)
i =

1

(r
(k)
i )2

.

In subsequent iterations, the influence of observations with large residuals is diminished as

a result of these weights. Then generate the latest weight matrix W (k+1) using the updated

weights and formulate the weighted Gauss-Newton recursion formula for the next iteration,
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i.e., the extended form of (5.4) is

ˆ⃗
β = ((Z(0))′W (0)Z(0))−1(Z(0))′W (0)y⃗(0)

= ((Z(0))′W (0)Z(0))−1(Z(0))′W (0)(y⃗ − f⃗ (0)), (5.8)

and the extended form of Weighted Gauss-Newton recursion formula (5.5) is

ˆ⃗
θ(k+1) =

ˆ⃗
θ(k) + ((Z(k))′W (k)Z(k))−1(Z(k))′W (k)(y⃗ − f⃗ (k)), (5.9)

which is called “Reweighted Gauss-Newton Iterative Method (RGNIM)”.

Remark 5.2. In “Reweighted Gauss-Newton Iterative Method (RGNIM)” at each itera-

tion, this algorithm recalculates the weights. The residuals from the prior iteration are used

to modify the weights. This is the key difference between the “Weighted Gauss-Newton Iter-

ative Method (WGNIM)” and “Reweighted Gauss-Newton Iterative Method (RGNIM)”.

5.2 APPLICATION OF THE REWEIGHTED GAUSS-NEWTON ITERATIVE METHOD

(RGNIM) TO A LOGISTIC GROWTH MODEL

In this section, the “Logistic growth model” with three parameters, θ⃗ = (θ1, θ2, θ3),

and one regressor variable x is considered, which have already discussed in example 4.2.1.

In this section, the Reweighted Gauss-Newton Iterative Method (RGNIM) is applied to

attempt to fit the nonlinear model to the data, which has already been derived in section 5.1.

Example 5.2.1. Recall the nonlinear model (4.14) of example 4.2.1 is

y =
θ1

1 + θ2e−θ3x
+ ϵ,

where ϵ ∼ N(E(ϵ) = 0,Var(ϵ) = σ2), σ is a constant, will be fitted to the paired data

given in Table 4.1 by applying the Reweighted Gauss-Newton Iterative Method (RGNIM).
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Solution 5.2.1. The model is

y =
θ1

1 + θ2e−θ3x
+ ϵ⃗ = f(x, θ⃗) + ϵ⃗, (5.10)

where f(x, θ⃗) is the expectation function for the nonlinear regression model. In general

form

yi = f(xi, θ⃗) + ϵ⃗i,∀i = 1, 2, ..., n, (5.11)

where “i” represents the number of observation. In equation (5.11),

f(xi, θ⃗) =
θ1

1 + θ2e−θ3xi
, ∀i = 1, 2, ..., n, (5.12)

θ⃗ = (θ1 θ2 θ3)
′,

and ϵ⃗ = (ϵ1 ϵ2 · · · ϵn)
′.

Equation (5.11) can be written as

ϵi = yi − f(xi, θ⃗).

Then sum of squares of the residuals,

S(θ⃗) =
n∑

i=1

wiϵ
2
i =

n∑
i=1

wi[yi − f(xi, θ⃗)]
2.

Now equations (4.18) and (4.20) which have already described in example 4.2.1 of

chapter 4 will be used for the jacobian matrix and residual vector respectively, and for this

problem Reweighted Gauss-Newton recursion formula 5.9 will be applied.

In example 4.2.1 of chapter 4, high level of multicollinearity were observed between

the columns (zi1, zi2, and zi3) of the jacobian matrix using the GNIM. Here an attempt will

be made to apply Reweighted Gauss-Newton Iterative method in a different new way to

alleviate this multicollinearity. According to the transformed linear model (4.10), regress

(yi − fi) against the columns of the jacobian matrix zi1, zi2, and zi3. This regression can

be denoted by m1, i.e.,

m1 = lm((yi − f
(k)
i ) ∼ z

(k)
i1 + z

(k)
i2 + z

(k)
i3 ).
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The residual of this m1 regression is to be regressed against the predicted value of m1

regression which is denoted by m2, i.e.,

m2 = lm(residual(m1) ∼ fitted value(m1)).

The inverse of the square of the residual extracted from this m2 regression will be desired

weight, i.e.,

w
(k)
i =

1

(residual(m2))2
.

For this problem like GNIM consider the following same starting values:

θ
(0)
1 = 200, θ

(0)
2 = 50.50, θ

(0)
3 = 0.3035.

The computation process of RGNIM are described in the following steps:

Step 1: Select an initial approximate value for θ⃗(k) = θ⃗(0) = (θ
(0)
1 = 200, θ

(0)
2 = 50.50,

θ
(0)
3 = 0.3035), set the maximum number of simulation nsim = 5, and k = 0.

Step 2: Estimate the residual vector r⃗(k) = (yi − f
(k)
i ) using equation (4.20).

Step 3: Simultaneously compute zi1, zi2 and zi3, ∀i = 1, 2, . . . , n using equation (4.18).

Step 4: Regress (yi − fi) against zi1, zi2, and zi3, i.e.,

m1 = lm((yi − f
(k)
i ) ∼ z

(k)
i1 + z

(k)
i2 + z

(k)
i3 ).

Step 5: Find the residuals and fitted values from model m1, then regress residual of m1

against fitted values of m1, i.e.,

m2 = lm(residual(m1) ∼ fitted value(m1)).

Step 6: Extract the residuals of model m2 and take the inverse of the squared of these resid-

uals of m2, i.e.,

w
(k)
i =

1

(residual(m2))2
.
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Step 7: Make the matrix of weights, W (k) = diag(w(k)
1 , w

(k)
2 , · · · , w(k)

n ).

Step 8: Calculate ˆ⃗
β(k) using equation (5.8).

Step 9: Update ˆ⃗
θ(k+1) =

ˆ⃗
θ(k) +

ˆ⃗
β(k) using Reweighted Gauss-Newton recursion formula 5.9.

Step 10: If
(
ˆ⃗
θ
(k+1)
j − ˆ⃗

θ
(k)
j )

ˆ⃗
θ
(k)
j

< 0.000001, then stop.

Step 11: Otherwise, set k = k + 1.

Then, go to the step 2.

Repeat steps 2 to 11 until convergence.

The R code of this algorithm is provided in Appendix A.5.

Computation-Output: 5.2.1.

1. The Jacobian at each iteration k = 1, 2, . . . , 5 is given below.

Z(1) =



z
(1)
i1 z

(1)
i2 z

(1)
i3

0.02783648 -0.1069375 5.126645

0.03781900 -0.1437948 13.787211

0.05119287 -0.1919392 27.605035

0.06895717 -0.2537029 48.650663

0.09228625 -0.3310261 79.347926

0.12246966 -0.4246850 122.157903

0.16077642 -0.5331830 178.927761

0.20822191 -0.6514877 249.861625

0.26524347 -0.7701307 332.284685

0.33134562 -0.8755062 419.722824

0.40484452 -0.9521273 502.100954

0.48287323 -0.9867484 567.663612



, Z(2) =



z
(2)
i1 z

(2)
i2 z

(2)
i3

0.02783316 -0.1069259 5.126688

0.03781432 -0.1437788 13.787285

0.05118634 -0.1919175 27.605129

0.06894816 -0.2536741 48.650809

0.09227398 -0.3309891 79.348296

0.12245328 -0.4246394 122.159000

0.16075504 -0.5331298 178.930730

0.20819481 -0.6514301 249.868654

0.26521026 -0.7700750 332.299329

0.33130654 -0.8754607 419.749929

0.40480058 -0.9521014 502.145825

0.48282620 -0.9867495 567.730382



,
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Z(3) =



z
(3)
i1 z

(3)
i2 z

(3)
i3

0.02783310 -0.1069257 5.126689

0.03781423 -0.1437785 13.787286

0.05118621 -0.1919171 27.605131

0.06894799 -0.2536736 48.650812

0.09227375 -0.3309884 79.348304

0.12245297 -0.4246385 122.159022

0.16075464 -0.5331288 178.930787

0.20819430 -0.6514291 249.868787

0.26520964 -0.7700739 332.299605

0.33130581 -0.8754599 419.750439

0.40479975 -0.9521010 502.146668

0.48282532 -0.9867496 567.731637



, Z(4) =



z
(4)
i1 z

(4)
i2 z

(4)
i3

0.02783310 -0.1069257 5.126689

0.03781423 -0.1437785 13.787286

0.05118621 -0.1919171 27.605131

0.06894799 -0.2536736 48.650813

0.09227375 -0.3309884 79.348304

0.12245297 -0.4246385 122.159022

0.16075464 -0.5331288 178.930788

0.20819430 -0.6514290 249.868789

0.26520963 -0.7700739 332.299608

0.33130580 -0.8754599 419.750444

0.40479974 -0.9521010 502.146677

0.48282531 -0.9867496 567.731650



,

Z(5) =



z
(5)
i1 z

(5)
i2 z

(5)
i3

0.02783310 -0.1069257 5.126689

0.03781423 -0.1437785 13.787286

0.05118621 -0.1919171 27.605131

0.06894799 -0.2536736 48.650813

0.09227375 -0.3309884 79.348304

0.12245297 -0.4246385 122.159022

0.16075464 -0.5331288 178.930788

0.20819430 -0.6514290 249.868789

0.26520963 -0.7700739 332.299608

0.33130580 -0.8754599 419.750444

0.40479974 -0.9521010 502.146677

0.48282531 -0.9867496 567.731651



.

2. The weighted matrix, W , for each iteration k = 1, 2, . . . 5 is as follows (The R code of

Appendix A.5 implements the iterative nature of these weights):
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W (1) =



47.13146 0.00000 0.0000 0.0000 0.000000 0.0 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 57.91882 0.0000 0.0000 0.000000 0.0 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 360.5215 0.0000 0.000000 0.0 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 19.9913 0.000000 0.0 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.0000 4.952285 0.0 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.0000 0.000000 2459.5 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.0000 0.000000 0.0 0.9334985 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.0000 0.000000 0.0 0.0000000 1.779182 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.0000 0.000000 0.0 0.0000000 0.000000 58.92851 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.0000 0.000000 0.0 0.0000000 0.000000 0.00000 5.687531 0.000000 0.00000

0.00000 0.00000 0.0000 0.0000 0.000000 0.0 0.0000000 0.000000 0.00000 0.000000 2.874516 0.00000

0.00000 0.00000 0.0000 0.0000 0.000000 0.0 0.0000000 0.000000 0.00000 0.000000 0.000000 19.97923



W (2) =



46.73522 0.0000 0.0000 0.00000 0.000000 0.000 0.000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 57.7657 0.0000 0.00000 0.000000 0.000 0.000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.0000 357.7139 0.00000 0.000000 0.000 0.000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.0000 0.0000 19.90868 0.000000 0.000 0.000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.0000 0.0000 0.00000 4.940467 0.000 0.000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.0000 0.0000 0.00000 0.000000 2366.467 0.000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.0000 0.0000 0.00000 0.000000 0.000 0.933605 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.0000 0.0000 0.00000 0.000000 0.000 0.000000 1.780787 0.00000 0.000000 0.000000 0.00000

0.00000 0.0000 0.0000 0.00000 0.000000 0.000 0.000000 0.000000 58.40217 0.000000 0.000000 0.00000

0.00000 0.0000 0.0000 0.00000 0.000000 0.000 0.000000 0.000000 0.00000 5.674605 0.000000 0.00000

0.00000 0.0000 0.0000 0.00000 0.000000 0.000 0.000000 0.000000 0.00000 0.000000 2.874444 0.00000

0.00000 0.0000 0.0000 0.00000 0.000000 0.000 0.000000 0.000000 0.00000 0.000000 0.000000 20.07336



W (3) =



46.72802 0.000 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 0.00000 0.0000

0.00000 57.763 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 0.00000 0.0000

0.00000 0.000 357.6605 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 0.00000 0.0000

0.00000 0.000 0.0000 19.90714 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 0.00000 0.0000

0.00000 0.000 0.0000 0.00000 4.940249 0.000 0.0000000 0.000000 0.00000 0.000000 0.00000 0.0000

0.00000 0.000 0.0000 0.00000 0.000000 2364.824 0.0000000 0.000000 0.00000 0.000000 0.00000 0.0000

0.00000 0.000 0.0000 0.00000 0.000000 0.000 0.9336066 0.000000 0.00000 0.000000 0.00000 0.0000

0.00000 0.000 0.0000 0.00000 0.000000 0.000 0.0000000 1.780818 0.00000 0.000000 0.00000 0.0000

0.00000 0.000 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 58.39232 0.000000 0.00000 0.0000

0.00000 0.000 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 5.674369 0.00000 0.0000

0.00000 0.000 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 2.87444 0.0000

0.00000 0.000 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 0.00000 20.0751


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W (4) =



46.72796 0.00000 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 57.76299 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 357.6598 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 19.90713 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.00000 4.940247 0.000 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.00000 0.000000 2364.812 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.00000 0.000000 0.000 0.9336065 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.00000 0.000000 0.000 0.0000000 1.780818 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 58.39221 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 5.674367 0.000000 0.00000

0.00000 0.00000 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 2.874439 0.00000

0.00000 0.00000 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 0.000000 20.07512



W (5) =



46.72796 0.00000 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 57.76298 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 357.6598 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 19.90713 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.00000 4.940247 0.000 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.00000 0.000000 2364.812 0.0000000 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.00000 0.000000 0.000 0.9336065 0.000000 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.00000 0.000000 0.000 0.0000000 1.780818 0.00000 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 58.39221 0.000000 0.000000 0.00000

0.00000 0.00000 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 5.674367 0.000000 0.00000

0.00000 0.00000 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 2.874439 0.00000

0.00000 0.00000 0.0000 0.00000 0.000000 0.000 0.0000000 0.000000 0.00000 0.000000 0.000000 20.07512


3. The parameter estimates at each iteration k = 1, 2, . . . , 5 is given below.

ˆ⃗
θ =


θ̂1

θ̂2

θ̂3

 =


k=1 k=2 k=3 k=4 k=5

189.4434788 189.4669859 189.4674275 189.4674324 189.4674325

47.9405883 47.9461738 47.9462774 47.9462784 47.9462784

0.3167857 0.3167797 0.3167796 0.3167796 0.3167796


4 The error margin (EM) over consecutive iterations is given by EM (k+1) = | ˆ⃗θ(k+1) − ˆ⃗

θ(k)|

for convergence of the algorithm is given below.

EM (k+1) =

∣∣∣∣∣∣
θ̂

(k+1)
1

θ̂
(k+1)
2

θ̂
(k+1)
3

−

θ̂
(k)
1

θ̂
(k)
2

θ̂
(k)
3

∣∣∣∣∣∣ =


k=1 k=2 k=3 k=4 k=5

10.5565212 0.0235071 0.0004416 0.0000049 0.0000001

2.5594117 0.0055855 0.0001036 0.000001 0.000000

0.0132857 0.000006 0.0000001 0.000000 0.000000


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5. It is easy to from the error margin matrix that the algorithm converges after 5 iterations.

Hence, the Maximum Likelihood Estimate for the parameter vector θ⃗ is given by

ˆ⃗
θ =


θ̂1

θ̂2

θ̂3

 =


189.4674325

47.9462784

0.3167796


Comparison of three iterative methods for the stated particular data and the corresponding

“Logistic Growth Model” is given below:

Table 5.1: Comparison of three iterative methods.

Methods β1 β2 β3 MSres

GNIM 196.18626 49.09164 0.31357 0.2874747

WGNIM 189.46743 47.94628 0.31678 0.3060210

Levenberg-Marquardt

(using “nls” function)
196.18626 49.09164 0.31357 0.2874747

Table 5.1 compares three iterative strategies for the aforementioned particular dataset

and the corresponding “Logistic Growth Model.” It takes a closer look at the estimated pa-

rameters β1, β2, and β3, and how each method yields the mean squared residuals (MSres).

This comparison shows how the three methods are comparable and how they differ in terms

of the mean squared residuals and parameter estimates. While the RGNIM produces some-

what different parameter estimates and a greater mean squared residual than the other two

approaches, the GNIM and the nls function (where the Levenberg-Marquardt method was

applied) produce similar results in the end. For this particular problem, GNIM is better than

RGNIM, and the “nls” (using the Levenberg-Marquardt method) function which is flexible

for any initial approximate value, whereas GNIM and RGNIM produce singular jacobian

matrices for any starting approximate value.
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From the above discussion it is clear that, multicollinearity still exists after applying

the RGNIM to this problem. More detailed work will be done in the future to address this

issue.
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CHAPTER 6

APPLICATION OF THE ITERATIVE NONLINEAR REGRESSION METHODS

Using data for ultrasonic calibration, this application shows how to build a nonlin-

ear regression model. As a case study, it shows how to fit a nonlinear model and utilize

weighted fits to address the issue of non-constant standard deviations for the errors, also

referred to as heterogeneous variances for the errors.

6.1 DESCRIPTION OF DATASETS

There is a predictor variable and a response variable in the ultrasonic reference

block data. The ultrasonic calibration block data is typically composed of measurements

that are obtained during the calibration of ultrasonic equipment that is utilized for the eval-

uation of materials and non-destructive testing (NDT). The process of calibration includes

confirming that the ultrasonic equipment accurately measures distances and flaws in the

material. The calibration block is often made from a standardized material, such as steel or

aluminum.

The term “metal distance” is the measurement of the distance between the surface

of the metal (or any other substance being examined) and a particular target point inside

of it. This point could serve as a recognizable reference marker, a flaw, or another notable

internal characteristic.

The signal that the ultrasonic transducer receives back after emitting ultrasonic

waves into a material is referred to as the “ultrasonic response”. This reaction is essen-

tially the reflected sound of the ultrasonic waves that have already penetrated the material

and reflected off its many internal characteristics, including imperfections, interfaces, and

barriers [25].

The “metal distance” serves as the “predictor variable”, while the “ultrasonic

response” serves as the “response variable”. Dan Chwirut, a scientist at NIST, furnished
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the stated data [15]. The datasets are listed in Table 6.1.

Table 6.1: Ultrasonic reference block datasets, where the predictor, x represents “Metal

Distance”, and the response, y represents “Ultrasonic response”.

No. Predictor (x) Response (y) No. Predictor (x) Response (y) No. Predictor (x) Response (y)

1 0.5 92.9 19 3 13.12 37 5.75 3.75

2 1 57.1 20 0.75 59.9 38 3 11.81

3 1.75 31.05 21 3 14.62 39 0.75 54.7

4 3.75 11.5875 22 1.5 32.9 40 2.5 23.7

5 5.75 8.025 23 6 5.44 41 4 11.55

6 0.875 63.6 24 3 12.56 42 0.75 61.3

7 2.25 21.4 25 6 5.44 43 2.5 17.7

8 3.25 14.25 26 1.5 32 44 4 8.74

9 5.25 8.475 27 3 13.95 45 0.75 59.2

10 0.75 63.8 28 0.5 75.8 46 2.5 16.3

11 1.75 26.8 29 2 20 47 4 8.62

12 2.75 16.4625 30 4 10.42 48 0.5 81

13 4.75 7.125 31 0.75 59.5 49 6 4.87

14 0.625 67.3 32 2 21.67 50 3 14.62

15 1.25 41 33 5 8.55 51 0.5 81.7

16 2.25 21.15 34 0.75 62 52 2.75 17.17

17 4.25 8.175 35 2.25 20.2 53 0.5 81.3

18 0.5 81.5 36 3.75 7.76 54 1.75 28.9

6.2 DATA ANALYSIS OF RESULTS

To identify the pattern of the data, generate a scatter plot of the given ultrasonic

reference block dataset.
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Figure 6.1: Scatter plot of ultrasonic calibration dataset

The above graphic demonstrates a pattern of exponential decay, which implies that

an exponential function could potentially serve as a suitable model for the given dataset. It

is indispensable to choose perfect initial values for the parameters to find out the estimated

coefficients of a model.

The following theoretical model for the response variable (y) and predictor variable

(x) will try to fit the particular dataset described in Table 6.1.

Remark 6.1. The objective of this investigation is to assess the GNIM and the WGNIM for

ultrasonic calibration data. The primary objective of this investigation is to evaluate the

efficacy of these iterative methods for managing heteroscedasticity and nonlinearity. This

study will solely focus on the performance of GNIM and WGNIM without any pre-analysis

of variable transformations, despite the fact that such transformations can improve the

model fit.
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6.2.1 GAUSS-NEWTON ITERATIVE METHOD (GNIM)

The model is

y =
e−θ1x

(θ2 + θ3x)
+ ϵ = f(x, θ⃗) + ϵ⃗ (6.1)

where f(x, θ⃗) is the expectation function for the above 6.1 nonlinear regression model

and the errors are uncorrelated and have normal distribution with mean of zero [15]. The

sample model is given by

yi = f(xi, θ⃗) + ϵ⃗i,∀i = 1, 2, ..., 54, (6.2)

where

θ⃗ = (θ1, θ2, θ3)
′
,

and f(xi, θ⃗) =
e−θ1xi

(θ2 + θ3xi)
,∀i = 1, 2, ..., 54. (6.3)

Equation (6.2) can be written as,

ϵi = yi − f(xi, θ⃗).

Then the sum of squares of the residuals is,

S(θ⃗) =
n∑

i=1

ϵ2i =
n∑

i=1

[yi − f(xi, θ⃗)]
2.

Equation (4.10) can be obtained after converting the given nonlinear regression

model to linear regression model using linearization method which has already been dis-

cussed in the previous section 4.2.

According to equation (4.10) for this problem n = 54, p = 3 ( p is the number of

parameters) and the Jacobian matrix consists of the following components.

zi1 =
∂f(xi, θ⃗)

∂θ1
=

−xie
−θ1xi

θ2 + θ3xi

,

zi2 =
∂f(xi, θ⃗)

∂θ2
=

−e−θ1xi

(θ2 + θ3xi)2
, (6.4)

zi3 =
∂f(xi, θ⃗)

∂θ3
=

−xie
−θ1xi

(θ2 + θ3xi)2
.
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The Jacobian matrix is given by

Z = (zij),∀i = 1, 2, . . . 54;∀j = 1, 2, 3, (6.5)

i.e.,

Z =



∂f(x1,θ⃗)
∂θ1

∂f(x1,θ⃗)
∂θ2

∂f(x1,θ⃗)
∂θ3

∂f(x2,θ⃗)
∂θ1

∂f(x2,θ⃗)
∂θ2

∂f(x2,θ⃗)
∂θ3

...
...

...

∂f(xn,θ⃗)
∂θ1

∂f(xn,θ⃗)
∂θ2

∂f(xn,θ⃗)
∂θ3


=



−x1e−θ1x1

θ2+θ3x1

−e−θ1x1

(θ2+θ3x1)2
−x1e−θ1x1

(θ2+θ3x1)2

−x2e−θ1x2

θ2+θ3x2

−e−θ1x2

(θ2+θ3x2)2
−x2e−θ1x2

(θ2+θ3x2)2

...
...

...

−xne−θ1xn

θ2+θ3xn

−e−θ1xn

(θ2+θ3xn)2
−xne−θ1xn

(θ2+θ3xn)2


.

The residual vector is given by

y⃗ − f⃗ =



y1 − f1

y2 − f2
...

yn − fn


=



y1 − f(x1, θ⃗)

y2 − f(x2, θ⃗)

...

yn − f(xn, θ⃗)


=



y1 − e−θ1x1

(θ2+θ3x1)

y2 − e−θ1x2

(θ2+θ3x2)

...

yn − e−θ1x3

(θ2+θ3x3)


. (6.6)

The required Gauss-Newton recursion formula is as follows:

ˆ⃗
θ(k+1) =

ˆ⃗
θ(k) + ((Z(k))′Z(k))−1(Z(k))′(y⃗ − f⃗ (k)),∀k = 1, 2, ... (6.7)

Fitting nonlinear models with iterative approaches requires initial values. When ini-

tial values are not suitable, the estimated fit parameters may converge to a local maximum

or minimum instead of the global minimum or maximum. While some models are nearly

unaffected by initial settings, others are hypersensitive.

For this particular problem consider the following starting values:

θ
(0)
1 = 0.1, θ

(0)
2 = 0.01, θ

(0)
3 = 0.02

The computation process of GNIM describes in the following steps:

Step 1: Set an initial approximation for k = 0,

θ⃗(k) = θ⃗(0) = (θ
(0)
1 = 0.1, θ

(0)
2 = 0.01, θ

(0)
3 = 0.02),

maximum iteration =1000, tolerance = 0.000001.
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Step 2: Estimates the residual function (y⃗ − f⃗ (k)) from equation (6.6) for each iteration k =

1, 2, 3, . . .

Step 3: Simultaneously compute zi1, zi2 and zi3, ∀i = 1, 2, . . . , 54 from equation (6.4).

Step 4: Calculate ˆ⃗
β(k) from equation (4.11).

Step 5: Update ˆ⃗
θ(k+1) =

ˆ⃗
θ(k) +

ˆ⃗
β(k).

Step 6: If
ˆ⃗
θ
(k+1)
j − ˆ⃗

θ
(k)
j

ˆ⃗
θ
(k)
j

< 0.000001, then stop.

Step 7: Otherwise, set k = k + 1.

Then, go to the step 2.

Repeat steps 2 to 7 until convergence.

The nonlinear fit produced the following outcomes:

Table 6.2: Parameter estimate values of θ1, θ2, and θ3, convergence values, residual values

for ultrasonic calibration data at θ⃗(0) = (θ
(0)
1 = 0.1, θ

(0)
2 = 0.01, θ

(0)
3 = 0.02).

Iteration θ1 θ2 θ3 Convergence metric SSres

1 0.1000000000 0.01000000 0.02000000 1.0000000000 14794.7901548

2 0.1799622604 0.00042163 0.00865227 0.7255999812 119693.8302051

3 0.1466505522 0.00147361 0.01217025 2.7164829605 16162.1819910

4 0.1450657284 0.00341316 0.01336677 1.4036933240 1392.4163047

5 0.1604124158 0.00490326 0.01248605 0.4764748822 519.5933359

6 0.1662118095 0.00515986 0.01216258 0.0625798088 513.0492894

7 0.1665600136 0.00516510 0.01215060 0.0021249250 513.0480312

8 0.1665759100 0.00516531 0.01215003 0.0000904151 513.0480294

9 0.1665766312 0.00516532 0.01215000 0.0000041060 513.0480294

The values of the residual sum of squares (SSres) for each iteration of the model

fitting procedure are displayed in Table 6.2. A consistent decrease in the SSres was noted
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with each subsequent iteration. As shown in Table 6.2, the residual sum of squares at the

beginning point is S(θ⃗(0)) = 14794.7901548, and the residual sum of squares at the final

iteration is S(θ⃗(9)) = 513.0480294, which is a substantially smaller value than S(θ⃗(0)). The

decrease in SSres signifies that the model is gradually enhancing its association with the

data, iteratively reducing the discrepancies between the predicted and observed values.

The provided figures depict the convergence of the parameters θ1, θ2, and θ3 after

nine iterations of implementing the Gauss-Newton Iterative Method (GNIM) on a nonlin-

ear dataset for ultrasonic calibration. The x-axis of these images represents the iteration

number, while the y-axis represents the parameter values. This allows for a graphical illus-

tration of how each parameter gradually gets closer to its highest possible value. Figures

6.2a, 6.2b, and 6.2c display the path followed by θ1, θ2, and θ3 during the iterations. As

the iterations continue, the values of θ1, θ2, and θ3 reach a stable state, indicating that the

parameter value has reached convergence.

(a) The convergence path of the

estimated coefficient θ1 for

GNIM.

(b) The convergence path of

the estimated coefficient θ2 for

GNIM.

(c) The convergence path of the

estimated coefficient θ3 for

GNIM.

Figure 6.2: Graphical illustration of the convergence of the estimated coefficients of θ1,

θ2, and θ3 for GNIM.

The efficacy of the GNIM in parameter estimation is illustrated through the conver-

gence patterns that have been shown in the Figures 6.2a, 6.2b, and 6.2c. The parameters

(θ1, θ2, and θ3) of the nonlinear model (6.1) are optimally fitted, as evidenced by the uni-
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form trajectory that conforms to a stable value. The convergence of all parameters (θ1, θ2,

and θ3) by the ninth iteration indicates that the convergence criterion has been satisfied, and

no further iterations are required to produce significant changes.

After 9 iterations, for the Gauss-Newton iterative method, the estimated coefficients

converged at θ1 = 0.1665766312, θ2 = 0.00516532, and θ3 = 0.01215000 with S(
ˆ⃗
θ) =

513.0480294. Consequently, the linearization process yielded the following fitted model:

ŷ =
eθ̂1x

θ̂2 + θ̂3x
=

e0.1665766312x

0.00516532 + 0.01215000x
(6.8)

Figure 6.3: Graphical view of the nonlinear fitting process for ultrasonic calibration

dataset using Gauss-Newton Iterative Method (GNIM).

The fitted model is shown in Figure 6.3. The plot demonstrates a satisfactory level

of fit. Identifying any violations of the assumptions of the nonlinear model for this non-

linear fitting from Figure 6.3 presents a significant challenge. It is known that, a normal
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distribution with a mean of zero and a constant variance is assumed to be the fundamental

basis for regression models. But Figure 6.4 represents the violation of the constant variance

assumptions.

Figure 6.4: Graphical representation of residuals vs fitted values for Gauss-Newton

Iterative Method (GNIM).

Figure 6.5: Graphical view of histogram

of residuals for GNIM.

Figure 6.6: Graphical view of normal

probability plot of residuals for GNIM.
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Figure 6.7: Graphical representation of density plot of residuals for GNIM.

After completing the model fitting process, an analysis was conducted on the resid-

uals by examining their histogram and normal probability plot. The histogram plot in

Figure 6.5 indicated a slight departure from normality since the distribution of residuals

could not conform to the perfect shape of the expected bell-shaped curve. In addition, the

normal probability plot in Figure 6.6 indicated that several points deviated from a straight

line, providing more evidence that the residuals did not conform to an ideal normal distri-

bution. The histogram diagram (6.5) can be further verified by the density plot diagram

(6.7) to check whether the residuals are uniformly distributed or not. Since the density plot

is almost bell-shaped according to the output, it assures that the residuals are not smoothly

normally distributed, while a roughly bell-shaped plot indicates that the residuals are likely

to follow a normal distribution.

Incorporating weights into the analysis is crucial for fixing these flaws and making
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the model fit better. To improve the accuracy and reliability of the parameter estimations,

weighted regression methods can be used to account for heteroscedasticity and other vi-

olations of the assumptions of the model. In the next subsection 6.2.2, weights will be

introduced to mitigate this issue.

6.2.2 WEIGHTING TO IMPROVE FIT

Conducting a weighted fit serves as an alternative method if the assumption of con-

stant variance of the errors fails. When estimating the unknown parameters in the model, it

is advisable to give less priority to less precise data and more importance to more precise

measurements when using a weighted fit.

Weighted Gauss-Newton Iterative Method (WGNIM)

In this section, WGNIM will be applied to the model (6.1) with the starting values

θ
(0)
1 = 0.1, θ(0)2 = 0.01, and θ

(0)
3 = 0.02, which are considered in the previous section

6.2.1 in the case of GNIM. Since Figure 6.4 indicates the violation of the constant variance

assumption, in this section, the weights of each observation would be incorporated into the

GNIM to resolve this issue.

To mitigate this inequality of variance problem, it is important to have knowledge

of weights, wi. After examining the data in Table 6.1, it is noticeable that there are several

sets of x values that are replicated, that is, that have repeat points on x. The variance of

the responses at those repeat points plays an important role in investigating how Var(y)

changes with x.
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Table 6.3: Evaluating weights for replicate predictor values in the WGNIM

algorithm-Ultrasonic Calibration dataset.

Obs. i Metal dis., xi Ult. res., yi x̄ S2
y weight, wi

1 0.5 92.90 0.09418060514

18 0.5 81.50 · · ·

28 0.5 75.80 · · ·

48 0.5 81.00 0.5 31.65466667 · · ·

51 0.5 81.70 · · ·

53 0.5 81.30 · · ·

10 0.75 63.80 0.75 8.182857143 0.09850234141
...

...
...

...
...

...

Columns (4) and (5) of Table 6.3 show the average (x̄) values for each cluster of the

replicate values of x and the sample variance of the y in each corresponding cluster respec-

tively. Plotting S2
y against the corresponding x̄ implies that S2

y decreases approximately

linearly with x. Now, after regressing S2
y against the x̄, the least-square fit is given below:

Ŝy

2
= 11.549606− 1.863418x̄. (6.9)

The variance of the corresponding observation yi can be estimated by substituting

each predictor value xi into equation (6.9). Reasonable estimates of the weights wi will be

the inverse of these fitted values. The final column of Table 6.3 displays these estimated

weights.

Now from equation (6.4) calculate the elements zi1, zi2, and zi3 of the Jacobian

matrix as well as from equation (6.6) evaluate the residual values and using this calcu-

lated jacobian matrix, residual and weighted values in Weighted Gauss-Newton recursion
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formula 5.5 gives the following fitted model

ŷ =
eθ̂1x

θ̂2 + θ̂3x
=

e0.13603758x

0.004697202 + 0.013336833x
. (6.10)

The weighted fit results are shown in the Table 6.4. The computational algorithm of WG-

NIM follows the following steps:

Step 1: Set an initial approximation for k = 0,

θ⃗(k) = θ⃗(0) = (θ
(0)
1 = 0.1, θ

(0)
2 = 0.01, θ

(0)
3 = 0.02),

maximum iteration = 1000, tolerance = 0.000001.

Step 2: Arrange the dataset descending to ascending order and cluster the datasets with repli-

cations at each xi values.

Step 3: Find out the mean values of predictors and sample variance of the corresponding

response variables for each cluster.

Step 4: Regress the sample variances S2
y against the average values of x̄, i.e.,

S2
y ∼ γ0 + γ1x̄ (6.11)

where γ0 and γ1 are the intercept and slope of this regression model respectively.

Step 5: Substituting each xi value into the equation (6.11) will give the estimate of the vari-

ance σ2
i of the corresponding observation yi.

Step 6: Calculate wi =
1
σ2
i
.

Step 7: Estimates the residual function (y⃗ − f⃗ (k)) from (6.6).

Step 8: Simultaneously compute zi,1, zi,2 and zi,3, ∀i = 1, 2, . . . , 54 from (6.4).

Step 9: Estimate ˆ⃗
β(k) using equation (5.4).
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Step 10: Update ˆ⃗
θ(k+1) =

ˆ⃗
θ(k) +

ˆ⃗
β(k) using Weighted Gauss-Newton recursion formula (5.5).

Step 11: If
(
ˆ⃗
θ
(k+1)
j − ˆ⃗

θ
(k)
j )

ˆ⃗
θ
(k)
j

< 0.000001, then stop

Step 12: Otherwise, set k = k + 1.

go to the step 7.

Repeat Steps 7 to 12 until convergence.

Table 6.4: Estimated coefficient values of θ1, θ2, and θ3, convergence values, values of

SSres for the “Ultrasonic Calibration data” at θ⃗(0) = (θ
(0)
1 = 0.1, θ

(0)
2 = 0.01, θ

(0)
3 = 0.02).

Iteration θ1 θ2 θ3 Convergence metric SSres

1 0.10000000 0.010000000 0.020000000 1.00000000000 1502.08058804

2 0.13890199 -0.000707836 0.011459040 1.10881170857 9138.42007790

3 0.11177751 0.000462726 0.014885091 1.55001422993 1185.29440401

4 0.11973696 0.002975907 0.014794506 5.49637732339 125.08227239

5 0.13385763 0.004552942 0.013483586 0.55925618232 70.90529543

6 0.13605905 0.004698578 0.013334030 0.03734152275 70.63140942

7 0.13603685 0.004697169 0.013336892 0.00024826878 70.63139000

8 0.13603758 0.004697202 0.013336833 0.00000797973 70.63139000

The values of the residual sum of squares (SSres) for every iteration of the nonlinear

model fitting technique, namely WGNIM, are displayed in Table 6.4. With every iteration,

a constant reduction in SSres was noted, mirroring the pattern found in the GNIM. At

the beginning, the residual sum of squares was 1502.08058804, but by the last iteration,

it had been reduced to 70.63139000. In addition to being a significant improvement over

the GNIM, this final value is substantially lower than the first one. With each iteration,

the model is becoming better at fitting the data by reducing the difference between the

predicted and observed values, as seen by the consistent decline in SSres.
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As shown in Figures 6.8a, 6.8b, and 6.8c, the convergence of parameters θ1, θ2,

and θ3 for ultrasonic calibration was achieved through the implementation of the Weighted

Gauss-Newton Iterative Method (WGNIM) on a nonlinear dataset. The provided figures

illustrate the path that each parameter traveled throughout the iterative procedure.

These graphs show convergence patterns, which prove that the WGNIM is effective

for parameter estimation. It should be noted that the convergence pattern of the parameter is

comparable to what is seen with the GNIM. In contrast, the WGNIM reaches convergence

after just eight iterations, suggesting that it takes fewer iterations for the WGNIM to reach

a fixed point than the GNIM.

(a) The convergence path of the

estimated coefficient θ1 for

WGNIM.

(b) The convergence path of

the estimated coefficient θ2 for

WGNIM.

(c) The convergence path of the

estimated coefficient θ3 for

WGNIM.

Figure 6.8: Graphical illustration of the convergence path of the estimated coefficients of

θ1, θ2, and θ3 for WGNIM.

To evaluate the adequacy of the weighted fit, it is necessary to initially construct a

graphical representation of the predicted line in relation to the original data. As indicated

by Figure 6.9 of predicted values against data, a decent fit is present.

As seen in Figure 6.9, the model fitted the data very well after applying the Weighted

Gauss-Newton Iterative Method (WGNIM). This is similar to the findings obtained with the

Gauss-Newton Iterative Method (GNIM).



104

Figure 6.9: Graphical view of the nonlinear fitting process for ultrasonic calibration

dataset using Weighted Gauss-Newton Iterative Method (WGNIM).

Following that, an evaluation of heteroscedasticity was performed, which unveiled

the existence of this concern in the GNIM outcomes. Nevertheless, Figure 6.10 depicting

the WGNIM implementation provided evidence that this approach effectively mitigated the

issue of heteroscedasticity, as evidenced by the consistent variances observed throughout

the data points, which means the weighted residuals are evenly distributed about the zero

line, which is clearly shown in Figure 6.10.
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Figure 6.10: Graphical representation of weighted residuals vs fitted values for Weighted

Gauss-Newton Iterative Method (WGNIM).

Figure 6.11: Histogram of weighted

residuals for WGNIM.

Figure 6.12: Normal probability plot of

weighted residuals for WGNIM.
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Figure 6.13: Graphical representation of density plot of weighted residuals for Weighted

Gauss-Newton Iterative Method (WGNIM).

In addition, normal probability graphs and histograms were produced to illustrate

the residuals for the WGNIM model. According to the diagrams, the WGNIM produced

more favorable residual distributions than the GNIM, indicating that its results were su-

perior. With regard to the histogram diagram (6.11), displayed better conformity to the

anticipated bell-shaped curve. More precisely, the density plot of weighted residuals for

WGNIM, which was modified by the square root of the weights, reveals a more normal

distribution in comparison to GNIM, which indicates that there has been an improvement

in the stabilization of variance, which is shown in Figure 6.13. In addition, the normal prob-

ability plot (6.12) exhibited a more noticeable alignment of data points along the straight

line, suggesting a more favorable fit to the normal distribution.

With the implementation of the WGNIM, the model has successfully taken into
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account heteroscedasticity. This technique makes use of adaptive weighting in order to

account for the different variances that are present in the data. As a result, the coefficient

estimations are more accurate, and the model fitting capability is improved. In spite of the

fact that heteroscedasticity is still present in the data, the WGNIM makes improvements to

account for it, which makes the findings more reliable.

6.2.3 COMPARE THE FITS

Figure 6.14: Graphical illustration of comparative nonlinear fitting process between

GNIM and WGNIM for the ultrasonic calibration dataset.
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(a) Graphical view of residuals vs fitted

values for ultrasonic calibration dataset

using GNIM.

(b) Graphical view of weighted residuals vs

weighted fitted values for ultrasonic

calibration dataset using WGNIM.

Figure 6.15: Comparative graphical representation of residuals versus fitted values

between GNIM and WGNIM.

(a) Graphical view of histogram of residuals

for GNIM.

(b) Graphical view of histogram of weighted

residuals for WGNIM.

Figure 6.16: Comparative graphical view of histogram of residuals between GNIM and

WGNIM.
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(a) Graphical view of normal probability

plot of residuals for GNIM.

(b) Graphical view of normal probability

plot of weighted residuals for WGNIM.

Figure 6.17: A visual comparison figure of the normal probability plot between GNIM

and WGNIM.

(a) Graphical view of density of residuals

for GNIM.

(b) Graphical view of density of weighted

residuals for WGNIM.

Figure 6.18: Comparative visual illustration of density of residuals between GNIM and

WGNIM.

To commence the comparison of fits, it is important to graphically represent the

two sets of predicted values, expressed in the original units, on a shared plot alongside the

raw data. The presented Figure 6.14 demonstrates that the two fits yield similar anticipated

values. The utilization of weighted fits yields predicted values that exhibit a high degree
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of proximity to the original fit. The regression estimations for WGNIM have exhibited

minimal variation compared to GNIM which are shown in the Table 6.5. The WGNIM

model is a modified version of the GNIM model that effectively addresses the prerequisites

for fitting a nonlinear model. This provides us with assurance that the results and analysis

derived from the WGNIM are well-founded and suitable.

Table 6.5: Comparison of different iterative methods for estimated parameter values of

θ1, θ2, and θ3 as well as MSres.

Method β1 β2 β3 MSres

GNIM 0.1665766312 0.00516532 0.01215000 10.05976528

WGNIM 0.13603758 0.004697202 0.013336833 1.38492922

Levenberg-Marquardt (with weight)

(using nls function)
0.1360376 0.0046972 0.0133368 1.38492922

Levenberg-Marquardt (without weight)

(using nls function)
0.166577 0.005165 0.012150 10.05976528

Table 6.5 summarizes that, compared to the unweighted methods, which have sub-

stantially higher MSres values (10.05976528), the weighted methods have significantly

lower MSres values (1.38492922). A lower MSres value suggests that the weighted algo-

rithms offer a more satisfactory fit to the data.
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Table 6.6: Execution time for each iteration in case of Gauss-Newton Iterative Method

(GNIM).

Iteration θ1 θ2 θ3 Time Cumulative Time

1 0.1000000000 0.01000000 0.02000000 0.01273393630981 0.01273393631

2 0.1799622604 0.00042163 0.00865227 0.00374102592468 0.01647496223

3 0.1466505522 0.00147361 0.01217025 0.00012207031250 0.01659703255

4 0.1450657284 0.00341316 0.01336677 0.00010013580322 0.01669716835

5 0.1604124158 0.00490326 0.01248605 0.00009202957153 0.01678919792

6 0.1662118095 0.00515986 0.01216258 0.00008988380432 0.01687908173

7 0.1665600136 0.00516510 0.01215060 0.00008702278137 0.01696610451

8 0.1665759100 0.00516531 0.01215003 0.00008296966553 0.01704907417

9 0.1665766312 0.00516532 0.01215000 0.00008106231689 0.01713013649

Figure 6.19: Plot of elapsed time for each

iteration for GNIM.

Figure 6.20: Plot of cumulative elapsed

time for each iteration for GNIM.
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Table 6.7: Execution time for each iteration in case of Weighted Gauss-Newton Iterative

Method (WGNIM).

Iteration θ1 θ2 θ3 Time Cumulative Time

1 0.10000000 0.010000000 0.020000000 0.0241878032684 0.02418780327

2 0.13890199 -0.000707836 0.011459040 0.0044209957123 0.02860879898

3 0.11177751 0.000462726 0.014885091 0.0003311634064 0.02893996239

4 0.11973696 0.002975907 0.014794506 0.0004050731659 0.02934503555

5 0.13385763 0.004552942 0.013483586 0.0003199577332 0.02966499329

6 0.13605905 0.004698578 0.013334030 0.0003671646118 0.03003215790

7 0.13603685 0.004697169 0.013336892 0.0004439353943 0.03047609329

8 0.13603758 0.004697202 0.013336833 0.0003080368042 0.03078413010

Figure 6.21: Graphical view of elapsed

time for each iteration for Weighted

Gauss-Newton Iterative Method

(WGNIM).

Figure 6.22: Graphical view of

cumulative elapsed time for each

iteration for weighted Gauss-Newton

Iterative Method (WGNIM).
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Table 6.8: Comparison of consecutive execution time and cumulative elapsed time

between Gauss-Newton Iterative Method (GNIM) and Weighted Gauss-Newton Iterative

Method (WGNIM).

Ite.No.
GNIM WGNIM

Time Cumulative Time Time Cumulative Time

1 0.01273393630981 0.01273393631 0.0241878032684 0.02418780327

2 0.00374102592468 0.01647496223 0.0044209957123 0.02860879898

3 0.00012207031250 0.01659703255 0.0003311634064 0.02893996239

4 0.00010013580322 0.01669716835 0.0004050731659 0.02934503555

5 0.00009202957153 0.01678919792 0.0003199577332 0.02966499329

6 0.00008988380432 0.01687908173 0.0003671646118 0.03003215790

7 0.00008702278137 0.01696610451 0.0004439353943 0.03047609329

8 0.00008296966553 0.01704907417 0.0003080368042 0.03078413010

9 0.00008106231689 0.01713013649 - -

Figure 6.23: Comparative elapsed time

for each iteration between GNIM and

WGNIM.

Figure 6.24: Comparative cumulative

execution time for each iteration between

GNIM and WGNIM.

The execution time comparison between the Weighted Gauss-Newton Iterative Method

(WGNIM) and the Gauss-Newton Iterative Method (GNIM) for each iteration unveiled sig-

nificant disparities. The execution duration of the WGNIM was significantly longer than



114

that of the GNIM, owing to the incorporation of weights into its algorithm.

More specifically, the WGNIM exhibited an extended execution time for every iter-

ation, which can be attributed to the supplementary computational effort required to com-

pute and implement the weights within the algorithm. In addition, the overall duration of

the procedure was found to be longer for the WGNIM in comparison to the GNIM.

The observed variation in execution time underscores the trade off between the

enhanced performance and the reduced computational efficiency that the WGNIM imple-

ments to account for heteroscedasticity. Although the execution time of the WGNIM may

be longer, in certain applications, its capability to manage heteroscedasticity and generate

more dependable parameter estimates may be sufficient to justify this additional computa-

tional expense.

6.2.4 ANALYSIS OF STATISTICAL INFERENCES FOR NONLINEAR REGRESSION

PARAMETER

Confidence Interval Estimation for GNIM

Estimated Variance and Covariance

Inferences about nonlinear regression parameters require an estimate the variance

σ2 of the error term. Following the convergence of the estimating technique to a final vector

of parameter estimates θ̂, it is possible to derive an estimated variance σ2 of the error by

utilizing the residual mean square. This estimation is identical to that of linear regression.
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σ̂2 = MSres =
SSres

n− p

=

n∑
i=1

(Yi − Ŷi)
2

n− p

=

n∑
i=1

[Y⃗i − fi(Xi,
ˆ⃗
θ)]2

n− p

=
S(

ˆ⃗
θ)

n− p
, (6.12)

where p is the number of parameters, and the vector, denoted by ˆ⃗
θ, contains the final es-

timates of the parameters. Since MSres is not an unbiased estimator of σ2 in the case of

nonlinear regression, with a large sample size, the bias would be quite negligible [14].

The following theorem serves as the foundation for drawing inferences for regres-

sion models in situations when the errors are independent and normally distributed, and the

sample size is of a size that is considered to be reasonably large:

Large Sample theory

Firstly, when the error terms ϵi are considered to be independent and normally dis-

tributed with mean 0 and variance σ2, which can be written as ϵi ∼ N(0, σ2) and the sample

size n is assumed to be reasonably large, the sampling distribution of ˆ⃗
θ is approximately

normal [14], i.e.,

E(
ˆ⃗
θ) ≃ θ. (6.13)

Secondly, the approximate variance-covariance matrix of the regression coefficients

can be computed using the following formula [14]:

Var(
ˆ⃗
θ) = MSres(Z

′Z)−1, (6.14)

where Z is the matrix of partial derivatives of the model function with respect to the pa-

rameters defined previously evaluated at the final iteration of the least-squares estimate ˆ⃗
θ.
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Remark 6.2. It should be noted that the form of the estimated approximation variance-

covariance matrix Var(
ˆ⃗
θ) is identical to that of the linear regression matrix, with Z serving

as the X matrix.

In this application, the residual sum of squares at the final iteration is S(
ˆ⃗
θ) =

513.0480294. So the estimate of σ2 is

σ̂2 =
S(

ˆ⃗
θ)

n− p
=

513.0480294

54− 3
= 10.05976528235

The covariance matrix of the estimated coefficient vector ˆ⃗θ for the given exponential

model in this application is

Var(
ˆ⃗
θ) = MSres(Z

′Z)−1

= 10.05976528235


1.45843× 10−04 2.14144× 10−06 −5.47605× 10−06

2.14144× 10−06 4.41207× 10−08 −9.75029× 10−08

−5.47605× 10−06 −9.75029× 10−08 2.32828× 10−07

 .

The main diagonal elements of this matrix are approximate variances of the esti-

mates of the regression coefficients. Therefore, approximate standard errors of the esti-

mated coefficients are given as follows:

SE(θ̂1) =

√
Var(θ̂1) =

√
10.05976528235(1.45843× 10−04)

= 0.03830334643

SE(θ̂2) =

√
Var(θ̂2) =

√
10.05976528235(4.41207× 10−08)

= 0.0006662161

SE(θ̂3) =

√
Var(θ̂3) =

√
10.05976528235(2.32828× 10−07)

= 0.00153042315



117

Interval Estimation of Regression Parameters

Based on large-sample theory, given a large sample size and normally distributed

error terms, the following approximate result is valid [14].

θ̂j − θj

SE(θ̂j)
∼ t(n− p),∀j = 1, 2, ..., p. (6.15)

where j stands for a particular element of the parameter vector θ and p represents the total

number of model parameters. The above statement asserts that, the standardize estimate
θ̂j−θj

SE(θ̂j)
for each parameter θj approximately follows a t-distribution with n − p degrees of

freedom, where n is the sample size.

For every parameter θj , this result is utilized to generate confidence intervals and

do hypothesis testing. Therefore, a confidence interval for every θj with a confidence level

of 100(1− α)% can be created as follows [14]:

θ̂j ± t
(
1− α

2
, n− p

)
· SE(θ̂j), (6.16)

where the critical value, denoted as t(1 − α
2
, n − p), is obtained from t-distribution with

n− p degrees of freedom.

For our ultrasonic calibration example, it is desired to estimate θ1, θ2, and θ3 with a

95% confidence interval.

Assume that,

Confidence level, CL = 95%,

Level of significance, α = 5% = 0.05,

Confidence coefficient, 1− α
2
= 1− 0.05

2
= 0.975,

The sample size, n = 54,

The total number of parameter, p = 3,
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Therefore, the required critical value is

t
(
1− α

2
, n− p

)
= t(0.975, 51)

= 2.007584

Confidence interval for θ1:

The value of estimated coefficient θ1 is θ̂1 = 0.1665766638 and standard error of

the coefficient estimates of θ1 is SE(θ̂1) = 0.00146714635.

Then a 95% confidence interval for θ1 is as follows,

θ̂1 − t0.025,51 · SE(θ̂1) ≤ θ1 ≤ θ̂1 + t0.025,51 · SE(θ̂1)

0.1665767− 2.007584× 0.03830334643 ≤ θ1 ≤ 0.1665767 + 2.007584× 0.03830334643

0.08967951 ≤ θ1 ≤ 0.24347389

Interpretation of confidence interval for θ1:

Therefore, the interval from 0.08967951 to 0.24347389 forms a 95% confidence

interval for the estimated coefficient θ1. In other words, the interval from 0.08967951 to

0.24347389 gives the most believable value for the parameter estimate θ1.

Confidence interval for θ2:

The value of estimated coefficient θ2 is θ̂2 = 0.00516533 and standard error of the

coefficient estimates of θ2 is SE(θ̂2) = 0.0006662161.

Then a 95% confidence interval for θ2 is as follows,

θ̂2 − t0.025,51 · SE(θ̂2) ≤ θ2 ≤ θ̂2 + t0.025,51 · SE(θ̂2)

0.00516533− 2.007584× 0.0006662161 ≤ θ2 ≤ 0.00516533− 2.007584× 0.0006662161

0.00382785 ≤ θ2 ≤ 0.00650281

Interpretation of confidence interval for θ2:
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Therefore, the interval from 0.00382785 to 0.00650281 forms a 95% confidence

interval for the estimated coefficient θ2. In other words, the interval from 0.00382785 to

0.00650281 gives the most believable value for the parameter estimate θ2.

Confidence interval for θ3:

The value of estimated coefficient θ3 is θ̂3 = 0.01215001 and standard error of the

coefficient estimates of θ3 is SE(θ̂3) = 0.001530423.

Then a 95% confidence interval for θ3 is as follows,

θ̂3 − t0.025,51 · SE(θ̂3) ≤ θ3 ≤ θ̂3 + t0.025,51 · SE(θ̂3)

0.01215001− 2.007584× 0.001530423 ≤ θ3 ≤ 0.01215001 + 2.007584× 0.001530423

0.00907756 ≤ θ3 ≤ 0.01522246

Interpretation of confidence interval for θ3:

Therefore, the interval from 0.00907756 to 0.01522246 forms a 95% confidence

interval for the estimated coefficient θ3. In other words, the interval from 0.00907756 to

0.01522246 gives the most believable value for the parameter estimate θ3.

Confidence Interval Estimation for WGNIM

In case of WGNIM, the approximate variance-covariance matrix of the regression

coefficients is estimated by:

Var(
ˆ⃗
θ) = MSres(Z

′WZ)−1 (6.17)

where Z is the matrix of partial derivatives of the expectation function of the given model

with respect to the given parameters defined previously, evaluated at the final-iteration least-

squares estimate ˆ⃗
θ.
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In case of WGNIM, weighted mean square error is

σ̂2 = MSres =

n∑
i=1

wi(Yi − Ŷi)
2

n− p

=

n∑
i=1

wi[Y⃗i − fi(Xi,
ˆ⃗
θ)]2

n− p

=

n∑
i=1

wie
2
i

n− p

=
S(

ˆ⃗
θ)

n− p
. (6.18)

In this application, the required weighted residual sum of squares at the final iteration is

S(
ˆ⃗
θ) = 70.63139000. So the estimate of σ2 is

σ̂2 =
S(

ˆ⃗
θ)

n− p
=

70.63139000

54− 3
= 1.384929216.

The covariance matrix of the estimated coefficient vector ˆ⃗
θ for the given model in

this application is given below:

Var(
ˆ⃗
θ) = MSres(Z

′WZ)−1

= 1.384929216


3.01590× 10−04 7.44436× 10−06 −1.63246× 10−05

7.44436× 10−06 2.76268× 10−07 −5.14424× 10−07

−1.63246× 10−05 −5.14424× 10−07 1.05687× 10−06

 .

The main diagonal elements of this matrix are approximate variances of the esti-

mates of the regression coefficients. Therefore, approximate standard errors on the coeffi-

cients are

SE(θ̂1) =

√
Var(θ̂1) =

√
1.384929216(3.01590× 10−04)

= 0.020437241
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SE(θ̂2) =

√
Var(θ̂2) =

√
1.384929216(2.76268× 10−07)

= 0.000618557

SE(θ̂3) =

√
Var(θ̂3) =

√
1.384929216(1.05687× 10−06)

= 0.001209831

Confidence interval for θ1:

The value of estimated coefficient θ1 is θ̂1 = 0.13603758 and standard error of the

coefficient estimates of θ1 is SE(θ̂1) = 0.020437241.

Then a 95% confidence interval for θ1 is as follows,

θ̂1 − t0.025,51 · SE(θ̂1) ≤ θ1 ≤ θ̂1 + t0.025,51 · SE(θ̂1)

0.13603758− 2.007584× 0.020437241 ≤ θ1 ≤ 0.13603758 + 2.007584× 0.020437241

0.0950086 ≤ θ1 ≤ 0.177066574

Interpretation of confidence interval for θ1:

Therefore, the interval from 0.0950086 to 0.177066574 forms a 95% confidence

interval for the estimated coefficient θ1. In other words, the interval from 0.0950086 to

0.177066574 gives the most believable value for the parameter estimate θ1.

Confidence interval for θ2:

The value of estimated coefficient θ2 is θ̂2 = 0.004697202 and standard error of the

coefficient estimates of θ2 is SE(θ̂2) = 0.000618557.

Then a 95% confidence interval for θ2 is as follows,

θ̂2 − t0.025,51 · SE(θ̂2) ≤ θ2 ≤ θ̂2 + t0.025,51 · SE(θ̂2)

0.004697202− 2.007584× 0.000618557 ≤ θ2 ≤ 0.004697202 + 2.007584× 0.000618557

0.00345540 ≤ θ2 ≤ 0.00593901

Interpretation of confidence interval for θ2:
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Therefore, the interval from 0.00345540 to 0.00593901 forms a 95% confidence

interval for the estimated coefficient θ2. In other words, the interval from 0.00345540 to

0.00593901 gives the most believable value for the parameter estimate θ2.

Confidence interval for θ3:

The value of estimated coefficient θ3 is θ̂3 = 0.013336833 and standard error of the

coefficient estimates of θ3 is SE(θ̂3) = 0.001209831.

Then a 95% confidence interval for θ3 is as follows,

θ̂3 − t0.025,51 · SE(θ̂1) ≤ θ3 ≤ θ̂3 + t0.025,51 · SE(θ̂3)

0.013336833− 2.007584× 0.001209831 ≤ θ3 ≤ 0.013336833 + 2.007584× 0.001209831

0.01090799 ≤ θ3 ≤ 0.01576567

Interpretation of confidence interval for θ3:

Therefore, the interval from 0.01090799 to 0.01576567 forms a 95% confidence

interval for the estimated coefficient θ3. In other words, the interval from 0.01090799 to

0.01576567 gives the most believable value for the parameter estimate θ3.

Table 6.9: Comparing the confidence interval for the estimated coefficients θ1, θ2, and θ3

between the GNIM (unweighted nonlinear fit) and the WGNIM (weighted nonlinear fit).

parameters
GNIM WGNIM

Lower Limit Upper Limit Lower Limit Upper Limit

θ1 0.08967951 0.24347389 0.0950086 0.177066574

θ2 0.00382785 0.00650281 0.00345540 0.00593901

θ3 0.00907756 0.01522246 0.01090799 0.01576567

Table 6.9 represents a comparison between the Weighted Gauss-Newton Iterative

Method (WGNIM) and the Gauss-Newton Iterative Method (GNIM) with respect to the

confidence intervals of the parameter estimates θ1, θ2, and θ3. The findings suggest that, on

average, the WGNIM produces more precise confidence intervals.
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Table 6.10: Comparing the margin of error for the estimated coefficients θ1, θ2, and θ3

between the GNIM (unweighted nonlinear fit) and the WGNIM (weighted nonlinear fit).

Parameters GNIM WGNIM

θ1 ME: 0.07689718544 ME: 0.04102947804

θ2 ME: 0.00133748478 ME: 0.00124180514

θ3 ME: 0.00307245273 ME: 0.00242883736

Table 6.10 shows that in WGNIM the estimated coefficients θ1, θ2, and θ3 have

smaller margin of error in comparison to the GNIM, which is clearly shown in the Figure

6.25 and 6.26.

Figure 6.25: Graphical representation of nonlinear regression fit with 95% confidence

interval for GNIM
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Figure 6.26: Graphical representation of nonlinear regression fit with 95% confidence

interval for WGNIM

Smaller margin of error in WGNIM mean that the confidence interval for the es-

timated coefficient are narrower, which making the result of WGNIM more robust and

trustworthy compared to GNIM. The WGNIM offers more accurate estimated coefficients,

because it can take into consideration heteroscedasticity and assign appropriate weights to

the observations during the fitting process.

6.2.5 CONCLUSIONS

In this study, classical statistical supervised learning optimization techniques like

the Gauss-Newton Iterative Method (GNIM), the Weighted Gauss-Newton Iterative Method

(WGNIM), the Reweighted Gauss-Newton Iterative Method (RGNIM), and the Levenberg-

Marquart (LM) algorithm have been investigated and compared for resilience in multicol-

linarity and heteroscedasticity to fit nonlinear models. These methods are advanced exten-

sions of the nonlinear least squares method that minimize the sum of squared differences
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between the observed and predicted values of the nonlinear model.

The WGNIM method controls for heteroscedasticity by adjusting weights in the lin-

earized model. The occurrence of structural multicollinearity, where parameter estimators

have inflated variances, leads to inaccurate results for fitting the model. Multicollinearity is

assessed via the Variance Inflation Factor (VIF). Under restricted levels of multicollinearity,

the GNIM and RGNIM are examined and analyzed in simulation experiments. The results

show that, with the occurrence of multicollinearity, the RGNIM does not outperform the

regular GNIM for the logistic growth model and its corresponding particular dataset.

In application of the methods in this study, the association between metal distance

(a predictor variable) and ultrasonic response (a response variable) is estimated in a NIST

dataset from [15]. According to the results, heteroscedasticity is present because the vari-

ances were not constant. By including the estimation of weights for the given dataset in the

GNIM, the WGNIM was able to solve this problem. The WGNIM effectively reduced the

heteroscedasticity issue, resulting in constant variances, as demonstrated by the findings.

This improvement was noteworthy, as heteroscedasticity in the GNIM inflated re-

gression coefficients, specifically an increase in the standard errors of the estimated coef-

ficients, which in turn produced inflated confidence intervals. Nevertheless, the utilization

of the WGNIM resolved this issue, and the confidence intervals were significantly better in

comparison to those obtained with the GNIM. Compared to the GNIM, the WGNIM had a

longer time required for each iteration as well as a longer total execution time. However, the

WGNIM demonstrated efficiency by requiring fewer iterations to estimate the coefficients

in comparison to the GNIM.

In a nutshell, better estimated coefficients and confidence intervals were the end re-

sult of using the WGNIM, which was shown to be an effective technique for handling het-

eroscedasticity in nonlinear regression models. Regardless, choosing between the GNIM

and the WGNIM for similar applications requires careful consideration of the trade-off
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between execution time and efficiency.
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Appendix A

R CODE

A.1 GAUSS-NEWTON ITERATIVE METHOD

# Set options to print in decimal form and control the number of digits

options(scipen = 999, digits = 10)

x=c(0.5,1,1.75,3.75,5.75,0.875,2.25,3.25,5.25,0.75,1.75,2.75,4.75,0.625,

1.25,2.25,4.25,0.5,3,0.75,3,1.5,6,3,6,1.5,3,0.5,2,4,0.75,2,5,0.75,2.25,

3.75,5.75, 3, 0.75, 2.5, 4, 0.75, 2.5, 4, 0.75, 2.5, 4, 0.5, 6, 3, 0.5,

2.75,0.5,1.75)

ydata=c(92.9,57.1,31.05,11.5875,8.025,63.6,21.4,14.25,8.475,63.8,26.8,

16.4625,7.125,67.3, 41, 21.15, 8.175, 81.5, 13.12, 59.9,14.62,32.9,5.44,

12.56,5.44,32,13.95,75.8,20,10.42,59.5,21.67,8.55,62,20.2,7.76,3.75,11.81,

54.7,23.7, 11.55, 61.3, 17.7, 8.74, 59.2, 16.3, 8.62, 81, 4.87, 14.62,

81.7,17.17,81.3,28.9)

#--------------------------Gauss-Newton Method----------------------

maxi=1000

i=0

diff=1

beta_old=c(theta1=0.1, theta2=0.01, theta3=0.02)

# Define the nonlinear model

f=function(theta1, theta2, theta3) ((exp(-theta1*x)/(theta2+theta3*x)))

# Define the Jacobin matrix

jac=function(theta1, theta2, theta3)

cbind((-x*exp(-theta1*x))/(theta2+theta3*x),

(-exp(-theta1*x))/(theta2+theta3*x)ˆ2,

(-x*exp(-theta1*x))/(theta2+theta3*x)ˆ2)

# Store the solutions in the table

solutions_table <- matrix(0, nrow = maxi, ncol = 6)
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colnames(solutions_table) <- c("Iteration", "Theta1", "Theta2", "Theta3",

"Convergence","Residual")

# Store the Jacobian matrices in a list

jacobian_list <- vector("list", length = maxi)

# ----------------Gauss-Newton method algorithm-----------------------

while (i<maxi && diff>0.000001) {

j=jac(beta_old[1], beta_old[2], beta_old[3])

res=c(ydata-f(beta_old[1], beta_old[2], beta_old[3]))

residual=sum(resˆ2)

#-------- Calculate the change in beta1 and beta2-------------

solutions_table[i + 1, ] <- c(i + 1, beta_old[1], beta_old[2],

beta_old[3], diff,residual)

# -------Store the Jacobian matrix for this iteration---------

jacobian_list[[i+1]] <- j

#jacobian_list[[i + 1]] <- as.data.frame(j)

colnames(jacobian_list[[i + 1]]) <- c("Z_i1", "Z_i2", "Z_i3")

#Calculate the change in beta1 and beta2

beta_new=beta_old+solve(t(j) %*% (j)) %*% t(j) %*% res

#Increment the iteration counter

i=i+1

#Check if the solutions have converged

diff=abs(sum((beta_old-beta_new)/beta_old))

#Update the old parameter estimates

beta_old=beta_new

}

#-----------------------------------------------------------------
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# Trim the solutions table to remove unused rows

solutions_table <- solutions_table[1:i, ]

#-----------------------------------------------------------------

#Print the solutions

cat("Theta1:", beta_old[1], "\n")

cat("Theta2:", beta_old[2], "\n")

cat("Theta3:", beta_old[3], "\n")

cat("Number of Iterations:", i, "\n")

cat("Final Difference in x:", diff, "\n")

#-----------------------------------------------------------------

#print the solution table

print(solutions_table)

#-----------------------------------------------------------------

# Print Jacobian matrices for each iteration

for (iter in 1:i) {

cat("Iteration", iter, ":\n")

print(jacobian_list[[iter]])

cat("\n")

cor(jacobian_list[[iter]])

print(cor(jacobian_list[[iter]]))

cat("\n")

}

# Reset options to default values

options(scipen = 0, digits = 6)

#-----------------------------------------------------------------------

#Plot the regression line

plot(x, ydata, xlab = "Metal Distance, x(predictor)",

ylab = "Ultrasonic Response, y(Response)",

main="Non-linear fitting by Gauss Newton Method", pch=1, col="black")

curve((exp(-beta_old[1]*x)/(beta_old[2]+beta_old[3]*x)),

add = TRUE, col = "blue")
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fitted_value <- exp(-beta_old[1]*x)/(beta_old[2]+beta_old[3]*x)

plot(fitted_value, res, xlab = "Fitted Value", ylab = "Residuals",

main = "Plot of residuals vs fitted value for Gauss Newton Method")

abline(0,0)

A.2 WEIGHTED GAUSS-NEWTON ITERATIVE METHOD

# Set options to print in decimal form and control the number of digits

options(scipen = 999, digits = 10)

x=c(0.5,1,1.75,3.75,5.75,0.875,2.25,3.25,5.25,0.75,1.75,2.75,4.75,0.625,

1.25,2.25,4.25,0.5,3,0.75,3,1.5,6,3,6,1.5,3,0.5,2,4,0.75,2,5,0.75,2.25,

3.75,5.75, 3, 0.75, 2.5, 4, 0.75, 2.5, 4, 0.75, 2.5, 4, 0.5, 6, 3, 0.5,

2.75,0.5,1.75)

ydata=c(92.9,57.1,31.05,11.5875,8.025,63.6,21.4,14.25,8.475,63.8,26.8,

16.4625,7.125,67.3, 41, 21.15, 8.175, 81.5, 13.12, 59.9,14.62,32.9,5.44,

12.56,5.44,32,13.95,75.8,20,10.42,59.5,21.67,8.55,62,20.2,7.76,3.75,11.81,

54.7,23.7, 11.55, 61.3, 17.7, 8.74, 59.2, 16.3, 8.62, 81, 4.87, 14.62,

81.7,17.17,81.3,28.9)

##------------- Weighted Gauss-Newton Iterative Method--------------

maxi=1000

i=0

diff=1

beta_old=c(theta1=0.1, theta2=0.01, theta3=0.02)

# Define the nonlinear model

f=function(theta1, theta2, theta3) ((exp(-theta1*x)/(theta2+theta3*x)))

# Define the Jacobin matrix

jac=function(theta1, theta2, theta3)

cbind((-x*exp(-theta1*x))/(theta2+theta3*x),

(-exp(-theta1*x))/(theta2+theta3*x)ˆ2,

(-x*exp(-theta1*x))/(theta2+theta3*x)ˆ2)
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# Store the solutions in the table

solutions_table <- matrix(0, nrow = maxi, ncol = 6)

colnames(solutions_table) <- c("Iteration", "Theta1", "Theta2", "Theta3",

"Convergence","Residual")

# Store the Jacobian matrices in a list

jacobian_list <- vector("list", length = maxi)

df=data.frame(ydata,x)

dfs <- df[duplicated(df$x) | duplicated(df$x, fromLast = TRUE), ]

## Determine Weights

dfs_1 = dfs[order(dfs$x),]

d = by(dfs_1$x,dfs_1$x,mean)

s2 = by(dfs_1$ydata,dfs_1$x,var)

md = as.vector(d)

vresp = as.vector(s2)

#lnmd = log(md)

#lnvresp = log(vresp)

#out2 = lm(lnvresp˜lnmd)

#summary(out2)

out3 <- lm(vresp˜md)

plot(md, vresp)

lines(md, fitted(out3))

summary(out3)

pr_v <- predict(out3,newdata=data.frame(md=x))

weight <- 1/pr_v

# -------------Weighted Gauss-Newton Iterative method----------------

while (i<maxi && diff>0.000001) {
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j=jac(beta_old[1], beta_old[2], beta_old[3])

res=c(ydata-f(beta_old[1], beta_old[2], beta_old[3]))

residual=sum(resˆ2)

wt <- diag(weight, nrow = length(x), ncol = length(x))

#-------- Calculate the change in beta1 and beta2-------------

solutions_table[i + 1, ] <- c(i + 1, beta_old[1], beta_old[2],

beta_old[3], diff,residual)

# -------Store the Jacobian matrix for this iteration---------

jacobian_list[[i+1]] <- j

#jacobian_list[[i + 1]] <- as.data.frame(j)

colnames(jacobian_list[[i + 1]]) <- c("Z_i1", "Z_i2", "Z_i3")

#Calculate the change in beta1 and beta2

beta_new=beta_old+solve(t(j)%*% wt %*% (j)) %*% t(j)%*% wt %*% res

#Increment the iteration counter

i=i+1

#Check if the solutions have converged

diff=abs(sum((beta_old-beta_new)/beta_old))

#Update the old parameter estimates

beta_old=beta_new

}

#-----------------------------------------------------------------

# Trim the solutions table to remove unused rows

solutions_table <- solutions_table[1:i, ]

#-----------------------------------------------------------------

#Print the solutions

cat("Theta1:", beta_old[1], "\n")

cat("Theta2:", beta_old[2], "\n")

cat("Theta3:", beta_old[3], "\n")

cat("Number of Iterations:", i, "\n")
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cat("Final Difference in x:", diff, "\n")

#-----------------------------------------------------------------

#print the solution table

print(solutions_table)

#-----------------------------------------------------------------

# Print Jacobian matrices for each iteration

for (iter in 1:i) {

cat("Iteration", iter, ":\n")

print(jacobian_list[[iter]])

cat("\n")

cor(jacobian_list[[iter]])

print(cor(jacobian_list[[iter]]))

cat("\n")

}

# Reset options to default values

options(scipen = 0, digits = 6)

#----------------------------------------------------------------

#Plot the regression line

plot(x, ydata, xlab = "Metal Distance, x(predictor)",

ylab = "Ultrasonic Response, y(Response)",

main="Non-linear fitting by Weighted Gauss Newton Method",

pch=1, col="black")

curve((exp(-beta_old[1]*x)/(beta_old[2]+beta_old[3]*x)),

add = TRUE, col = "blue")

fitted_value <- exp(-beta_old[1]*x)/(beta_old[2]+beta_old[3]*x)

plot(sqrt(wt)*fitted_value, sqrt(wt)*res,

xlab = "Weighted Fitted Values",

ylab = "Weighted Residuals",

main="Plot of Residuals vs fitted values for Weighted Gauss Newton Method")

abline(0,0)
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plot(md,vresp)

plot(md, fitted(out3))

A.3 NLS PACKAGE

# imports library

library(minpack.lm)

#library(nlsr)

#--------------------Gauss-Newton Iterative Method----------------------

x<-c(0.5,1,1.75,3.75,5.75,0.875,2.25,3.25,5.25,0.75,1.75,2.75,4.75,0.625,

1.25,2.25,4.25,0.5,3,0.75,3,1.5,6,3,6,1.5,3,0.5,2,4,0.75,2,5,0.75,2.25,

3.75,5.75, 3, 0.75, 2.5, 4, 0.75, 2.5, 4, 0.75, 2.5, 4, 0.5, 6, 3, 0.5,

2.75,0.5,1.75)

y <- c(92.9,57.1,31.05,11.5875,8.025,63.6,21.4,14.25,8.475,63.8,26.8,

16.4625,7.125,67.3, 41, 21.15, 8.175, 81.5, 13.12, 59.9,14.62,32.9,5.44,

12.56,5.44,32,13.95,75.8,20,10.42,59.5,21.67,8.55,62,20.2,7.76,3.75,11.81,

54.7,23.7, 11.55, 61.3, 17.7, 8.74, 59.2, 16.3, 8.62, 81, 4.87, 14.62,

81.7,17.17,81.3,28.9)

df=data.frame(y,x)

start_values <- c(theta_1=0.1, theta_2=0.01, theta_3=0.02)

m<-nlsLM(formula=y˜(exp(-theta_1*x)/(theta_2+theta_3*x)),

data=df,

start=start_values,

algorithm = "LM",

control = nls.control(maxiter = 1000))

print(m)

coef(m)

summary(m)

fitted(m)

res = resid(m)
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plot(x, ydata, xlab = "Metal Distance, Predictor (x)",

ylab = "Ultrasonic Response, Response (y)",

main = "Scatter plot of ultrasonic reference block data")

#lines(x, fitted(m), col="green")

plot(fitted(m), resid(m))

abline(0,0)

# Plot the data

plot(x, y, xlab = "Metal Distance, x (Predictor)",

ylab = "Ultrasonic Response, y (Response)")

# Generate x values for the curve

x_curve <- seq(min(x), max(x), length.out = 100)

# Predict y values using the fitted model

y_curve <- predict(m, newdata = data.frame(x = x_curve))

# Add the curve to the plot

lines(x_curve, y_curve, col = "red", lwd = 1)

#----------------Weighted Gauss-Newton Iterative Method-----------------

library(minpack.lm)

#library(nlsr)

x_1<-c(0.5,1,1.75,3.75,5.75,0.875,2.25,3.25,5.25,0.75,1.75,2.75,4.75,

0.625,1.25,2.25,4.25,0.5,3,0.75,3,1.5,6,3,6,1.5,3,0.5,2,4,0.75,2,5,0.75,

2.25,3.75,5.75, 3, 0.75, 2.5, 4, 0.75, 2.5, 4, 0.75, 2.5, 4, 0.5, 6, 3,

0.5,2.75,0.5,1.75)

y_1 <- c(92.9,57.1,31.05,11.5875,8.025,63.6,21.4,14.25,8.475,63.8,26.8,

16.4625,7.125,67.3, 41, 21.15, 8.175, 81.5, 13.12, 59.9,14.62,32.9,
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5.44,12.56,5.44,32,13.95,75.8,20,10.42,59.5,21.67,8.55,62,20.2,7.76,

3.75,11.81,54.7,23.7, 11.55, 61.3, 17.7, 8.74, 59.2, 16.3, 8.62, 81,

4.87, 14.62, 81.7,17.17,81.3,28.9)

df=data.frame(y_1,x_1)

start_values <- c(theta1=0.1, theta2=0.01, theta3=0.02)

dfs <- df[duplicated(df$x_1) | duplicated(df$x_1, fromLast = TRUE), ]

## Determine Weights

dfs_1 = dfs[order(dfs$x_1),]

d = by(dfs_1$x_1,dfs_1$x_1,mean)

s2 = by(dfs_1$y_1,dfs_1$x_1,var)

md = as.vector(d)

vresp = as.vector(s2)

#lnmd = log(md)

#lnvresp = log(vresp)

#out2 = lm(lnvresp˜lnmd)

#summary(out2)

out3 <- lm(vresp˜md)

summary(out3)

pr_v <- predict(out3,newdata=data.frame(md=x_1))

weight <- 1/pr_v

m_1<-nlsLM(formula=y_1˜(exp(-theta1*x_1)/(theta2+theta3*x_1)),

data=df,

start=start_values,

weights = weight,

algorithm = "LM",

control = nls.control(maxiter = 1000))

print(m_1)
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coef(m_1)

summary(m_1)

fitted(m_1)

resid(m_1)

#plot(x, ydata)

# Generate x values for the curve

x_curve <- seq(min(x_1), max(x_1), length.out = 100)

# Predict y values using the fitted model

y_curve <- predict(m_1, newdata = data.frame(x_1 = x_curve))

# Add the curve to the plot

lines(x_curve, y_curve, col = "green", lwd = 1)

legend("topright", legend = c("Gauss Newton Iterative Method",

"Weighted Gauss Newton Iterative Method"),

col = c("red", "green"), lwd = 1)

title("Non-linear Fitting with Gauss Newton Iterative Method ", line = 2)

title("and Non-linear Fitting using Weighted Gauss Newton Iterative Method ",

line = 1)

plot(fitted(m_1), resid(m_1))

abline(0,0)

A.4 GAUSS-NEWTON ITERATIVE METHOD (WITHOUT WEIGHT) FOR

LOGISTIC GROWTH MODEL

#Load_Data--------------------------------------------------------

x=c(1,2,3,4,5,6,7,8,9,10,11,12)

y=c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,

38.558, 50.156, 62.948, 75.995, 91.972)

#Initial starting value------------------------------------------
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beta_old=c(theta1=200, theta2=50.50, theta3=0.3035)

theta1=beta_old[1];

theta2=beta_old[2];

theta3=beta_old[3];

# Define the nonlinear model-----------------------------------------

f=function(theta1, theta2, theta3) {(theta1/(1+theta2*exp(-theta3*x)))

}

# Define the Jacobin matrix-------------------------------------------

jac=function(theta1, theta2, theta3){

cbind("Z_1"=1/(1+theta2*exp(-theta3*x)),

"Z_2"= (-theta1*exp(-theta3*x))/(1+theta2*exp(-theta3*x))ˆ2,

"Z_3"=(theta1*theta2*x)/(exp(theta3*x)*(1+theta2*exp(-theta3*x))ˆ2))

}

jac(theta1, theta2, theta3)

#Residual function----------------------------------------------------

Res=function(theta1, theta2, theta3){ y-f(theta1, theta2, theta3)

}

Res(theta1, theta2, theta3)

#Jacobian inverse and matrix poduct-----------------------------------

#Find the Jacobians and matrix product with weights

winvjac= function(theta1, theta2, theta3, w){

J=jac(theta1, theta2, theta3);

R=Res(theta1, theta2, theta3);

solve(t(J)%*%w%*%J )%*% t(J)%*%w%*%R

}

#Find the weights at each iteration---------------------------------

Warray=array(rep(0), dim = c(n, n, nsim))

#w=matrix(rep(0), nrow = n, ncol = p)

#function for weights of a linear regression model

resw=function(H){

rg=lm(Res(theta1, theta2, theta3)˜H[,2]+H[,3]+H[,4], data=H);
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resandfitted=lm(resid(rg)˜rg$fitted, data = H )

gw=1/(resid(resandfitted) )ˆ{2};

gw

}

nsim=5

beta_new=matrix(rep(0), nrow = length(beta_old), ncol =nsim )

for (j in 1:nsim) {

beta_old=c(theta1=200, theta2=50.50, theta3=0.3035);

theta1=beta_old[1];

theta2=beta_old[2];

theta3=beta_old[3];

H=cbind(Res(theta1, theta2, theta3), data.frame(IJac[,,j]));

w=diag(resw(H));

Warray[,,j]=w;

beta_new[,j]=beta_old+winvjac(theta1, theta2, theta3, w);

theta1=beta_new[1,j];

theta2=beta_new[2,j];

theta3=beta_new[3,j];

beta_old=beta_new[,j]

}

#produce weights at each iteration

Warray

#The estimates for Theta at each iteration.

beta_new

B2=beta_new;

# Jacobian at each iteration

#sample size

n=length(y)

#number of parameters p = number of Z_1, Z_2, Z_3..

p=3

#IJac==matrix of jacobian iterations.
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IJac=array(rep(0), dim = c(n,p,nsim ))

for (j in 1:nsim) {

theta1=beta_new[1,j];

theta2=beta_new[2,j];

theta3=beta_new[3,j];

IJac[,,j]=jac(theta1, theta2, theta3)

}

IJac

#Variance inflation factor at each iteration---------------

library(car)

library(carData)

library(usdm)

VIFMatrix=matrix(rep(0), nrow = p, ncol = nsim)

for (j in 1:nsim) {

r=data.frame( IJac[,,j]);

a=data.frame( vif( r ));

VIFMatrix[,j]=a$VIF

}

VIFMatrix

#-----------------------------------------------------------

A.5 REWEIGHTED GAUSS-NEWTON ITERATIVE METHOD FOR

LOGISTIC GROWTH MODEL

# Re-weighted least squares

#Datasets

#----------------------------------------------------

x=c(1,2,3,4,5,6,7,8,9,10,11,12)

y=c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,

38.558, 50.156, 62.948, 75.995, 91.972)

#Starting Values
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#----------------------------------------------------

beta_old=c(theta1=200, theta2=50.50, theta3=0.3035)

theta1=beta_old[1];

theta2=beta_old[2];

theta3=beta_old[3];

# Define the nonlinear model

#-----------------------------------------------------

f=function(theta1, theta2, theta3) {

(theta1/(1+theta2*exp(-theta3*x)))

}

# Define the Jacobin matrix

#-----------------------------------------------------

jac=function(theta1, theta2, theta3){

cbind("Z_1"=1/(1+theta2*exp(-theta3*x)),

"Z_2"= (-theta1*exp(-theta3*x))/(1+theta2*exp(-theta3*x))ˆ2,

"Z_3"=(theta1*theta2*x)/(exp(theta3*x)

*(1+theta2*exp(-theta3*x))ˆ2))

}

jac(theta1, theta2, theta3)

#Residual function

#------------------------------------------------------

Res=function(theta1, theta2, theta3){

y-f(theta1, theta2, theta3)

}

Res(theta1, theta2, theta3)

#Jacobian inverse and matrix poduct

#Find the Jacobians and matrix product with weights

winvjac= function(theta1, theta2, theta3, w){

J=jac(theta1, theta2, theta3);

R=Res(theta1, theta2, theta3);

solve(t(J)%*%w%*%J )%*% t(J)%*%w%*%R
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}

#Find the weights at each iteration

Warray=array(rep(0), dim = c(n, n, nsim))

#w=matrix(rep(0), nrow = n, ncol = p)

#function for weights of a linear regression model

resw=function(H){

rg=lm(Res(theta1, theta2, theta3)˜H[,2]+H[,3]+H[,4], data=H);

resandfitted=lm(resid(rg)˜rg$fitted, data = H )

gw=1/(resid(resandfitted) )ˆ{2};

gw

}

nsim=5

beta_new=matrix(rep(0), nrow = length(beta_old), ncol =nsim )

for (j in 1:nsim) {

beta_old=c(theta1=200, theta2=50.50, theta3=0.3035);

theta1=beta_old[1];

theta2=beta_old[2];

theta3=beta_old[3];

H=cbind(Res(theta1, theta2, theta3), data.frame(IJac[,,j]));

w=diag(resw(H));

Warray[,,j]=w;

beta_new[,j]=beta_old+winvjac(theta1, theta2, theta3, w);

theta1=beta_new[1,j];

theta2=beta_new[2,j];

theta3=beta_new[3,j];

beta_old=beta_new[,j]

}

###produce weights at each iteration

Warray

#The estimates for Theta at each iteration.
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beta_new

B2=beta_new;

# Jacobian at each iteration

#sample size

n=length(y)

#number of parameters p = number of Z_1, Z_2, Z_3..

p=3

#IJac==matrix of jacobian iterations.

IJac=array(rep(0), dim = c(n,p,nsim ))

for (j in 1:nsim) {

theta1=beta_new[1,j];

theta2=beta_new[2,j];

theta3=beta_new[3,j];

IJac[,,j]=jac(theta1, theta2, theta3)

}

IJac
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