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ABSTRACT  

 

Power transformers are considered one of the key elements of electric grids. Transient studies 

include transformer transient analysis which is required for the continuous power supply. 

However, to perform the transient analysis, the details of the internal structure of the transformer 

are required which are unobtainable and considered as confidential information. Therefore, the 

application of topological-based transformer models is limited although the models can accurately 

represent the transformers. To address this concern, a novel approach utilizing Machine Learning 

(ML) to identify the core aspect ratios of the three-limb core-type transformer is introduced. The 

proposed approach, using only the voltage and current measurements in the steady-state, no-load 

condition, employs the Extreme Gradient boosting (XGBoost) algorithm to identify the core aspect 

ratios. MATLAB/Simscape is used to model transformers. The results illustrate that the proposed 

algorithm is able to identify the core aspect ratios correctly.  

 

INDEX WORDS: Extreme Gradient Boosting (XGBoost), Transformer core aspect ratios, 

Parameter identification, Unified magnetic Equivalent Circuit (UMEC). 
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CHAPTER 1 

INTRODUCTION 

 

Power transformers are considered as the fundamental elements of the power 

delivery system. Transformers transients possess significant impact on electric grids(“IEEE 

Draft Guide to Describe the Occurrence and Mitigation of Switching Transients Induced by 

Transformers, Switching Device, and System Interaction,” 2022). For this reason, study of 

transformer transients is essential. To ensure the proper analysis of the transients, accurate 

transformer modelling is required. This modelling involves requirement of certain 

transformer parameters which are often unavailable and considered as proprietary 

information by the manufacturers (Dick & Watson, 1981; Yang et al., 2018). To address this 

issue, different transformer models have been established by the researcher. These models 

involve different theorems (e.g., duality) to establish the accurate transformer model. These 

models require different parameters, and these parameters are achievable to some extent. 

These models are categorized into two major groups as non-topological and topological 

transformer models. However, the issue of accurate transformer modelling has been a major 

concern for the researchers. The use of actual transformer parameters results in the most 

accurate transformer modelling. As discussed before, these parameters are generally 

unavailable. 

The purpose of this dissertation project is to identify the core aspect ratio parameters 

of the three-limb core-type transformers. The aspect ratio parameters indicate the actual core 

size of a transformer which is retained by the manufacturer.  
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Chapter 2 provides an overview on non-topological transformer modelling and the 

results of the literature search. It also provides the application of these transformer models 

used for the transient simulation. 

Chapter 3 describes the topological transformer models and their application. It also 

explains the use and advantages of topological modelling over non-topological models and 

the selection of the transformer model for parameter identification. 

Chapter 4 demonstrates different approaches of parameter identification based on the 

transformer models explained in Chapter 2 and Chapter 3. It also illustrates the limitations 

of the existing approaches.  

Chapter 5 explains the proposed algorithm to identify the core aspect ratio 

parameters. It also demonstrates the other approaches taken during the project for the 

identification of purpose and their limitation in identifying the core aspect ratios. 

Chapter 6 demonstrates the effectiveness of the proposed algorithm through test 

cases. An illustrative test case is provided to explain the algorithm along with the process of 

identifying the transformer core aspect ratios.  

Chapter 7 contains the summary and conclusion of the project. It also provides the 

scope of future works and improvements which can be a starting point for other research 

projects in this area of research.  
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CHAPTER 2 

NON-TOPOLOGICAL TRANSFORMER MODELS  

 

         2.1  STC Model 

The transformer models are classified into two categories. These are: topological and 

non-topological. The non-topological models are defined as transformer models established 

based on the equivalent parameters rather than physical information. These parameters can 

be both electrical and magnetic parameters. These transformer model parameters are found 

both from the manufacturer and different tests performed. One of the transformer models is 

named as Saturable Transformer Component (STC) model. It is also known as the nameplate 

transformer (EMTP-RV., n.d.). The STC transformer is based on the Steinmetz model 

(Steinmetz, & Berg, 1900). This model has been considered as one of the fundamental and 

established transformer models. This model uses electrical parameters such as resistors and 

capacitors to model a transformer. Figure 1 demonstrates the single-phase STC transformer 

model. 

In the Figure 1 (a), 𝑉𝑃 is the primary side voltage of the transformer, 𝐿𝑃 and 𝑅𝑃 

denotes the primary side inductance and resistance of the transformer, 𝑅𝑀 denotes the core 

loss of the transformer, 𝐿𝑀 is the core flux of the transformer, 𝑁𝑃 and 𝑁𝑆 are the number of 

primary and secondary side turns respectively, 𝐿𝑆 and 𝑅𝑆 indicates the secondary side 

inductance and resistance of the transformer, and 𝑉𝑆 is the secondary-side voltage of the 

transformer. STC model is one of the fundamental and simple transformer models. However, 

this model has several limitations. This model is not able to represent the inter-phase 
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mutualities, Due to this, the three-phase transformers can be modelled only by the three-

phase transformer  

 

                          Figure 1. STC transformer model (Martinez-Velasco, 2011). 

banks. Moreover, it cannot differentiate between positive- and zero-sequence impedances. 

Therefore, the application of this transformer is limited (Hamidi, 2023; Jazebi & De Leon, 

2015). 
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          2.2  BCTRAN Model 

Another non-topological transformer model is the BCTRAN model. It is introduced 

to address the issues of the STC model (Brandwajn et al., 1982). This model uses the 

nameplate and short-circuit and open-circuit test data to identify the required parameters of 

the transformer. Using this model, the issue of inter-phase mutualites is solved as this model 

uses both self- and mutual- inductances to model the transformer. Moreover, the three-phase 

transformer can be modelled in the form of branch impedance and resistance matrix. This 

model. Moreover, this model can be used for 𝑀 number of windings. Figure 2 shows the 

BCTRAN model representation of 𝑃-phase 𝑀-winding transformer.  

In the BCTRAN model, based on the nameplate and test data, an inductance matrix, 

𝑳  along with resistance matrix, 𝑹 is calculated. The issue of inverting singular 𝑳 is avoided 

by creating 𝑨𝑹 model where 𝑨  is the inverse of 𝑳. The 𝑳 contains both self- and mutual- 

inductances. The transformer is modelled as (Cho, 2002), 

[

𝑉1
𝑉2
⋮
𝑉𝑁

] = [

𝑅11 0 ⋯ 0
0 𝑅22 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑅𝑁𝑁

] [

𝐼1
𝐼2
⋮
𝐼𝑁

] + [

𝐿11 𝐿12 ⋯ 𝐿1𝑁
𝐿12 𝐿22 ⋯ 𝐿2𝑁
⋮ ⋮ ⋱ ⋮
𝐿𝑁1 𝐿𝑁2 ⋯ 𝐿𝑁𝑁

]
𝑑

𝑑𝑡
[

𝐼1
𝐼2
⋮
𝐼𝑁

] (1) 

𝑳−1. 𝑽 = 𝑳−1. 𝑹. 𝑰 +
𝑑

𝑑𝑡
𝑰 (2) 

where, 𝑽 is the vector of terminal voltages and 𝑰  is the vector of currents. As this model is 

able to resolve the issue of the inter-phase mutualities, the accuracy of BCTRAN model in 

transformer modelling is notable. However, the BCTRAN model has issues regarding 

accurate transformer modelling. Although it is more accurate than the STC model, The 

BCTRAN model does not represents the core non-linearity and losses. As a result, the model 

requires external attachment of nonlinear core elements to model the core. The nonlinear 

core elements are represented by external nonlinear inductors and a network of resistors 
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(Alvarez-Marino et al., 2012). This improvement is named as BCTRAN+ model is some 

cases. (Ang, 2010; PENG, 2013). However, the BCTRAN+ model is not irreversible  (Yang 

et al., 2018). Moreover, the BCTRAN model is only accurate for the frequencies below 1 

KHz (Martinez et al., 2005; Martinez & Mork, 2005). 

 

Figure 2. BCTRAN model (Cho, 2002). 

Overall although the non-topological models are simple in nature, transformers 

require general information such as nameplate and test data to model a transformer, the 

accuracy of the modelled transformer is fundamental issue for this type of transformers. 

Considering this issue, the topological models are introduced. Table 1 shows the comparison 

between the STC and BCTRAN model. The comparison indicates that BCTRAN has 

advantages over the STC model as it is applicable easily for the three-phase transformer 

considering the mutuality. Moreover, the BCTRAN model is irreversible in nature and 

general available test data is used to model the transformer.  
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Table 1. Comparison between STC and BCTRAN model 

                        Transformer Type 

Characteristics 

STC BCTRAN 

Design Parameters 

Leakage 

inductances and 

winding 

resistances  

Self and 

mutual 

inductances 

and 

resistances 

Data available Yes Yes 

Irreversible N/A Yes 

Sequence No Yes 
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 CHAPTER 3 

TOPOLOGICAL TRANSFORMER MODELS  

 

         3.1  Duality-based Model 

The topological models are defined as transformer models established based on the 

physical information of the transformer. These models are more accurate in transformer 

modelling as they use real dimensional parameters rather than equivalent parameters. One 

of the topological models is the duality-based model. This model is proposed based on the 

principle of duality (Cherry, 1949). This model involves the saturation effect on the 

transformer which was absent in the non-topological models. In the duality-based model, the 

transformer is modelled as a magnetic equivalent circuit rather than an electric equivalent 

circuit. Table 2 shows the elements of magnetic and electric equivalent circuits (Cho, 2002). 

Table 2. Equivalent Magnetic and Electric for Duality Transformation 

Electric Circuit Elements Magnetic Circuit Elements 

Voltage (𝑉) 
𝑑𝜆

𝑑𝑡
 

Current (𝐼) MMF 

Inductance (𝐿) Reluctance (ℛ) 

The relation between magnetic and electric circuit is established as, 

{
 
 

 
 𝑉 =

𝑑𝜆

𝑑𝑡
𝑀𝑀𝐹 = 𝑁𝑖

𝐿 =
𝑁2

ℛ

 (3) 

ℛ =
𝑙

µ𝐴
 (4) 
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where 𝑙 is the length of the section and 𝐴 is the area of the cross-section. Using (3) and (4), 

a three-phase three-limb transformer model is shown in Figure 3.  

 

Figure 3. Duality-based model with actual core (Shafieipour et al., 2019). 

The inductances of the duality-based transformer model are, 

{
 
 

 
 𝐿𝑊 =

𝑁2. µ. 𝐴𝑤
𝑑𝑤

𝐿𝑌 =
𝑁2. µ. 𝐴𝑦
𝑑𝑦

 (5) 

The duality derived models are more accurate since they use the core dimensions to estimate 

the magnetic parameters. These models can be implemented not only as ideal transformer, 

but also as saturable inductor and lumped RLC. 

However, the practical application of the duality-based models is limited as the ore 

dimensions are not generally available. Moreover, the factory test data is not enough to find 

the parameters of the duality-based models. 

          3.2  Unified Magnetic Equivalent Circuit (UMEC) model 

     Another topological model is the UMEC model. The UMEC model is closely 

related to the duality-based model. A general representation of the UMEC model is shown 

in Figure. 4. The UMEC model involves not only the core representing inductances, but also 
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the leakage inductances. The advantage of UMEC is it is able to represent the transformer 

core along with the inter-phase mutualities. Therefore, overall, the topological models are 

more accurate than the non-topological models.  

Based on the literature discussed above, the UMEC model is considered as one of 

the best transformers representing model. This model uses the duality principle to resolve 

the issue of core representation. Moreover, the reluctances are based on the core dimensions 

which yields more accurate modelling. 

As the UMEC model is more accurate compared to all topological and non-

topological models, this study uses the UMEC transformer modelling. The formulation for 

the UMEC model is also provided since the UMEC model is modified for this project to 

mitigate the computational burden. After that, the state-representation of transformer model 

is also developed. Figure 4(a) and (b) depicts the core structure of the three-limb transformer 

and the magnetic circuit model of the transformer. In this study, the core of the three-limb 

transformer is studied. 

 

Figure 4. (a) Core of the three-limb transformer, (b) Equivalent magnetic  

model of the three-limb transformer 
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          3.3 Modified UMEC Model 

The formulation of the UMEC model has been established (W. G. Enright et al., 

1999). However, the formulation of the UMEC model has been modified in this project. The 

formulation of the UMEC model is established for the no-load situation of the practical 

transformers. This formulation not only conserves the accuracy of the model but also reduces 

the computational complexity of the model. As the model is simple in terms of computation, 

large dataset can be developed for the Artificial Intelligence (AI) method used in this project. 

Figure. 4(b) indicates the equivalent magnetic circuit of the transformer on no-load 

condition. It is to note that, since the transformer is energized from one-side, the 

magnetomotive force (𝑓) of the open-side is removed (W. G. Enright et al., 1999). The 

reluctances of the limb and yoke are based on the physical dimensions of the core (𝑅 =

𝐿

𝜇0𝜇𝑟𝐴
) where 𝐿 is the effective length of the core segment and 𝐴 is the cross-section of the 

core segment. Hence, four dimensions are required to model the three-limb transformers. 

These are: the effective length of the yoke, (𝐿𝑦 = 𝑑𝑦/2), effective length of the limb section, 

(𝐿𝑤), cross-section area of the yoke, (𝐴𝑦) and the cross-section area of the limb (𝐴𝑤). Based 

on the dimension, the following ratios are established (W. G. Enright et al., 1999), 

{
 
 

 
 𝑟𝑙𝑦𝑤 =

𝑑𝑦
𝑑𝑤

𝑟𝑎𝑦𝑤 =
𝐴𝑦 

𝐴𝑤

 (6) 

 where 𝑟𝑙𝑦𝑤 is the ratio of the yoke length to limb length and 𝑟𝑎𝑦𝑤 is the ratio of the yoke 

cross-section to limb cross-section. The core is considered as symmetrical in structure for 

the practical transformers and hence the limb reluctances (𝑅1 = 𝑅2 = 𝑅3 =
𝑑𝑤

𝜇0𝜇𝑟𝐴𝑤
), yoke 

reluctances (𝑅4 = 𝑅5 =
𝑑𝑦/2

𝜇0𝜇𝑟𝐴𝑦
), and air reluctances (𝑅0) are same (Xusheng, 1996). As the 
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𝐿𝑤 and 𝐴𝑤 are considered as the base for normalization, the permeances of the limbs (𝑃𝐿) 

and yokes (𝑃𝑌) are calculated as: 

{
 
 

 
 𝑃𝐿 =

𝜇0𝜇𝑟𝐴𝑤/𝐴𝑤
𝑑𝑤/𝑑𝑤

= 𝜇0𝜇𝑟

𝑃𝑌 =
𝜇0𝜇𝑟𝐴𝑦/𝐴𝑤
𝑑𝑦/(2𝐿𝑤) 

=
2𝜇0𝜇𝑟𝑟𝑎𝑦𝑤
𝑟𝑙𝑦𝑤

 (7) 

 The air permeance (𝑃0) is found from the zero-sequence short-circuit test result when the 

core is not saturated (Xusheng, 1996).𝑃0 is defined as, 𝑃0 = 𝜔𝑋𝑠𝑡0/𝑉
2 where 𝜔 is the 

angular frequency, 𝑋𝑠𝑡0 is the zero-sequence short-circuit reactance and 𝑉 is the nominal 

voltage of the winding of the transformer. Based on the Figure. 4(b), the nodal analysis of 

the transformer can be written as, 

{

𝑃𝐿1𝜃1 + 𝜙1 + 𝜙01 + 𝑃𝑌(𝜃1 − 𝜃2) = 0

𝑃𝐿2𝜃2 + 𝜙2 + 𝜙02 − 𝑃𝑌(𝜃1 − 2𝜃2 + 𝜃3) = 0

𝑃𝐿3𝜃3 + 𝜙3 + 𝜙03 + 𝑃𝑌(𝜃3 − 𝜃2) = 0

 (8) 

 where 𝜃 is the nodal mmf. Considering, 𝜙01 = 𝑃0𝜃1, 𝜙02 = 𝑃0𝜃2, and 𝜙03 = 𝑃0𝜃3, (8) is 

written as (Xusheng, 1996), 

𝜱 = 𝑷 𝜣 (9) 
where 𝜱 = [𝜙1, 𝜙2, 𝜙3]

T, 𝜣 = [𝜃1, 𝜃2, 𝜃3]
T, and  

𝑷 = [

𝑎 𝑃𝑌 0
𝑃𝑌 𝑏 𝑃𝑌
0 𝑃𝑌 𝑐

] 

where 𝑎 = −(𝑃𝐿1 + 𝑃0 + 𝑃𝑌), 𝑏 = −(𝑃𝐿2 + 𝑃0 + 2𝑃𝑌), and 𝑐 = −(𝑃𝐿3 + 𝑃0 + 𝑃𝑌). Moreover,  

{

𝜙1 = 𝑃𝐿(𝜃1 − 𝑁1𝑖1)

𝜙2 = 𝑃𝐿(𝜃2 − 𝑁2𝑖2)

𝜙3 = 𝑃𝐿(𝜃3 − 𝑁3𝑖3)
 (10) 

where for practical transformers, 𝑁1 = 𝑁2 = 𝑁3. Hence, the matrix formulation is found as, 

𝜱 = 𝑃𝐿𝜣− 𝑁𝒊 (11) 

 where 𝒊 = [𝑖1, 𝑖2, 𝑖3]
𝑇 and 𝑖1, 𝑖2, and 𝑖3 are winding currents. Using (9) in (11), the equation 

of mmf is found as, 

𝜱 = 𝑃𝐿𝑷
−𝟏𝜱−𝑁𝒊 (12) 
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and, 

(𝑃𝐿𝑷
−𝟏 − 𝑰)𝜱 =  𝑁𝒊. (13) 

Moreover, it is found that, 
𝑁1

𝑁2
=
𝑉1

𝑉2
 where 𝑉 is the terminal voltage of the energized windings. 

(W. G. Enright et al., 1999). Hence, 

𝜱 = (𝑃𝐿𝑷
−𝟏 − 𝑰)−1𝑉𝒊. (14) 

Based on the discussion above, the inductance matrix is found as, 

𝑳 = (𝑃𝐿𝑷
−𝟏 − 𝑰)−1𝑉. (15) 

The formulated equation reduces the computational complexity of this model and reduces 

the runtime of the simulation for dataset generation. 

          3.4 State-Space Representation of The UMEC Model 

Transformer dynamics are discussed in this section. First, Figure 5 is considered to 

represent the circuit model of the three-limb transformer. The winding resistors are added to 

the model in series with the windings. Based on this, the flux linkage derivative (𝜆̇) is found 

as (Kazemi et al., 2021), 

 

Figure 5. Circuit Model of the transformer (Kazemi et al., 2021). 
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{
 
 
 

 
 
 
𝜆𝐴̇ = 𝑉𝐴 − 𝑅𝐴𝑖𝐴
𝜆𝐵̇ = 𝑉𝐵 − 𝑅𝐵𝑖𝐵
𝜆𝐶̇ = 𝑉𝐶 − 𝑅𝐶𝑖𝐶
𝜆𝑎̇ = 𝑉𝑎 − 𝑅𝑎𝑖𝑎
𝜆𝑏̇ = 𝑉𝑏 − 𝑅𝑏𝑖𝑏
𝜆𝑐̇ = 𝑉𝑐 − 𝑅𝑐𝑖𝑐

 (16) 

where 𝑉𝐴, 𝑉𝐵, and 𝑉𝐶 are the voltages of the primary side windings and 𝑉𝑎, 𝑉𝑏, and 𝑉𝑐 are the 

secondary-side winding voltages. 𝑖𝐴, 𝑖𝐵, and 𝑖𝐶 are the primary side currents and 𝑖𝑎, 𝑖𝑏, and 

𝑖𝑐 are the secondary side currents. The matrix is formulated as, 

𝝀=𝑽−𝑹𝒊 (17) 

where 𝝀̇ = [𝜆𝐴̇, 𝜆𝐵̇, … , 𝜆𝑐̇]
T

is the vector of the flux linkage derivatives, 𝑽 = [𝑉𝐴, 𝑉𝐵, … , 𝑉𝑐]
T 

is the vector of winding voltages, 𝑹 = diag(𝑅𝐴, 𝑅𝐵, … , 𝑅𝑐) is the resistance matrix, and 𝒊 =

[𝑖𝐴, 𝑖𝐵, … , 𝑖𝑐]
T is the vector of winding currents. The relation between the winding currents 

and total flux linkages are found as, 

𝒊 = 𝜞𝝀 (18) 

where 𝜞 = 𝑳−1. From the (17) and (18), the dynamic and observation equations in the state-

space representation are found as (Kazemi et al., 2021; Xusheng, 1996), 

{𝝀̇ = 𝑨𝝀 + 𝑩𝑽
𝒊 = 𝜞𝝀

 (19) 

where 𝝀 is the state vector, 𝑨 = −𝑹𝜞 is the state dynamic matrix, and 𝑩 = 𝑰 is the input 

matrix (𝑰 is the identity matrix). 

The discussed formulation of the UMEC model and the state-representation is used 

for transformer modelling and simulation. As the UMEC model is used, the aspect ratios are 

required to be found for the modelling of the transformer. The progress on finding different 

transformer parameters is elaborately discussed in the following chapter. Table 3 shows the 

difference between the duality and UMEC model. 
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Table 3. Comparison between Duality-based and UMEC model 

                     Transformer Type 

Characteristics 

Duality-based UMEC 

Design Parameters Reluctances 

Normalized 

or actual 

reluctances 

Data available No No 

Mutuality Yes Yes 

Aspect ratios No Yes 
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CHAPTER 4 

LITERATURE REVIEW ON PARAMETER IDENTIFICATION 

 

As discussed earlier, the topological models are accurate but require actual or 

assumed core dimensions. The assumption of the core dimensions may lead to error in 

accuracy. Moreover, the nameplate data provided by the manufacturer may not be enough 

to find the transformer parameters. In this chapter, the progress on different transformer 

parameters identification is discussed. It explains the necessity of a system of identifying the 

transformer core aspect ratio parameters. 

In (Jin et al., 2008), the authors proposed least-square method to identify the leakage 

inductances and winding resistances of the transformer. These parameters are identified 

through an improved orthogonal decomposition to reduce the numerical instabilities. 

However, the core parameters cannot be identified in this approach.  

In (Calasan et al., 2020), to identify the parameters of the single-phase transformers, 

optimization techniques (i.e., the Manta Ray Foraging and Chaotic Manta Ray Foraging) are 

utilized. An objective function that receives transformers’ no-load losses is also proposed to 

improve the accuracy of the method. However, the application of this method is limited to 

single-phase transformers. 

In (Dirik et al., 2014), the winding resistances, leakage inductances, and core-loss-

representing resistances are identified based on the Differential Equation Algorithm (DEA). 

The method uses real-time data to estimate these parameters and the parameters are 

identified while transformer remains in service. 
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In (Camelo-Daza et al., 2024), a nonlinear optimization problem is defined to 

identify the transformer parameters. After defining, the problem is solved by employing the 

Generalized Normal Distribution Optimizer (GNDO). However, this method is only 

applicable to the single-phase transformer model. There are plenty of works has been 

completed to identify the single-phase transformer parameters (Abdelwanis et al., 2020; 

Bhowmick et al., 2018; Illias et al., 2017; Mossad et al., 2014). However, these parameters 

are not applicable to identify the parameters of the three-phase transformers. Moreover, the 

inter-phase mutualities are also disregarded in these models. 

There is not enough literature regarding the core parameters identification of the 

core-type three-limb transformers. In (Thilagar & Rao, 2002), the authors proposed 

parameter identification approach based on the Genetic Algorithm (GA). The parameter 

identification approach is to identify the three-phase STC transformer models which hase 

limited use in transient studies. 

In (Brandwajn et al., 1982), the BCTRAN parameters are identified based on 

different conventional tests such as short-circuit and open-circuit tests. In (Narang & 

Brierley, 1994), the authors proposed a method where the outputs of conventional tests are 

translated to find the parameters required for the duality-based transformer models. Hence, 

this method is suitable for practical applications. However, zero-sequence short-circuit tests 

should be performed on the transformer with only one closed delta winding. Hence, it is one 

of the shortcomings of the proposed method. Furthermore, the inner and outer windings must 

concentrically and fully cover the limbs to the incorporation of the nonlinearities precisely. 

However, this is not possible for the practical transformers (McLyman, 2004).  
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In (Mork et al., 2007a, 2007b), to approximate the required parameters for the hybrid 

models, some tests are introduced. However, the tests require different combinations of 

short-circuited and open-circuited windings which may not be possible in practice. 

In (X. Li et al., 2015), to identifying the nonlinear inductances incorporating the 

hysteresis characteristics, a method is proposed.  This method is mainly suitable for UMEC-

based transformer models. However, this method requires the use of core parameters such 

as core aspect ratios. 

In addition to the discussed method, to identify the characteristics of transformers, 

several other literatures can be found. However, since the core dimensions are required for 

the finite element analysis, the application of these works are limited (Azzouz et al., 1993; 

Jazebi & De Leon, 2015; Srikanta Murthy et al., 2020). 

Based on the discussion above, it is evident that the UMEC model is able to represent 

the transformer models accurately. However, due to the shortcomings in parameter 

identification for the UMEC models mentioned above, the application of the UMEC model 

in transient studies is limited.  

In this project, addressing this issue, a novel Machine Learning (ML) method based 

on the Extreme Gradient Boosting (XGBoost) method with five-fold cross validation is 

proposed. The selection of the ML-based model is taken based on numerous attempts to 

employ the GA and Particle Swarm Optimization (PSO). In the next chapter, the proposed 

algorithm along with the different attempted methods and their limitations are discussed 

elaborately. 
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CHAPTER 5 

PROPOSED ALGORITHM 

 

         5.1 Use of GA and PSO 

After the selection of the transformer model, an algorithm is required to identify the 

core aspect ratios. This problem can be solved by using the general optimization algorithm 

such as GA and PSO. Attempts have been taken to employ the GA algorithm by testing it 

for different combinations of populations, generations, mutation ratios, crossovers, and 

elitism.  

At first, two different simulation models are generated based on the UMEC model. 

One model works as the reference model while there other one is the model where the aspect 

ratios are required to be identified. Then, the following objective equation is proposed as, 

𝐹𝑜𝑏𝑗 = ∑ (𝑛(𝐼𝑟𝑒𝑓(𝐻𝑉) − 𝐼𝑡𝑒𝑠𝑡(𝐻𝑉)))
2
+ ∑ (𝐼𝑟𝑒𝑓(𝐿𝑉) − 𝐼𝑡𝑒𝑠𝑡(𝐿𝑉))

2
𝑃ℎ𝑎𝑠𝑒−𝑐

𝑃ℎ𝑎𝑠𝑒−𝑎

𝑃ℎ𝑎𝑠𝑒−𝐶

𝑃ℎ𝑎𝑠𝑒−𝐴

 (20) 

where 𝐼𝑟𝑒𝑓(𝐻𝑉) is the High Voltage (HV)-side current of the refence model, 𝐼𝑡𝑒𝑠𝑡(𝐻𝑉) is the 

HV-side current of the test model of which the parameters are required to be identified, 𝑛 is 

the ratio of number of turns in the transformer where 𝑛 > 1, 𝐼𝑟𝑒𝑓(𝐿𝑉) is the Low Voltage 

(LV)-side current of the refence model, 𝐼𝑡𝑒𝑠𝑡(𝐿𝑉) is the LV-side current of the test model of 

which the parameters are required to be identified. The value of objection function is 

expected to be close to 0 when both the models use the same aspect ratios. Figure. 6 shows 

an example of the objective function and inverse objective function (normalized) based on 

the change in aspect ratios. In this process, the GA algorithm is required to be applied and a 

minimum value of objective function is required to be set. Although the use of GA is simple, 
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a universal minimum value of objective function applicable for all the transformers cannot 

be found. Hence, the use of GA did not yield a satisfactory result. 

 

Figure 6. (a): Objective function with minimum value at different 𝑟𝑙𝑦𝑤 and 𝑟𝑎𝑦𝑤  

of Tran-1, (b): Inverse objective function (normalized) with minimum  

value at different 𝑟𝑙𝑦𝑤 and 𝑟𝑎𝑦𝑤 of Tran-1. 

For the PSO, extensive attempts were also made to identify the core aspect ratios. 

Similar to the GA, different parameters such as population sizes, inertia weights, cognitive 
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parameters, velocity limits, and initialization methods are used. However, the PSO was not 

able to identify the ratios correctly. This leads to be use of the ML-based algorithm to 

identify the ratios correctly. 

5.2 Use of ML 

As the previous algorithms were unable to identify the ratios correctly, the ML-based 

algorithm is introduced. Figure 7 shows the flowchart to identify the core aspect ratios (𝑟𝑙𝑦𝑤 

and 𝑟𝑎𝑦𝑤). The voltages and currents on the energized side are measured and recorded when 

the transformer is in no-load condition and its winding voltages and currents are in the steady 

state condition. They are named as 𝑣𝑡𝑟𝑢𝑒 and 𝑖𝑡𝑟𝑢𝑒 respectively.  

To train the ML-based algorithm, a number of UMEC models of the transformer are 

made with a range of feasible core aspect ratios (𝑟̂𝑙𝑦𝑤 and 𝑟̂𝑎𝑦𝑤) with small increments. The 

boundaries of these ratios are described in the later section named as “Selection of Feasibility 

Region”. 

After the selection of the range of the ratios, Each UMEC model with a pair of 

feasible ratios (𝑟̂𝑙𝑦𝑤 and 𝑟̂𝑎𝑦𝑤) is simulated. The voltage for the simulation is the recorded 

voltage (𝑣𝑡𝑟𝑢𝑒). As an example, if 1.2 ≥ 𝑟̂𝑙𝑦𝑤 ≥ 0.8, then, the UMEC models are set up with 

𝑟̂𝑙𝑦𝑤 = 0.8, 0.805, 0.81,… , 1.2 while the recorded voltage 𝑣𝑡𝑟𝑢𝑒 is supplied to each model 

to maintain the same simulation conditions. 

For each test, the steady-state currents flowing into the transformer (𝑖̂) are measured 

and recorded until the entire feasible region is covered. To train and validate the proposed 

ML algorithm, the RMS values of 𝑖̂’s and their harmonics as well as the feasible aspect ratios 

(𝑟̂𝑙𝑦𝑤 and 𝑟̂𝑎𝑦𝑤) are used. This process is elaborated in in the later section named as 

“Proposed ML algorithm”. 
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Figure 7. Flowchart of the proposed method. 

5.3 Selection of Feasibility Region 

As discussed earlier, a training set is required which is made by simulating the 

transformer using the UMEC. For this, a range of ratios are required. From Figure 4(a), it is 

evident that the yokes and limbs have the same amount of flux. Moreover, their cross-

sections are close (𝐴𝑦 ≈ 𝐴𝑤) in transformers. Hence, 𝑟𝑎𝑦𝑤 ≅ 1 (Shafieipour et al., 2020). To 
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ensure that 𝑟𝑎𝑦𝑤 is within a specific range, a margin of ±20% is introduced (Mitchell & 

Welsh, 2013). This leads to the 𝑟𝑎𝑦𝑤 to be found as, 

1.2 ≥  𝑟̂𝑎𝑦𝑤 ≥ 0.8. (21) 

Moreover, in practice, it is found that, 𝐿𝑦 ≥ 𝐿𝑤. By introducing some margin for 𝑟𝑙𝑦𝑤, the 

range is found as, 

2.5 ≥ 𝑟̂𝑙𝑦𝑤 ≥ 0.9. (22) 

However, it is to be noted that these ranges can be made wider or narrower to develop the 

required region.  

5.4 Proposed ML Algorithm 

Several ML-based algorithms have been developed for parameter identification. 

These algorithms are well developed in parameter identification process. However, these 

algorithms have some limitations and based on the limitations, one robust and effective 

algorithm is introduced. For example, the Gradient Descent Methods (GDMs) has the issue 

of  sensitivity to the choice of learning rate and slow convergence (Al-Othman et al., 2022). 

Another algorithm named as Support Vector Machine (SVM) is an effective algorithm of 

parameter identification but requires significant time if the dataset is large (Al-Othman et 

al., 2022). The algorithm named Simulated Annealing (SA) is also can identify parameters 

correctly but has disadvantages such as slow convergence, sensitiveness to the cooling 

schedule, difficulty in setting the appropriate acceptance probability (Jiao et al., 2020). The 

PSO algorithm is widely used om parameter identification but its performance largely 

depends on the local optima (Cortez et al., 2022).  

Addressing these issues, the Extreme Gradient Boosting (XGBoost) method with 

Five-fold Cross Validation is employed to identify the parameters (T. Chen & Guestrin, 

2016; Friedman, 2001; Long et al., 2023). The method is renowned for its accuracy, 
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robustness, and fast response (Shi et al., 2021). It is also effective in case of large dataset 

handling (Tarwidi et al., 2023). The XGBoost method has already been used in different 

power systems based applications such as load forecasting (Deng et al., 2022), voltage/var 

optimization (B. Zhang et al., 2024), and transient stability analysis  (N. Li et al., 2020).The 

flowchart of the optimization algorithm is shown in Figure 8(a) and (b).  

 

               Figure 8. (a): The proposed XGBoost Model, (b) Five-fold Cross Validation. 
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(M. Chen et al., 2019; Xue & Wu, 2020; N. Zhang et al., 2021), 

In the optimization algorithm, at first, a dataset 𝐷 is constructed and defined as 

𝐷 = {(𝑥𝑖 , 𝑦𝑖): 𝑥𝑖 ∈ ℝ
𝑚, 𝑦𝑖 ∈ ℝ, ∀𝑖 = 1,2, … , 𝑛} (23) 

where 𝑥𝑖 is the input variable which is the RMS value of 𝑖̂ and the harmonic components of 

the RMS currents, 𝑦𝑖 is the objective value corresponding to 𝑥𝑖, ℝ is the real numbers, 𝑛 

indicates the number of samples in the dataset, 𝑚 is the number of parameters associated 

with samples. It is to be noted that 𝑥𝑖 includes parameters 𝑟̂𝑎𝑦𝑤 and 𝑟̂𝑙𝑦𝑤. ℝ is the real 

numbers. Moreover, 𝑚 = 2 since two parameters are required. The XGBoost is formulated 

as (N. Zhang et al., 2021), 

𝑦̂𝑖 =∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝑭
𝑡

𝑘=1
 (24) 

where 𝑦̂
𝑖
 indicates the predicted value of the model, 𝑡 is the number of trees, 𝑓𝑘 is the 

independent regression tree, 𝑓𝑘(𝑥𝑖) is the prediction score that the 𝑘-th tree gives to the 𝑖-th 

sample 𝑥𝑖, and 𝑭 represents the set of decision functions. The model is trained by minimizing 

the following objective function, 

𝑂𝑏𝑗 =∑𝐿(𝑦𝑖 , 𝑦̂𝑖) +∑𝑅(𝑓𝑘)

𝑡

𝑘=1

𝑛

𝑖=1

 (25) 

where 𝐿 is the loss function, 𝑦̂𝑖 and the objective value 𝑦𝑖, 𝑅 is the penalty term to avoid the 

overfitting issue. 𝑅 is defined as (N. Zhang et al., 2021), 

𝑅(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆||𝑤||

2
 (26) 

where 𝛾 indicates parameter of regularization, 𝜆 is the regularization weight parameter,  𝑇 

denotes the number of leaf nodes, and 𝑤 is the score on each leaf. 𝜆 ensures that the weights 

on the leaf nodes are not extensively large while 𝛾 controls the splitting of nodes. A new tree 

is created by XGBoost in each iteration along the development of the classification tree. The 

recursive construction process of the XGBoost model is as follows (N. Zhang et al., 2021), 
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{
 
 

 
 
𝑦̂𝑖(0) = 0

𝑦̂𝑖(1) = 𝑓1(𝑥𝑖) = 𝑦̂𝑖(0) + 𝑓1(𝑥𝑖)

𝑦̂𝑖(2) = 𝑓1(𝑥𝑖) + 𝑓2(𝑥𝑖)
⋮
𝑦̂𝑖(𝑡) = 𝑦̂𝑖(𝑡 − 1) + 𝑓𝑡(𝑥𝑖)

, (27) 

Applying the last equation of (27) in (25) yields  

𝑂𝑏𝑗(𝑡) =∑𝐿(𝑦𝑖 , 𝑦̂𝑖(𝑡 − 1) + 𝑓𝑡(𝑥𝑖)) + 𝑅(𝑓𝑡)

𝑛

𝑖=1

+ 𝑂. (28) 

where 𝑂 is a constant number resulting from the sum of 𝑅(𝑓1) + 𝑅(𝑓1) + ⋯+ 𝑅(𝑓𝑡−1). 

Using the second order Taylor expansion to (28), 

𝑂𝑏𝑗(𝑡) ≈∑(𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)) + 𝑅(𝑓𝑡)

𝑛

𝑖=1

 (29) 

where 𝑔𝑖 = 𝜕𝐿(𝑦𝑖 , 𝑦̂𝑖(𝑡 − 1))/𝑦̂𝑖(𝑡 − 1) and ℎ𝑖 = 𝜕
2𝐿(𝑦𝑖 , 𝑦̂𝑖(𝑡 − 1))/𝜕(𝑦̂𝑖(𝑡 − 1))

2
are 

the first and second-order gradients of the loss function L, respectively. Applying (26) to 

(29), 

𝑂𝑏𝑗(𝑡) =∑(𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)) +

𝑛

𝑖=1

𝛾𝑇 +
1

2
𝜆∑𝑤𝑗

2

𝑇

𝑗=1

=

∑((∑𝑔𝑖
𝑖∈𝐼𝑗

)𝑤𝑗 +
1

2
(∑ℎ𝑖 + 𝜆

𝑖∈𝐼𝑗

)𝑤𝑗
2) + 𝛾𝑇

𝑇

𝑗=1

 (30) 

where 𝐼𝑗 = {𝑖: 𝑞(𝑥𝑖) = 𝑗} is the instance set of the 𝑗-th leaf node, and 𝑞(𝑥𝑖) represents the 

input for a fixed tree structure 𝑞. As set, 𝐺𝑗 = ∑ 𝑔𝑖𝑖∈𝐼𝑗  and 𝐻𝑗 = ∑ ℎ𝑖𝑖∈𝐼𝑗 , for a fixed tree 

structure of 𝑞, the optimal weight 𝑤𝑗
∗ of the leaf 𝑗 is, 

{
 
 

 
 𝑤𝑗

∗ = −
𝐺𝑗

𝐻𝑗 + 𝜆

𝑂𝑏𝑗∗ = −
1

2
∑

𝐺𝑗
2

𝐻𝑗 + 𝜆
+ 𝜆𝑇

𝑇

𝑗=1  

 (31) 



36 
 

 

where 𝐺𝑗 and 𝐻𝑗 respectively represent the quality of the tree and structure. A greedy 

algorithm is used to add branches iteratively. The gain is found after counting the feasible 

segmentation points while also choosing the maximum gain partition as (M. Chen et al., 

2019), 

𝐺 =
1

2

(

 
(∑ 𝑔𝑖𝑖∈𝐼𝐿 )

2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝐿⏟      
1𝑠𝑡 𝑇𝑒𝑟𝑚

+
(∑ 𝑔𝑖𝑖∈𝐼𝑅 )

2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑅⏟      
2𝑛𝑑 𝑇𝑒𝑟𝑚

−
(∑ 𝑔𝑖𝑖∈𝐼 )2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼⏟      
3𝑟𝑑 𝑇𝑒𝑟𝑚 )

 − 𝛾  (32) 

where 𝐼𝐿 and 𝐼𝑅 are the instance set of left and right nodes after the split, respectively. As 

many simple trees are produced to score a leaf node during the splitting, the first, second, 

and third term of (32) respectively represents the score on the left, right, and original leaves. 

When the optimal splitting point is found by (32), the classification model is established. 

As the dataset is constructed, the model requires hyper-parameters to be optimized 

to avoid overfitting. The selection of correct hyper-parameters results in higher model 

accuracy. In this project, five-fold cross validation is used for this process which is based on 

(S. Zhang et al., 2018). In this process, the training data is divided into five parts. As shown 

in Figure. 7 (b). At first iteration, the first part of the data is employed for testing. Meanwhile, 

the other four parts are used for training purposes (Picard & Cook, 1984). The Mean Square 

Error (MSE) found during the first iteration is calculated as (Long et al., 2023), 

𝑀𝑆𝐸(𝑦𝑖 , 𝑦̂𝑖) =
1

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ (𝑦𝑖 − 𝑦̂𝑖)

2

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

 (33) 

where 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is the number of samples in the training set. The resultant MSE in the first 

iteration (𝑀𝑆𝐸1) is recorded and used for later comparison. Then, in the second iteration, the 

second part of the data is used to test the model while the other four parts are utilized for 

training purposes. Until all the fifth parts are covered, this process is continued. Then, to 
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accomplish the MSE cross validation, the resultant 𝑀𝑆𝐸1, 𝑀𝑆𝐸2, …, 𝑀𝑆𝐸5 are compared 

and the smallest one is selected as 𝑀𝑆𝐸𝐶𝑉, as shown in Figure. 7(b) and found as, 

𝑀𝑆𝐸𝐶𝑉 = min (𝑀𝑆𝐸1, 𝑀𝑆𝐸2, … ,𝑀𝑆𝐸5). (34) 

As the hyper-parameters which are related to 𝑀𝑆𝐸𝐶𝑉 used as the optimized ones in 

the XGBoost model, the cross-validation makes the selection of hyper-parameters effective 

and correct.  The learning rate sets the step size of the model, max_depth indicates the 

maximum depth of the trees, colsample_bytree selects the fraction of features, subsample 

determines the fraction of observation, and n_estimators control the number of trees. All 

these hyper-parameters together prevent the overfitting issue.  
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CHAPTER 6 

IDENTIFICATION OF THE ASPECT RATIOS AND RESULTS 

 

As the XGBoost model is trained, the RMS value of 𝑖𝑡𝑟𝑢𝑒 and its harmonic contents 

are provided to the algorithm, the core aspect ratios are identified. To prove the accuracy of 

the approach, three three-limb transformers of different configuration, frequencies, power, 

and voltage rating are simulated. In this chapter, one illustrative test case is provided along 

with other test cases to validate the accuracy of the proposed approach. In Table 4, the 

information regarding the transformers is provided in detail. The test system for identifying 

the aspect ratios is shown in Figure 9. The saturation curves of the transformers are shown 

in Figure. 10. MATLAB/Simscape is used for the simulation of transformer models. The 

second and fourth harmonics are also observed to ensure that voltages and currents both 

reach the steady-state situation. The measurements are taken and recorded when both the 

second and fourth harmonics reach zero. After that, the RMS value of 𝑖̂ and its harmonic 

contents are found as harmonic phasors. 

Table 4. Specification of The Transformers Used in The Test Cases 

- Nameplate Information 
Core Dimensions and Ratios 

(A [m2] and L [m]) 

Tran-1 

50 Hz 

(W. G. Enright, 

1996) 

Winding 

Config. 
Delta-Star 𝐴𝑦 = 0.5635

 

𝑟𝑎𝑦𝑤
= 1.01 

Power 105 MVA 𝐴𝑤 = 0.5555 

Primary 

Voltage 
13.8 kV 𝐿𝑦 = 4.000

 

𝑟𝑙𝑦𝑤
= 2.07 Secondary 

Voltage 
220 kV 𝐿𝑤 = 1.932 

Tran-2 

50 Hz 

(W. Enright et al., 

1997) 

Winding 

Config. 
Star-Star 𝐴𝑦 = 0.0122 

𝑟𝑎𝑦𝑤
= 1.00 

Power 40 kVA 𝐴𝑤 = 0.0122 
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Primary 

Voltage 
240 V 𝐿𝑦 = 0.180 

𝑟𝑙𝑦𝑤
= 1.03 Secondary 

Voltage 
70 V 𝐿𝑤 = 0.175

 

Tran-3 

60 Hz 

(Shafieipour et al., 

2020) 

Winding 

Config. 
Star-Delta 𝐴𝑦 = 0.31004 

𝑟𝑎𝑦𝑤
= 1.00 

Power 83.3 MVA 𝐴𝑤 = 0.31004 

Primary 

Voltage 
13.8 kV 𝐿𝑦 = 2.37 

𝑟𝑙𝑦𝑤
= 1.04 Secondary 

Voltage 
6.972 kV 𝐿𝑤 = 2.276 

 

 

Figure 9. Test setup of the system. 

To develop the dataset, the boundaries are set based on (21) and (22). The increment 

is set as 0.005 that resulted in generation of 25,600 instances. The simulation is completed 

by using a workstation computer with an i7 CPU supporting 24 cores and 80GB RAM. As 

the number of instances of simulation is high, parallel computation abilities of the MATLAB 

is utilized where 24 simulations ran at the same time by establishing 24 independent workers. 

Using the formulation of the UMEC explained earlier, each of the dataset are established.  
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Figure 10. (a): Saturation curve for Tran-1 from (W. G. Enright, 1996), 

 (b): Saturation curve for Tran-2 from (Chaalani et al., 2023),  
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(c): Saturation curve for Tran-3 from (Chaalani et al., 2023). 

An illustrative test case is shown in the next section that explains the process and 

performance of the proposed method. 

6.1 Illustrative Test Case 

The illustrative test case uses information of the Tran-1 from Table 4. The primary 

side of the transformer (LV) is energized while the secondary side of the transformer (HV) 

side the kept open as shown in Figure 9. When the inrush current disappears or no even-

harmonic exists, the measurements are taken. However, the odd harmonics may still be 

present as the transformer core gets saturated during the no-load situation (McLyman, 2004). 

The harmonic magnitude decreases with the increasing harmonic order. Hence, the 

harmonics of orders larger than nine (9) is disregarded in this test. Table 5 represents the 

RMS value of some 𝑖̂’s and their harmonics in the phasor form (i.e., peak and angle) resulting 

from different aspect ratios (𝑟̂𝑙𝑦𝑤 and 𝑟̂𝑎𝑦𝑤) which are simulated. Moreover, Table 5 

represents each instance 𝑥𝑖 which includes the calculated current and 𝑦𝑖 which includes 

aspect ratios. The hyper-parameters found from the five-fold cross validation are shown in 

Table 6. 

Figures 11, 12, and 13 illustrate the differences in transformer currents for different 

aspect ratios. The true aspect ratios of Tran-1 are 𝑟𝑙𝑦𝑤
𝑡𝑟𝑢𝑒 = 2.07 and 𝑟𝑎𝑦𝑤

𝑡𝑟𝑢𝑒 = 1.01. The 

figures depict phases a, b, and c currents when 𝑟̂𝑙𝑦𝑤 and 𝑟̂𝑎𝑦𝑤 are slightly different from the 

trye aspect ratios. In this table, No. 3 indicates the currents for the true ratios. 
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Table 5. Transformer Currents and Their Harmonic Contents for Different  

Core Aspect Ratios 

No

. 

𝑦𝑖 𝑥𝑖 
Core 

Aspect 

Ratios 

LV-side Phase-A  

Current 
⋯ 

LV-side Phase-C 

Current 

𝑟̂𝑙𝑦𝑤 𝑟̂𝑎𝑦𝑤 𝑖̂ (RMS) 
1st Har†  

𝑝𝑒𝑎𝑘 ∠Ang‡ 

3rd Har 

𝑝𝑒𝑎𝑘∠Ang 
⋯ 

7th Har 

𝑝𝑒𝑎𝑘∠Ang 
9th Har 

𝑝𝑒𝑎𝑘∠Ang 

1 2.05 1.01 25.6294 
35.3613 

∠ − 99.44 

0.1064 

∠ − 89.42 
⋯ 

0.1839 

∠43.40 

0.0351 

∠91.64 

2 2.06 1.01 25.7078 
35.4725 

∠ − 99.47 

0.1069 

∠ − 89.42 
⋯ 

0.1844 

∠43.42 

0.0353 

∠91.63 

3  2.07 1.01 25.7889 
35.5837 

∠ − 99.50 

0.1074 

∠ − 89.42 
⋯ 

0.1850 

∠43.45 

0.0354 

∠91.64 

4 2.07 1.00 26.1322 
36.0634 

∠ − 99.63 

0.1074 

∠ − 89.41 
⋯ 

0.1850 

∠43.46 

0.0354 

∠91.65 

5 2.07 0.99 26.4866 
36.5578 

∠ − 99.75 

0.1075 

∠ − 89.40 
⋯ 

0.1851 

∠43.48 

0.0355 

∠91.68 
† Har stands for Harmonic. 

‡ Ang indicates angle in degrees. 

 

Table 6. Optimized Hyper-parameters for the XGBoost Model 

Parameter Name Value 

learning rate 0.01 

subsample 0.8 

max_depth 3 

n_estimators 1000 

colsample_bytree 0.8 

 

Figure 11(a) shows Phase-a true currents (𝑖𝑎
𝑡𝑟𝑢𝑒) and the calculated current (𝑖𝑎̂) with 

𝑟̂𝑙𝑦𝑤 = 2.06 where true value is 𝑟̂𝑙𝑦𝑤 = 2.06, but 𝑟𝑎𝑦𝑤
𝑡𝑟𝑢𝑒 = 1.01. The error defined as 

𝐸𝑟𝑟𝑜𝑟 = 𝑖𝑡𝑟𝑢𝑒 − 𝑖𝑎̂ which results from the deviation in  𝑟̂𝑙𝑦𝑤 is shown in Figure 11(d). 

Again, while keeping the 𝑟̂𝑙𝑦𝑤 = 2.07, but changing 𝑟̂𝑎𝑦𝑤 = 1.00,  the same comparison is 

shown in Figure 11(b) while the error is shown in Figure 11(e).  
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Although the true aspect ratios are unknown in practice, a sample in the dataset was 

made by utilizing the true aspect ratios which results in the best-calculated current 𝑖̂𝑎
∗ , as 

shown in Figure 11(c), and its resultant error is equal to zero, as found in Figure 11(f). 

However, it is to be noted that when the feasible aspect ratios include the exact true values 

(i.e., 𝑟̂𝑙𝑦𝑤 = 𝑟𝑙𝑦𝑤
𝑡𝑟𝑢𝑒 and 𝑟̂𝑎𝑦𝑤 = 𝑟𝑎𝑦𝑤

𝑡𝑟𝑢𝑒), zero error can be achieved which is only in the ideal 

situation. Moreover, there are no noises and inaccuracies in the measured 𝑣𝑡𝑟𝑢𝑒 and 𝑖𝑡𝑟𝑢𝑒.   

Figures 12 and 13 provide the same analysis as described in Figure 11. Figure 12(a), 

(b), and (c) show the calculated currents with different ratios along with the true value of 

Phase-b current. In Figure 12(a) and (b), one ratio is deviated while the other is kept constant. 

Terrors from true and calculated currents are shown in Figure 12(d) and (e). However, the 

true current and calculated current with the true ratios is shown in Figure 11(c). Since both 

the curves are identical, the result is zero as shown in Figure 12(f). 
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Figure 11. (a), (b) and (c) are Phase-a’s true and calculated currents of Tran-1.  

(d), (e), and (f) are the errors corresponding to the true and  

calculated currents of (a), (b), and (c) respectively. 
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Figure 12. (a), (b) and (c) are Phase-b’s true and calculated currents of Tran-1.  

(d), (e), and (f) are the errors corresponding to the true and  

calculated currents of (a), (b), and (c) respectively. 
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Figure 13. (a), (b) and (c) are Phase-c’s true and calculated currents of Tran-1.  

(d), (e), and (f) are the errors corresponding to the true and  

calculated currents of (a), (b), and (c) respectively. 
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The true value of Phase-c current (𝑖𝑐
𝑡𝑟𝑢𝑒) and the calculated currents (𝑖𝑐̂) for different 

𝑟̂𝑙𝑦𝑤’s and 𝑟̂𝑎𝑦𝑤’s are depicted in Figure 12(a), (b), and (c) which is similar to Figures 11 and 

12. In Figure 13(a) and (b), one of the ratios is slightly different from the true ratio. The 

resulting errors are provided in Figure 13(d) and (e). Figure 13(c) depicts the calculated 

current with the true aspect ratio that leads to an ideal zero error, which is shown in Figure 

13(f). 

In addition to the figures, certain evaluation indicators are also found which evaluate 

the performance of the proposed method. These indicators are Mean Square Error (MSE), 

Root Mean Square Error (RMSE), Coefficient of determination (𝑅2) and Mean Absolute 

Error (MAE). These indicators are evaluated as (Long et al., 2023; Nguyen et al., 2021): 

𝑀𝑆𝐸(𝑦𝑖 , 𝑦̂𝑖) =
1

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ (𝑦𝑖 − 𝑦̂𝑖)

2

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖=1

 (35) 

𝑀𝑆𝐸(𝑦𝑖 , 𝑦̂𝑖) = √
1

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ (𝑦𝑖 − 𝑦̂𝑖)

2

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖=1

 (36) 

𝑅2(𝑦𝑖 , 𝑦̂𝑖) = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)
2𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖=1

 (37) 

𝑀𝐴𝐸(𝑦𝑖 , 𝑦̂𝑖) =
1

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ |𝑦𝑖 − 𝑦̂𝑖|.

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖=1

 (38) 

 

The variables of the parameters are described in (23) and (34). Table 7 shows the 

evaluation indicators found for 𝑟̂𝑙𝑦𝑤 = 2.065 and 𝑟̂𝑎𝑦𝑤=1.005. Table 8 provides the 

evaluation indicators for the best instance calculated with 𝑟𝑙𝑦𝑤
𝑡𝑟𝑢𝑒 and 𝑟𝑎𝑦𝑤

𝑡𝑟𝑢𝑒. By comparing the 

indicators in Table 7 and 8, it is found that the MSE, RMSE, and MAE in Table 7 are all 

larger than those in Table 8. This instance is predictable as these indicators are larger for 

instances other the best fit. It is to be noted that error indices are not absolutely zero and 𝑅2 
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is not perfectly one in Table 8 because of some numerical errors associated with the 

numerical differential equation solvers as well as the nonlinearity of the core. 

Table 7. True and Instance Core Aspect Ratios and Evaluation Indicators of the  

Tran-1 

Aspect 

Ratios 

True 

Ratios 

Instance 

Ratios 
𝑀𝑆𝐸 𝑅𝑀𝑆𝐸 𝑅2 𝑀𝐴𝐸 

𝑟𝑙𝑦𝑤 2.07 2.065 
0.0098 0.0989 0.6367 0.0144 

𝑟𝑎𝑦𝑤 1.01 1.005 

 

Table 8. True and Identified Core Aspect Ratios and Evaluation Indicators of the  

Tran-1 

Aspect 

Ratios 

True 

Ratios 

Identified 

Ratios 
𝑀𝑆𝐸 𝑅𝑀𝑆𝐸 𝑅2 𝑀𝐴𝐸 

𝑟𝑙𝑦𝑤 2.07 2.07 9 ×
10−5  

9.48
× 10−3 

0.9998 
18.1
× 10−5 𝑟𝑎𝑦𝑤 1.01 1.01 

 

6.2 Other Test Cases 

In this section, the test results for Tran-2 and Tran-3 are provided. However, in these 

transformers, the true ratios do not exist among the feasible ratios. To solve this issue, the 

boundaries of the feasible region are set as 1.201 ≥  𝑟̂𝑎𝑦𝑤 ≥ 0.801 and 2.501 ≥ 𝑟̂𝑙𝑦𝑤 ≥

0.901. Therefore, the increments of 0.005 do not generate an instance with the exact true 

values of aspect ratios. 

Figures 14, 15, and 16 show the currents from Tran-2 as the core aspect ratios deviate 

from the true values. Phase-a’s true and calculated currents are shown in Figure 14(a) and 

(b). Figure 14(c) and (d) are the respective errors corresponding to Figure 14(a) and (b). It 

is evident that the non-true ratios cause some errors in this case.  

Figure 15(a) and (b) show the Phase-b’s calculated and true currents. Their corresponding 

errors are depicted in Figure 15(c) and (d). Similarly, Figure 16(a) and (b) illustrate the 
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Phase-c’s calculated and true currents while the errors are illustrated in Figure 16(c) and (d). 

From these figures, the calculated currents with for an instance with ratios unequal to the 

true values can be visualized. 

It is evident from Figure 14(d), 15(d), and 16(d), the core nonlinearity causes some 

extra errors which are visualized from the jagged patterns for the error curves. Hence, the 

evaluation indicators are larger which indicates that the best fit will be imperfect. However, 

since the errors are negligible, the identified ratios are acceptable. Table 9 shows the 

identified ratios along with the evaluation indicators for Tran-2. 

 

Figure 14. (a) and (b) are Phase-a’s true and calculated currents of Tran-2. 

(d) and (e) are the errors corresponding to the true and  
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calculated currents of (a) and (b) respectively. 

  

Figure 15. (a) and (b) are Phase-b’s true and calculated currents of Tran-2.  

(d) and (e) are the errors corresponding to the true and  

calculated currents of (a) and (b) respectively. 
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Figure 16. (a) and (b) are Phase-c’s true and calculated currents of Tran-2.  

(d) and (e) are the errors corresponding to the true and  

calculated currents of (a) and (b) respectively. 

Table 9. Aspect Ratios and Evaluation Indicators of the Tran-2 

Aspect 

Ratios 

True 

Ratios 

Identified 

Ratios 
𝑀𝑆𝐸 𝑅𝑀𝑆𝐸 𝑅2 𝑀𝐴𝐸 

𝑟𝑙𝑦𝑤 1.03 1.028 
0.007 0.084 0.966 0.039 

𝑟𝑎𝑦𝑤 1.00 0.993 
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The simulation is also performed for Tran-3. Figures 17, 18, and 19 illustrate the 

results for one instance. Figure 17(a) and (b) shows the Phase-a’s true and calculated current 

for deviated ratios. The resultant errors are illustrated in Figure 17(c) and (d). Similar 

visualization can be found in Figure 18 and 19. The numerical inaccuracies that cause the 

spikes seen in the errors are that the solver deals with nonlinear saturation curves. However, 

those spikes are small in magnitude and can be neglected. The core aspect ratios are 

identified as 𝑟̂∗𝑙𝑦𝑤 = 1.042 and 𝑟̂∗𝑎𝑦𝑤 = 1.003. The proposed method identifies the which 

are very close to the true ratios. Table 10 shows the true and identified aspect ratios of the 

Tran-3 along with the evaluation indicators. 

Table 10. Core Aspect Ratios and Evaluation Indicators of the Tran-3 

Aspect 

Ratios 

True 

Ratios 

Identified 

Ratios 
𝑀𝑆𝐸 𝑅𝑀𝑆𝐸 𝑅2 𝑀𝐴𝐸 

𝑟𝑙𝑦𝑤 1.04 1.042 
0.005 0.071 0.985 0.0165 

𝑟𝑎𝑦𝑤 1.00 1.003 

 

From Table 9 and 10, it is evident that the proposed method is able to identify the 

aspect ratios of Tran-3 more precisely than Tran-2 since the error indicators in Tran-2 are 

smaller. Furthermore, 𝑅2 in Trans-3 is larger than of the one in Tran-2. One reason of the 

numerical inaccuracies found in Tran-2 is the differential equation and iteration solution 

which deals with nonlinearities (T., 2018). 
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Figure 17. (a) and (b) are Phase-a’s true and calculated currents of Tran-3.  

(d) and (e) are the errors corresponding to the true and  

calculated currents of (a) and (b) respectively. 
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Figure 18. (a) and (b) are Phase-b’s true and calculated currents of Tran-3.  

(d) and (e) are the errors corresponding to the true and  

calculated currents of (a) and (b) respectively. 
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Figure 19. (a) and (b) are Phase-c’s true and calculated currents of Tran-3.  

(d) and (e) are the errors corresponding to the true and  

calculated currents of (a) and (b) respectively. 

To compare the proposed method with the other AI based methods, as described 

earlier, numerous attempts were taken using the GA and PSO. However, the algorithms did 

not provide any satisfactory results. The issue with GA and PSO has been explained in the 

earlier chapter. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

Power transformer transients such as inrush current have significant impact on the 

electric grids. Although several models are introduced to represent transformers, accurate 

transformer representation without certain core information is difficult. This leads to the 

introduction of the topological-based models which requires the core information of the 

transformers. Meanwhile, as the growth of Inverter Based Resources (IBRs) is rapid, 

accurate EMT-type studies cannot be avoided. However, these studies also require certain 

parameters such as core aspect ratios which are generally unavailable. In the light of this 

issue, the proposed algorithm is able to identify the core aspect ratios correctly.  

The proposed algorithm does require any specific tests as routine tests are enough to 

generate the required dataset. Moreover, the phasor measurements can be used for dataset 

which is readily available and does not require any specific measuring device. Furthermore, 

the proposed modified UMEC model requires less computational time for dataset generation. 

Considering these advantages along with the accuracy evaluated for different transformers, 

the proposed algorithm can be considered successful. 

The project proposed a ML-based XGBoost model with five-fold cross validation to 

identify the core aspect ratios which are considered as trade secret of the manufacturers. 

These parameters can be used for accurate core representation which is essential for the 

EMT-type studies. The proposed algorithm only uses non-load currents and their harmonic 

contents at steady-state situation to identify the aspect ratios. The performance of the 

proposed model is evaluated using three three-limb core-type transformers of different 
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configurations, power, frequencies, and voltage ratings. For all the transformers, the 

proposed model is able to identify the aspect ratios while achieving a certain degree of 

accuracy. The robustness of the proposed method can be evaluated for the three-limb shell 

type transformers. Moreover, the method can be applied to the five-limb transformers in 

future. The test results along with the illustrative test case demonstrate the process and 

accuracy of the identification process. Based on the results, the project can be called 

successful.
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