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ABSTRACT

The Generative Adversarial Networks (GAN) recently emerged as a powerful framework

for producing new knowledge from existing knowledge. These models aim to learn patterns

from input data then use that knowledge to generate output data samples that plausibly ap-

pear to belong to the same set as the input data. Medieval manuscripts study has been an im-

portant research area in the humanities field for many decades. These rare manuscripts are

often times inaccessible to the general public, including students in scholars, and it is of a

great interest to provide digital support (including, but not limited to translation and search)

for accessing these materials. We propose a GAN framework that uses manuscript images

and their translations to create a model capable of new translation from new manuscript

images. Such a model would provide great assistance to humanities researchers seeking to

produce digital editions of old manuscripts.
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CHAPTER 1

INTRODUCTION

The study of medieval manuscripts is an area of great interest in the field of humanities.

These historical pieces give a unique insight into the culture, lifestyles, and minds of the

people whose lives are so distant, that they almost seem fictional. However, many limita-

tions make it difficult for the general population to read and perform studies of their own.

Over the years technological advances have, and continue to, fix and address some of these

shortcomings. Providing digital support for these manuscripts is extremely important as it

provides new ways to utilize them, better legibility, a secured form of preservation, and easy

access for a much larger population. Digital support can come in many forms including,

but not limited to, translation, digitization, and making the transcripts searchable.

One of the most popular manuscripts is the epic poem Beowulf. Historians believe that

the poem was originally written between 975 CE and 1025 CE in England. The manuscript

is written in Old English and there is only one known surviving copy. In the 17th century,

the Cotton Library, a room housing many medieval manuscripts including Beowulf, erupted

into flames. While the Beowulf manuscript made it out of the fire with minimal damage, the

same can not be said for many of the other manuscripts being held there. Despite rigorous

maintenance and preservation attempts, the original manuscript is fragile and has retained

a good bit of damage. Creating a digital form of these important manuscripts provides a

more permanent copy addressing one of the major issues humanities researchers face.

Generative Adversarial Networks were first proposed by Ian Goodfellow in 2014. In-

spired by a zero-sum mini-max game, Goodfellow’s proposed model consisting of a gen-

erator and a discriminator trained in competition with one another [7]. The generator is a

generative network designed to create forged data of the original data set. Its adversary, the

discriminator is oriented to distinguish between the forgeries produced by the generator and

the original data. These inner networks are comprised of a series of fully connected layers
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or convolutional neural networks. Convolutional GANs are most commonly used in im-

age processing since convolutional neural networks can retain more important information,

compared to artificial neural networks, such as spatial dependencies.

For this research, we created and improved a GAN framework that applies image-to-

image translation to images of the original Beowulf manuscript. Manuscript images and

their digital translations are inputted into the discriminator to train it to distinguish between

generated images and real images. Simultaneously the generator is fed random noise and

trains to generate translated images of the original manuscript without ever seeing the real

transcript images itself.

The goal of this project is to create a model that can intake new manuscript images

and produce the corresponding translations.

1.1 MACHINE LEARNING

Machine learning is a form of artificial intelligence and a branch of computer science that

aims to mimic the way humans learn. Similar to humans, computers learn and improve

through experience [3]. The more a model is trained, the more experience it gains, and the

better it gets. In the field of study, there are many different machine learning algorithms.

These algorithms are trained to find relationships and similarities in the input data and

apply the learned information to new data.

Definition 1. Machine Learning is a branch of artificial intelligence that uses algorithms to

create models capable of learning to perform tasks without being given explicit instructions.

Machine learning models are not explicitly programmed to carry out a goal. They are

designed in a way that they are able to achieve the desired outcomes all on their own. These

algorithms can be used to make predictions, classify data, cluster data, and even generate

entirely new data. With the rising growth of interest in big data, machine learning has
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become highly desirable as it is extremely proficient in dealing with large data sets [3]. At

its core, machine learning algorithms are mathematical optimization problems, where the

goal is to maximize the accuracy of predictions or classification of new data.

1.2 SUPERVISED LEARNING

Supervised learning is a type of machine learning that takes labeled data as its input. La-

beled data is data that includes both the input and the desired output. The information

provided to the model is known as the training data and is represented as a matrix. This

matrix is commonly referred to as the feature matrix. There are two main types of super-

vised learning, classification and regression. Classification learning is applied when the

training data is finite, such as color or names. On the other hand, regression is used when

the input data is infinite or inside a range.

1.3 UNSUPERVISED LEARNING

Unlike supervised learning, unsupervised learning uses unlabeled data as its input. Un-

labeled data only contains features and not desired outcomes or names. Nowadays, most

neural networks and deep learning models use unsupervised learning over supervised. The

model is trained to distinguish patterns and relationships among the inputs without any

human assistance. This learned information can then be applied to new data to decide

whether or not these features are present. The main application of unsupervised learning is

clustering.
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CHAPTER 2

NEURAL NETWORK MODELS

2.1 ARTIFICIAL NEURAL NETWORKS

Neural networks are an important form of machine learning that revolutionized the tech-

nological world. The inspiration for artificial networks came from the way neurons in

the brain process and transport information. A biological neural network is comprised of

billions of neurons. These neurons connect with other neurons to process and transport im-

portant signals. Figure 2.1 represents one of the neurons in the brain. The Dendrites take

inputted information/signals from other neurons or cells in the body. The information is

processed inside the body of the cell [18]. This information is then sent through the Axon

to the Axon terminals which connect to another neuron to send output information.

Figure 2.1: Biological neuron

As seen in Figure 2.2, a neuron of an artificial neural network, often referred to as

a node, greatly resembles that of the natural neuron. The given inputs x1,x2,x3 are infor-

mation sent from one neuron to the next. Then inside the neuron, an activation function is
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applied to the dot products of the weights and the input values. The weights, represented by

w1,w2,w3 are parameters learned through training the network and are calculated through

backpropagation. Using this example, let f represent the function mentioned above. Then f

is calculated as follows,

f (x) = w1x1 +w2x2 +w3x3 +b (2.1)

where b represents a bias variable. Each layer in a neural network is given a bias to

account for unseen outcomes or patterns.

Figure 2.2: Artificial neuron

Similar to a human brain, a collection of these nodes makes up an artificial neural

network. A data vector is inputted into the model as a series of nodes. Every node in the

input layer sends output to every node in the following hidden layers. The hidden layers

are the bulk of a neural network. Inside these layers are where the information from the

previous layer is processed and learned. The learned information is commonly referred to

as weights. In the ANN architecture, following the final hidden layer is the output layer.

This model can be seen in Figure 2.3.
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Figure 2.3: A visual representation of an ANN architecture.

2.1.1 WEIGHTS

Weights can be described as the relationship between the input and output of each node,

where the larger the weight value, the stronger the relationship. At the beginning of the

model, weights are initialized as random values. In each node, weights are summed and

processed through an activation function [18]. Weights are updated after each epoch of the

network using backpropagation. Backpropagation is a form of the gradient descent method

that uses the parameters of the network as their reference. The overall goal of an artificial

neural network is to optimize the weights to minimize the error/loss function [2].

Definition 2. Backpropagation is a type of gradient descent method used to calculate and

update the weights of an artificial neural network’s outputs.

2.1.2 HIDDEN LAYERS

Although hidden layers are not required for a model to be classified as a neural network,

hidden layers are the core of most neural networks. An ANN with only one layer is com-
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monly referred to as a ”shallow” network, while ANNs with many hidden layers are classi-

fied as deep learning models. These layers are made up of a collection of nodes where the

output of one layer represents the input of the following. An ANN can contain any number

of hidden layers. This number is entirely dependent on the goal/purpose and complexity of

the network [9].

2.2 CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) are deep learning models primarily used in process-

ing images. CNNs take their input and are trained to be able to determine the importance

of details in the input to differentiate between different observations. Unlike a traditional

artificial neural network, that can only take numeric data, CNNs can be applied to big data

such as visual, audio, and textual data. One of the most common applications of CNNs is

image recognition. Since an image is a matrix of pixels, with each pixel containing a value

that determines its intensity, it would be easy to convert the image into a vector to feed into

an artificial neural network. However, this process results in the loss of important infor-

mation, such as how the pixels around one another interact. By using a series of kernels,

CNNs can maintain valuable spatial dependencies [12]. The main purpose of CNNs is to

transform an image into different forms that are easier to process without compromising

important features and characteristics.

Definition 3. Convolution is a mathematical operation on two functions that produces a

third function.

Convolutional Neural Networks are made up of three types of layers: convolutional

layers, pooling layers, and fully connected layers.
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Figure 2.4: A visual representation of a CNN architecture with two convolutional layers.

2.2.1 CONVOLUTIONAL LAYERS

Convolutional layers are the key component of CNNs. The main focus of this layer is the

learnable kernels/filters. A common mistake sometimes made is using kernels and filters

interchangeably. Although quite similar there is one key thing setting the two apart. Kernels

are two-dimensional matrices whose elements consist of weights that are updated during

the training process typically through backpropagation and gradient descent, while a filter

is a 3-dimensional collection of kernels [9]. The kernel is applied to the top left portion

of an image and the scalar multiplication between the input pixels and the weights in the

kernel are calculated [12]. Then the kernel moves to the right by a specified number of

pixels, referred to as the stride value until it has reached the end of the image. The kernel

then goes back to the beginning of the image, down one stride length, and continues this

process until it has made its way through the entire image. The output of this process is

known as the activation map.
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Figure 2.5: Example of how the kernel is applied and the calculation of the scalar multipli-

cation between the input pixel and the kernel.

Every kernel in the layer has an activation map. These maps are then stacked on top

of each other to form the output of the entire layer. The size of the output is dependent on

three parameters, the number of filters, the stride size, and zero-padding. The convolutional

operation sometimes produces a result larger or smaller than the input. This is because the

kernels do not always perfectly align with the dimensions of the input. When this occurs,

zero-padding is applied. Zero-padding is the process of adding padding to the border of the

input [12]. By doing this, the output produced will be greater or equal in size compared to

the input.

2.2.2 POOLING LAYER

As seen in Figure 2.4, following the convolutional layer is the pooling layer. The pooling

layer allows for a significant reduction in the dimensionality of the activation maps [12].

The pooling process takes a window, typically with dimensions 2 x 2, and slides across the
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activation maps reducing the number of parameters in each region. There are two types of

pooling methods: average pooling and max pooling. In average pooling, the process takes

the average of all of the parameters inside the input to produce the output. On the other

hand, max pooling only takes the value of the maximum parameter in the region. Max

pooling is the most commonly used pooling method in CNNs and is represented in Figure

2.6.

Figure 2.6: Example of max pooling with a 2 x 2 window.

The combination of the convolutional layer and the pooling layer makes up a com-

plete layer in the convolutional neural network. Multiple layers can be used, and when

this occurs, the CNN architecture becomes hierarchical [10]. The first layers pull low-level

features of an image, such as colors, edges, and angles. These features are typically found

on the pixel level. As the model continues into the following layers, the information cap-

tured becomes high-level features, such as objects and shapes. The inclusion of high-level

features gives a better understanding of the images as a whole. After each convolutional

layer, an activation function is applied to the activation maps to introduce non-linearity.

2.2.3 RECTIFIED LINEAR UNIT

A rectified linear unit (ReLu) is a piecewise linear activation function [9]. The function

takes a value, x, and returns a positive value or zero. If x is a negative number, the function
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returns 0, otherwise the output is the value of x. Let x be the input value, then the formula

is shown in equation 2.2.

f (x) = max(0,x) (2.2)

Figure 2.7: Graphical representation of the ReLu function.

Often in CNNs, a leaky ReLu is applied instead. Although similar to a normal ReLu,

when a negative number is input into a leaky ReLu function it returns αx in place of zero.

This allows better maintenance of the flow of information between the layers. The leaky

Relu function is represented in equation 2.3

f (x) = max(αx,x) (2.3)
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Figure 2.8: Graphical representation of the Leaky ReLu function.

2.2.4 FULLY CONNECTED LAYERS

After the last pooling layer in the CNN architecture are the fully connected layers. These

layers are used to flatten the results of the final pooling layer in the network into a vector.

Then the vector is processed. The fully connected layers are a way to connect the layers to

the surrounding layers and are similar in structure to artificial neural networks [12]. These

layers are where tasks such as classification take place and are the final layers in a CNN.

2.3 GENERATIVE ADVERSARIAL NETWORKS

Zero-sum games are characterized in game theory as a two-person opposition where the

gain of one of the players results in the equivalent loss of the other. The core concept of a

generative adversarial network (GANs) was inspired by these games where the goal is to

find a Nash equilibrium [6]. GANs are a type of system that uses deep learning methods

to generate material similar to the inputted data using patterns or commonalities found

within. GANs are comprised of two neural networks, the generator and the discriminator.
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Both networks are made up of a series of fully connected layers or convolutional layers.

Convolutional GANs are more desirable than fully connected GANs when the input data is

a series of images [5]. Because of this, we will focus on the composition of convolutional

GANs for the remainder of this section.

The generator is an unsupervised model trained to generate new data. Noise is inputted

into the generator and it outputs a generated image without ever seeing the desired output

images. The discriminator is a supervised model trained to distinguish between the real

examples, from the domain, and fake examples, generated. It is fed real and fake images

and categorizes them into a number between (0,1). The two models are trained in direct

competition with each other until the discriminator can only differentiate between real and

fake about half of the time, hence the adversarial nature. A visual representation of the

architecture can be seen in Figure 2.9.

Figure 2.9: A visual representation of a GAN architecture.
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2.3.1 GENERATOR

Generative models are not a new concept in the realm of machine learning and neural

networks. A generative model is a form of unsupervised learning that is trained to generate

new data. The generator of a GAN is a type of generative modeling. The purpose of the

generator in the GAN framework is the learn the distribution of the inputted data and apply

the learned information to generate new data [8]. The generator is fed noise (random data)

and learns to create new images using the information gained from the discriminator.

The framework of the generator consists of an encoder, a decoder, and a connector

between the two as seen in Figure 2.10 [13]. The encoder is a CNN, as described in Section

2.2. The purpose of the encoder is to decrease the size of the input image and learn the

distribution of the data. This is done by decreasing the number of filters in each layer of the

CNN [13]. On the other hand, the purpose of the decoder is to use the information learned

in the encoding process to build/generate a new image. The decoder is a transpose CNN,

a reverse version of a CNN where the dimensionality of the image is increased rather than

decreased. To ensure this information is preserved, each layer of the decoder contains the

output of the previous layer in the model as well as the input of the corresponding layer in

the encoder [13]. This is represented in Figure 2.10, where the lighter color represents the

layers of the decoder and the darker section is the input of the corresponding encoder layer.



23

Figure 2.10: Generator architecture.

2.3.2 DISCRIMINATOR

Classification networks are commonly referred to as discriminative models. Trained in

competition with the generator, described in the above section 2.3.1, is the discriminator.

It is a supervised model made up of a single convolutional neural network. It is designed

to differentiate between a real image and a generated image. The discriminator is fed both

real images and desired output images and is trained to differentiate between the two. Then

images created by the generator are also inputted and the discriminator uses its learned

information gained from the labeled data to try and classify it as real or fake.

2.3.3 ADVERSARIAL TRAINING

A generative adversarial network is a new approach to generating images pins two models,

a generator and a discriminator, against one another to produce new data similar to the

input data. The adversarial nature is inspired by a two-person zero-sum game. In other

words, the loss of the generator results in the equivalent gain of the discriminator and

vice-versa. Generated images are inputted into the discriminator which then classifies the
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image as a source image or a generated one. If the discriminator is correct, then it remains

untouched. These results are then fed into the generator whose weights are then heavily

altered to increase its ability to trick the discriminator. However, if the discriminator is

wrong, the weights are updated to achieve a higher accuracy in its classification. The goal

of the discriminator is to minimize its error (number of times it categorizes incorrectly),

while the generator aims to maximize the same error.
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CHAPTER 3

THE BEOWULF MANUSCRIPT

Beowulf is an ancient epic poem of great importance and renown. Written in Old English,

the poem contains 3,183 alliterative lines and follows a Scandinavian hero named Beowulf

[17]. It is not only considered one of the most significant pieces of Old English texts but

also the most frequently translated. Although the dating of the manuscript is a controversial

subject in humanities, many historians believe it was written sometime between 975 CE and

1025 CE. The only known copy of the poem is held in a manuscript known as the Nowell

Codex. However, its official title is Beowulf manuscript (Cotton MS Vitellious) [11]. The

title is inspired by one of the owners, Robert Bruce Cotton. In the 17th century, while

under Cotton’s ownership, it was held at the Ashburnham House in the Cotton Library

alongside many other important manuscripts. In 1731, the Ashburnham House caught on

fire. Although the Beowulf manuscript managed to survive, the edges and some of the text

did suffer some damage [17].

The fire in the Cotton Library, a room housing many medieval manuscripts, is a

huge motivating factor for providing digital support for the Beowulf manuscript and other

manuscripts alike. While the Beowulf manuscript made it out of the fire with minimal

damage, the same can not be said for many other manuscripts being held there.

3.1 MANUSCRIPT IMAGES

The Beowulf manuscript was chosen as our model dataset because of multiple reasons: the

manuscript images (Figure 3.1) are available online to the general public through an elec-

tronic edition (Figure 3.2), it is of great interest for humanities students and researchers,

and it is used widely in classrooms. The problem of linking the manuscript images content

and their corresponding text transcriptions has been of a large interest since the first elec-

tronic edition of Beowulf was published decades ago. Several attempts were performed
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by manually recording metadata including image coordinates in the manuscript transcrip-

tion. Such approach is tedious and unlikely to produce good searching capabilities for

manuscript images.

Figure 3.1: First two pages from the electronic images of the Beowulf manuscript
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Figure 3.2: The Electronic Beowulf

With the impressive advances in Artificial Intelligence and Machine Learning tech-

niques and support in the past decade, the idea of automating the process of linking manuscript

images and their corresponding text transcriptions seems more realistic than ever. Our cur-

rent work builds on previous attempts to perform automatic individual manuscript charac-

ter recognition and sets the goal of producing character recognition for a whole manuscript

page at the time. We create a model, based on Generative Adversarial Networks architec-

ture, that we trained using a reduced set of original manuscript images and snapshot images

of their transcriptions (from the electronic edition in Figure 3.2), and attempt to generate

new transcription images from any manuscript image. While our method is not yet perfect,

it lays the foundation for producing models capable of recognizing languages other then

Old English from their original manuscript images.

In the subsequent section we describe how we prepare our dataset of images for train-

ing the model, which is described in Chapter 4.
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3.2 PREPROCESSING IMAGE DATA

For our model we selected 25 pairs of manuscript and transcription images as shown in

Figure 3.3 and each image was scaled to the size 512×256. Neural Network based models

success is typically linked to the amount of data used for training, and, in the case of models

that process images, to the size of each image in the dataset. As one of our goals was to

create a model that uses a relatively small dataset for training, we organized our data and

experiments in three ways.

We first used the original dataset of all 25 pairs of images and designed a model that

trains with images of a full manuscript page size. The images in this dataset category are

illustrated in Figure 3.3.

Figure 3.3: The Electronic Beowulf manuscript and transcription images
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Figure 3.4: The Electronic Beowulf manuscript and transcription images slicing (1)

Next, we automatically created significantly larger datasets of images by considering

subsets of manuscript pages. More specifically, we extracted image fragments by taking

a sliding window moving from the top of each image to the left and down the page. We

experimented with a few sliding window sizes and horizontal/vertical steps, with overlap-

ping between consecutive image fragments. The process of extracting image fragments is

illustrated in Figures 3.4-3.6.

Figure 3.5: The Electronic Beowulf manuscript and transcription images slicing (2)
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Figure 3.6: The Electronic Beowulf manuscript and transcription images slicing (3)

We have chosen on purpose to have overlapping between consecutive image frag-

ments, as same words and characters appearing in multiple fragments was expected to

improve the model’s training. However, the method introduces two important limitations.

Firstly, each image fragment cuts words and characters on both vertical and horizontal

edges. Secondly, there is a clear dis-alignment between content of a manuscript image

fragment and transcription image fragment, which inherently happens due to different char-

acter shapes and sizes in the two images. We found this second limitation more disturbing,

as it was more likely to negatively affect the model’s training.

Finally, we created larger dataset of image fragments by using a vertical sliding win-

dow of same width as the original images (that is, width 256). With this dataset we partially

avoided some of the limitations listed above, with the dia-alignment almost completely

avoided. The downside was a smaller set of images for model’s training.

All experimental results are reported in Chapter 5.
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CHAPTER 4

A GAN MODEL FOR MANUSCRIPT IMAGE TRANSLATION

We present a Generative Adversarial Network based model for converting manuscript im-

ages into their corresponding, clear images of the manuscript text. The chapter is organized

as follows. We provide background and notations in Section 4.1. Our model for converting

manuscript images to legible images of the content is introduced in Section 4.2. The cor-

responding mathematical model is described in Section 4.3, then Section 4.4 describes the

training process and evaluation for the model.

4.1 BACKGROUND AND NOTATIONS

The main goal of the current project is to produce a model capable of taking a snapshot im-

age from an old manuscript book page (the source image) and converting it into a snapshot

image (the target image) of the corresponding typed manuscript text, as shown in Figure 4.1

The input and output of our model consist of images, which are commonly represented

as embedded 3D real valued functions f (x,y,z) 7→I ∈RH×W×C, for some integers H, W ,

and C which represent the height, width, and number of channels, respectively. The func-

tion f (x,y,z) produces the value of the pixel at position (x,y,z) in the image. The represen-

tation I is a 3D array, which is informally referred as “data tensor”, however, the concept

of a “tensor” in the strict mathematical formulation is a generalization of a linear mapping

f : V1×·· ·×Vn→W (a multilinear mapping), where V1, . . . ,Vn,W are vector spaces. Data

tensor representation benefits from significant theoretical support for operating with ten-

sors allowing various complex observations (images, sounds, 3D objects, etc.) be analyzed

using specific tensor methods [16, 15, 14]. For an image representation I ∈ RH×W×C, we

denote dim(I ) = (H,W,C) the dimension of the image, representing the height, width,

and number of channels, respectively. We note that a typical image has either C = 3 (RGB
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Figure 4.1: Manuscript image conversion to typed text image

representations) or C = 1 (BW or grayscale representations). All our source images will

be represented as grayscale image, hence C = 1. However, in the process of converting a

source image to a target image the representation I may be successively converted into a

sequence of multidimensional arrays of various heights, widths, and number of channels.

The parametric image translation model we propose can be formally defined as fol-

lows.

Definition 4. An image translation model is a mapping

M : RHi×Wi×Ci → RHo×Wo×Co M (I ; W) = T

which takes an input image I of dimension (Hi,Wi,Ci) and produces a target image T of

dimension (Ho,Wo,Co), where W represents the set of model’s parameters.

The image translation is performed by the model using successive transformations

(also called “layers”), with each such transformation taking as input an image representa-

tion and producing as output another image representation. Moreover, each such intermedi-

ate transformation can use parameters or be parameter-less transformation. The union of all

intermediate transformations parameters produce the set W of parameters of the model M .



33

Each layer taken individually is a mini-model that performs a single image transformation,

as formally defined next.

Definition 5. An image transformation layer is a mapping

L : RHi×Wi×Ci → RHo×Wo×Co L (I ; Wl) = T

which takes an input image I of dimension (Hi,Wi,Ci) and produces a target image T of

dimension (Ho,Wo,Co), where Wl represents the set of layer’s parameters.

However, the power of the model M relies in combining multiple layers together and

optimizing their parameters to produce a translation as accurate as possible. Multiple image

transformation layers are combined in the final model as follows:

M (I ;W) = (Ln ◦Ln−1 ◦ · · · ◦L1)(I ) (4.1)

W =
n⋃

i=1

Wi

where Wi is the set of parameters for layer Li and n is the number of layers.

The number n of layers and their types are typically established by practical trials.

The optimal values of the model parameters are determined as solutions of an optimization

problem, which will be described in the subsequent sections.

For our model M we used four types of image transformation layers (2D convolu-

tional, batch normalization, activation, and transpose 2D convolutional layer), which will

be formally described in the following section. We must also note that we only present the

layers used in our model, whereas in practice there are some other available transformation

layers.
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4.2 IMAGE TRANSFORMATION LAYERS

4.2.1 THE 2D CONVOLUTION AND TRANSPOSE 2D CONVOLUTION LAYERS

As informally described in Section 2.2.1, the 2D convolution layers are the backbone of a

Convolutional Neural Network (CNN). They typically covert an input image (represented

as a multidimensional array) I (Hi,Wi,Ci) into an output multidimensional array image

O(Ho,Wo,Co) of larger dimensions Ci < C0. Each slice of the output image represents a

version of the input image where one or more features are enhanced (typically edges in one

or more directions). The convolution layer performs this transformation by means of filters

and strides. A filter is a set of small matrix of weights (typically squared matrices 3× 3,

4× 4, 5× 5, etc.) that is applied to each image (array slice) in I (Hi,Wi,Ci) to produce a

new image with a certain enhanced feature (the process is called feature extraction). One

matrix of parameters in a filter is called a kernel and a filter is composed of Ci kernels for

an input image I (Hi,Wi,Ci). In Section 2.2.1 we show an example of applying a filter to

an input image. In summary, a filter feature extraction for one 2D image transforms every

entry (pixel) of the input image into another image where each entry (pixel) is a weighted

average of the corresponding input image pixel and its neighbors covered by the kernel

size. However, such transformation does not necessary produce same size output image as

the input image due to the fact the kernel is applied to input matrix pixels that are s units

apart, rather then to every pixel. The value s is called stride and may have distinct values

for moving horizontally and vertically. Consequently, the output image dimensions are

scaled down by the s value. The image transformation performed by a filter (called feature

extraction) is formally described as follows.

Definition 6. Let I (Hi,Wi,Ci) be a representation of an image and F = {K1, . . . ,KCi} a

filter, with kernels Kk ∈M f1, f2, Kk = [w(k)
i j ], k = 1 . . .Ci. f1, f2 is the kernel dimension and

w(k)
i j are the weights associated to the kernel. Let s be the stride associate to the transfor-
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mation.

The feature extraction performed by F on image I (Hi,Wi,Ci) is a transformation

F : RHi×Wi×Ci → RHo×Wo×Co

F (I ) = O, O = [oi j,k]

oi j = I [i′−⌈ f1/2⌉ : i′+ ⌈ f1/2⌉, j′−⌈ f2/2⌉ : j′+ ⌈ f2/2⌉,k]⊙Kk +bk, k = 1 . . .Ci

where ⊙ denotes the Hadamard (element-wise) product of two matrices, bk is a trainable

parameter called bias, and by i−⌈ f1/2⌉ : i+ ⌈ f1/2⌉, j−⌈ f2/2⌉ : j+ ⌈ f2/2⌉ we denote a

selection from a matrix in from:to format. The pixels positions (i, j) in the output matrix

and (i′, j′) in the input matrix are related by the stride s factor: i′ = i · s, j′ = j · s.

This formal definition of a filter transformation (filter feature extraction) will allow

us to perform a rigorous count of the model parameters and the output image dimensions.

For an input image I (Hi,Wi,Ci) and a filter transformation with stride s, the output image

dimension is (⌊H1/s⌋,⌊Wi/s⌋), that is, the output image is scaled down by the factor s.

A 2D convolution layer is a collection of filters applied to a multidimensional input

image, as described next.

Definition 7. Let I (Hi,Wi,Ci) be an input image and F = {F1, . . . ,Ff } a set of f filters

with stride s. A 2D convolution layer is a transformation

Conv2D : RHi×Wi×Ci → RHo×Wo×Co

Conv2D(I ) = O

where Ho = ⌊Hi/s⌋, Wo = ⌊Wi/s⌋, Co = f ·Ci, and O = [F1(I ), . . . ,Ff (I )].

That is, a 2D convolution layer applies each filter in the set of filters to the input

image representation and stacks the results in the output image representation. In a 2D

convolutional layer the number f of filters, the size of each kernel f1× f2 and the strid are
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chosen based on experimental trials, whereas the weights w(k)
i j for each kernel in each filter

are parameters to be determined through an optimization process for the model (trainable

parameters). Consequently, for a 2D convolutional layer with f filters and kernels of size

f1× f2, the set of trainable parameters is

W =
⋃

f ilter F

⋃
Kk∈F

{w(k)
i j ,bk}

|W| = f ·Ci · ( f1 · f2 +1) (4.2)

The process of finding optimal trainable parameters of the model will be described in the

upcoming sections.

A transpose 2D convolutional model is the inverse of a 2D convolution transformation.

It uses filters and stride (with same number of trainable parameters) to perform an inverse

transformation of an input image. The only difference is that the dimension of the output

image is being stretched by the stride value s.

4.2.2 THE BATCH NORMALIZATION LAYER

A batch normalization layer performs statistical adjustments of values in an input image

representation for practical purposes: typically the process of finding all optimal model

parameters is more effective (faster and more stable). The numerical adjustments are per-

formed based on statistics (mean and standard deviations) over a set of input images, called

a batch. For such a batch, the values of mean µc and standard deviation σc are computed

and stored for each channel slice (matrix), then the input image representation is processed

as described below.

Definition 8. A batch normalization transformation is a mapping

BN : I (Hi,Wi,Ci)→ O(Ho,Wo,Co), BN(I ) = O



37

where Ho = Hi = H, Wo = Wi = W , Co = Ci = C and O[i, j,c] = γc ·
I [i, j,c]−µc

σc
+βc,

i = 1, . . . ,H, j = 1, . . . ,W , c = 1, . . . ,C. The parameters γc and βc are trainable parameters

and are optimally determined during the model optimization process.

Therefore, the parameters stored by the model for a batch normalization layer that

performs an image transformation RH×W×C→ RH×W×C are:

W = {γc,βc,µc,σc}, c = 1, . . . ,C

|W| = 4 ·C (4.3)

4.2.3 THE ACTIVATION LAYER

The activation layer performs an entry-wise non-linear transformation on each entry of

the input image. Other than choosing the specific non-linear function (which is called

activation function), the layer has no parameters.

Definition 9. Let σ : R → R be a continuous, non-constant, increasing function. The

activation layer is a transformation

A : RHi×Wi×Ci → RHo×Wo×Co, A(I ) = O

where Ho = Hi = H, Wo =Wi =W , Co =Ci =C and O[i, j,c] = σ(I [i, j,c]).

Some popular choices for the activation function are: the sigmoid function, hyperbolic

tangent, RELU, or leaky-RELU.

• Sigmoid function: σ(x) =
1

1+ e−x

• Hyperbolic tangent: tanh(x) =
ex− e−x

ex + e−x

• Rectified Linear Activation Function (RELU): f (x) = max(0,x)

• Leaky-RELU: f (x) = max(αx,x), where 0 < α ≪ 1.

The activation layer does not add any parameter to the model.
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4.3 CONVOLUTIONAL NEURAL NETWORKS MODELS

A Convolution Neural Network model (informally introduced in Section 2.2) can be for-

mally described by a commutative diagram of combining various image transformation

layers.

Definition 10. A Convolutional Neural Network (CNN) is a composition cnn :RH×W×C→

B of image transformation layers RH1×W1×C1
φ1−→ RH2×W2×C2

φ2−→ . . .
φk−→ B described by the

commutative diagram:

RH1×W1×C1 RH2×W2×C2 · · · RHk×Wk×Ck

B

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
NNP

cnn

w

φ1
w

φ2
w

φk−1

u

φk

where each φ j, j = 1...k is an image transformation layer and the codomain B is either a

multidimensional image array RH×W×C or a discrete set of L labels {1,2, . . . ,L}.

The typical purpose of a CNN model is to perform image encoding/transformation (in

which case B = RH×W×C) or an image classification (in which case B = {1,3, . . . ,L}). In

our model, we use two CNN-based models, one models for each scenario. The parameters

set for a CNN model is the union of parameters sets for each transformation layer in its

composition:

Wcnn =
⋃

Wk, where Wk is the parameters set of φk.

4.4 IMAGE TRANSLATION MODELS USING GENERATIVE ADVERSARIAL NETWORKS

MODELS

A Generative Adversarial Network (GAN) is a framework introduced by Ian Goodfellow

in 2014 [7] and it typically consists of two Artificial Neural Network models competing
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against each-other on generating artificial (fake) information on one hand, and distinguish-

ing between artificially created (fake) information and real information, on the other hand.

The two ANN-based components are called the Generator and the Discriminator, respec-

tively.

Our image translation model based on Generative Adversarial Networks is sketched

in Figure 4.2.

Figure 4.2: A GAN model for image translation

In the GAN model represented in Figure 4.2 the generator G is a function that takes

artificial information z as input and aims to produce credible information G(Z) as the out-

put. The generator’s output is provided to the discriminator D, which is a model design to

take an input x and produce an output D(x) = y ∈ {True, False} which must distinguish

as accurately as possible between real information x and artificial (fake) information G(z).

Both G and D are types of ANN-based models with a very large set of parameters. The

GAN model learns the optimal parameters (for both G and D) to produce the desired results

through a process called training.
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A formal introduction of the GAN model and how the model computes its optimal

parameters are provided in the subsequent subsections.

4.4.1 THE MODEL LOSS FUNCTIONS

Let I = Is ∪It be a set of input images partitioned into two disjoint, equal cardinality

subsets Is of source images and It of target images. We let the bijection o : Is→It be

the image translation model objective transformation function. We definite the GAN model

loss functions as follows.

Definition 11. [Discriminator model loss] The Discriminator model loss function is a real

valued function LD : 2Is → R,

LD(I) = ∑
i∈I
|D(i)−1|2 + ∑

i∈o(I)
|D(i)−1|2 +∑

i∈I
|D(G(i))|2

Definition 12. [Generator model loss] The Generator model loss function is a real valued

function LG : 2Is → R,

LG(I) = ∑
i∈I
|]G(i)−o(i)||2

Definition 13. [GAN model loss] The GAN model loss function is a real valued function

L : 2Is → R,

L(I) = LG(I)+∑
i∈I
|D(i)−1|2 +∑

i∈I
|D(G(i))|2

4.4.2 TRAINING AND EVALUATING THE MODEL

Algorithm 1 describes the training process for the GAN-based model for image translation.
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Algorithm 1 The GAN model training algorithm
1: Input: model M with parameters W , Is = I1∪I2∪·· ·∪IB, EPOCHS

2: Output: model M with optimal parameters W

3: W ← random()

4: for i = 1, . . . ,EPOCHS do

5: for k = 1,2, . . . ,B do

6: min
W

LD(Ik)

7: Adjust Discriminator model parameters

8: min
W

L(Ik)

9: Adjust Discriminator and Generator models parameters

10: end for

11: end for

12: Print LD(I ), LG(I )
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CHAPTER 5

IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have implemented our models in Python using Tensorflow [1] and Keras [4] libraries

for implementing Artificial Neural Network based models. Our tests were initially ran on

a PC Desktop computer using an Intel(R) Core(TM) i7-10700K CPU 3.80GHz processor

equipped with 16GB of RAM. The initial experiments were taking between 12-72 hours to

complete. We subsequently switched to the Talon High Performance Cluster (HPC) com-

puter system at Georgia Southern University and were able to run complete experiments in

about 8-24 hours per experiment.

The models implementation and experimental results are reported in the subsequent

sections.

5.1 MODEL IMPLEMENTATION

The Python implementations of the Discriminator, Generator, and the GAN models are

presented in Listings 5.1, 5.2, and 5.3, respectively.

1 def define_discriminator(image_shape):

2 # weight initialization, source and target inputs and merge them

3 init = RandomNormal(stddev=0.02)

4 in_source_image = Input(shape=image_shape)

5 in_target_image = Input(shape=image_shape)

6 merged = Concatenate()([in_source_image, in_target_image])

7 # CNN: 64 filters

8 hl = Conv2D(64, (3,3), strides=(2,2), padding=’same’,

kernel_initializer=init)(merged)

9 # set alpha to 0.2 rather than the default 0.3 to account for some

negative pixels

10 hl = LeakyReLU(alpha=0.2)(hl)

11 # CNN: 128 filters
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12 hl = Conv2D(128, (3,3), strides=(2,2), padding=’same’,

kernel_initializer=init)(hl)

13 # BatchNormalization so that the inputs are standardized (mean = 0,

std = 1)

14 hl = BatchNormalization()(hl)

15 hl = LeakyReLU(alpha=0.2)(hl)

16 # CNN: 256 filters

17 hl = Conv2D(256, (3,3), strides=(2,2), padding=’same’,

kernel_initializer=init)(hl)

18 hl = BatchNormalization()(hl)

19 hl = LeakyReLU(alpha=0.2)(hl)

20 # CNN: 512 filters

21 hl = Conv2D(512, (3,3), strides=(2,2), padding=’same’,

kernel_initializer=init)(hl)

22 hl = BatchNormalization()(hl)

23 hl = LeakyReLU(alpha=0.2)(hl)

24 # 2nd to last output layer

25 hl = Conv2D(512, (3,3), padding=’same’, kernel_initializer=init)(hl)

26 hl = BatchNormalization()(hl)

27 hl = LeakyReLU(alpha=0.2)(hl)

28 # output layer

29 hl = Conv2D(1, (3,3), padding=’same’, kernel_initializer=init)(hl)

30 patch_out = Activation(’sigmoid’)(hl)

31 # define and compile model

32 model = Model([in_source_image, in_target_image], patch_out)

33 opt = Adam(learning_rate=0.0002, beta_1=0.5)

34 model.compile(loss=’binary_crossentropy’, optimizer=opt, loss_weights

=[0.5])

35 return model

Listing 5.1: The Discriminator model implementation

1 def encoder_block(layer_in, n_filters, batchnorm=True):
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2 init = RandomNormal(stddev=0.02)

3 g = Conv2D(n_filters, (3,3), strides =(2,2), padding=’same’,

kernel_initializer=init)(layer_in)

4 # Batch normalization and ReLU functions

5 if batchnorm:

6 g = BatchNormalization()(g, training=True)

7 g = LeakyReLU(alpha=0.2)(g)

8 return g

9

10 def decoder_block(layer_in, skip_in, n_filters, dropout=True):

11 init = RandomNormal(stddev=0.02)

12 g = Conv2DTranspose(n_filters, (3,3), strides=(2,2), padding=’same’,

kernel_initializer=init)(layer_in)

13 g = BatchNormalization()(g, training=True)

14 # Add a drop out to the earlier layers of the decoding part of the

generator.

15 # This is ’cheap way’ to regularize the deep neural network.

16 # We drop out half of the input variables from the previous layer.

17 if dropout:

18 g = Dropout(0.5)(g, training=True)

19 # merge with output of corresponding contracting block

20 #g = Concatenate()([g, skip_in])

21 # relu activation

22 g = Activation(’relu’)(g)

23 return g

24

25 def define_generator(image_shape=(IMG_FRAG_HEIGHT, IMG_FRAG_WIDTH, 1)):

26 init = RandomNormal(stddev=0.02)

27 in_image = Input(shape=image_shape)

28 # encoder model

29 e1 = encoder_block(in_image, 64, batchnorm=False)
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30 e2 = encoder_block(e1, 128)

31 e3 = encoder_block(e2, 256)

32 e4 = encoder_block(e3, 512)

33 #e5 = encoder_block(e4, 512)

34 #e6 = encoder_block(e5, 512)

35 #e7 = encoder_block(e6, 512)

36 # bottleneck, no batch norm and relu

37 b = Conv2D(512, (3,3), strides=(2,2), padding=’same’,

kernel_initializer=init)(e4)

38 b = Activation(’relu’)(b)

39 # decoder model

40 #d1 = decoder_block(b, e7, 512)

41 #d2 = decoder_block(d1, e6, 512)

42 #d3 = decoder_block(d2, e5, 512)

43 d4 = decoder_block(b, e4, 512, dropout=False)

44 d5 = decoder_block(d4, e3, 256, dropout=False)

45 d6 = decoder_block(d5, e2, 128, dropout=False)

46 d7 = decoder_block(d6, e1, 64, dropout=False)

47 # output and model

48 g = Conv2DTranspose(1, (3,3), strides=(2,2), padding=’same’,

kernel_initializer=init)(d7)

49 out_image = Activation(’tanh’)(g)

50 model = Model(in_image, out_image)

51 return model

Listing 5.2: The Generator model implementation

1 def define_gan(g_model, d_model, image_shape):

2 in_source = Input(shape=image_shape)

3 # discriminator not trainable

4 d_model.trainable = False

5 # generate image from in_source

6 gen_out = g_model(in_source)
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7 # pass both in_source and gen_out to discriminator

8 dis_out = d_model([in_source, gen_out])

9 # build a model where image source is compiled against both

descrimination and generated image

10 model = Model(in_source, [dis_out, gen_out])

11 opt = Adam(learning_rate=0.0002, beta_1=0.5)

12 model.compile(loss=[’binary_crossentropy’, ’mae’], optimizer=opt,

loss_weights=[1,100])

13 return model

Listing 5.3: The GAN model implementation

1 def train(d_model, g_model, gan_model, dataset, n_epochs=500, n_batch=3)

:

2 # dataset

3 patch_shape1 = d_model.output_shape[1]

4 patch_shape2 = d_model.output_shape[2]

5 trainA, trainB = dataset

6 # the epochs, the batch per epoch and the total number of training

iterations

7 bat_per_epo = int(len(trainA) / n_batch)

8 n_steps = bat_per_epo * n_epochs

9 for i in range(n_steps):

10 # select a batch of real samples and update discriminator

11 [X_realA, X_realB], y_real = generate_real_samples(dataset, n_batch,

patch_shape1, patch_shape2)

12 d_loss1 = d_model.train_on_batch([X_realA, X_realB], y_real)

13 # generate a batch of fake samples and update discriminator

14 X_fakeB, y_fake = generate_fake_samples(g_model, X_realA,

patch_shape1, patch_shape2)

15 d_loss2 = d_model.train_on_batch([X_realA, X_fakeB], y_fake)

16 # update the generator and summarize performance

17 g_loss, _, _ = gan_model.train_on_batch(X_realA, [y_real, X_realB])
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18 print(’>%d, d1[%.3f] d2[%.3f] g[%.3f]’ % (i+1, d_loss1, d_loss2,

g_loss))

19 #summarize every 100 epochs and at the last step

20 if ((i+1) == n_steps) or ((i+1) % (bat_per_epo*100) == 0):

21 summarize_performance(i, g_model, dataset)#, save_model=((i+1) ==

n_steps))

Listing 5.4: Training the GAN model

The complete listing of the Python code can be found in Appendix A.

5.2 EXPERIMENTAL RESULTS FOR PROCESSING FRAGMENTS OF MANUSCRIPT

PAGES

We ran our experiments for various fragments shapes and sizes out of a manuscript page.

The results presented here are produced from using square image fragments of 64× 64

pixels. We produced these fragments by sliding a 64× 64 window over the manuscript

page, moving left to right and top to bottom using a 32 pixels step. The technique has

the advantage of producing more source images for training (out of a limited number of

manuscript pages), but the disadvantage of misalignments between the original image and

the corresponding transcription snapshots (as characters have different widths in the two

representations.
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Figure 5.1: The Loss function for training the GAN model on image fragments

Figure 5.1 shows the Loss functions (discriminator and the entire GAN model) values

during the training process of 100,000 epochs. As the curves flatten long before the end of

the process, the models are completely trained.
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Figure 5.2: Output of GAN model for sample training data: original manuscript image

fragment (top), target image (bottom), and model output image (middle)

Figure 5.2 shows a pair of randomly chosen manuscript image fragments (on top),

their corresponding transcription snapshots (bottom), and the generated versions of the

transcriptions (middle). One can easily notice the misalignments between the characters

in the original manuscript snapshots (top) and their translations (bottom). This is a clear

limitation of this approach, which we tried to overcome by processing whole manuscript

pages (the results presented in the subsequent section).
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Figure 5.3: The GAN model output on a random image fragment input

Finally, Figure 5.3 shows the triplet of original image (left), original transcription

snapshot (right), and the generated transcription image (middle).

One special experiment case scenario is the case of fragment images with full image

width. We performed the next set of experiments with fragment images of dimension 64×

256 (matching the full width of a manuscript image, sliding down 32 pixels. The purpose

of the experiment was to determine whether the problem of misalignment (described in

Chapter 3) will be alleviated.

Figure 5.4 shows the loss function during the training process. The figure shows

that the experiment would need considerably more epochs for training the discriminator

model. The results of generating random images from the training set are presented in

Figure 5.5, and there generated image from the testing set is shown in Figure 5.6. While

not convincing, we plan to repeat the experiment in future work using better training.
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Figure 5.4: The Loss function for training the GAN model on image fragments

Figure 5.5: Output of GAN model for sample training data: original manuscript image

fragment (top), target image (bottom), and model output image (middle)
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Figure 5.6: The GAN model output on a random image fragment input

5.3 EXPERIMENTAL RESULTS FOR PROCESSING WHOLE MANUSCRIPT PAGES

The results presented in this section correspond to processing whole manuscript page im-

ages. While the original manuscript images and their transcription counterparts are com-

pletely aligned, this method suffers from having a very limited number of original images

for training the model. The results are presented below.
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Figure 5.7: The Loss function for training the GAN model on image fragments

Figure 5.7 shows the Loss functions (discriminator and the entire GAN model) values

during the training process of 6,000 epochs. The reduced size of the training dataset takes

a toll on the training process.
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Figure 5.8: Output of GAN model for sample training data: original manuscript image

fragment (top), target image (bottom), and model output image (middle)

Figure 5.8 shows a randomly chosen manuscript image page (left), its corresponding

transcription snapshots (right), and the generated version of the transcription (middle).
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Figure 5.9: The GAN model output on a random image fragment input

Figure 5.9 shows the triplet of original image page (left), original transcription page

(right), and the generated transcription image (middle).
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Making historic, rare manuscripts available to the large public has been of a continuous

interest for humanities scholars for decades. With the increasing availability of internet

and recent technological advances, this has become possible through distribution of static

digital images and more complex electronic editions, capable of providing search capa-

bilities and editorial annotations from field experts. However, the recent advances in data

processing and artificial intelligence are providing more and more support for automation

and better presentation of such historic manuscripts.

In this work we tackle the problem of automatically linking the manuscripts digital

images content to the editorial text content (transcription, translations, etc.) created by

humanities researches and proposes a framework for a model capable of learning from

current published works and produce further knowledge from manuscripts not previously

studies. The problem of automatically linking images and text (and subsequently expand

search capabilities from text to images) has been of continuing interest for decades. We are

making advances in this direction with the model we propose in this work.

Our Generative Adversarial Networks based model takes manuscript digital images

and image snapshots of previously created transcriptions and aims to produce new tran-

scription image from new manuscript images. To our knowledge, this is pioneer work in

attempting to converting a whole manuscript image into its corresponding transcription

image (which in turn, can be easier converted to text). Previous work performed character

recognition on character image snippets, manually extracted from manuscript images. Our

current work aims to improve those results and produce automatic translation of manuscript

images without the tedious work of manually extracting character images. It is an ambitious

project and our current results are encouraging.
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Appendix A

THE COMPLETE PYTHON CODE FOR EXPERIMENTS

1 # -*- coding: utf-8 -*-

2 """

3 author: Tonilynn Holtz

4

5 Our GAN base model v2.5: processes manuscript data

6 - Black and White

7 - a square fragment of a whole folio, then sliding right and down

8 - Generator model enhancement: image -> vector -> image

9 Based on image2image translation:

10 https://github.com/adriensaremi/Springboard/blob/master/Capstone_2

%20-%20GAN%20and%20Mechanical%20Networks%20/image2image.ipynb

11 """

12

13 #%%========================== import libraries

14 import tensorflow as tf

15

16 import numpy as np

17 import matplotlib.pyplot as plt

18 from IPython import display

19

20 #from keras.utils.vis_utils import plot_model

21 from tensorflow.keras.utils import plot_model

22

23 from keras.initializers import RandomNormal

24 from keras import Model, Input

25 from keras.models import load_model

26

27 from keras.layers import Conv2D, Conv2DTranspose, LeakyReLU, Activation,

BatchNormalization, Concatenate, Dropout
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28 from keras.optimizers import Adam

29

30 import cv2 as cv #use: pip install opencv-python

31

32 print (tf.__version__)

33

34

35 #%%================ functions =========================

36 def plot_results(images, n_cols=None, unnorm=True):

37 ’’’visualizes fake images’’’

38 display.clear_output(wait=False)

39

40 n_cols = n_cols or len(images)

41 n_rows = (len(images) - 1) // n_cols + 1

42

43

44 if images.shape[-1] == 1:

45 images = np.squeeze(images, axis=-1)

46

47 plt.figure(figsize=(n_cols, n_rows))

48

49 for index, image in enumerate(images):

50 plt.subplot(n_rows, n_cols, index + 1)

51 imageorg = image

52 if unnorm:

53 imageorg = (image +1) * 0.5

54 plt.imshow(cv.cvtColor(imageorg, cv.COLOR_BGR2RGB))

55 plt.axis("off")

56

57 def plot_results2(images, n_cols=None, unnorm=True):

58 ’’’visualizes fake images’’’
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59 display.clear_output(wait=False)

60

61 n_cols = n_cols or len(images)

62 n_rows = (len(images) - 1) // n_cols + 1

63

64

65 if images.shape[-1] == 1:

66 images = np.squeeze(images, axis=-1)

67

68 #plt.figure(figsize=(n_cols, n_rows))

69 fig, ax = plt.subplots(1, len(images), figsize=(n_rows, n_cols))

70 fig.tight_layout()

71

72 for index, image in enumerate(images):

73 #plt.subplot(n_rows, n_cols, index + 1)

74 imageorg = image

75 if unnorm:

76 imageorg = (image +1) * 0.5

77 #plt.imshow(cv.cvtColor(imageorg, cv.COLOR_BGR2RGB))

78 #plt.axis("off")

79 ax[index].imshow(cv.cvtColor(imageorg, cv.COLOR_BGR2RGB))

80

81

82

83 #%% load, preprocess and plot the training images

84

85 DATA_FOLDER = "../mdata2"

86 TEXT_IMAGES = [’129rt.png’, ’129vt.png’, ’130rt.png’, ’130vt.png’,

87 ’132rt.png’, ’132vt.png’, ’133rt.png’, ’133vt.png’,

88 ’134rt.png’, ’134vt.png’, ’135rt.png’, ’135vt.png’,

89 ’136rt.png’, ’136vt.png’, ’137rt.png’, ’137vt.png’,
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90 ’138rt.png’, ’138vt.png’, ’139rt.png’, ’139vt.png’,

91 ’140rt.png’, ’140vt.png’, ’141rt.png’, ’141vt.png’,

92 ’142rt.png’, ’142vt.png’]

93 MS_IMAGES = [’129r.png’, ’129v.png’, ’130r.png’, ’130v.png’,

94 ’132r.png’, ’132v.png’, ’133r.png’, ’133v.png’,

95 ’134r.png’, ’134v.png’, ’135r.png’, ’135v.png’,

96 ’136r.png’, ’136v.png’, ’137r.png’, ’137v.png’,

97 ’138r.png’, ’138v.png’, ’139r.png’, ’139v.png’,

98 ’140r.png’, ’140v.png’, ’141r.png’, ’141v.png’,

99 ’142r.png’, ’142v.png’]

100

101 IMG_WIDTH = 256

102 IMG_HEIGHT = 512

103 IMG_FRAG_WIDTH = 128

104 IMG_FRAG_HEIGHT = 128

105 IMG_FRAG_SLIDE = 32

106

107 IMG_FRAGnox = (IMG_WIDTH - IMG_FRAG_WIDTH) // IMG_FRAG_SLIDE + 1

108 IMG_FRAGnoy = (IMG_HEIGHT - IMG_FRAG_HEIGHT) // IMG_FRAG_SLIDE + 1

109 IMG_FRAGno = IMG_FRAGnox * IMG_FRAGnoy

110

111 IMG_DIM = (IMG_WIDTH, IMG_HEIGHT)

112 IMG_DIM2 = (IMG_FRAG_WIDTH, IMG_FRAG_HEIGHT)

113

114 WITH_VISUAL_PLOTS = True

115

116 #test image functions

117 if WITH_VISUAL_PLOTS:

118 img = cv.imread(DATA_FOLDER + ’/’ + MS_IMAGES[0])

119 img_scaled = cv.resize(img, IMG_DIM)

120 gray_image = cv.resize(cv.cvtColor(img, cv.COLOR_BGR2GRAY), IMG_DIM)
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121 #gray_image = cv.cvtColor(img, cv.IMREAD_GRAYSCALE)

122 #thresh = 100

123 bw_image = gray_image #cv.threshold(gray_image, thresh, 255, cv.

THRESH_BINARY)[1]

124

125 img = cv.imread(DATA_FOLDER + ’/’ + TEXT_IMAGES[0])

126 img_scaled = cv.resize(img, IMG_DIM)

127 gray_image = cv.resize(cv.cvtColor(img, cv.COLOR_BGR2GRAY), IMG_DIM)

128 bw_imaget = gray_image

129

130

131 fig, ax = plt.subplots(2, IMG_FRAGnox, figsize=(64, 64))

132 fig.tight_layout()

133

134 delta = IMG_FRAG_SLIDE

135 for i in range(IMG_FRAGnox):

136 imgf = bw_image[0 : IMG_FRAG_HEIGHT,delta*i : delta*i +

IMG_FRAG_WIDTH]

137 ax[0,i].imshow(cv.cvtColor(imgf, cv.COLOR_BGR2RGB))

138 imgf = bw_imaget[0 : IMG_FRAG_HEIGHT,delta*i : delta*i +

IMG_FRAG_WIDTH]

139 ax[1,i].imshow(cv.cvtColor(imgf, cv.COLOR_BGR2RGB))

140

141

142 plt.show()

143

144 #%%**************** prepare the training set

******************************

145

146

147 #(X_train, _), _ = keras.datasets.cifar10.load_data()
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148 imgs = [None] * (len(TEXT_IMAGES) - 1) * IMG_FRAGno

149 imgs_ms = [None] * (len(TEXT_IMAGES) - 1) * IMG_FRAGno

150 delta = IMG_FRAG_SLIDE

151 ii = 0

152 for i in range(len(TEXT_IMAGES) - 1):

153 img = cv.imread(DATA_FOLDER + ’/’ + TEXT_IMAGES[i])

154 gray_image = cv.resize(cv.cvtColor(img, cv.COLOR_BGR2GRAY), IMG_DIM)

155 bw_image = np.reshape(gray_image, (IMG_HEIGHT, IMG_WIDTH, 1)) #cv.

threshold(gray_image, thresh, 255, cv.THRESH_BINARY)[1]

156

157 imgms = cv.imread(DATA_FOLDER + ’/’ + MS_IMAGES[i])

158 gray_imagems = cv.resize(cv.cvtColor(imgms, cv.COLOR_BGR2GRAY),

IMG_DIM)

159 bw_imagems = np.reshape(gray_imagems, (IMG_HEIGHT, IMG_WIDTH, 1)) #

cv.threshold(gray_imagems, thresh, 255, cv.THRESH_BINARY)[1]

160

161 for j in range(IMG_FRAGnoy):

162 for k in range(IMG_FRAGnox):

163 imgs[ii] = bw_image[delta*j : delta*j + IMG_FRAG_HEIGHT,

delta*k : delta*k + IMG_FRAG_WIDTH]

164 imgs_ms[ii] = bw_imagems[delta*j : delta*j + IMG_FRAG_HEIGHT

, delta*k : delta*k + IMG_FRAG_WIDTH]

165 ii = ii + 1

166

167 X_target = np.array(imgs)

168 X_source = np.array(imgs_ms)

169

170 if WITH_VISUAL_PLOTS:

171 plot_results(X_target[0:IMG_FRAGnox], IMG_FRAGnox, False)

172 plot_results(X_source[0:IMG_FRAGnox], IMG_FRAGnox, False)

173
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174 #The GAN Hacks recommend to normalize and scale the pixals to values

between -1 and 1.

175 # normalize pixel values

176 X_target = X_target.astype(np.float32)

177 X_source = X_source.astype(np.float32)

178

179 #Rescale

180 X_target = (X_target -127.5) / 127.5

181 X_source = (X_source -127.5) / 127.5

182

183 #%%=================================== collect test image(s)

=====================

184 imgs = [None] * IMG_FRAGno

185 imgs_ms = [None] * IMG_FRAGno

186 delta = IMG_FRAG_SLIDE

187 ii = 0

188 i = len(TEXT_IMAGES) - 1

189 img = cv.imread(DATA_FOLDER + ’/’ + TEXT_IMAGES[i])

190 gray_image = cv.resize(cv.cvtColor(img, cv.COLOR_BGR2GRAY), IMG_DIM)

191 bw_image = np.reshape(gray_image, (IMG_HEIGHT, IMG_WIDTH, 1)) #cv.

threshold(gray_image, thresh, 255, cv.THRESH_BINARY)[1]

192

193 imgms = cv.imread(DATA_FOLDER + ’/’ + MS_IMAGES[i])

194 gray_imagems = cv.resize(cv.cvtColor(imgms, cv.COLOR_BGR2GRAY), IMG_DIM)

195 bw_imagems = np.reshape(gray_imagems, (IMG_HEIGHT, IMG_WIDTH, 1)) #cv.

threshold(gray_imagems, thresh, 255, cv.THRESH_BINARY)[1]

196

197 for j in range(IMG_FRAGnoy):

198 for k in range(IMG_FRAGnox):

199 imgs[ii] = bw_image[delta*j : delta*j + IMG_FRAG_HEIGHT, delta*k

: delta*k + IMG_FRAG_WIDTH]
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200 imgs_ms[ii] = bw_imagems[delta*j : delta*j + IMG_FRAG_HEIGHT,

delta*k : delta*k + IMG_FRAG_WIDTH]

201 ii = ii + 1

202

203 XT_target = np.array(imgs)

204 XT_source = np.array(imgs_ms)

205

206 if WITH_VISUAL_PLOTS:

207 plot_results(XT_target[0:IMG_FRAGnox], IMG_FRAGnox, False)

208 plot_results(XT_source[0:IMG_FRAGnox], IMG_FRAGnox, False)

209

210 #The GAN Hacks recommend to normalize and scale the pixals to values

between -1 and 1.

211 # normalize pixel values

212 XT_target = XT_target.astype(np.float32)

213 XT_source = XT_source.astype(np.float32)

214

215 #Rescale

216 XT_target = (XT_target -127.5) / 127.5

217 XT_source = (XT_source -127.5) / 127.5

218

219

220 #%%The Generator model of the GAN

221 def encoder_block(layer_in, n_filters, batchnorm=True):

222 init = RandomNormal(stddev=0.02)

223 g = Conv2D(n_filters, (3,3), strides =(2,2), padding=’same’,

kernel_initializer=init)(layer_in)

224 # Batch normalization and ReLU functions

225 if batchnorm:

226 g = BatchNormalization()(g, training=True)

227 g = LeakyReLU(alpha=0.2)(g)
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228 return g

229

230 def decoder_block(layer_in, skip_in, n_filters, dropout=True):

231 init = RandomNormal(stddev=0.02)

232 g = Conv2DTranspose(n_filters, (3,3), strides=(2,2), padding=’same’,

kernel_initializer=init)(layer_in)

233 g = BatchNormalization()(g, training=True)

234 # Add a drop out to the earlier layers of the decoding part of the

generator.

235 # This is ’cheap way’ to regularize the deep neural network.

236 # We drop out half of the input variables from the previous layer.

237 if dropout:

238 g = Dropout(0.5)(g, training=True)

239 # merge with output of corresponding contracting block

240 #g = Concatenate()([g, skip_in])

241 # relu activation

242 g = Activation(’relu’)(g)

243 return g

244

245 #image_shape=[IMG_FRAG_HEIGHT, IMG_WIDTH, 1]

246 def define_generator(image_shape=(IMG_FRAG_HEIGHT, IMG_FRAG_WIDTH, 1)):

247 init = RandomNormal(stddev=0.02)

248 in_image = Input(shape=image_shape)

249 # encoder model

250 e1 = encoder_block(in_image, 64, batchnorm=False)

251 e2 = encoder_block(e1, 128)

252 e3 = encoder_block(e2, 256)

253 e4 = encoder_block(e3, 512)

254 #e5 = encoder_block(e4, 512)

255 #e6 = encoder_block(e5, 512)

256 #e7 = encoder_block(e6, 512)



68

257 # bottleneck, no batch norm and relu

258 b = Conv2D(512, (3,3), strides=(2,2), padding=’same’,

kernel_initializer=init)(e4)

259 b = Activation(’relu’)(b)

260 # decoder model

261 #d1 = decoder_block(b, e7, 512)

262 #d2 = decoder_block(d1, e6, 512)

263 #d3 = decoder_block(d2, e5, 512)

264 d4 = decoder_block(b, e4, 512, dropout=False)

265 d5 = decoder_block(d4, e3, 256, dropout=False)

266 d6 = decoder_block(d5, e2, 128, dropout=False)

267 d7 = decoder_block(d6, e1, 64, dropout=False)

268 # output and model

269 g = Conv2DTranspose(1, (3,3), strides=(2,2), padding=’same’,

kernel_initializer=init)(d7)

270 out_image = Activation(’tanh’)(g)

271 model = Model(in_image, out_image)

272 return model

273

274 generator = define_generator()

275 generator.summary()

276

277 #%%From noise to 32 x 32 x 3

278 if WITH_VISUAL_PLOTS:

279 plot_model(generator, show_shapes=True,

280 show_layer_names=True)

281

282

283

284 #%% generate a batch of noise input (batch size = 16)

285 #test_noise = tf.random.normal([16, noise_input])
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286 img = cv.imread(DATA_FOLDER + ’/’ + MS_IMAGES[len(MS_IMAGES)-1])

287 gray_image = cv.resize(cv.cvtColor(img, cv.COLOR_BGR2GRAY), IMG_DIM)

288 bw_image = gray_image #cv.threshold(gray_image, thresh, 255, cv.

THRESH_BINARY)[1]

289 #test_noise = np.reshape(cv.resize(img, IMG_DIM), (1, IMG_HEIGHT,

IMG_WIDTH, 3))

290 test_noise = (np.reshape(bw_image, (1, IMG_HEIGHT, IMG_WIDTH, 1))

-127.5) / 127.5

291

292 # feed the batch to the untrained generator

293 delta = IMG_FRAG_SLIDE

294 ii = 0

295 test_image = generator(test_noise[:,delta*ii : delta*ii+IMG_FRAG_HEIGHT,

delta*ii : delta*ii+IMG_FRAG_WIDTH,:])

296

297 # visualize sample output

298 #plot_results(bw_image, 1)

299 if WITH_VISUAL_PLOTS:

300 plot_results(test_image, 1)

301

302 print(f’shape of the generated batch: {test_image.shape}’)

303

304

305 #%%The Discriminator Model to use in the GAN

306

307 def define_discriminator(image_shape):

308 # weight initialization, source and target inputs and merge them

309 init = RandomNormal(stddev=0.02)

310 in_source_image = Input(shape=image_shape)

311 in_target_image = Input(shape=image_shape)

312 merged = Concatenate()([in_source_image, in_target_image])
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313 # CNN: 64 filters

314 hl = Conv2D(64, (3,3), strides=(2,2), padding=’same’,

kernel_initializer=init)(merged)

315 # set alpha to 0.2 rather than the default 0.3 to account for some

negative pixels

316 hl = LeakyReLU(alpha=0.2)(hl)

317 # CNN: 128 filters

318 hl = Conv2D(128, (3,3), strides=(2,2), padding=’same’,

kernel_initializer=init)(hl)

319 # BatchNormalization so that the inputs are standardized (mean = 0,

std = 1)

320 hl = BatchNormalization()(hl)

321 hl = LeakyReLU(alpha=0.2)(hl)

322 # CNN: 256 filters

323 hl = Conv2D(256, (3,3), strides=(2,2), padding=’same’,

kernel_initializer=init)(hl)

324 hl = BatchNormalization()(hl)

325 hl = LeakyReLU(alpha=0.2)(hl)

326 # CNN: 512 filters

327 hl = Conv2D(512, (3,3), strides=(2,2), padding=’same’,

kernel_initializer=init)(hl)

328 hl = BatchNormalization()(hl)

329 hl = LeakyReLU(alpha=0.2)(hl)

330 # 2nd to last output layer

331 hl = Conv2D(512, (3,3), padding=’same’, kernel_initializer=init)(hl)

332 hl = BatchNormalization()(hl)

333 hl = LeakyReLU(alpha=0.2)(hl)

334 # output layer

335 hl = Conv2D(1, (3,3), padding=’same’, kernel_initializer=init)(hl)

336 patch_out = Activation(’sigmoid’)(hl)

337 # define and compile model
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338 model = Model([in_source_image, in_target_image], patch_out)

339 opt = Adam(learning_rate=0.0002, beta_1=0.5)

340 model.compile(loss=’binary_crossentropy’, optimizer=opt, loss_weights

=[0.5])

341 return model

342

343 #image_shape = data[’arr_0’].shape[1:]

344 #m = define_discriminator(image_shape)

345 # m.summary()

346 image_shape=[IMG_FRAG_HEIGHT, IMG_WIDTH, 1]

347 discriminator = define_discriminator(image_shape)

348

349 discriminator.summary()

350

351 #%% discriminator model

352 plot_model(discriminator, show_shapes=True, show_layer_names=True)

353

354 #%% Creating the GAN with the Generator & Discriminator models.

355 def define_gan(g_model, d_model, image_shape):

356 in_source = Input(shape=image_shape)

357 # discriminator not trainable

358 d_model.trainable = False

359 # generate image from in_source

360 gen_out = g_model(in_source)

361 # pass both in_source and gen_out to discriminator

362 dis_out = d_model([in_source, gen_out])

363 # build a model where image source is compiled against both

descrimination and generated image

364 model = Model(in_source, [dis_out, gen_out])

365 opt = Adam(learning_rate=0.0002, beta_1=0.5)

366 model.compile(loss=[’binary_crossentropy’, ’mae’], optimizer=opt,
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loss_weights=[1,100])

367 return model

368

369

370

371 #gan = keras.models.Sequential([generator, discriminator])

372 #gan.summary()

373

374 #%%=============================== train function

=============================

375 def generate_real_samples(dataset, n_samples, patch_shape1, patch_shape2

):

376 trainA, trainB = dataset

377 # choose random images from dataset

378 ix = np.random.randint(0, trainA.shape[0], n_samples)

379 # retrieve selected images

380 X1, X2 = trainA[ix], trainB[ix]

381 # generate ’real’ class labels (1)

382 y = np.ones((n_samples, patch_shape1, patch_shape2, 1))

383 return [X1,X2], y

384

385

386 def generate_fake_samples(g_model, samples, patch_shape1, patch_shape2):

387 X = g_model.predict(samples)

388 # create ’fake’ class labels (0)

389 y = np.zeros((len(X), patch_shape1, patch_shape2, 1))

390 return X, y

391

392

393 def summarize_performance(step, g_model, dataset, n_samples=2,

save_model = True):
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394 # select a sample of input images and its corresponding fake images

395 [X_realA, X_realB], _ = generate_real_samples(dataset, n_samples, 1,

1)

396 X_fakeB, _ = generate_fake_samples(g_model, X_realA, 1, 1)

397 # scale all pixels from [-1,1] to [0,1]

398 X_realA = (X_realA + 1) / 2.0

399 X_realB = (X_realB + 1) / 2.0

400 X_fakeB = (X_fakeB + 1) / 2.0

401 # subplot real source, generated and target images

402 for i in range(n_samples):

403 plt.subplot(3, n_samples, 1 + i)

404 plt.axis(’off’)

405 plt.imshow(X_realA[i])

406 for i in range(n_samples):

407 plt.subplot(3, n_samples, 1 + n_samples + i)

408 plt.axis(’off’)

409 plt.imshow(X_fakeB[i])

410 for i in range(n_samples):

411 plt.subplot(3, n_samples, 1 + n_samples*2 + i)

412 plt.axis(’off’)

413 plt.imshow(X_realB[i])

414 # save plot to file

415 filename1 = ’plot_%06d.png’ % (step+1)

416 plt.savefig(filename1)

417 plt.close()

418 # save the generator model

419 if save_model:

420 filename2 = ’model_%06d.h5’ % (step+1)

421 g_model.save(filename2)

422 print(’>Saved: %s and %s’ % (filename1, filename2))

423
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424

425 def train(d_model, g_model, gan_model, dataset, n_epochs=500, n_batch=3)

:

426 # dataset

427 patch_shape1 = d_model.output_shape[1]

428 patch_shape2 = d_model.output_shape[2]

429 trainA, trainB = dataset

430 # the epochs, the batch per epoch and the total number of training

iterations

431 bat_per_epo = int(len(trainA) / n_batch)

432 n_steps = bat_per_epo * n_epochs

433 for i in range(n_steps):

434 # select a batch of real samples and update discriminator

435 [X_realA, X_realB], y_real = generate_real_samples(dataset, n_batch,

patch_shape1, patch_shape2)

436 d_loss1 = d_model.train_on_batch([X_realA, X_realB], y_real)

437 # generate a batch of fake samples and update discriminator

438 X_fakeB, y_fake = generate_fake_samples(g_model, X_realA,

patch_shape1, patch_shape2)

439 d_loss2 = d_model.train_on_batch([X_realA, X_fakeB], y_fake)

440 # update the generator and summarize performance

441 g_loss, _, _ = gan_model.train_on_batch(X_realA, [y_real, X_realB])

442 print(’>%d, d1[%.3f] d2[%.3f] g[%.3f]’ % (i+1, d_loss1, d_loss2,

g_loss))

443 #summarize every 100 epochs and at the last step

444 if ((i+1) == n_steps) or ((i+1) % (bat_per_epo*100) == 0):

445 summarize_performance(i, g_model, dataset)#, save_model=((i+1) ==

n_steps))

446 #%%============= perform training ================================

447 dataset = [X_source, X_target]

448 print(’Loaded’, dataset[0].shape, dataset[1].shape)
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449

450 image_shape = dataset[0].shape[1:]

451 # the models

452 d_model = define_discriminator(image_shape)

453 g_model = define_generator(image_shape)

454 gan_model = define_gan(g_model, d_model, image_shape)

455

456 NEPOCHS = 500

457 BATCHS = 2

458 train(d_model, g_model, gan_model, dataset, n_epochs=NEPOCHS, n_batch=

BATCHS)

459

460 #%% ======================= run some tests from training data

=====================================

461 # plot source, generated and target images

462 def plot_images(src_img, gen_img, tar_img):

463 images = np.vstack((src_img, gen_img, tar_img))

464 # scale from [-1,1] to [0,1]

465 images = (images + 1) / 2.0

466 titles = [’Source’, ’Generated’, ’Expected’]

467 for i in range(len(images)):

468 plt.subplot(1, 3, 1 + i)

469 plt.axis(’off’)

470 plt.imshow(images[i])

471 plt.title(titles[i])

472 plt.show()

473

474 # load images and model

475 [X1, X2] = [X_source, X_target]

476 print(’Loaded’, X1.shape, X2.shape)

477
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478 bat_per_epo = int(len(X_source) / BATCHS)

479 n_steps = bat_per_epo * NEPOCHS

480

481 #filename2 = ’model_%06d.h5’ % n_steps

482 filename2 = ’HPC0209/model_101000.h5’

483 model = load_model(filename2)

484

485 # select a random image from the set

486 ix = np.random.randint(0, len(X1), 1)

487 src_image, tar_image = X1[ix], X2[ix]

488 gen_image = model.predict(src_image)

489 plot_images(src_image, gen_image, tar_image)

490

491 plt.imshow(gen_image[0])#.astype(’uint8’))

492 plt.show()

493

494 #%%=================== tun test on test data (unseen while training)

================================

495 # load images and model

496 [X1, X2] = [XT_source, XT_target]

497 print(’Loaded’, X1.shape, X2.shape)

498 model = load_model(filename2)

499 #model = load_model(’model_000300.h5’)

500 #model = load_model(’HPC0201/model_023000.h5’)

501 model.compile()

502

503 # select a random image from the set

504 ix = [0]# np.random.randint(0, len(X1), 1)

505 src_image, tar_image = X1[ix], X2[ix]

506 gen_image = model.predict(src_image)

507 plot_images(src_image, gen_image, tar_image)
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508

509 plt.imshow(gen_image[0])#.astype(’uint8’))

510 plt.show()

511

512 plt.imshow(tar_image[0])#.astype(’uint8’))

513 plt.show()

Listing A.1: The complete Python code
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