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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The analysis of time series data is integral in many fields, as it can reveal patterns, trends,

and dependencies within sequential information. It is essential for making informed deci-

sions, predicting future outcomes, and comprehending dynamic phenomena across various

disciplines such as finance, economics, climate science, and healthcare. With its valuable

insights, time series analysis enables accurate forecasting and informed decision-making

in various fields.

Time series can be mathematically described as sequences of numbers, typically ob-

tained from measurements at equal intervals of time (hence their name). They are ubiq-

uitous in many types of processes (ranging from temperature measurements, energy con-

sumption, stock prices, patients’ heartbeats or brain signals, etc.), and it comes as no sur-

prise that their study is of continuous research interest.

One of the very simple, effective, and popular methods for time series analysis is

the exponential smoothing introduced by Brown [2], Holt [9], and Winters [23] in the

late 1950s. They used weighted averages of past observations (with weights decaying

exponentially while going back in time) to forecast future observations. The method was

successfully used to perform time series analysis and forecasting for various types of time

series.

In [13], the authors use the Holt-Winters method on a few time series from the UCI

Machine Learning Repository [12]. The method is applied in [21] for predicting natural

gas production, in [16] for forecasting rice production, and in [19] for analyzing abaca fiber

data. The works in [20] and [17] present more applications of the Holt-Winters method.

The Holt-Winters method presents some long-known limitations [3], such as find-
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ing good parameters or the fact that the parameters are chosen for the whole time series

sequence, whereas different fragments of the time series data may present different char-

acteristics. Additional optimization methods (such as the Nelder-Mead [18] method) or

machine learning techniques are typically used to find the best parameters.

The Artificial Neural Networks (ANN) were built on early ideas of modeling human

brain judgments [15] and emerged as very powerful machine learning models in the early

1990’s. They were very good candidate models for time series analysis and forecasting

from their very inception [8]. While currently producing excellent data analysis results,

ANN based models are known to be complicated (hundreds or thousands of parameters),

difficult to understand (in terms of how they model the data) models.

This research aims to establish a simple connection between the popular Holt-Winters

and Neural Networks models. We show how to build Artificial Neural network models to

perform the Holt-Winter type of time series analysis and subsequently extend such models

to perform more accurate forecasting. Our methods combine the best of two worlds: the

simplicity and robustness of the Holt-Winters method with the effectiveness and power of

Neural Networks-based models.

The rest of this research is organized as follows. In Chapter 2, we give some back-

ground on the Times Series and its decompositions, Holt-Winters method, and Artificial

Neural Network models. The proposed Neural Network based model for time series anal-

ysis is presented in Chapter 3. Chapter 4 presents the experimental results, and the conclu-

sion and future work are presented in Chapter 5.

1.2 RELATED WORK

In the pursuit of advancing forecasting methodologies [14] conducted a study compar-

ing artificial neural networks (ANNs) and traditional time series models for forecasting

commodity prices. A feedforward neural network capable of modeling nonlinear relation-
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ships was used to compare ARIMA and neural networks to analyze wheat and live cattle

prices from 1950 to 1990. The experimental design involved seven iterations over succes-

sive three-year periods, utilizing a walk-forward or sliding window approach from 1970 to

1990, thereby generating out-of-sample results.

According to [14], the neural network models outperformed the autoregressive in-

tegrated moving average (ARIMA) model regarding forecasting accuracy. Notably, the

neural network models achieved a notable 27% and 56% lower mean squared error than

the ARIMA model. Additionally, assessments based on absolute mean error and mean

absolute percent error consistently favored the neural network models.

The study found that neural network models can detect significant turning points for

wheat and cattle prices, whereas the ARIMA model only predicted wheat prices. Further-

more, [14] emphasized the versatility of this forecasting method, noting its non-specificity

to particular problems and reliance solely on past prices. This characteristic makes it ap-

plicable to diverse forecasting challenges, extending its utility beyond commodity prices to

encompass domains such as stocks and other financial instruments.

Also, the studies of [22] compare ANNs against the Box-Jenkins methodology for

forecasting and established that ANNs are comparatively better for forecasting problems

with long forecasting horizons.
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CHAPTER 2

BACKGROUND

Next, we present some necessary background on Holt-Winters models for time series

smoothing and trending, as well as the Artificial Neural Network model. In the presen-

tation, we use the notation [xk] to denote a time series (sequence of data points), k ≥ 1.

2.1 TIME SERIES

A time series is a set of data collected at time points, observations, or measurements

recorded at successive and equally spaced intervals over time.

Time series analysis involves exploring, modeling, and extracting meaningful insights

from this chronological data (time order), making it a fundamental tool in various domains

such as finance, economics, weather forecasting, and signal processing.

Mathematical representation:

Yt = Tt︸︷︷︸
Trend

+ St︸︷︷︸
Seasonal

+ Ct︸︷︷︸
Cyclical

+ εt︸︷︷︸
Error

2.1.1 COMPONENTS OF TIME SERIES

1. Trend Variation (Tt): A consistent and sustained increase or decrease in the data over

an extended period of time is referred to as a trend. Similarly, a Trend is the long-term

systematic movement or trajectory in a time series that captures the overall direction,

whether upward, downward, or stable.

Mathematical Representation:

yt = Tt + Seasonalt + Cyclet + εt
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where linear trend can be expressed as

Tt = β0 + β1 · t

where β0 is the intercept, β1 is the slope, εt is random error term, and t is time.

Figure 2.1: US Treasury bill contracts

Figure 2.1 shows the US Treasury Bill contracts results from the Chicago market

over 100 consecutive trading days in 1981 [5]. Although there is no seasonality in

the data, there is a clear and noticeable downward trend. If we had a much longer

series of data, we could identify that this downward trend is part of a long cycle, but

when we only consider a period of 100 days, it appears to be a simple trend.

2. Seasonality (St) : A seasonal variation or pattern exists when the series exhibits regular

fluctuations during the same months, same quartile, or every year. Seasonality is

always of a fixed and known period.

Mathematical Representation:

yt = Tt + St + Ct + εt
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A classic example is monthly temperature data for a location that experiences sea-

sonal changes throughout the year, where St represents the seasonal effect.

Figure 2.2: Australian Quarterly Electricity production

Figure 2.2 displays the quarterly electricity production in Australia with a strong

increasing trend and seasonality [5]. There is no evidence of cyclic behavior.

3. Cyclicity (Ct): A cycle refers to a pattern in which data shows inconsistent increases

and decreases. Economic conditions primarily cause these fluctuations, which are

commonly associated with the ”business cycle.” These fluctuations usually last for at

least two years.

If the fluctuations in a dataset do not follow a fixed frequency, they are considered

cyclic. However, the pattern is considered seasonal if the frequency is consistent and

related to some aspect of the calendar. On average, cycles last longer and have more

variable magnitudes than seasonal patterns.

Figure 2.3 displays the monthly housing sales show strong cyclic behavior in a period
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Figure 2.3: Sales of new one-family houses in USA

of about 6–10 years [5].

4. Random or Residual Variation (εt): The irregular or residual component, denoted as

(εt), is the unexplained portion of a time series at a specific time t. It captures the

random and unpredictable elements that are not accounted for by the identified sys-

tematic components of the time series.

Figure 2.4 displays the daily changes in Google’s closing stock price, do not exhibit

any discernible trend, seasonality, or cyclic behavior [5]. They are random fluctua-

tions that are not very predictable, and there are no strong patterns that could assist

in developing a reliable forecasting model.

2.1.2 TYPES OF TIME SERIES DECOMPOSITION

1. Additive Decomposition: In additive decomposition, a time series is expressed as

the sum of its components.
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Figure 2.4: Daily Changes in Google Closing Stocks Prices

Yt = Tt + St + Ct + εt

2. Multiplicative Decomposition: Represents the time series as the product of multi-

plicative components, allowing for interaction effects between components.

Yt = Tt ∗ St ∗ Ct ∗ εt

2.1.3 MEASUREMENTS AND METRICS

1. Measurements for Trend:

• Linear Regression Slope: Indicates the rate of change in the time series, repre-

senting the trend.

m =
n(
∑

xy)− (
∑

x)(
∑

y)

n(
∑

x2)− (
∑

x)2
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• Moving Averages: This smoothing out short-term fluctuations, revealing under-

lying trends over a specified period.

Simple Moving Average (SMA) : Ȳt =
1

k

k∑
i=1

Yt−i+1 (2.1)

Exponential Moving Average (EMA) : EMAt = α ·Yt +(1−α) ·EMAt−1

(2.2)

– Ȳt represents the simple moving average of Y at time t.

– k is the number of periods used for the calculation.

– Yt−i+1 represents the value of Y at time t− i+ 1.

– EMAt is the exponential moving average at time t.

– α is the smoothing factor, a parameter between 0 and 1.

• Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF):

ACF and PACF help identify trends by showing the correlation between a time

series and its lagged values.

2. Measurements for Seasonality:

• Seasonal Indices Si: Seasonal indices represent the relative strength of season-

ality at different points in the year, where Ȳi is the average for season i and Ȳ

is the overall average.

Si =
Ȳi

Ȳ

• Fourier Transform: Fourier Transform analyzes the frequency components of

time series data, useful for identifying seasonality.
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X(f) =
∫∞
−∞ x(t)e−2πiftdt

3. Irregular Measurement: Residuals εt are the differences between the observed val-

ues (Yt) and the predicted values of the trend (T̂t) and seasonality (Ŝt).

εt = Yt − (T̂t + Ŝt)

2.2 FORECASTER’S TOOLBOX

The process of forecasting time series data involves several steps [10].

Figure 2.5: Prediction Workflow

1. Data Preparation (Tidy): The initial step in forecasting involves data preparation,

including loading, identifying missing values, filtering time series, and performing

pre-processing tasks [6].

2. Visualise the Data (Plot): Understanding data requires visualizing it to detect com-

mon patterns, allowing you to specify an appropriate model.

3. Define a Model (Specify): Choosing the appropriate time series model is crucial for

generating accurate forecasts. Section 2.4 provides an in-depth discussion of models.
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4. Train the Model (Estimate): After determining an appropriate model, the next step is

to train the model using some data. Section 2.7 speaks more about the steps involved

in training a model.

5. Check Model Performance (Evaluate): After fitting a model, evaluating its perfor-

mance on the data is crucial. Various diagnostic tools are available that can help

understand the model’s behavior. Additionally, accuracy measures enable compari-

son of different models against each other.

6. Produce Forecasts (Forecast): It is time to produce the forecasts after specifying an

appropriate model, estimating it, and checking it. The easiest way to produce the

forecasts is by specifying the number of future observations to forecast.

2.3 THE HOLT-WINTERS MODELS FOR TIME SERIES ANALYSIS

In the Holt-Winter model, a time series [xk] is used to compute an exponentially weighted

moving average (EWMA) sequence [sk], which is a smoothed version of the original time

series:

sk+1 = αxk + (1− α)sk, k ≥ 1, α ∈ (0, 1) (2.3)

Where α is a parameter of the model. Clearly, the smoothed version of the model is re-

cursively (repeatedly) constructed as a weighted average between the previous data point

and smoothed values. One can see sk+1 as the future (predicted) value, computed using the

last point data and predicted values. The chosen value of parameter α balances between

the importance of the original value and the predicted value, with α > 0.5 giving more

weight to the actual data point value (less smoothing) and α < 0.5 giving more weight to

the predicted value (more smoothing).



20

Figure 2.6: Anti-diabetic drug sales and forecasting using EWMA (2.3)

Figure 4.1 shows how the smoothing method performs on “Anti-diabetic drug sales”

data [11] and the future sales forecasting using (2.3). The figure illustrates a clear in-

ability of the model to capture future trends (increasing or decreasing) for future values.

To overcome this limitation, the model (2.3) was improved by Holt [9] to include a trend

component, as follows.

sk+1 = αxk + (1− α)(sk + yk) (2.4)

yk+1 = β(sk+1 − sk) + (1− β)yk (2.5)

yk+f = sk + fyk (2.6)

where sk is the smoothed version, yk the trend (raise) and yk+f is the prediction of f steps in

the future. As (2.4) shows, the smoothed series contains the contribution of the trend factor

(2.5), which is a weighted average of the smoothed raise and the previously estimated raise

(trend). The model now contains two parameters, α and β, which represent the weights for

computing the smoothed and trend values, respectively. Finding good values for these pa-
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Figure 2.7: Anti-diabetic drug sales and forecasting using Holt’s trending model (2.6)

rameters is a practical challenge, which is often times overcome using various optimization

and/or machine learning methods. Figure 4.2 shows the improvement in forecasting the

“Anti-diabetic drug sales” when (2.6) is used. Additionally, Holt method (2.4) performs a

“double exponentiation smoothing”, which results in a smoother series compared to (2.3)

shown in Figure 4.1.

2.4 THE ARTIFICIAL NEURAL NETWORK MODEL

An Artificial Neural Network (ANN), depicted in Fig. 2.8, is a directed graph that performs

a mapping n : Rn → Rm from the input space Rn to the output space Rm. An ANN

consists of an input layer (or n nodes), any number of hidden layers (each with any number

of nodes), and an output layer (with m nodes). Each layer node is connected to each node

of the subsequent layer. Each edge of the ANN model has a weight associated with it and

the y⃗ = y⃗(x⃗) formula is computed progressively at each node, as one progresses from left
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Figure 2.8: A generic ANN model

Figure 2.9: The computation detail at one ANN node level

(inputs) to the right (outputs) as follows. Every node j in ANN computes a real-valued

output yj through an integration (summation) function Σ of all the weighted outputs from

preceding nodes, followed by an activation function σ : R → R that normalizes the node

output (for instance, the sigmoid function was initially used as an activation function). The

process is depicted in Fig. 2.9. In summary, the output yj of node j in terms of its inputs

x⃗j is computed as:

yj = σ (Wjx⃗j)

Where Wj is the matrix of all weights for edges going into node j. When all nodes con-

tributions are aggregated in the output layer, the network model computes the output as a
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composition of the above:

y⃗ = σ (Whσ (WH−1σ(. . . ))) (2.7)

where H is the number of hidden layers and each Wi is the corresponding weights matrix

for layer i.

2.5 TRAINING A TIME SERIES FORECASTING MODEL

Step 1: Import Libraries

• Import necessary libraries such as NumPy for numerical operations, pandas for han-

dling time series data, Keras for building the neural network, scikit-learn for prepro-

cessing, and statsmodels for the Holt-Winters method.

Step 2: Load or Generate Time Series Data

• Load your time series data into a pandas DataFrame. This could be real-world data

or generated data for experimentation.

Step 3: Train-Test Split

• When building a model, splitting your dataset into training and testing sets is es-

sential. You should reserve a portion of your data specifically to test the model’s

performance.

Step 4: Preprocess and Normalize Data

• Normalize the data using Min-Max scaling or another appropriate scaling method.

Normalization ensures that all input features are on a similar scale, which helps the

model during training.
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Step 5: Create Sequences for RNN

• Create sequences of input data for training the RNN. Each sequence includes a spec-

ified number of time steps (lags) to capture temporal dependencies in the data.

Step 6: Design and Train the RNN Model

• Design the architecture of the Recurrent Neural Network (RNN). Common choices

include Long Short-Term Memory (LSTM) layers. Train the model using the training

data, specifying the number of epochs (iterations) and batch size.

Step 7: Make Predictions and Evaluate

• Use the trained RNN model to make predictions on the test set. Evaluate the model’s

performance using metrics like Mean Squared Error (MSE). Visualize the predicted

values against the true values to get insights into how well the model captures patterns

in the data.

These steps provide a high-level overview of training an RNN for time series forecasting

using the Holt-Winters method. Adjustments and refinements can be made to your dataset

and forecasting outcomes based on their characteristics.
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CHAPTER 3

TIME SERIES PROCESSING USING ANN MODELS

3.1 NEURAL NETWORK BASED MODELS FOR TIME SERIES SMOOTHING

We show that an ANN model (2.7) can be adapted to compute time series smoothing (2.3)

and (2.4) by using the appropriate architecture and parameters. The first key observation is

that by recursively applying the formula in (2.3) one would obtain:

rclsk+1 = αxk + (1− α)(αxk−1 + (1− α)sk−1) = · · ·

=
k∑

i=1

α(1− α)k−ixi + (1− α)ks1 (3.1)

which, for the next predicted value, represents a weighted average of all past series val-

ues (except for the last term, which represents the first predicted value). The second key

observation is that, by choosing σ(x) = x (the identity function), formula (2.7) becomes

y⃗ = Wx⃗, a linear combination of inputs where W is the product of all parameter matrices,

for all hidden and output layers. Consequently, a model with a single hidden layer of a

single node can produce such a linear combination of the inputs (for a single output, which

would represent the next estimated value). Such a model, with weights chosen as the coef-

ficients of xi in (3.1), would therefore compute (2.3). There is one problem with this ANN

model: it will produce a limited linear combination of n series values in the past (where n

represents the number of input nodes), whereas (3.1) represents the linear combination of

all values in the past. However, in practice, as the coefficients in (3.1) decay exponentially,

the influence of series values in the distant past will fade quickly. For instance, by taking

only the first 10 terms (corresponding to xk, xk−1, ..., xk−9) in (3.1), the terms (past value

contributions) that will be ignored will have the coefficients α(1−α)10, α(1−α)11, etc. of

orders O(10−11), O(10−12), respectively. An ANN model with n inputs will consequently

produce an order O(10n+1) approximation for (3.1) (and, implicitly, for (2.3)). In summary,

we use an ANN model with n inputs, one hidden layer with a single node, and one output
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(as in Fig. 2.9 with no bias node) to approximate the next series value (2.3) as:

sk+1 ≈ y = Wx⃗ (3.2)

where W = [w1 w2 · · · wn], wi = α(1− α)i−1, and x⃗ = [xk xk−1 · · · xk−n+1]
T .

Similarly to creating the above ANN model (3.2) for (2.3), we start applying (2.4)

recursively to obtain:

sk+1 = αxk + (1− α)(sk + yk)

= sk + fyk (3.3)

Then, similar to the model we created for (2.3), we use (3.3) to create an ANN model

with n inputs, one hidden layer with a single node, and one output to approximate the next

estimated value (2.4) as follows.

Definition 1. [ANN smoothing model] The ANN smoothing model consists in an ANN

with n input nodes, one hidden layer with parameters W and a single hidden node, and one

output node that computes the model output as:

sk+1 ≈ y = Wx⃗ (3.4)

where W = [w1 w2 · · · wn], wi = α(1− α)i−1, and x⃗ = [xk xk−1 · · · xk−n+1]
T .

We call (3.2) and (3.4) the ANN models for performing time series smoothing and

forecasting, respectively.

3.2 NEURAL NETWORK BASED MODEL FOR HOLT TREND FORMULA

We discuss next how the trend model in (2.4)-(2.6) can be implemented using the ANN-

based models. We first notice that the level equation (2.4) can be recursively applied to

produce the level as a weighted average of the past signal values and predicted levels.

sk+1 = α

k∑
i=1

(1− α)k−ixi +
k∑

i=1

(1− α)k−iyi (3.5)
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Next, the recursive equation (2.5) computes the trend factor yk+1 as a weighted aver-

age of level sk differences, which is essentially a weighted average of the predicted level

(discrete) derivative sequence.

yk+1 = β

k∑
i=1

(1− β)k−i(si+1 − si) + (1− β)ky1 (3.6)

Finally, from (2.4), the discrete predicted levels differences si+1 − si are produced as a

weighted average of the signal discrete differences.

sk+1 − sk = α

k∑
i=1

(1− α)k−i(xi+1 − xi) (3.7)

+(1− α)(yk − yk−1)

Continuing the process, (3.6) gives us the trend differences as weighted average of second

order level differences (second derivative).

yk − yk−1 = β
k∑

i=1

(1− β)k−i(si − si−2) (3.8)

+(1− β)k−1y1 − (1− β)k−2y1

Putting together all (3.5)-(3.8) we obtain the predicted level as a weighted average of

first order differences, second order differences, etc.

sk+1 = α
k∑

i=1

(1− α)k−ixi (3.9)

+
k∑

i=1

αpiβqi(1− α)ri(1− β)ti(xi+1 − xi)

+O(αpiβqi(1− α)ri(1− β)ti)

where pi, qi, ri, ti are integers values that grow larger and larger as the process continues to

take into account higher and higher order differences.

The ANN trend model with finite difference up to order O is created using an ANN

model with n inputs, one hidden layer with a single node, and one output to approximate

the next estimated value (3.10) as follows.
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Definition 2. [ANN trend model] The ANN trend model consists in an ANN with n input

nodes, one hidden layer with trainable parameters W and a single hidden node, and one

output node that computes the model output as:

sk+1 ≈ y = Wx⃗ (3.10)

where W = [w1 w2 · · · wn],

x⃗ = [xk xk−1 · · · xk−n+1 ∆
(1)
k · · ·∆(1)

k−n+2 ∆
(2)
k · · ·∆(2)

k−n+3 ∆
(3)
k · · ·∆(3)

k−n+4]
T ,

and ∆
(o)
j = xj − xj−o (with all discrete differences up to order O).

We implemented our ANN based models (smoothing and trend) and produced exper-

imental results and comparisons with Holt models. The experimental results are presented

in the subsequent chapter.



29

CHAPTER 4

IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have implemented our model in Python using Keras [4] library for implementing Neu-

ral Networks models. Our experiments were organized in two categories: (i) ANN-based

models with pre-set parameters and comparisons with Holt-Winter methods, and (ii) opti-

mized ANN-based models parameters. For each experiment, we have used both artificial

and real data. We performed our experiments on a PC Desktop computer using an In-

tel(R) Core(TM) i7-10700K CPU 3.80GHz processor equipped with 16GB of RAM. The

experimental results are presented in the subsequent sections.

4.1 MODEL IMPLEMENTATION

The Python implementations of the EWMA and Hold models are presented in Listings 4.1.

1 def ewma(x, alpha: float) -> float:

2 if len(x) < 2:

3 return x[0]

4

5 return (alpha * x[-1]) + ((1 - alpha) * ewma(x[:-1], alpha))

6

7 def holt(x, alpha: float,

8 beta: float, initial_trend: float) -> float:

9 if len(x) < 2:

10 return initial_trend

11

12 s = ewma(x, alpha)

13 s0 = ewma(x[:-1], alpha)

14

15 y0 = holt(x[:-1], alpha, beta, initial_trend)

16
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17 return (beta * (s - s0)) + ((1 - beta) * y0)

Listing 4.1: The EWMA and Holt models implementation

1 def identity_activation(x):

2 return x

3

4 def ann_model(x_train):

5 model = keras.Sequential()

6 model.add(Dense(1, activation=identity_activation, input_shape=(

x_train.shape[1], )))

7 #model.add(Dense(1, activation="relu", input_shape=(x_train.shape

[1], )))

8 model.compile(optimizer=’adam’, loss=’mean_squared_error’)

9 #model.summary()

10 return model

11

12 def train(model, x_train, y_train, batch = 4, epochs = 500):

13 history = model.fit(x_train, y_train, batch_size= batch, epochs=

epochs)

14 return history

15

16

17 def ann_forecast(model, x_train, datachunk = DATACHUNK, future = future)

:

18 x = np.reshape(x_train[-1], (1, x_train.shape[1]))

19 y = model.predict(x)

20 x = np.concatenate((x[:,1:datachunk],y),axis = 1)

21 f = []

22 f.append(y[0])

23 for i in range(future):

24 y = model.predict(x)

25 x = np.concatenate((x[:,1:datachunk],y),axis = 1)
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26 f.append(y[0])

27 f = np.array(f)

28 #f = f.reshape(-1)

29 return f

30

31

32 def ann_trendforecast(model, x_train, datachunk = DATACHUNK, order = 3,

future = future):

33 dord = min(order, datachunk-1)

34 x = np.reshape(x_train[-1], (1, x_train.shape[1]))

35 y = model.predict(x)

36 x = np.concatenate((x[:,1:datachunk],y),axis = 1)

37 f = []

38 f.append(y[0])

39 for i in range(future):

40 for k in range(dord):

41 x = np.concatenate((x, x[:,(k+1):(datachunk)]-x[:,(0):(

datachunk-k-1)]), axis = 1)

42

43 x = np.reshape(x, (1, x_train.shape[1]))

44 y = model.predict(x)

45 x = np.concatenate((x[:,1:datachunk],y),axis = 1)

46 f.append(y[0])

47 f = np.array(f)

48 #f = f.reshape(-1)

49 return f

Listing 4.2: The ANN based model implementation
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4.2 EXPERIMENTAL RESULTS

We performed two types of experiments. Firstly, we used ANN models as defined in (3.2)

and (3.4) to perform forecasting (no ANN model training, we use pre-computed parame-

ters) and subsequently compared the results with Holt-Winters forecasting. Secondly, we

used the same ANN models architecture but the parameters were optimized to fit the origi-

nal time series data (we train the model).

Figures 4.1 and 4.2 show the time series processing results on the anti-diabetic drug

sales dataset [1] using the EWMA and Holt methods, respectively.

Figure 4.1: Anti-diabetic drug sales and forecasting using EWMA (2.3)

We subsequently performed two sets of experiments on the Anti-diabetic drug sales

dataset [1] with our ANN-based smoothing model: using 5 and 10 past values, respectively

(history 5 and 10, respectively).

Figure 4.3 and Figure 4.4 show the training and time series analysis for the ANN
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Figure 4.2: Anti-diabetic drug sales and forecasting using Holt’s trending model (2.6)

smoothing model with history 5, respectively. The SSE of the model analysis in Figure 4.4

is 0.01781823370352002.

Figure 4.6 and Figure 4.7 show the training and time series analysis for the ANN

smoothing model with history 10, respectively. The SSE of the model analysis in Figure 4.7

is 0.02613138994938639.

It is worth noting that the model with history 10 (10 past values being considered)

is trained significantly faster than the model with history 5 (as shown in Figure 4.3 and

Figure 4.6). However, as Figure 4.5 and Figure 4.8 show, both models’ prediction is mostly

influenced only the past term in history. This is consistent with Holt’s model where the

contribution of past terms fades quickly (exponentially).

We subsequently performed two sets of experiments on the Anti-diabetic drug sales

dataset [1] with our ANN-based trend model: using 3 and 5 past values, respectively (his-

tory 3 and 5, respectively), with discrete difference order up to 3. The results are presented
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Figure 4.3: ANN smoothing model training (history = 5)l

in Figures 4.9-4.14.

The last set of experimental results led us to the following conclusions.

• The training of trend models is significantly faster, as illustrated by Figure 4.9 and

Figure 4.12.

• Better time series smoothing (smaller SSE) is achieved with significantly smaller

contributions from the past terms. We attribute this performance increase to taking

into account not only past terms values, but also the discrete derivatives (differences)

of recent past terms. In some sense, our ANN trend model simulates a Taylor series

approximation, which is something we consider interesting for further investigation.

• Figure 4.11 and Figure 4.14 clearly show the significant contribution of recent past

terms as well as their differences in predicting subsequent values. As a matter of fact,

the contribution of differences seems to be more important than the contribution of

the past terms. Moreover, the contributions of differences of order 1, 2, and 3 are all
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Figure 4.4: Anti-diabetic drug sales and forecasting using the ANN smoothing model (his-

tory = 5)l

important, but mostly from the most recent ones.

• Finally, the last set of experiments also shows the superiority of the ANN trend mod-

els for predicting future values.
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Figure 4.5: ANN smoothing model coefficients (history = 5)l

Figure 4.6: ANN smoothing model training (history = 10)l
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Figure 4.7: Anti-diabetic drug sales and forecasting using the ANN smoothing model (his-

tory = 10)l

Figure 4.8: ANN smoothing model coefficients (history = 10)l
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Figure 4.9: ANN trend model training (history = 3)

Figure 4.10: Anti-diabetic drug sales and forecasting using the ANN trend model (history

= 3)
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Figure 4.11: ANN trend model coefficients (history = 3)

Figure 4.12: ANN trend model training (history = 5)
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Figure 4.13: Anti-diabetic drug sales and forecasting using the ANN trend model (history

= 5)
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Figure 4.14: ANN trend model coefficients (history = 5)
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSION AND FUTURE WORK

We present a close connection between the popular Holt-Winters models and Artificial

Neural Network (ANN) based model for time series forecasting. This connection helps

understanding how newer, more powerful ANN based models perform relative to traditional

models as well as avoiding over-complicating the design of ANN models. Moreover, using

such simple ANN models one can easily emulate Holt-Winters models without the burden

of searching for best model parameters. Our theoretical arguments and experimental results

suggest that ANN models with a single hidden layer and very simple activation function

can achieve significantly better results than traditional Holt-Winters models for time series

forecasting. Although our current work is limited to the case of time series exponential

smoothing and trending, one can easily build on these ideas to tackle seasonality.

For future work we plan to extend our current ideas and explore how Recurrent Neu-

ral Network (RNN) [7] based models perform time series forecasting relative to traditional

models. RNNs are design to process arbitrary long input sequences (while ANN can pro-

cess only finite-length input sequences) and can naturally adapt to take into account any

number of data points in the past without any design limitation (which is imposed by the

input size in ANN models). We believe that such results would help better understanding

complex RNN models and possibly simplify their design without sacrificing their perfor-

mance.
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Appendix A

PYTHON IMPLEMENTATION

1 # -*- coding: utf-8 -*-

2 """

3 author: Kazeem Bankole

4 """

5 #%%**************** imports

***************************************************

6 import numpy as np

7 import matplotlib.pyplot as plt

8 import pandas as pd

9 import keras as keras

10 from keras.layers import Dense

11 from keras.utils import set_random_seed

12

13 from sklearn.preprocessing import MinMaxScaler

14 from typing import *

15

16 #%%************************** functions

*****************************************

17 def ewma(x, alpha: float) -> float:

18 if len(x) < 2:

19 return x[0]

20

21 return (alpha * x[-1]) + ((1 - alpha) * ewma(x[:-1], alpha))

22

23 def holt(x, alpha: float,

24 beta: float, initial_trend: float) -> float:

25 if len(x) < 2:

26 return initial_trend

27
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28 s = ewma(x, alpha)

29 s0 = ewma(x[:-1], alpha)

30

31 y0 = holt(x[:-1], alpha, beta, initial_trend)

32

33 return (beta * (s - s0)) + ((1 - beta) * y0)

34

35 #%%************************************************* data

**************************************

36 #data = pd.read_csv(’../data/shampoo.csv’)["Sales"]

37 data = pd.read_csv(’../data/diabetisa10.csv’)["Y"][:-125]

38 dataSize = len(data)

39 data = np.array(data.values.tolist())

40

41 future = 2

42 final_times = (dataSize-(future + 1), dataSize-1)

43

44 #%%************************************** experiment1: smoothing

**************************************

45 alpha = 0.2

46

47 forecast = ewma(data[:-future], alpha=alpha)

48 s = [ewma(data[:i], alpha = alpha) for i in range(1,dataSize-future+1)]

+ ([forecast] * future)

49

50 alpha = 0.75

51

52 forecast2 = ewma(data[:-future], alpha=alpha)

53 s2 = [ewma(data[:i], alpha = alpha) for i in range(1,dataSize-future+1)]

+ ([forecast2] * future)

54
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55

56 #%%****************************************** results

*****************************************

57 plt.figure(

58 figsize=(16, 10)

59 )

60

61 plt.plot(data, linewidth=3, label=’Original data’,color="b")

62 plt.plot(s, linewidth=3, label=’EWMA (alpha = 0.2)’,color="g")

63 plt.plot(s2, linewidth=3, label=’EWMA (alpha = 0.75)’,color="olive")

64 plt.plot(final_times,

65 [s[-(future + 1)], forecast], linewidth=3,

66 label=’Forecast’,color="orange")

67 plt.plot(final_times,

68 [s2[-(future + 1)], forecast2], linewidth=3,

69 color="orange")

70 plt.axvspan(*final_times, facecolor=’grey’, alpha=0.25)

71 plt.legend()

72 plt.show()

73

74 #%%************************************* experiment2: trend

*****************

75 alpha = 0.2

76 beta = 0.3

77

78 initial_trend = data[1] - data[0]

79 s_estimate = ewma(data[:-(future-1)], alpha)

80 forecast = s_estimate + holt(data[:-(future-1)],

81 alpha, beta, initial_trend)

82 s = [data[0]] + [ewma(data[:i], alpha) + holt(data[:i], alpha, beta,

initial_trend) for i in range(2,dataSize-future+1)]
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83

84 #%%****************************************** results

*****************************************

85

86 plt.figure(

87 figsize=(16, 10)

88 )

89

90 plt.plot(data, linewidth=3, label=’Original data’, color = "b")

91 plt.plot(s, linewidth=3, label=’Trend’, color = "g")

92 plt.plot(final_times,

93 [s[-1], forecast], linewidth=3,

94 label=’Forecast’, color = "orange")

95 plt.axvspan(*final_times, facecolor=’grey’, alpha=0.25)

96 plt.legend()

97 plt.show()

98

99 ############################################# ANN based models

#############################################################

100 #%%*************************************** format data

******************************************

101 DATACHUNK = 3

102 scaler = MinMaxScaler(feature_range=(0,1))

103

104

105 def ann_smoothing_data(x, datachunk = DATACHUNK, forecast = future):

106 train_data = scaler.fit_transform(np.reshape(x, (-1,1)))

107 # create data arrays

108 x_train = []

109 y_train = []

110 #train data
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111 for i in range(datachunk, len(train_data)-forecast):

112 x_train.append(train_data[(i-datachunk):i])

113 y_train.append(train_data[i:(i+1)])

114

115 x_train, y_train = np.array(x_train), np.array(y_train)

116 x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1]))

117 y_train = np.reshape(y_train, (y_train.shape[0], y_train.shape[1]))

118

119 return x_train,y_train

120

121

122 def ann_trend_data(x, order = 3, datachunk = DATACHUNK, forecast =

future):

123 dord = min(order, datachunk-1)

124 train_data = scaler.fit_transform(np.reshape(x, (-1,1)))

125 # create data arrays

126 x_train = []

127 y_train = []

128 #train data

129 for i in range(datachunk, len(train_data)-forecast):

130 row = []

131 row.append(train_data[(i-datachunk):i])

132 #add derivatives

133 for k in range(dord):

134 row.append(train_data[(i-datachunk+k+1):(i)]-train_data[(i-

datachunk):(i-k-1)])

135 x_train.append(np.concatenate(row).ravel())

136 y_train.append(train_data[i:(i+1)])

137

138 x_train, y_train = np.array(x_train), np.array(y_train)

139 x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1]))
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140 y_train = np.reshape(y_train, (y_train.shape[0], y_train.shape[1]))

141 return x_train,y_train

142

143 #%%*************************************** the ANN model

*************************************

144 def identity_activation(x):

145 return x

146

147 def ann_model(x_train):

148 model = keras.Sequential()

149 model.add(Dense(1, activation=identity_activation, input_shape=(

x_train.shape[1], )))

150 #model.add(Dense(1, activation="relu", input_shape=(x_train.shape

[1], )))

151 model.compile(optimizer=’adam’, loss=’mean_squared_error’)

152 #model.summary()

153 return model

154

155 def train(model, x_train, y_train, batch = 4, epochs = 500):

156 history = model.fit(x_train, y_train, batch_size= batch, epochs=

epochs)

157 return history

158

159

160 def ann_forecast(model, x_train, datachunk = DATACHUNK, future = future)

:

161 x = np.reshape(x_train[-1], (1, x_train.shape[1]))

162 y = model.predict(x)

163 x = np.concatenate((x[:,1:datachunk],y),axis = 1)

164 f = []

165 f.append(y[0])
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166 for i in range(future):

167 y = model.predict(x)

168 x = np.concatenate((x[:,1:datachunk],y),axis = 1)

169 f.append(y[0])

170 f = np.array(f)

171 #f = f.reshape(-1)

172 return f

173

174

175 def ann_trendforecast(model, x_train, datachunk = DATACHUNK, order = 3,

future = future):

176 dord = min(order, datachunk-1)

177 x = np.reshape(x_train[-1], (1, x_train.shape[1]))

178 y = model.predict(x)

179 x = np.concatenate((x[:,1:datachunk],y),axis = 1)

180 f = []

181 f.append(y[0])

182 for i in range(future):

183 for k in range(dord):

184 x = np.concatenate((x, x[:,(k+1):(datachunk)]-x[:,(0):(

datachunk-k-1)]), axis = 1)

185

186 x = np.reshape(x, (1, x_train.shape[1]))

187 y = model.predict(x)

188 x = np.concatenate((x[:,1:datachunk],y),axis = 1)

189 f.append(y[0])

190 f = np.array(f)

191 #f = f.reshape(-1)

192 return f

193

194
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195

196 #%% ******************************************** train the model:

smoothing ***********************

197 #format data, create model

198 x_train, y_train = ann_smoothing_data(data)

199 model = ann_model(x_train)

200 model.summary()

201

202 # adjust batch size and epochs for accuracy

203 set_random_seed(12345)

204 history = train(model, x_train, y_train)

205

206 # inverse predictions

207 predictions = model.predict(x_train)

208 sann = scaler.inverse_transform(predictions)

209 sx = np.array(range(DATACHUNK, DATACHUNK+len(sann)))

210

211 rmse = np.sqrt(np.mean(sann - scaler.inverse_transform(y_train))**2)

212 print(rmse)

213

214 #predict in the future

215 fut_times = np.array(range(final_times[0], final_times[-1]+1))

216 forecast = scaler.inverse_transform(ann_forecast(model, x_train))

217

218 #%%******************************** plot loss/accuracy

************************************

219 plt.figure(

220 figsize=(16, 10)

221 )

222 plt.plot(history.history[’loss’])

223 plt.title(’ANN smoothing model SSE’)
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224 plt.ylabel(’SSE’)

225 plt.xlabel(’epoch’)

226 #plt.legend([’piecewise’, ’linear’], loc=’upper left’)

227 plt.show()

228

229

230 #%%**************************** plot the predictions: smoothing

*************************************************

231 plt.figure(

232 figsize=(16, 10)

233 )

234

235 plt.plot(data, linewidth=3, label=’Original data’, color = "b")

236 plt.plot(sx, sann, linewidth=3, label=’ANN smoothing’, color = "g")

237 plt.plot(fut_times,

238 forecast, linewidth=3,

239 label=’Forecast’, color = "orange")

240 plt.axvspan(*final_times, facecolor=’grey’, alpha=0.25)

241 plt.title("ANN model (history = " + str(DATACHUNK) + ")")

242 plt.legend()

243 plt.show()

244

245 #%%**************************** plot the weights

*************************************************

246 z_matrix = model.get_weights()

247

248 TITLE = "ANN smoothing model coefficients (history = " + str(DATACHUNK)

+ ")"

249 sx = []

250 for i in range(DATACHUNK):

251 sx = sx + [’x’ + str(i+1)]
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252 plt.figure()

253 plt.plot(sx, z_matrix[0][:,0], ’b’,linestyle="",marker="o")

254 plt.title(TITLE)

255 plt.xlabel(’past values’)

256

257

258

259 ###################################### ANN model with trend

########################################

260

261 #%% ******************************************** train the model: trend

***********************

262 #format data, create model

263 x_train, y_train = ann_trend_data(data)

264 model = ann_model(x_train)

265 model.summary()

266

267 # adjust batch size and epochs for accuracy

268 set_random_seed(12345)

269 history = train(model, x_train, y_train)

270

271 # inverse predictions

272 predictions = model.predict(x_train)

273 sann = scaler.inverse_transform(predictions)

274 sx = np.array(range(DATACHUNK, DATACHUNK+len(sann)))

275

276 rmse = np.sqrt(np.mean(sann - scaler.inverse_transform(y_train))**2)

277 print(rmse)

278

279 #predict in the future

280 fut_times = np.array(range(final_times[0], final_times[-1]+1))
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281 forecast = scaler.inverse_transform(ann_trendforecast(model, x_train))

282

283 #%%******************************** plot loss/accuracy

************************************

284 plt.figure(

285 figsize=(16, 10)

286 )

287 plt.plot(history.history[’loss’])

288 plt.title(’ANN trend model SSE’)

289 plt.ylabel(’SSE’)

290 plt.xlabel(’epoch’)

291 #plt.legend([’piecewise’, ’linear’], loc=’upper left’)

292 plt.show()

293

294

295 #%%**************************** plot the predictions: smoothing

*************************************************

296 plt.figure(

297 figsize=(16, 10)

298 )

299

300 plt.plot(data, linewidth=3, label=’Original data’, color = "b")

301 plt.plot(sx, sann, linewidth=3, label=’ANN trend model’, color = "g")

302 plt.plot(fut_times,

303 forecast, linewidth=3,

304 label=’Forecast’, color = "orange")

305 plt.axvspan(*final_times, facecolor=’grey’, alpha=0.25)

306 plt.title("ANN model (history = " + str(DATACHUNK) + ")")

307 plt.legend()

308 plt.show()

309
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310 #%%**************************** plot the weights

*************************************************

311 z_matrix = model.get_weights()

312

313 TITLE = "ANN trend model coefficients (history = " + str(DATACHUNK) + ")

"

314 #sx = np.array(range(x_train.shape[1])) + 1

315 sx = []

316 for i in range(DATACHUNK):

317 sx = sx + [’x’ + str(i+1)]

318

319 dord = min(3, DATACHUNK-1)

320 for o in range(dord):

321 for i in range(DATACHUNK-o-1):

322 sx = sx + [’$\\Deltaˆ{(’ + str(o+1) + ’)}_{’ + str(i+1 + o + 1)

+ ’}$’]

323

324 plt.figure()

325 plt.plot(sx, z_matrix[0][:,0][::-1], ’b’,linestyle="",marker="o")

326 plt.title(TITLE)

327 plt.xlabel(’past values’)

Listing A.1: The complete Python code for models and experiments


	Performing Holt-Winters Time Series Forecasting Using Neural Network Based Models
	Recommended Citation

	tmp.1713410830.pdf.Torac

