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ABSTRACT

Reporting the p-value is customary when conducting a test of hypothesis or significance.

We give a definition of p-value. For the F-test in a one-way ANOVA and the t-tests for

population means, we defined the significance level and its observed value and derived the

sampling distribution. The t-test and the F-test are not without controversy. Specifically,

we demonstrate that as sample size increases, the expectation of the T statistic in the t-test

increases to infinity. The F statistic in the F-test is equivalent in this regard. Nonetheless,

we demonstrate that the variance of these two test statistics is solely dependent on the total

effect size in both scenarios.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Our interest is to examine “null hypothesis significance testing procedures (NHSTP)” and

the surrounding controversy. We will examine the test of significance as well as a test of

hypothesis. Rozeboom (1960) states

In this paper, I wish to examine a dogma of inferential procedure which,

for psychologists at least has attained the status of religious conviction. The

dogma to be scrutinized is the ‘null-hypothesis significance test’ orthodoxy

that passing statistical judgment on a scientific hypothesis by means of experi-

mental observation is a decision procedure wherein one rejects or accepts a null

hypothesis according to whether or not the value of a sample statistic yielded

by an experiment falls within a certain predetermined ‘rejection region’ of its

possible values.

In a test of significance or a test of hypothesis, one assumes the null hypothesis and then,

using a predetermined method, attempts to answer the question about how strongly the

evidence in the data is against the null hypothesis. By assuming the null hypothesis is

true, if the data fails to reject the null hypothesis, then one logically cannot conclude that

the null hypothesis is true. In null hypothesis testing, there are only two decisions “fail to

reject the null hypothesis” or “reject the null hypothesis.” Demidenko (2016) states “[t]here

is a growing frustration with the concept of the p-value. Besides having an ambiguous

interpretation, the p-value can be made as small as desired by increasing the sample size

n.” We agree with Kuffner and Walker (2016) and, as we will explain, the p-value has a
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clear meaning. We will also give meaning to “significance” in test of significance and test

of hypothesis based on a ordering of the sample space selected by the researcher. The

ordering of the sample space is often pushed to the background when discussing tests of

significance and test of hypothesis. The significance level is the statistic under a given

model that Kuffner and Walker (2016) refer to as a “bijection” mapping of the data into

the interval (0, 1). Beji (1985) discusses the p-value as a random variable. We prefer to

refer to the transformation of the data into the interval (0, 1) as the significance level (SL).

The significance level is a statistic and has a sampling distribution. The ordering on the

sampling space allows one to interpret the p-value as a probability. Numerically, it is equal

to the observed value of the significance level (OSL) but requires one to imagine taking a

second sample of size n from the population under the assumption that the null hypothesis

is true.

1.2 WHAT IS STATISTICS?

As stated in Fisher (1958, p. 1), “, the science of statistics is essentially a branch of Applied

Mathematics and may be regarded as mathematics applied to observational data.” He goes

on to state “as other mathematical studies, the same formula is equally relevant to widely

different groups of subject-matter. Consequently the unity of the different applications had

usually been overlooked, the more naturally because the development of the underlying

mathematical theory had been much neglected.”

Researchers study a process(es). Fisher (1958, p. 33) states “when a large number

of individuals are measured in respect of physical dimensions, weight, color, density, etc.,

it is possible to describe with some accuracy the population of which our experience may

be regarded as a sample. By this means, it may be possible to distinguish it from other
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populations differing in their genetic origin or in environmental circumstances.” Further,

Fisher (1958, p. 41) states the following about population and frequency distributions.

“The idea of an infinite population distributed in a frequency distribution in respect of

one or more characters is fundamental to all statistical work. From a limited experience,

for example, of individuals of a species, or of the weather of a locality, we may obtain some

idea of the infinite hypothetical population from which our sample is drawn, and so of the

probable nature of future samples to which our conclusions are to be applied.” He alludes

to a process (genetic origin or environmental circumstances), describes a population as an

infinite collection, and does not make a distinction between the population as a collection

of individuals or as the collection of the measurements on these individuals. As Fisher

described, we define the population as all the individuals the process has or could have

generated. It is our belief that Fisher’s use of “infinite,” he meant “uncountable infinite.” In

statistics, a population is uncountable. On each individual in a population, a measurement

X or a vector of measurements X is to be taken.

The collection of individuals the process has generated is a sample of size N . The

integer N maybe known or unknown; its value is determined by the process. The size N

of the representative sample can be thought of as a random variable. We will refer to this

sample as the representative sample as it is representative of what the process can generate.

This sample is often claimed by statisticians as to be the population. For variety of reasons,

it is not feasible for the researcher to measure each individual in the representative sample.

Consequently, the researcher using a sampling method selected a sample of size n, where

1 ≤ n ≤ N . We will refer to this sample as the researcher’s sample. The researcher

in some cases fixes the value of n. There are cases in which the researcher allows the

data to select n resulting in n being a random variable. On each of these n individuals,
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the researcher will obtain a measurement X or a p × 1 vector of measurements X. We

denote these n measurements by X1, . . . , Xn (X1, . . . ,Xn). As the representative sample

is representative of the population, it is the desire of the researcher to choose a sampling

method that results in a sample representative of the representative sample. There does not

exist a sampling method that has this property. At best the researcher can hope that the

sampling method used gives him/her a good chance of selecting a researcher’s sample that

is representative of the representative sample and hence representative of the population.

We define the sample space S as the collection of all possible researcher’s samples.

1.3 ORDERING THE SAMPLE SPACE

We first examine what is meant by partial and total orderings. The Cartesian product,

denoted by A × B, of set A with set B is the collection of all ordered pairs (a, b) with

a ∈ A and b ∈ B. Any sub-collection R of A × B is known as a “relation” from A to

B. If A = B, then we say the relation is on set A. A relation R on a set A is said to have

the reflexive property if for all x ∈ A the ordered pair (x, x) is in R. If for each ordered

pair (x, y) in R the ordered pair (y, x) is also in R, then we say the relation R has the

symmetric property. A relation R has the transitive property if the ordered pair (x, y) is in

R and the ordered pair (y, z) is in R, then the ordered pair (x, z) is in R. The relation R is

said to be antisymmetric if (x, y) and (y, x) in R implies that x = y.

A relation R is said to be a partial ordering on a set A if it is reflexive, transitive, and

anti-symmetric. It is a total ordering if it also has the trichotomy property, that is, for all

x, y ∈ A either (x, y) or (y, x) is in R. It will be convenient to write “x ⪰R y” to mean

(x, y) is in R for x, y ∈ A. Typically, the ordering is placed on the sample space S is a

total ordering. In the case the test statistic has a discrete distribution, then the ordering is a
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partial ordering.

Kempthorne and Folks (1971) state that at least a partial ordering should be placed on

the sample space in a test of significance or test of hypothesis. An ordering on the sample

space S is typically related to an ordering that is placed on the test statistic. If the ordering

placed on the statistic is partial resp. (total) ordering, then the ordering on the sample space

is a partial resp. (total) ordering.

1.4 STATISTICAL TESTS OF SIGNIFICANCE

DeGroot (1975) outlined a test of hypothesis. Suppose that a researcher has an interest

in the distribution of measurement X (which may be a vector of measurements) on the

individual in a population where a possible vector of parameters θ associated with the

distribution of X characterize the process that is generating individuals. The collection of

possible values of θ is denoted by Ω which is often referred to as the parameter space.

To gain information about the process parameter θ, the researcher will take a sample of n

individuals from the collection of individuals the process has generated. We denote the X

measurements on these n individuals by (X1, . . . , Xn) and treat the sample as an n-tuple of

real numbers. The collection of all possible n-tuples will be referred to as the sample space

S. A researcher believes (hypothesizes) that θ ∈ Ωa ⊂ Ω. Opposite in truth value to the

researcher’s hypothesis is the hypothesis θ ∈ Ω0, where Ω0 ∪Ωa = Ω and Ω0 ∩Ωa = ∅

or Ω0 = Ω − Ωa. A test of hypothesis assumes the hypothesis θ ∈ Ω0, opposite in truth

value to the researcher’s hypothesis, is true. This hypothesis is often referred to as the

null hypothesis and labeled as H0. The researcher’s hypothesis is often referred to as the

alternative to the null hypothesis and labeled as Ha. For convenience, we write H0 : θ ∈ Ω0

and Ha : θ ∈ Ωa. An ordering is then placed on the sample space by the researcher such
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that for any two samples, it can be determined which is at least as contradictory as the other

to the null hypothesis. A decision rule for the test rejects the null hypothesis in favor of

the alternative hypothesis if (X1, . . . , Xn) ∈ C ⊂ S, where C is selected by the researcher

otherwise, based on the data, one fails to reject the null hypothesis. DeGroot (1975) defined

the power function π by

π (θ) = P [(X1, . . . , Xn) ∈ C |θ ] ,

for θ ∈ Ω. The size α of the test or the level of significance of the test is

α = max
θ∈Ω0

π (θ) .

The probability of a Type II error β is β = β (θ) = 1 − P [(X1, . . . , Xn) ∈ C |θ ∈ Ωa ].

DeGroot (1975) states “In many problems, a statistician will specify an upper bound 0 <

α0 < 1 and will consider only tests for which

max
θ∈Ω0

π (θ) ≤ α0

for every value of θ ∈ Ω0.” among all procedures for which α ≤ α0, δ is a minimum.” The

value α0 is referred to as the size of the test or level of significance of the test. Once the

value of α0 is specified by the researcher, a test procedure is chosen to minimize the Type

II error β (θa) for a particular value θa of θ that makes the alternative hypothesis true. Note

we are using the vector θ of parameters while DeGroot (1975) uses the single parameter θ.

A test of significance (a null hypothesis but no alternative hypothesis, see Fisher

(1958)) and a test of hypothesis (both a null and an alternative hypothesis) are based on

an ordering of the sample space which the researcher provides. An ordering gives meaning

to “significance.” The ordering is selected by the researcher. The ordering allows one to

compare two samples with respect to evidence in the samples against the null hypothesis.
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One may have seen the phrase “as extreme or more extreme” in an introductory statistic

course. This phrase implies an ordering on the sample space. One could now replace

“extreme” in this phrase with “significant” giving significance meaning.

Beji (1985) stated that “[t]ests of hypotheses are usually used either as inference pro-

cedures or as decision procedures.” We consider both tests of significance and tests of

hypothesis which are used by researchers to make inferences and decisions about a pro-

cess. Rozeboom (1960) discusses the “fallacy” of null hypothesis significance tests. In his

paper, the author mentions that induction is a special case of statistical inference. Scientists

use inductive statistics to make evidence-based decisions based on empirical/experimental

results based on probability theory. The statistical induction principle is used to make de-

cisions using experimental results. Wasserstein and Lazar (2016) discusses the American

Statistical Association’s stance on tests of significance and tests of hypothesis. Wilkinson

(1999) discusses guidelines and explanations for statistical methods in psychology journals.

1.5 SIGNIFICANCE LEVEL

Kempthorne and Folks (1971) give the following definition of significance level (SL) on

page 222.

“Definition 9.1. Let the possible data sets under a probability model M0 be denoted by

{Di}. A test of significance consists of: (1) the arrangements of the possible data sets, Di,

as a partially ordered set; if Di does not occur in the partial ordering after Dj , we write

Di ≫ Dj; and (2) attaching to the observed data sets Do the number

SL (Do;M0) =
∑

D≫Do

P (D,M0)

which is called the significance level of the data set Do with regard to the model M0 for the
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partial ordering chosen.”

This definition of SL seems to suggest that the SL is a probability. We define the

significance level (SL) as a transformation of the measurements on the individuals in the

sample into the interval (0, 1). Under our general definition of the significance level (SL),

the SL is a statistic. Their definition of SL could be viewed as the p-value. We refer to the

observed value of the significance level as the observed significance level (OSL).

In the case of the one-sample t-test, we can observe the the SL. Our interest is to

examine the distribution of the SL for a variety of statistical tests of significance and hy-

pothesis. Although the support of the distribution of the SL is the interval (0, 1), it is not a

probability, nor is its observed value, the statistic the OSL. Based on the given ordering of

the sample space, the conditional probability of selecting another sample from the sample

space that is at least as contradictory to the null hypothesis, assuming the null hypothesis

is true than the sample that has been observed is referred to as the p-value. The p-value is

what Kempthorne and Folks (1971) define as the significance level. The p-value is a prob-

ability. In many tests of hypotheses, the p-value is numerically equal to the OSL. While

in these cases, the OSL and the p-value have the same magnitude, they clearly do not have

the same meaning. In research studies, the p-value should be abandoned and replaced with

the statistic of the observed significance level (OSL). Note that the p-value as defined, is

based on a sample that will never be observed.

1.6 CLINICAL, PRACTICAL, AND STATISTICAL SIGNIFICANCE

The American Psychological Association Dictionary of psychology states that “practical

significance is the extent to which a study result has meaningful applications in real-world

settings. An experimental result may lack statistical significance or show a small effect size
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and yet potentially be important nonetheless. For example, consider a study showing that

the consumption of baby aspirin helps prevent heart attacks. Even if the effect is small,

the finding may be of practical significance if it saves lives over time. practical signifi-

cance is also called substantive significance. See also clinical significance; psychological

significance.” The dictionary also defines the effect size as “any of various measures of

the magnitude or meaningfulness of a relationship between two variables. For example,

Cohen’s d shows the number of standard deviation units between two means. See Cohen

(1997). Often, effect sizes are interpreted as indicating the practical significance of a re-

search finding. Additionally, in meta-analyses they allow for the computation of summary

statistics that apply to all the studies considered as a whole. Further, the dictionary defines

“statistical significance as the degree to which a research outcome cannot reasonably be at-

tributed to the operation of chance or random factors.” It is determined during significance

testing and given by a critical p value, which is the probability of obtaining the observed

data if the null hypothesis (i.e., of no significant relationship between variables) were true.

Significance generally is a function of sample size - the larger the sample, the less likely

it is that one’s findings will have occurred by chance. Determining statistical significance,

practical significance, and effect size falls to the researcher. Peterson (2008) argued that

clinical significance and practical significance are not the same thing. A common method

of calculating clinical significance is given in Jacobson and Truax (1984,1991). Harrington,

et al. (2019) discuss statistical reporting in The New England Journal of Medicine. Kazdin

(1999) discussed the meanings and measurement of clinical significance. Wilkerson (1999)

discussed guidelines and gave explanations of statistical methods in psychology journals.
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1.7 CONCLUSION

Our intent is to examine the sampling distribution of the significance level (SL) for various

tests of hypotheses. The significance level is related to the level of significance or size of

the test. Beji (1985) showed how to obtain the distribution of the SL. We extend his results

by looking at the non-central distribution of the significance level.
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CHAPTER 2

MODEL, SAMPLING METHOD, AND SOME DISTRIBUTIONAL RESULTS

2.1 INTRODUCTION

Models are used for the distribution of a measurement X or a vector of measurements X.

The most commonly used model is the (multivariate) Normal distribution. Further, it is

typically assumed that the researcher’s sample is a random sample. The researcher should

argue that the sample is a random sample based on the sampling method used. We will

examine sampling method, random sample, the family of Normal distributions, and the

distribution of families of statistics.

2.2 SAMPLING METHOD

Researhers study a process(es). The collection of all individuals the process has (actual)

or could have (conceptual) generated is the population. The collection of conceptual indi-

viduals is an uncountable collection and hence the population is an uncountable collection.

We will refer to the collection of individuals the process has generated as the representative

sample of size N . Using a sampling method the researcher will select a subcollection of

size n from the representative sample with 1 ≤ n ≤ N . This sample is referred to as the

researcher’s sample. The integer N ≥ 1 is determined by the process. The value of N

may be known but in general should be considered as a random variable. The researcher’s

sample size n is selected by the researcher and is considered as fixed in what is to follow.

Ideally, we contend that the researcher is interested in using a sampling method that results

in a researcher’s sample that is “representative” of the representative sample and hence rep-

resentative of the population. It is not practical to have such a hope. Sampling methods
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are used that give the researcher a good chance of selecting a sample that is representative

of the representative sample and hence the population. One such sample method is simple

random sampling. This method gives each sample of size n the same chance of being se-

lected from the representative sample of size N . Thus each sample has one in
(
N
n

)
chance

of being selected.

2.3 RANDOM SAMPLE

A random sample is defined in terms of the X (X) measurements X1, . . . , Xn (X1, . . . ,Xn)

on the n individuals in the researcher’s sample. The n measurements are stochastically in-

dependent and have the same distribution. Mathematically, when X is a continuous random

variable, we have

fX1,...,Xn (x1, . . . , xn) =
∏n

i=1
fX (xi) ,

where fX1,...,Xn (x1, . . . , xn) is the joint probability density function of X1, . . . , Xn and

fX (x) is the probability density function that describes the distribuiton of X . When X is

a discrete random variable, then

P (X1 = x1, . . . , Xn = xn) =
∏n

i=1
P (X = xi) ,

where P (X1 = x1, . . . , Xn = xn) is the joint probability mass function of X1, . . . , Xn and

P (X = x) is the probability mass function describing the distribution of X . We can sim-

ilarly define the representative sample as a random sample. A simple random sampling

method is a sampling method that gives every researcher’s sample of size n to be taken

from the representative sample of size N the same chance of being selected.

Theorem: If the representative sample X1, . . . , XN is a random sample with common

distribution that of X and the researcher’s sample is a simple random sample, then the
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researcher’s sample is a random sample with the same common distribution.

Proof. Suppose the representative sample is a random sample and the researcher’s sample

is a simple random sample. Then,

fX1,...,XN
(x1, . . . , xN |N ) =

∏N

i=1
fX (xi |N ) or

P (X1 = x1, . . . , XN = xN |N ) =
∏N

i=1
P (X = xi |N ) .

Suppose that the X values of the researcher’s sample are denoted by Xi1 , . . . , Xin . Let

X = {X1, . . . , XN |N } , Xi = {Xi1 , . . . , Xin |N } , and Y = X−Xi.

It follows that

fXi1
,...,Xin

(xi1 , . . . , xin) =

∫
Y

fX1,...,XN
(x1, . . . , xN |N ) dy

=

∫
Y

∏N

i=1
fX (xi |N ) dy

=
∏N

i=1

∫
Y

fX (xi |N ) dy

=
∏n

j=1
fX
(
xij

)
or

P (Xi1 = xi1 , . . . , Xin = Xin) =
∑

Y
P (X1 = x1, . . . , XN = xN |N )

=
∑

Y

∏N

i=1
P (X = xi |N )

=
∏N

i=1

∑
Y
P (X = xi |N )

=
∏n

j=1
P
(
Xij = xij

)
.

Hence, the random variables Xi1 , . . . , Xin are independent and have a common distribution

that of X and therefore the researcher’s sample is a random sample.■
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2.4 FAMILY OF NORMAL DISTRIBUTIONS

A non-degenerate member of the family of Normal is described by

f (x |µ, σ ) = 1√
2πσ

e−
1
2(

x−µ
σ )

2

,

where µ is the population mean and σ is the population standard deviation. It is not difficult

to show (1) that for all real numbers x, f (x |µ, σ ) > 0 and∫ ∞

−∞
f (x |µ, σ ) dx = 1.

When used as a model, the function f (x |µ, σ ) describes the distribution of a measure-

ment X . Hence, the function f (x |µ, σ ) is a probability density function. The cumulative

distribution function is

F (x |µ, σ ) =
∫ x

−∞

1√
2πσ

e−
1
2(

y−µ
σ )

2

dy.

The random variable X has a Normal distribution with mean µ and standard deviation σ is

expressed more compactly as X ∼ N (µ, σ2). Assuming the sample is a random sample

with a common N (µ, σ2) distribution, will be known as the independent Normal model.

The transformation Z = (X − µ) /σ assuming X ∼ N (µ, σ2) is a random variable that

has a Normal distribution with mean 0 and variance 1 (a standard Normal distribution).

A statistic is a number that characterizes the sample that can be observed once the

measurements on the individuals in the sample are obtained. Two statistics that commonly

appear in statistical inference are the sample mean X and sample variance S2. For the

researcher’s sample with measurements X1, . . . , Xn, they are defined by

X =
1

n

∑n

i=1
Xi and S2 =

1

n− 1

∑n

i=1

(
Xi −X

)2
.
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It can be shown under the assumption X1, . . . , Xn iid N (µ, σ2) that X and S2 are stochas-

tically independent. Similar results hold for the mean and variance of the representative

sample conditioned on the sample size N . A well known theorem that can be found in

most books on mathematical statistics states the sample mean and sample variance are

(stochastically) independent if the sample is a random sample with a common N (µ, σ2)

distribution. Further, one can show that if the sample is a random sample with a common

N (µ, σ2) distribution, then

X ∼ N

(
µ,

σ2

n

)
and

(n− 1)S2

σ2
∼ χ2

n−1,0,

where χ2
n−1,0 is a random variable that has a central Chi Square distribution with n −

1 degrees of freedom. See Bain and Engelhardt (1992) for a discussion of these results

and the family of central Chi Square distribuitons. We will assume in what follows that

X1, . . . , Xn iid N (µ, σ2). We refer to this model as the independent Normal model.

2.5 FAMILY OF NONCENTRAL t-DISTRIBUTIONS

The members of the family of noncentral t-distributions are indexed by the parameters ν

and θ. A random variable T that can be expresses as

T =
Z + θ√
W/ν

,

where θ is a real number, Z ∼ N (0, 1), and W ∼ χ2
ν (Chi Square random variable with ν

degrees of freedom) which is independent of Z is said to have a noncentral t-distribution

with ν degrees of freedom and noncentrality parameter θ. If θ = 0, the distribution of T is

referred to as a central t-distribution with ν degrees of freedom. The mean and variance of
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the distribution of T are

µT =

√
νΓ
(
ν−1
2

)
√
2Γ
(
ν
2

) θ and

σ2
T =

[
ν
(
1 + θ2

)
− θ2

](√
νΓ
(
ν−1
2

)
√
2Γ
(
ν
2

) )2

.

For the case in which

T =
X − µ0

S/
√
n

=

X−µ
σ/

√
n
+ µ−µ0

σ/
√
n√

(n−1)S2

σ2 / (n− 1)

=

X−µ
σ/

√
n
+
√
nµ−µ0

σ√
(n−1)S2

σ2 / (n− 1)
=

Z +
√
nδ√

W/ (n− 1)
,

we have under our model that Z =
(
X − µ

)
/ (σ/

√
n) ∼ N (0, 1), W = (n− 1)S2/σ2 ∼

χ2
n−1, δ = (µ− µ0) /σ, and θ =

√
nδ with Z and W independent. Hence, the statistic T

has a noncentral t-distribution with n− 1 degrees of freedom and noncentrality parameter
√
nδ. The mean µT and the variance σ2

T of the distribution of T are

µT =

√
n (n− 1)Γ

(
n−2
2

)
√
2Γ
(
n−1
2

) δ and

σ2
T =

(n− 1) (1 + nδ2)

n− 3
− n− 1

2

Γ2
(
n−2
2

)
Γ2
(
n−1
2

)nδ2.

One can show that

lim
n→∞

µT = ∞ and lim
n→∞

σ2
T =

1

2
δ2 + 1.

The statistic T can be expressed as

T =
Z +

√
nδ√

W/ (n− 1)
,
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where Z ∼ N (0, 1) and W ∼ χ2
n−1 are independent under our model. It follows that

E (T ) =
√
n− 1E

(
Z +

√
nδ
)
E
(
W−1/2

)
=

√
n− 1

√
nδ

∫ ∞

0

w−1/2 1

Γ
(
n−1
2

)
2(n−1)/2

w(n−1)/2−1e−w/2dw

=
√
n− 1

√
nδ

Γ
(
n−2
2

)
2(n−2)/2

Γ
(
n−1
2

)
2(n−1)/2

∫ ∞

0

1

Γ
(
n−2
2

)
2(n−2)/2

w(n−2)/2−1e−w/2dw

=

√
n− 1Γ

(
n−2
2

)
√
2Γ
(
n−1
2

) √
nδ.

Further, we have

E
(
T 2
)
= (n− 1)E

(
Z2 + 2

√
nδZ + nδ2

)
E
(
W−1

)
= (n− 1)

(
1 + nδ2

) ∫ ∞

0

w−1 1

Γ
(
n−1
2

)
2(n−1)/2

w(n−1)/2−1e−w/2dw

= (n− 1)
(
1 + nδ2

) Γ (n−3
2

)
2(n−3)/2

Γ
(
n−1
2

)
2(n−1)/2

∫ ∞

0

1

Γ
(
n−3
2

)
2(n−3)/2

w(n−3)/2−1e−w/2dw

=
(n− 1) (1 + nδ2)

n− 3
.

Hence,

V (T ) =
(n− 1) (1 + nδ2)

n− 3
− n− 1

2

Γ2
(
n−2
2

)
Γ2
(
n−1
2

)nδ2.
The mean and variance of the distribution of T under the alternative hypothesis are

E (T ) =

√
n− 1Γ

(
n−2
2

)
√
2Γ
(
n−1
2

) √
nδ and

V (T ) =
(n− 1) (1 + nδ2)

n− 3
− n− 1

2

Γ2
(
n−2
2

)
Γ2
(
n−1
2

)nδ2.
Proof. We make the one-to-one transformation

t =
z + θ√
w/ν

and u = w/ν.
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The inverse of this transformation is

z = tu1/2 − θ and w = νu

with Jacobian νu1/2. The joint probability density function of T and U is

fT,U (t, u) = fZ
(
tu1/2 − θ

)
fW (νu) νu1/2

=
1√
2π

e−(tu
1/2−θ)

2
/2 1

Γ
(
ν
2

)
2ν/2

(νu)ν/2−1 e−νu/2νu1/2

=
νν/2

√
πΓ
(
ν
2

)
2(ν+1)/2

e−(t
2u−2θtu1/2+θ2)/2u(ν+1)/2−1e−νu/2

=
νν/2

√
πΓ
(
ν
2

)
2(ν+1)/2

u(ν+1)/2−1e−(ν+t2)u/2eθtu
1/2/2e−θ2/2.

Observe that

eθtu
1/2/2 =

∑∞
j=0

(θt)j uj/2

2jj!
= 1 +

∑∞
j=1

(θt)j uj/2

2jj!
.

Thus, the joint distribution of T and U is

fT,U (t, u) =
νν/2

√
πΓ
(
ν
2

)
2(ν+1)/2

u(ν+1)/2−1e−(ν+t2)u/2

×

(
1 +

∑∞
j=1

(θt)j uj/2

2jj!

)
e−θ2/2

=
e−θ2/2νν/2

√
πΓ
(
ν
2

)
2(ν+1)/2 (ν + t2)(ν+j+1)/2

×
((
ν + t2

)
u
)(ν+1)/2−1

e−(ν+t2)u/2 (ν + t2
)

+
∑∞

j=1

e−θ2/2 (θt)j νν/2

√
πΓ
(
ν
2

)
2(ν+j+1)/2 (ν + t2)(ν+j+1)/2 j!

×
((
ν + t2

)
u
)(ν+j+1)/2−1

e−(ν+t2)u/2 (ν + t2
)

.

To determine the probability density function fT (t |ν, θ ) describing the marginal distribu-

tion of T , we integrate fT,U (t, u) with respect to u over the interval (0,∞). It follows
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that

fT (t |ν, θ ) =
∫ ∞

0

fT,U (t, u) du

=
e−θ2/2νν/2

√
πΓ
(
ν
2

)
2(ν+1)/2 (ν + t2)(ν+j+1)/2

×
∫ ∞

0

((
ν + t2

)
u
)(ν+1)/2−1

e−(ν+t2)u/2 (ν + t2
)
du

+
∑∞

j=1

e−θ2/2 (θt)j νν/2

√
πΓ
(
ν
2

)
2(ν+j+1)/2 (ν + t2)(ν+j+1)/2 j!

×
∫ ∞

0

((
ν + t2

)
u
)(ν+j+1)/2−1

e−(ν+t2)u/2 (ν + t2
)
du.

Noting that∫ ∞

0

((
ν + t2

)
u
)(ν+j+1)/2−1

e−(ν+t2)u/2 (ν + t2
)
du = Γ

(
ν + j + 1

2

)
2(ν+j+1)/2.

We can express fT (t |ν, θ ) as

fT (t |ν, θ ) =
e−θ2/2νν/2Γ

(
ν+1
2

)
√
πΓ
(
ν
2

)
(ν + t2)(ν+1)/2

+
∑∞

j=1

e−θ2/2 (θt)j νν/2Γ
(
ν+j+1

2

)
√
πΓ
(
ν
2

)
(ν + t2)(ν+j+1)/2 j!

=
e−θ2/2Γ

(
ν+1
2

)
√
νπΓ

(
ν
2

) (
1 + t2

ν

)(ν+1)/2
+
∑∞

j=1

e−θ2/2 (θt)j Γ
(
ν+j+1

2

)
√
νπΓ

(
ν
2

) (
1 + t2

ν

)(ν+j+1)/2
j!

.

2.6 FAMILY OF NONCENTRAL CHI SQUARE DISTRIBUTIONS

The members of the family of noncentral Chi Square distributions are indexed by the pa-

rameters ν and θ. The probability density function fW (w |ν ) of a random variable W that

has a central Chi Square distribution with ν degrees of freedom can be expressed as

fW (w |ν ) = 1

Γ
(
ν
2

)
2ν/2

wν/2−1e−w/2I(0,∞) (w) ,

where I(0,∞) (w) = 1 if w ∈ (0,∞) and 0 otherwise. It is well known that if Z1, . . . , Zk

are independent with a common N (0, 1) distribution, then∑k

i=1
Z2

i ∼ χ2
k,
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where χ2
k is a random variable that has a Chi Square distribution with k degrees of freedom.

For any nonzero real number θ, consider the random variable W defined as

W = (Z1 + θ)2 +
∑k

i=2
Z2

i ,

where Z1, . . . , Zk are independent with a common N (0, 1) distribution. More generally,

we define W as

W =
∑k

i=1
(Z∗

i + τi)
2 = (Z∗ + τ)T (Z∗ + τ) ,

where τ1, . . . , τk are real numbers, Z∗ = [Z∗
1 , . . . , Z

∗
k ]

T, τ = [τ1, . . . , τk]
T, and Z∗

1 , . . . , Z
∗
k

iid N (0, 1). Consider the k × k matrix B defined by

B =
1

θ (τ1 + θ)
(τ + θe1) (τ + θe1)

T − I,

where τ1 is the first component of the vector τ , θ2 = τTτ , and e1 is a k×1 vector with first

coordinate one and the remaining coordinates zero. One can show that

Bτ = θe1.

Thus, we have

W = (Z∗ + τ)T
(
BTB

)
(Z∗ + τ) = (BZ∗ +Bτ)T (BZ∗ +Bτ)

= (Z+ θe1)
T (Z+ θe1) = (Z1 + θ)2 +

∑k

i=2
Z2

i

= U1 + U2,

where Z = BZ∗ = [Z1, . . . , Zk]
T ∼ Nk (0, I), U1 = (Z1 + θ)2, and U2 =

∑k
i=2 Z

2
i . It can

be shown that

U2 =
∑k

i=2
Z2

i ∼ χ2
k−1.
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The distribution of U1 = (Z1 + θ)2 is determined as follows.

FU1 (q) = F(Z1+θ)2 (q) = P
[
(Z1 + θ)2 ≤ q

]
I(0,∞) (q)

= P [−√
q − θ ≤ Z1 ≤

√
q − θ] I(0,∞) (q)

= [Φ (
√
q − θ)− Φ (−√

q − θ)] I(0,∞) (q) ,

where Φ (z) is the cumulative distribution function of a standard Normal distribution. It

follows that

f(Z1+θ)2 (q) =
d

dq
F(Z1+θ)2 (q)

=

[
1

2
q−1/2ϕ (

√
q − θ) +

1

2
q−1/2ϕ (−√

q − θ)

]
I(0,∞) (q)

=
1

2
q−1/2 [ϕ (

√
q − θ) + ϕ (−√

q − θ)] I(0,∞) (q) ,

where ϕ (z) is the probability density function of a standard Normal distribution. We now

have

f(Z1+θ)2 (q) =
1

2
q−1/2

[
1√
2π

e−(
√
q−θ)

2
/2 +

1√
2π

e−(−
√
q−θ)

2
/2

]
I(0,∞) (q)

=
1

2
√
2π

q−1/2
[
e−

1
2(q−2θ

√
q+θ2) + e−

1
2(q+2θ

√
q+θ2)

]
I(0,∞) (q)

=
e−θ2/2

2
√
2π

q−1/2e−q/2
(
eθ

√
q + e−θ

√
q
)
I(0,∞) (q) .

Observe that

eθ
√
q + e−θ

√
q =

∑∞

j=0

θjqj/2

j!
+
∑∞

j=0

(−1)j θjqj/2

j!

= 2
∑∞

j=0

θ2jqj

(2j)!
.
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It follows that

fU1 (q) =
e−θ2/2

2
√
2π

q−1/2e−q/2

(
2
∑∞

j=0

θ2jqj

(2j)!

)
I(0,∞) (q)

= e−θ2/2
∑∞

j=0

θ2j

Γ
(
1
2

)
21/2 (2j)!

q(2j+1)/2−1e−q/2I(0,∞) (q)

= e−θ2/2
∑∞

j=0

θ2jΓ
(
2j+1
2

)
2j

Γ
(
1
2

)
(2j)!

1

Γ
(
2j+1
2

)
2(2j+1)/2

q(2j+1)/2−1e−q/2I(0,∞) (q)

= e−θ2/2
∑∞

j=0

θ2jΓ
(
2j+1
2

)
2j

Γ
(
1
2

)
(2j)!

fχ2
2j+1

(q) I(0,∞) (q) .

Consider the transformation

W = U1 + U2 and U = U2.

The inverse transformation is

U1 = W − U and U2 = U

with Jacobian J = 1. It follows that the joint probability distribution function describing

the joint distribution of W and U is

fW,U (w, u) = fU1 (w − u) fU2 (u) |J | = fU1 (w − u) fU2 (u) .

Hence,

fW,U (w, u) = e−θ2/2
∑∞

j=0

θ2jΓ
(
2j+1
2

)
2j

Γ
(
1
2

)
(2j)!

fχ2
2j+1

(w − u)

× 1

Γ
(
k−1
2

)
2(k−1)/2

u(k−1)/2−1e−u/2I(0,∞) (u) I(0,∞) (w − u)

= e−θ2/2
∑∞

j=0

θ2jΓ
(
2j+1
2

)
22j+1

Γ
(
1
2

)
(2j)!

1

Γ
(
2j+1
2

)
22j+1

(w − u)2j+1−1

× 1

Γ
(
k−1
2

)
2(k−1)/2

u(k−1)/2−1e−u/2I(0,∞) (u) I(0,∞) (w − u) .
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Therefore,

fW (w) =

∫ ∞

0

fW,U (w, u) du = e−θ2/2
∑∞

j=0

θ2jΓ
(
2j+1
2

)
2j

Γ
(
1
2

)
(2j)!

fχ2
2j+1

(w − u) I(0,∞) (w − u)

× 1

Γ
(
k−1
2

)
2(k−1)/2

u(k−1)/2−1e−u/2I(0,∞) (u) .

It can be shown that the probability density function describing the distribution of W

is given by

fχ2
p,θ2

(w) = e−θ2/2fχ2
p
(w) + e−θ2/2

∑∞

k=1

(θ2)
k

2kk!
fχ2

p+2k
(w) .

It then follows that the cumulative distribution function of the distribution of W is

Fχ2
k−1,θ2

(y |θ, n) = e−θ2/2Fχ2
k−1

(w) + e−θ2/2
∑∞

k=1

(θ2)
k

2kk!
Fχ2

p+2k
(w) .

2.7 FAMILY OF NONCENTRAL F -DISTRIBUTIONS

The random variable

F =
W1/ν1
W2/ν2

∼ Fν1,ν2,θ2 ,

where Fν1,ν2,θ2 has a noncentral F -distribution with ν1 degrees of freedom in the numerator,

ν2 degrees of freedom in the denominator, and noncentrality parameter θ2. Here W1 ∼

χ2
ν1,θ2

and W2 ∼ χ2
ν2

are independent and θ is a real number constant. One can show that

the probability density function describing the distribution of Q is

fF
(
q
∣∣ν1, ν2, θ2 ) = e−θ2/2fFν1,ν2

(q)

+ e−θ2/2
∑∞

j=1

(θ2)
j

2jj!
fFν1+2j,ν2

(
ν1

ν1 + 2j
q

)
ν1

ν1 + 2j
.
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Further, we see that the cumulative distribution function FQ (q) describing the distribution

of Q is given by

FQ

(
q
∣∣ν1, ν2, θ2 ) = e−θ2/2FFν1,ν2

(q)

+ e−θ2/2
∑∞

j=1

(θ2)
j

2jj!
FFν1+2j,ν2

(
ν1

ν1 + 2j
q

)
.

The mean and variance of a noncentral F -distribution are

E (Fν1,ν2,θ2) =

∫ ∞

0

qfQ
(
q
∣∣ν1, ν2, θ2 ) dq

= e−θ2/2

∫ ∞

0

qfFν1,ν2
(q) dq

+ e−θ2/2
∑∞

j=1

(θ2)
j

2jj!

∫ ∞

0

qfFν1+2j,ν2

(
ν1

ν1 + 2j
q

)
ν1

ν1 + 2j
dq

=
ν2 (θ

2 + ν1)

ν1 (ν2 − 2)
and

V (Fν1,ν2,θ2) =
ν2
2 [(2ν1 + 4 + 1) θ2 + ν1 (ν1 + 2)]

ν2
1 (ν2 − 4) (ν2 − 2)2

.

2.8 STATISTICS USEFUL IN COMPARING TWO POPULATION MEANS

Suppose we have two independent samples Xi,1, . . . , Xi,n1 iid N (µi, σ
2
i ) for i = 1, 2. The

statistic

T1 =
X1 −X2

Sp

√
1/n1 + 1/n2

,

with

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

(n1 − 1) + (n2 − 1)

is used to compare two population means µ1 and µ2 when the population variances σ2
1 and

σ2
2 are assumed to be equal, where X i and S2

i are the mean and variance of the sample of
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size ni to be taken from population i, for i = 1, 2. If σ2
1 = σ2

2 = σ2, then

(ni − 1)S2
i

σ2
i

=
(ni − 1)S2

i

σ2
∼ χ2

ni−1

for i = 1, 2. It follows that

(n1 + n2 − 2)S2
p

σ2
=

(n1 − 1)S2
1

σ2
+

(n2 − 1)S2
2

σ2

∼ χ2
n1−1 + χ2

n2−1 = χ2
n1+n2−2.

Next observe that

E
(
X1 −X2

)
= µ1 − µ2 and V

(
X1 −X2

)
= σ2 (1/n1 + 1/n2) .

Hence,

T1 =

(X1−X2)−(µ1−µ2)

σ
√

1/n1+1/n2

+ (µ1−µ2)/σ√
1/n1+1/n2√

(n1+n2−2)S2
p

σ2 / (n1 + n2 − 2)
=

Z + δ√
1/n1+1/n2√

χ2
n1+n2−2/ (n1 + n2 − 2)

,

where δ = (µ1 − µ2) /σ. Hence, the statistic T1 has a noncentral t-distribution with n1 +

n2 − 2 degrees of freedom and noncentrality parameter δ/
√
1/n1 + 1/n2.

The Behrens-Fisher statistic T2 is used when comparing two population means µ1 and

µ2 when the population variances σ2
1 and σ2

2 are not assumed to be equal. It is defined by

T2 =
X1 −X2√

S2
1/n1 + S2

2/n2

,

where X i and S2
i are the mean and variance of the sample of size ni to be taken from

Population i, for i = 1, 2. Its distribution was studied by Behrens (1929) and Fisher (1939).
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Observe that we can write

T2 =

(X1−X2)−(µ1−µ2)√
σ2
1/n1+σ2

2/n2

+ µ1−µ2√
σ2
1/n1+σ2

2/n2√
S2
1/n1+S2

2/n2

σ2
1/n1+σ2

2/n2

=

(X1−X2)−(µ1−µ2)√
σ2
1/n1+σ2

2/n2

+ (µ1−µ2)/σ2√
σ2
1

σ2
2
/n1+1/n2√

S2
1/n1+S2

2/n2

σ2
1/n1+σ2

2/n2

=

(X1−X2)−(µ1−µ2)√
σ2
1/n1+σ2

2/n2

+ δ√
λ2/n1+1/n2√

S2
1/n1+S2

2/n2

σ2
1/n1+σ2

2/n2

,

where δ = (µ1 − µ2) /σ2 and λ2 = σ2
1/σ

2
2 . Welch (1938) proposed approximating the

distribution of
S2
1/n1 + S2

2/n2

σ2
1/n1 + σ2

2/n2

as a Chi Square distribution that has been divided by its degrees of freedom ν. If the random

variable W has a Chi Square distribution with ν degrees of freedom, then

V

(
S2
1/n1 + S2

2/n2

σ2
1/n1 + σ2

2/n2

)
≈ V (W/ν) = V (W ) /ν2 = 2/ν.

Under our independent Normal model.

V

(
S2
1/n1 + S2

2/n2

σ2
1/n1 + σ2

2/n2

)

=

σ4
1

(n1−1)2
V
(

(n1−1)S2
1

σ2
1

)
/n2

1 +
σ4
2

(n2−1)2
V
(

(n2−1)S2
2

σ2
2

)
/n2

2

(σ2
1/n1 + σ2

2/n2)
2

=
2 1
n1−1

(
σ2
1

n1

)2
+ 2 1

n2−1

(
σ2
2

n2

)2
(σ2

1/n1 + σ2
2/n2)

2 .
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Setting this last expression equal to 2/ν and solving for ν, we have

ν ≈
(σ2

1/n1 + σ2
2/n2)

2

1
n1−1

(
σ2
1

n1

)2
+ 1

n2−1

(
σ2
2

n2

)2
=

(
σ2
1

σ2
2
/n1 + 1/n2

)2
1

n1−1

(
σ2
1/σ

2
2

n1

)2
+ 1

n2−1

(
1
n2

)2
=

(λ2/n1 + 1/n2)
2

1
n1−1

(
λ2

n1

)2
+ 1

n2−1

(
1
n2

)2 ,

where λ2 = σ2
1/σ

2
2 . Since (

X1 −X2

)
− (µ1 − µ2)√

σ2
1/n1 + σ2

2/n2

∼ N (0, 1) ,

then T2 has approximately a noncentral t-distribution with ν degrees of freedom and non-

centrality parameter

θ =
µ1 − µ2√

σ2
1/n1 + σ2

2/n2

=
(µ1 − µ2) /σ2√
σ2
1

σ2
2
/n1 + 1/n2

=
δ√

λ2/n1 + 1/n2

,

where δ = (µ1 − µ2) /σ2. It follows that

T2 =

(
X1 −X2

)
− (µ1 − µ2)√

S2
1/n1 + S2

2/n2

has an approximate central t-distribution with ν degrees of freedom. Welch (1938) pro-

posed estimating the distribution T2 by estimating the approximate degrees of freedom ν

by

ν̂ =
(S2

1/n1 + S2
2/n2)

2

1
n1−1

(
S2
1

n1

)2
+ 1

n2−1

(
S2
2

n2

)2 .

Using ν̂ in constructing a confidence interval for µ1 − µ2 results in an estimated of the

approximate 100 (1− α)% confidence interval. Statistical tests about µ1 − µ2 result in
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estimates of the approximate distribution of the significance level, the observed significance

level, and p-value.

The exact distribution of the Behrens-Fisher statistics was derived by Hu (2010) and

is given in Champ and Hu (2022). The following theorem is useful in determining the

distribution of the T1 and T2.

Theorem: If Z ∼ N (0, 1), W1 ∼ χ2
ν1

and W2 ∼ χ2
ν2

are independent with θ, ξ, ν > 0

constants, then the pdf fT (t) and cdf FT (t) describing the distribution of

T =
Z + θ√

(ξW1 +W2) /ν

can be expressed, respectively, as

fT (t) =



ξν2/2ftν1+ν2,θ

(√
ξ(ν1+ν2)

ν
t

)√
ξ(ν1+ν2)

ν

+ξν2/2
∑∞

k=1

(1−ξ)kΓ( ν2+2k
2 )

Γ( ν2
2 )k!

×ftν1+ν2+2k,θ

(√
ξ(ν1+ν2+2k)

ν
t

)√
ξ(ν1+ν2+2k)

ν
,

if 0 < ξ ≤ 1;

ξ−ν1/2ftν1+ν2,θ

(√
ν1+ν2

ν
t
)√

ν1+ν2
ν

+ξ−ν1/2
∑∞

k=1

(1−ξ−1)
k
Γ( ν1+2k

2 )
Γ( ν1

2 )k!

×ftν1+ν2+2k,θ

(√
ν1+ν2+2k

ν
t
)√

ν1+ν2+2k
ν

,

ξ > 1.

and
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FT (t) =



ξν2/2Ftν1+ν2,θ

(√
ξ(ν1+ν2)

ν
t

)
+ξν2/2

∑∞
k=1

(1−ξ)kΓ( ν2+2k
2 )

Γ( ν2
2 )k!

×Ftν1+ν2+2k,θ

(√
ξ(ν1+ν2+2k)

ν
t

)
,

if 0 < ξ ≤ 1;

ξ−ν1/2Ftν1+ν2,θ

(√
ν1+ν2

ν
t
)

+ξ−ν1/2
∑∞

k=1

(1−ξ−1)
k
Γ( ν1+2k

2 )
Γ( ν1

2 )k!

×Ftν1+ν2+2k,θ

(√
ν1+ν2+2k

ν
t
)

,

if ξ > 1.

where ftν,θ and Ftν,θ are, respectively, the pdf and cdf of a noncentral t-distribution with ν

degrees of freedom.

Corollary 1 to the Theorem. If we set

θ =
(µ1 − µ2) /σ2√
λ2/n1 + 1/n2

, ξ = λ2n2 (n2 − 1)

n1 (n1 − 1)
, λ2 = σ2

1/σ
2
2 ,

ν = n2 (n2 − 1)
(
λ2/n1 + 1/n2

)
, ν1 = n1 − 1, ν2 = n2 − 1,

Z =

(
X1 −X2

)
− (µ1 − µ2)√

σ2
1/n1 + σ2

2/n2

, W1 =
(n1 − 1)S2

1

σ2
1

, and

W2 =
(n2 − 1)S2

2

σ2
2

,

then fT2 (t) and FT2 (t) are the pdf and cdf, respectively, that describe the distribution of

the Behrens-Fisher statistic T2. Further, setting θ = 0, results in the distribution of

T2,0 =

(
X1 −X2

)
− (µ1 − µ2)√

S2
1/n1 + S2

2/n2

.

Note that the distribution of T2 depends on the ratio of the variances λ2 = σ2
1/σ

2
2 .
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Corollary 2 of the Theorem. If we set

θ =
(µ1 − µ2) /σ2√
λ2/n1 + 1/n2

, ξ = λ2,

λ2 = σ2
1/σ

2
2 ,

ν =
(n1 + n2 − 2) (λ2/n1 + 1/n2)

1/n1 + 1/n2

,

ν1 = n1 − 1, ν2 = n2 − 1,

Z =

(
X1 −X2

)
− (µ1 − µ2)√

σ2
1/n1 + σ2

2/n2

,

W1 =
(n1 − 1)S2

1

σ2
1

, and

W2 =
(n2 − 1)S2

2

σ2
2

,

then fT1 (t) and FT1 (t) are the pdf and cdf, respectively, that describe the distribution of

the statistic T1. Further, setting θ = 0, results in the distribution of

T1,0 =

(
X1 −X2

)
− (µ1 − µ2)√

(n1−1)S2
1+(n2−1)S2

2

n1+n2−2
(1/n1 + 1/n2)

.

Welch (1938) recommends estimating the approximate distribution of the statistic T2

as a noncentral t-distribution with ν̂ degrees of freedom and noncentrality parameter θ,

where

ν̂ =
(S2

1/n1 + S2
2/n2)

2

1
n1−1

(
S2
1

n1

)2
+ 1

n2−1

(
S2
2

n2

)2 and θ =
δ√

λ2/n1 + 1/n2

with δ = (µ1 − µ2) /σ2 and λ2 = σ2
1/σ

2
2 .

2.9 CONCLUSION

Noncentral t and F -distributions were derived and discussed. Also, distribution that are

used in comparing two population means were discussed. We have introduced the model,
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the independent Normal model, that will assumed in what follows.
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CHAPTER 3

TEST OF SIGNIFICANCE AND TEST OF HYPOTHESIS

3.1 INTRODUCTION

Tests of significance and hypothesis are based on an ordering of the sample space. We will

discuss the ordering of the sample space. The likelihood ratio is used to order the sample

space. The significance level (SL) is a statistic that transforms the data into a number in

the interval (0, 1). Our interest is to study the distribution of the SL. Its observed value

is the observed significance level (OSL). The observed value of a statistic is a statistic.

Based on the ordering of the sample space and assuming a second sample is to be taken,

the probability of observing an OSL that is “as extreme or more extreme” evidence against

the null hypothesis is referred to as the p-value. The magnitude of the p-value is the same

as the OSL. Their interpretations are quite different, one is a probability and the other is a

statistic.

3.2 LIKELIHOOD RATIO TEST

On each individual in a population, a measurement X characterizes the individual. A mea-

surement has a distribution. For the cases in which the measurement X is a real number,

the distribution of X can be described by a probability density and cumulative distribution

functions fX (x |θ ) and FX (x |θ ) respectively, where θ is a vector of values called param-

eters the characterize the distribution of X . Following DeGroot (1975) and others, we let

Ω be the collection of all possible values of θ (θ ∈ Ω). Suppose a researcher has a belief

(hypothesis) that θ ∈ Ω − Ω0, where Ω0 ⊂ Ω. It is typical to refer to the researcher’s

hypothesis as the “alternative” hypothesis Ha : θ ∈ Ω−Ω0 discussed a test of hypothesis
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in which the null (H0) and alternative (Ha) hypotheses are

H0 : θ ∈ Ω0 and Ha : θ ∈ Ω−Ω0,

where Ω0 ⊂ Ω.

Assume that the information about the parameter θ will be available from a random

sample of n X measurements

X = [X1, . . . , Xn]
T .

The generalized likelihood ratio is defined by

u (X) =
supθ∈Ω0

fX (X |θ )
supθ∈Ω fX (X |θ )

=
fX

(
X
∣∣∣θ̂0)

fX

(
X
∣∣∣θ̂) ,

where θ̂0 is the maximum likelihood estimator of θ assuming the null hypothesis is true

and θ̂ is the maximum likelihood estimate of θ. The generalized likelihood ratio test reject

H0 in favor of Ha if u (X) ≤ c, where c is chosen to provide a size α test. The level of

significance or the size of the test is

α = sup
θ∈Ω0

P [u (X) ≤ c |θ ] = sup
θ∈Ω0

Fu(X) (c |θ ) .

See Bain and Engelhardt (1992) page 418. It can be shown that 0 < u (X) ≤ 1.

The likelihood ratio is used to order the sample space relative to the hypotheses. A

sample X provides as much or more evidence against H0 than the sample X∗ if u (X) ≤

u (X∗). We say that the sample X is as extreme or more extreme against H0 than the sample

X∗ if u (X) ≤ u (X∗).

There are two types of errors one can make using a test of hypothesis. The first is

called a Type I error if using the data one using the data rejects a true null hypothesis. The
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probability of a Type I error is the size of the test α. The second kind of error is called

a Type II error. A Type II error occurs if the test fails to reject a false null hypothesis.

The probability of a Type II error is often denoted by β. A Type II error occurs when

the alternative hypothesis is true. Thus, the probability of a Type II error is a function of

θ ∈ Ω−Ω0. We denote this by β (θ). It is not difficult to see that β (θ) = 1−Fu(X) (c |θ ).

The power of the test is defined as power (θ) = 1 − β (θ). Little guidance is given in the

literature for selecting α and β. The Food and Drug Administration (FDA) usually require

α = 0.05 and β = 0.20 according to Dr. Karl Peace.

The significance level for the likelihood ratio test is

SL = sup
θ∈Ω0

FU(X) (u (X) |θ ) ∼ FSL (q |θ )

Note that u (X) and SL are transformations of the sample measurements X into the interval

(0, 1). They are random variables since they depend on the sample values. The observed

significance level (OSL) is

OSL = sup
θ∈Ω0

Fu(X) (u (x) |θ )

The observed values of u (x) and OSL are transformation of the observed sample measure-

ments x into the interval (0, 1), where u (x) and OSL are the observed value of a random

variable u (X) and SL, respectively. Equivalently, the likelihood ratio test reject H0 in

favor of Ha if the OSL ≤ α.

Let X∗ be the n measurements to be taken on a future sample. The p-value is defined

by

p-value = sup
θ∈Ω0

P [u (X∗) ≤ u (x) |u (X) = u (x) , θ ] .

The OSL is numerically equal to the p-value. However, note that OSL is the observed

value of a random variable. Further, note that the p-value is a conditional probability not
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based on a sample that will be observed. The decision to reject or fail to reject H0 should

be based on the OSL not the p-value.

The likelihood ratio test under the assumption the sample is a random sample with

a common N (µ, σ2) distribution results in a t-test of the hypothesis H0 : µ = µ0 with

Ha : µ ̸= µ0. See Bain and Engelhardt (1992). The decision rule is to reject H0 in

favor of Ha if the observed value of |T | ≥ tn−1,α/2, where α is the size of the test and

T =
(
X − µ0

)
/ (S/

√
n).

3.3 THE t-TEST

Concato and Hartigan (2016) state “[a] threshold probability value of ‘p ≤ 0.05’ is com-

monly used in clinical investigations to indicate statistical significance. To allow clinicians

to better understand evidence generated by research studies, this review defines the p value,

summarizes the historical origins of the p value approach to hypothesis testing, describes

various applications of p ≤ 0.05 in the context of clinical research and discusses the emer-

gence of p ≤ 5× 10−8 and other values as thresholds for genomic statistical analyses.”

Suppose the null and alternative hypotheses of interest are H0 : µ ≤ µ0 versus Ha :

µ > µ0. These hypotheses are equivalent to the hypotheses

H0 : µ− µ0 ≤ 0 versus Ha : µ− µ0 > 0 or

H0 :
µ− µ0

σ
≤ 0 versus Ha :

µ− µ0

σ
> 0 or

H0 : δ ≤ 0 versus Ha : δ > 0,

where δ = (µ− µ0) /σ, the effect size, is the number of population standard deviations µ

differs from µ0.

The data the researcher will have available to make a decision about the process is a
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random sample X1, . . . , Xn with a common N (µ, σ2) distribution. We denote the mean

and standard deviation of the sample by Xn and Sn, respectively. The test statistic we will

use is

T = Tn−1,
√
nδ =

Xn − µ0

Sn/
√
n

=

Xn−µ
σ/

√
n
+
√
nµ−µ0

σ√
(n−1)S2

n

σ2 / (n− 1)

=

Xn−µ
σ/

√
n
+
√
nδ√

(n−1)S2
n

σ2 / (n− 1)
=

Z +
√
nδ√

W/ (n− 1)
∼ tn−1,

√
nδ,

where Z ∼ N (0, 1) and W ∼ χ2
n−1 are independent under our model with tn−1,

√
nδ a

random variable that has a non-central t-distribution with n − 1 degrees of freedom and

non-centrality parameter
√
nδ. Recall that δ = (µ− µ0) /σ which is the effect size. The

mean µT and variance σ2
T of the distribution of T are given by

µT =

√
n− 1Γ

(
n−2
2

)
√
2Γ
(
n−1
2

) √
nδ and

σ2
T =

(n− 1) (1 + nδ2)

n− 3
−

(√
n− 1Γ

(
n−2
2

)
√
2Γ
(
n−1
2

) )2

nδ2.

These results are easily derived. For a fixed value of δ, one can show that

lim
n→∞

µT = ∞ and lim
n→∞

σ2
T =

1

2
δ2 + 1.

Hence, the mean of the distribution of T under the alternative hypothesis increases to in-

finity as n increases with finite variance that depends on the effect size δ. This implies that

the observed significance level and the p-value decrease as n increases.

The significance level for testing H0 : µ ≤ µ0 versus Ha : µ > µ0 is defined as

SLn,δ = max
δ≤0

(
1− Ftn−1,

√
nδ

(
Tn−1,

√
nδ

))
= 1− Ftn−1,0

(
Tn−1,

√
nδ

)
,
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The distribution of the SLn,δ is determined as follows by finding the cumulative distribution

function that describes its distribution.

FSLn,δ
(q) = P

(
1− Ftn−1,0

(
Tn−1,

√
nδ

)
≤ q
)

= P
(
Ftn−1,0

(
Tn−1,

√
nδ

)
≥ 1− q

)
= 1− P

(
Ftn−1,0

(
Tn−1,

√
nδ

)
< 1− q

)
= 1− P

[
Tn−1,

√
nδ < F−1

tn−1,0
(1− q)

]
= 1− Ftn−1,

√
nδ

(
F−1
tn−1,0

(1− q)
)

.

Now suppose that the researcher is interested in a test that would detect a change in

the mean with δ ≥ δa = (µa − µ0) /σ, where µa is a value of µ that makes the alternative

hypothesis true that is provided by the researcher. The value of µa is the minimum value

of µ that the researcher believes is either “clinically” or “practically” significant. We will

show that an unbiased estimator δ̂a of δa is

δ̂a =
µa − µ0

S/c4

with S the standard deviation of the sample and

c4 =

√
2Γ
(
n−1
2

)
√
n− 1Γ

(
n−2
2

) .

Under the independent Normal model, S/c4 is an unbiased estimator of σ. The expectation
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of δ̂a is

E
(
δ̂a

)
= E

(
µa − µ0

σ√
n−1

W 1/2/c4

)

=
√
n− 1c4

(
µa − µ0

σ

)
E
(
W−1/2

)
=

√
n− 1c4

(
µa − µ0

σ

)
×
∫ ∞

0

w−1/2 1

Γ
(
n−1
2

)
2(n−1)/2

w(n−1)/2−1e−w/2dw

=
√
n− 1c4

(
µa − µ0

σ

)
Γ
(
n−2
2

)
2(n−2)/2

Γ
(
n−1
2

)
2(n−1)/2

×
∫ ∞

0

1

Γ
(
n−2
2

)
2(n−2)/2

w(n−2)/2−1e−w/2dw

= c4

(
µa − µ0

σ

) √
n− 1Γ

(
n−2
2

)
√
2Γ
(
n−1
2

)
= c4

(
µa − µ0

σ

)
c−1
4 =

µa − µ0

σ

= δa,

where W = (n− 1)S2/σ2 ∼ χ2
n−1. Hence, the statistic δ̂a is an unbiased estimator of δa.

When using a t-test, the following Table 3.4.1 gives the possible null and alternative

hypotheses as well as the SL.

Table 3.1: Hypotheses and Significance Level

H0 : µ ≤ µ0 Ha : µ > µ0 SLn,δ = 1− Ftn−1,0

(
Tn−1,

√
nδ

)
H0 : µ = µ0 Ha : µ ̸= µ0 SLn,δ = 2

[
1− Ftn−1,0

(∣∣Tn−1,
√
nδ

∣∣)]
H0 : µ ≥ µ0 Ha : µ < µ0 SLn,δ = Ftn−1,0

(
Tn−1,

√
nδ

)
The distribution of T 2 is a non-central F -distribution with 1 degree of freedom in the

numerator, n− 1 degree of freedom in the denominator, and non-centrality parameter nδ2.
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We have

T 2 =
(Z +

√
nδ)

2

W/ (n− 1)
∼ F1,n−1,

√
nδ.

The mean E (T 2) of T 2 is determined as follows.

E
(
T 2
)
= (n− 1)E

[(
Z +

√
nδ
)2]

E
(
W−1

)
= (n− 1)E

(
Z2 + 2

√
nδZ + nδ2

)
E
(
W−1

)
= (n− 1)

(
1 + nδ2

) ∫ ∞

0

w−1 1

Γ
(
n−1
2

)
2(n−1)/2

w(n−1)/2−1e−w/2dw

= (n− 1)
(
1 + nδ2

) ∫ ∞

0

1

Γ
(
n−1
2

)
2(n−1)/2

w(n−3)/2−1e−w/2dw

=
(n− 1) (1 + nδ2) Γ

(
n−3
2

)
2(n−3)/2

Γ
(
n−1
2

)
2(n−1)/2

∫ ∞

0

1

Γ
(
n−3
2

)
2(n−3)/2

w(n−3)/2−1e−w/2dw

=
(n− 1) (1 + nδ2)

(
n−1
2

− 1
)
Γ
(
n−1
2

− 1
)
2(n−3)/2(

n−1
2

− 1
)
Γ
(
n−1
2

)
2(n−1)/2

=
(n− 1) (1 + nδ2)

(n− 3)
.

Now, suppose the researcher can provide a value µp for µ that makes the alternative

hypothesis true that is of practical significance. What sample size n is needed to detect

this mean µp that is of practical significance? Associated with the desired value of n is the

power of the test 1− βp. For this test, we require that n is be a solution to the equation

1− P

(
Xn − µp

Sn/
√
n

≤ tn−1,0,α |µ > µp

)
≥ 1− βp or

1− Ftn−1,
√
nδp

(tn−1,0,α) ≥ 1− βp or

Ftn−1,
√
nδp

(tn−1,0,α) ≤ βp,

where δp = (µ− µp) /σ. This equation can be solved for n.

The question is what size of the test is needed to detect this change in the mean? A crit-

ical value for this test is tn−1,0,α0 for a test of size α0, where tn−1,0,α0 is the 100 (1− α0)th
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percentile of a central t-distribution with n − 1 degrees of freedom. Let tn−1,
√
nδ,α be

the 100 (1− α)th percentile of a non-central t-distribution with n − 1 degrees of free-

dom and non-centrality parameter
√
nδ. Let’s set tn−1,0,α0 = tn−1,

√
nδa,α and solve for

α0 = α0 (α, n, δa).

δ =
µ− µ0

σ
or µ = µ0 + δσ.

The significance level (SL) for this test is

SL = max
µ≤µ0

{
1− Ftn−1,

√
nδ

(
Tn−1,

√
nδ

)}
= 1− Ftn−1,0

(
Tn−1,

√
nδ

)
,

where Tn−1,
√
nδ ∼ tn−1,

√
nδ. The cumulative distribution function that describes the sam-

pling distribution of the statistic SL is found as follows with the indicator function I(0,1) (q) =

1 if q ∈ (0, 1) and zero otherwise.

FSL (q) = P
[
1− Ftn−1,0 (T ) ≤ q

]
I(0,1) (q)

= P
[
Ftn−1,0 (T ) ≥ 1− q

]
I(0,1) (q)

= P
[
T ≥ F−1

tn−1,0
(1− q)

]
I(0,1) (q)

= 1− P
[
T < F−1

tn−1,0
(1− q)

]
I(0,1) (q)

= 1− Ftn−1,
√
nδ

(
F−1
tn−1,0

(1− q)
)
I(0,1) (q) .

The probability density function describing the sampling distribution of SL is

fSL (q) =
d

dq
FSL (q) = − d

dq
F−1
tn−1,

√
nδ

(
F−1
tn−1,0

(1− q)
) d

dq
F−1
tn−1,0

(1− q) I(0,1) (q)

=
ftn−1,

√
n(µ−µ0)/σ

(
F−1
tn−1,0

(1− q)
)

ftn−1,0

(
F−1
tn−1,0

(1− q)
) I(0,1) (q) .

If we assume the null hypothesis holds, then

fSL (q) =
ftn−1,0

(
F−1
tn−1,0

(1− q)
)

ftn−1,0

(
F−1
tn−1,0

(1− q)
)I(0,1) (q) = I(0,1) (q) .

Hence, the significance level has a Uniform distribution on the interval (0, 1).
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3.4 CONCLUSION

As the sample size n increases, we have shown that the expectation of T increases to infinity

while the variance depends only on the overall effect size. An unbiased estimator of the

overall effect size was given. We derived the distribution of the significance level for the

t-test. If the null hypothesis is true, we have shown that the distribution of the significance

level is a Uniform distribution on the interval (0, 1).
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CHAPTER 4

ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

4.1 INTRODUCTION

Analysis of variance (ANOVA) is used to analysis the data of many statistically designed

experiments. We give an example of a one-way analysis of variance.

4.2 AN EXAMPLE OF A ONE-WAY ANALYSIS OF VARIANCE

The model in a one-way analysis of variance (ANOVA) has the response variable Y defined

by

Yijk = µ+ τi + ϵij ,

where µ is an overall mean and τi is the ith treatment effect for i = 1, . . . , a and j =

1, . . . , n. It is further assumed that ∑a

i=1
τi = 0.

See Scheffe (1959) for further discussion of the one-way analysis of variance.

The method used to analyze the data begins by examining the statistic

SST =
∑a

i=1

∑n

j=1

(
Yij − Y ..

)2
that is a measure of the variability in the responses, where

Y .. =
1

na

∑a

i=1

∑n

j=1
Yij .

The statistic SST is referred to as sum of squares total. This variability can be partitioned

as SST = SSE + SSTR, where

SSE =
∑a

i=1

∑n

j=1

(
Yij − Y i.

)2
and SSTR =

∑a

i=1

∑n

j=1

(
Y i. − Y ..

)2
,



43

where

Y i. =
1

n

∑n

j=1
Yij

for i = 1, . . . , a. The statistics SSE and SSTR are commonly referred to as the sum of

squares error and the sum of squares treatment, respectively.

Observe that we can write the SSTR using vector notation as

SSTR =
∑a

i=1

∑n

j=1

(
Y i. − Y ..

)2
= n

∑a

i=1

(
Y i. − Y ..

)2

= n



Y 1. − Y ..

Y 2. − Y ..

...

Y a. − Y ..



T 

Y 1. − Y ..

Y 2. − Y ..

...

Y a. − Y ..


.

It is not difficult to show that

SSTR = Y
T
(
I− 1

a
J

)
Y,

where I is a a×a identity matrix, J is a a×a matrix of ones, and Y =
[
Y 1., . . . , Y k.

]T
. As

one can see, this is the quadratic form of SSTR. It can be shown the a× a matrix I− 1
a
J

has a− 1 eigenvalues that are ones and one eigenvalue that is zero. Further, one can show

that the matrix can be expressed as

I− 1

a
J = VHVT,

where the a × a matrix H has ones in the first a − 1 diagonal components and zeroes

elsewhere, and the first a−1 columns of the a×a matrix V are the normalized eigenvectors

associated with the a− 1 eigenvalues of 1 and the a column is the normalized eigenvector

associated with the eigenvalue of zero. It is not difficult to show that H is idempotent.
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We can now write

SSTR = Y
T
VHVTY =

[
HVTY

]T [
HVTY

]
.

Further, we can express Y as

Y = σ



Y 1.−µ1

σ/
√
n

+
√
nµ1

σ

Y 2.−µ2

σ/
√
n

+
√
nµ2

σ

...

Y k.−µk

σ/
√
n

+
√
nµk

σ


= σ



Z1 +
√
nδ1

Z2 +
√
nδ2

...

Zk +
√
nδk


= σ

(
Z+

√
nδ
)

,

where Zi =
(
Y i. − µi

)
/ (σ/

√
n) ∼ N (0, 1), δi = µi/σ, Z = [Z1., . . . , Zk.]

T and

δ = [δ1., . . . , δk.]
T. It is not difficult to see that Zi’s are independent since the Y i.’s are

independent. It follows that

SSTR = σ2
[
HVT

(
Z+

√
nδ
)]T [

HVT
(
Z+

√
nδ
)]

= σ2
[(
HVTZ+

√
nHVTδ

)]T [(
HVTZ+

√
nHVTδ

)]
.

The random vector

Z∗ = HVTZ =
[
Z∗

1., . . . , Z
∗
a−1., 0

]T ∼ Na (0,H) .

Hence, the first a−1 components of Z∗ are independent standard Normal random variables.

Letting

τ =
√
nHVTδ,

we have

SSTR = σ2 (Z∗ + τ)T (Z∗ + τ) = σ2
∑a−1

i=1
(Z∗

i + τi)
2 .

There is an orthongonal matrix B such that Bτ =
√
τTτe1 = de1, where d2 = τTτ and e1

is a a × 1 vector with first component 1 and the other a − 1 components zeros. It follows
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that

B (Z∗ + τ) = BZ∗ +Bτ = Z∗∗ +
√
τTτe1 = Z∗∗ + de1.

It is not difficult to show that Z∗∗ ∼ Na (0, I). Hence,

SSTR = σ2 (Z∗∗ + de1)
T (Z∗∗ + de1) = σ2

[(
Z∗∗

i +
√
nd
)2

+
∑a−1

i=2
(Z∗∗

i )2
]

.

Therefore,

SSTR ∼ σ2χ2
a−1,nd2 or

SSTR

σ2
∼ χ2

a−1,nd2 ,

where

d2 =
∑a−1

i=1
τ 2i =

(
HVT

√
nδ
)T (

HVT
√
nδ
)

=
(√

nδ
)T(

I− 1

na
J

)(√
nδ
)

= n
∑a

i=1

(
δi − δ

)2
= n

∑a

i=1

(
µi − µ

σ

)2

,

with

δ =
1

a

∑a

i=1
δi =

1

a

∑a

i=1
µi/σ = µ/σ.

The mean square due to treatment MSTR is defined by MSTR = SSTR/ (a− 1), where

a− 1 is the degrees of freedom associated with SSTR.

Further, we observe that

SSE =
∑a

i=1

∑n

j=1

(
Yij − Y i.

)2
=
∑a

i=1
(n− 1)

1

n− 1

∑n

j=1

(
Yij − Y i.

)2
=
∑a

i=1
(n− 1) S2

i = σ2
∑a

i=1

(n− 1) S2
i

σ2
.

Thus,
SSE

σ2
∼
∑a

i=1
χ2
n−1 ∼ χ2

na−a
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The mean square due to error MSE is defined by MSE = SSE/ (na− a), where na− a

is the degrees of freedom associated with SSE.

The null and alternative hypotheses that are typically tested are

H0 : τ1 = . . . = τa = 0 and

Ha : at least one of the τi’s not equal to zero.

A size α F -test rejects H0 if the observed value of

F =
MSTR

MSE
≥ Fa−1,na−a,α,

where Fa−1,na−a,α is the 100 (1− α)th percentile of a central (d = 0) F -distribution. Note

that F has a noncentral F -distribution with a − 1 numerator degrees of freedom, na − a

denominator degrees of freedom, and noncentrality parameter d2. We express this as

F ∼ Fa−1,na−a,d2 ,

where Fa−1,na−a,d2 is a random variable having a non-central F -distribution with a − 1

numerator degrees of freedom, na−a denominator degrees of freedom, and non-centrality

parameter d2.
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The expectation of F is determined as follows.

E (F ) = E (Fa−1,na−a,nd2) = E

(
MSTR

MSE

)
= E

(
SSTR/ (a− 1)

SSE/ (na− a)

)
=

na− a

a− 1
E

(
SSTR

SSE

)
=

(n− 1) a

a− 1
E

(
SSTR

SSE

)
=

(n− 1) a

a− 1
E

(
SSTR
σ2

SSE
σ2

)

=
(n− 1) a

a− 1
E

(
χ2
a−1,d2

χ2
na−a

)

=
(n− 1) a

a− 1
E
(
χ2
a−1,d2

)
E
[(
χ2
na−a

)−1
]

=
(n− 1) a

a− 1
E
(
a− 1 + nd2

)
×
∫ ∞

0

w−1 1

Γ
(
na−a

2

)
2(na−a)/2

w(na−a)/2−1e−w/2dw

=
(n− 1) a (a− 1 + nd2) Γ

(
na−a−2

2

)
2(na−a−2)/2

(a− 1) Γ
(
na−a

2

)
2(na−a−2)/2+1

=
(n− 1) a (a− 1 + nd2) Γ

(
na−a

2
− 1
)

2 (a− 1)
(
na−a

2
− 1
)
Γ
(
na−a

2
− 1
)

=
(n− 1) a (a− 1 + nd2)

(a− 1) (na− a− 2)

=
a (a− 1 + nd2)

a− 1

1− 1/n

a− a−2
n

.

We see that as n goes to infinity

lim
n→∞

E (F ) = lim
n→∞

(n− 1) a (a− 1 + d2)

2 (a− 1)
(
na−a−2

2

) =
(a− 1 + d2)

a− 1
= ∞.

Further, we have

V (F ) = 2
(a− 1 + d2)

2
+ (a− 1 + 2d2) (na− a− 2)

(na− a− 2)2 (na− a− 4)

(
na− a

a− 1

)2

= 2
(a− 1 + d2)

2
+ (a− 1 + 2d2) (a (n− 1)− a− 2)

(a (n− 1)− a− 2)2 (a (n− 1)− a− 4)

(
a (n− 2)

a− 1

)2

.
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It is of interest to examine

lim
n→∞

V (F ) =
2 (a− 1 + 2d2)

(a− 1)2
.

As in the case of the t-test, the mean of the distribution of the test statistic F increases to

infinity while the variance only depends on the overall effect size d.

Determining the sample size n requires a level of significance α, a probability of a

Type II error β, and a value d2a of d2 that is of statistically significant, of practical signifi-

cance, or of clinical significance. The power of the test is defined as 1 − β. The minimal

sample size n is the least value of n that is the solution to the equation

1− FFa−1,na−a,nd2
(Fa−1,na−a,α) ≥ 1− β or

FFa−1,na−a,nd2
(Fa−1,na−a,α) ≤ β

subject to

1− FFa−1,na−a,0 (Fa−1,na−a,α) = α

with cumulative distribution function

FQ

(
q
∣∣ν1, ν2, d2 ) = e−d2/2FFa−1,na−a,0 (q)

+ e−d2/2
∑∞

j=1

(d2)
j

2jj!
FFa−1+2j,na−a

(
a− 1

a− 1 + 2j
q

)
.

For example, suppose α = 0.05 and 1− β = 0.80 (β = 0.20) with a = 4 and da = 2. For

n = 10, we have for n = 10 the critical value of the test is

F4−1,10(4)−4,0.05 = FInv(0.95; 4− 1, 10 (4)− 4) = 2.86627,

rounded to five decimal places. The power of the test for n = 10 and da = 2 is 0.80252,

rounded to five decimal places. The following table give the power of the test for various

sample sizes obtained through trial and error.
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Table 4.1: Power of the Test

n Power of the Test

6 0.79856

7 0.80000

8 0.80106

9 0.80188

The values in the table have been rounded to five decimal places. We see that a sample

of size n = 7 gives us the first sample size in which the power is at least 80%.

The significance level (SL) for this test is defined by

SL = max
H0:δ=0

{
1− FFa−1,na−a,

√
nδ

(
Fa−1,na−a,

√
nδ

)}
= 1− FFa−1,na−a,0

(
Fa−1,na−a,

√
nδ

)
.

The cumulative distribution function describing the distribution of the statistic SL is deter-

mined as follows.

FSL (q) = P
[
1− FFa−1,na−a,0 (Fa−1,na−a,δ) ≤ q

]
= P

[
FFa−1,na−a,0 (Fa−1,na−a,δ) ≥ 1− q

]
= P

[
Fa−1,na−a,δ ≥ F−1

Fa−1,na−a,0
(1− q)

]
= 1− FFa−1,na−a,δ

(
F−1
Fa−1,na−a,0

(1− q)
)

.
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The probability density function describing the sampling distribution of SL is

fSL (q) =
d

dq
FSL (q) = − d

dq
F−1
Fa−1,na−a,δ

(
F−1
Fa−1,na−a,0

(1− q)
)

× d

dq
F−1
Fa−1,na−a,0

(1− q) I(0,1) (q)

=
fFa−1,na−a,δ

(
F−1
Fa−1,na−a,0

(1− q)
)

fFa−1,na−a,0

(
F−1
Fa−1,na−a,0

(1− q)
)I(0,1) (q) .

If the overall effect size δ = 0, then

fSL (q) =
fFa−1,na−a,0

(
F−1
Fa−1,na−a,0

(1− q)
)

fFa−1,na−a,0

(
F−1
Fa−1,na−a,0

(1− q)
)I(0,1) (q) = I(0,1) (q) .

In this case, the distribution of the significane level is a Uniform distribution on the interval

(0, 1).

4.3 CONCLUSION

The mean of the distribution of the F test statistic increases as n increases while the vari-

ance is finite only depending on the overall effect size δ. We defined the significance level

and derived its distribution. When the null hypothesis is true, the distribution of the signif-

icance level is a Uniform distribution on the interval (0, 1).
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CHAPTER 5

CONFIDENCE INTERVALS

5.1 INTRODUCTION

Confidence intervals are recommended in the literature to estimate the parameter of interest.

For the population mean µ, the t-interval is commonly used provided the sample is a “large”

size sample. It has the form(
x− tn−1,α/2

s√
n
, x+ tn−1,α/2

s√
n

)
,

where x and s are the respective mean and standard deviation of the observed measurements

x1, . . . , xn. This interval is the observed value of the random interval(
X − tn−1,α/2

S√
n
,X + tn−1,α/2

S√
n

)
that has a 100 (1− α)% chance of containing the population mean µ. Hence, we say that

we are 100 (1− α)% confident that µ is in the observed interval.

The margin of error (MoE) for the t-interval is

MoE = tn−1,α/2
s√
n

.

A researcher may have an interest in this margin of error to be no more than a certain

amount B. Our interest is to solve the inequality

tn−1,α/2
s√
n
≤ B or n ≥

t2n−1,α/2s
2

B2
.

However, since the data has yet to be collected, we do not know the value of s2. Another

approach is to obtain from the researcher a bound B∗ on the expected value of the margin

of error before the data is collected. That is,

E

(
tn−1,α/2

S√
n

)
≤ B∗.
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As we will see the expected value of the margin of error is a function of σ. We see that

E

(
tn−1,α/2

S√
n

)
=

tn−1,α/2√
n

E (S) .

Observe that under the independent Normal model that

W =
(n− 1)S2

σ2
∼ χ2

n−1,

where χ2
n−1 is a random variable having (central) Chi Square distribution with n−1 degrees

of freedom. Next observe that

S =

(
σ2

n− 1

(n− 1)S2

σ2

)1/2

=
σ√
n− 1

W 1/2.

Hence,

E (S) =
σ√
n− 1

E
(
W 1/2

)
=

σ√
n− 1

∫ ∞

0

w1/2fW (w) dw

=
σ√
n− 1

∫ ∞

0

w1/2 1

Γ
(
n−1
2

)
2(n−1)/2

w(n−1)/2−1e−w/2dw

=
Γ
(
n−2
2

)
2(n−2)/2

√
n− 1Γ

(
n−1
2

)
2(n−2)/2−1/2

σ

=

√
2Γ
(
n−2
2

)
√
n− 1Γ

(
n−1
2

)σ.

The following function of n

c4 =

√
2Γ
(
n−2
2

)
√
n− 1Γ

(
n−1
2

)
under the independent Normal model is the unbiased constant for the sample standard de-

viation S, that is, E (S/c4) = σ.

There are two ways to obtain estimates of σ. The first is uses an estimated of σ found

in the literature. The second is to take a preliminary sample of size n0 < n and the standard
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deviation of this sample sn0 divided by the unbiased constant c4, s/c4, to estimate σ. Both

methods will result in estimates of the sample size n of the form

tn−1,α/2√
n

σ̂ ≤ B∗or n ≥

⌈(
tn−1,α/2σ̂

B∗

)2
⌉

.

5.2 CONCLUSION

Because of the observed significance level of the t-test decreases as n increases, we recom-

mend using confidence intervals to summarize the data. As the sample size n increases, a

confidence interval becomes a more precise interval estimate of the population mean µ.
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CHAPTER 6

CONCLUSION

6.1 GENERAL CONCLUSIONS

We have investigated the meaning of the statistic, which we referred to as the significance

level, and derived its distribution for the t-test and the F -test. In both cases, if the null

hypothesis is true, then the significance level has a Uniform distribution on the interval

(0, 1). We have shown that the observed significance level in both the t-test and F -test

becomes smaller as the sample size n increases.

6.2 AREAS FOR FURTHER RESEARCH

There are many other applications of tests of significance and tests of hypothesis. For

example, there are a variety of non-parametric tests and tests for factorial experiments,

as well as other tests of significance and hypothesis. We are interested in studying the

distribution of the significance level for each of these tests. Further, we are interested in

studying the results found in Beji (1985).
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