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CHAPTER 1

INTRODUCTION

1.1 SOME CONCEPTS AND ISSUES IN STATISTICAL LEARNING

Several statistical learning concepts that are essential to understanding the approaches

used in this research, especially in relation to logistic regression, are begun with a thorough

examination. Logistic regression is usually the most basic method in supervised statistical

learning[4, 11] for data classification, and it uses optimization theory to estimate param-

eters to fit models to data. One particular optimization technique is the Newton-Raphson

Method [13, 14, 15], extensively used in computational statistics for optimizing likelihood

functions of statistical models to find maximum likelihood estimates (mle) of parameters,

for example, in Generalized linear models, such as, the logistic, Poisson and quantile re-

gression models [3]. The Newton-Raphson iterative optimization approach refines param-

eter estimates by using the gradient of the log-likelihood function to converge towards the

maximum likelihood estimates. Despite the popularity of this iterative method, there are

issues, such as, the existence of a singular Jacobian matrix near the mle or the solution of a

system of equations, which has led to several important extensions of the Newton-Raphson

methods to efficiently find the mle. [16, 17, 18, 19, 20, 5].

Apart from the Newton methods, there are other methods for solving systems of

nonlinear equations such as the tensor methods[21]. In this study, an extension of the New-

ton methods called the Weighted Newton-Raphson Method (WNRM)[5] is revised, and

applied for the first time in a statistical model to find mle for the model. Although, the lo-

gistic regression model has been extensively investigated, the issue of a singular Jacobian

near the mle’s of the model remains an important subject for investigation and poses a huge

challenge in classifying the responses of the logistic regression model. While for most

nonlinear systems of equations, the issue of the Jacobian is easily resolved by a correctly
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selected initial solution [3], this is not always the case for most optimization problems in

statistics, and there is a need for more advanced methods for optimizing likelihood func-

tions.

In this study, the new iterative approach called the Weighted Newton-Raphson

Method (WNRM) [5] is investigated in logistic regression analysis, for both repeated or

non-repeated data response structures. The Weighted Newton-Raphson Method utilizes

weights to overcome obstacles of the singular Jacobian matrix in logistic regression, when-

ever the ordinary Newton- Raphson method is inefficient. The reliability of parameter

estimation is improved by this adaptation through the integration of modifications to the

classic Newton-Raphson technique, ensuring consistent convergence even in complicated

situations. In the subsequent subsections, some basic terminologies used in statistical learn-

ing are revised.

1.1.1 WHAT IS STATISTICAL LEARNING?

Statistical learning [4, 11] is the process of creating models with statistical tech-

niques and algorithms in order to reach conclusions from data. Based on observed data,

it involves determining the association between input variables—such as characteristics,

predictors, or independent variables—and an output variable—often known to as the re-

sponse or dependent variable. Preparing and data exploration, model selection, training,

assessment, and deployment are all steps in this process. Statistical learning allows the de-

velopment of exact models for outcome prediction and the comprehension of complicated

relationships within datasets by using computer methods and statistical concepts. Esti-

mating the function f has two primary objectives: prediction and inference. The goal of

predictive modeling is to determine the connection between input variables X and an out-

put variable Y , which is frequently challenging to measure directly. This relationship is
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often written as

Y = f(X) + ϵ, (1.1)

where X is fixed and ϵ is the random error with mean zero. That is E(ϵ) = 0.

We use Ŷ = f̂(X) to predict Y , where f̂ is our estimated function and Ŷ is the consequent

prediction. This prediction’s accuracy relies on two sorts of errors: reducible and irre-

ducible errors. The reducible error depends on improving the structure of the component

f(X) to more accurately fit the data. The irreducible error depends on the random error

component ϵ that occurs with the natural variability in the data. Consider a collection of

predictors X and a given estimate f̂ , such that Ŷ = f̂(X). Assume that f̂ and X are both

fixed, meaning that ϵ is the only source of variability.

E(Y − Ŷ )2 = E[f(X) + ϵ− f̂(X)]2

= E
[
(f(X) + ϵ− f̂(X))2

]
=

[
f(X)− f̂(X)]2 + 2[f(X)− f̂(X)

]
E(ϵ) + V ar(ϵ)

f(X) and f̂(X) are constant, E(ϵ) = 0 and E(ϵ2) = V ar(ϵ).

E(Y − Ŷ )2 = [f(X)− f̂(X)]2 + V ar(ϵ), (1.2)

where [f(X) − f̂(X)]2 is the reducible error term, V ar(ϵ) is the variance related to the

random error term ϵ and E(Y − Ŷ )2 is the anticipated value of the squared expected dif-

ference between the predicted and actual value of Y . The difference between the estimated

function f̂(X) and the true underlying function f(X) causes this component of the error.

In the context of supervised learning, reducible error refers to inaccuracies in the

model that can be minimized or eliminated through adjustments to the algorithm, refining

the features, or increasing the size or quality of the training dataset. For example, a machine

learning model is trained to predict the sales of a retail store based on factors like advertis-

ing expenditure, seasonality, and competitor activities. If the model fails to account for an
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important predictor, such as the impact of local events or holidays, the error resulting from

this oversight is reducible. By incorporating additional relevant features into the model,

such as data on local events or holiday calendars, the model’s predictive accuracy can be

improved. On the other hand, irreducible error pertains to the inherent noise or random-

ness present in the data, which cannot be reduced regardless of the sophistication of the

model or the size of the dataset. For instance, in predicting stock prices, even with the most

advanced machine learning algorithms and extensive financial data, there will always be

unpredictable market fluctuations and external events influencing stock movements, con-

stituting irreducible error.

Unlike prediction, inference aims to comprehend the connection between the output

variable Y and the input variables X1, X2, ..., Xp without specifically generating predic-

tions for Y . We seek to estimate the function f to understand the relationship between the

variables. Within this particular framework: 1) The focus is on determining whether pre-

dictors are significantly linked to the response variable Y . 2) It is essential to comprehend

the nature of the relationship between each predictor and the response variable, determin-

ing if it is positive, negative, or more complicated. 3) We will investigate if the relationship

between the predictors and the response can be clearly expressed by a linear equation or if

a more complicated model is required.

Assume an inference might involve understanding how teaching methods X in-

fluence student performance Y on standardized tests. Instead of solely aiming to predict

individual students’ test scores based on teaching techniques, the focus is on discerning

the precise relationship between teaching methods and student achievement. By employ-

ing statistical models such as regression analysis, researchers can estimate coefficients to

interpret the impact of various teaching strategies on test scores. For instance, if the coef-

ficient for a particular teaching method is positive and statistically significant, it suggests

that employing that method tends to lead to higher test scores. This understanding is vital
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for educators and policymakers seeking to improve educational practices and outcomes.

1.1.2 SUPERVISED AND UNSUPERVISED LEARNING

Statistical learning problems are often classified as either supervised or unsuper-

vised learning. Supervised learning implies observations, where each predictor measure-

ment xi, i = 1, 2, . . . , n, is linked with a corresponding response measurement yi. The

purpose is to construct a model that can predict future responses effectively or improve

the comprehension of the relation between predictors and responses. Classical methods

include linear regression and logistic regression, along with contemporary approaches like

GAM, boosting, and support vector machines, function within this framework. Unsuper-

vised learning involves situations where only predictor measures xi are present, without

linked response variables yi. The lack of a response variable causes difficulties, limiting

the use of techniques such as linear regression.

It is essential in statistical learning to comprehend the connections between vari-

ables or observations. Cluster analysis, commonly referred to as clustering, is a powerful

technique for this purpose. Cluster analysis aims to find out if data can be categorized

into separate clusters according to their attributes. Market segmentation studies involve

observing client attributes such as zip code, income, and buying patterns to discover dif-

ferent customer categories like big spenders and low spenders. Without detailed data on

client spending habits, a supervised analysis cannot be conducted. Clustering assists in

categorizing clients based on measured data, identifying unique segments that may vary in

significant characteristics such as spending patterns.

1.1.3 REGRESSION AND CLASSIFICATION PROBLEMS

Regression is used to predict continuous results, like estimating house prices us-

ing factors like as square footage, number of rooms, and location. The purpose here is
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to establish the connection between predictors and the continuous response variable via

methods such as linear regression, polynomial regression, or sophisticated techniques like

random forests. However, classification is concerned with forecasting categorical results,

such identifying emails as spam or not, or diagnosing people as having a specific illness or

not. Here, creating a model that can classify observations into specified groups according to

input attributes is the goal. Logistic regression is a classification technique that predicts the

probability of an observation fitting into a specific category by modeling a logistic function

to the dataset. It is especially beneficial for addressing binary classification issues, which

involve only two possibilities.

There are more classification techniques besides logistic regression. A member of

the memory-based learning technique family is the k-Nearest Neighbors (kNN) algorithm.

kNN is an example of an unsupervised classification technique, as as compared to logistic

regression. It is a flexible and intuitive method, especially in situations when the decision

boundary is nonlinear or the data distribution is complex, as it allocates newly collected

data points to the category that most closely resembles that of their k nearest neighbors in

the feature space.

1.1.4 GENERALIZED LINEAR MODELS

Generalized Linear Models (GLMs) in statistical modeling provide a more flexi-

ble framework than traditional multiple linear regression models by deviating from their

assumptions to handle different sorts of response variables. GLMs differ from typical

regression models by accommodating a wider variety of distributions and modifying the

assumptions of normality and constant variance. GLMs are capable of handling response

variables that do not follow the normal distribution assumption. This is especially bene-

ficial when addressing non-normal response and variance inequality, which are prevalent

issues in practical data analysis. Generalized Linear Models (GLMs) offer versatility by
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accepting response variables that adhere to various distributions within the exponential

family, such as normal, Poisson, binomial, exponential, and gamma distributions.

Furthermore, GLMs combine linear and nonlinear regression models, giving them

a versatile tool for empirical modeling and data analysis. The normal-error linear model,

a specific example of Generalized Linear Model (GLM), is merely one illustration of its

wider range of applications. GLMs, like logistic regression, are used when the response

variable has binary outcomes, such as success or failure. Logistic regression surpasses

linear regression models by treating the response as qualitative, offering a strong framework

for assessing categorical data. Another scenario where this method is useful is when the

response variable involves numbers, such as errors in a product unit or infrequent events

like Atlantic hurricanes hitting land. GLMs provide customized techniques, like Poisson

regression, to properly model count data in certain situations.

Logistic regression is frequently utilized for categorical answer variables having

two outcomes, such as success or failure, ”yes” or ”no”, or ”true” or ”false”. Visualize

a research project examining the variables that impact a student’s chances of university

admission, such as their GPA and entrance exam results. Logistic regression can be used

to estimate the probability of admission based on GPA and exam score, with the response

variable being binary (admitted or not admitted).

Poisson regression is appropriate when the dependent variable indicates the fre-

quency of occurrences happening within a specific time or space period. For example, in a

manufacturing environment, a researcher may analyze the correlation between the quantity

of errors in a product batch and different manufacturing characteristics. Poisson regres-

sion is used to estimate defect counts by considering variables like manufacturing speed,

temperature, or raw material quality, to understand the factors affecting defect rates.
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1.1.5 OUTLINE OF THESIS

The thesis is organized as follows: In Chapter 1, some concepts in statistical learn-

ing are discussed, including the definition of statistical learning, the distinction between

supervised and unsupervised learning, the exploration of regression and classification prob-

lems, and the introduction to generalized linear models. In Chapter 2, a complete descrip-

tion of The Weighted Newton-Raphson Method (WNRM) is provided, and an example for

the Weighted Newton-Raphson Method is presented. In Chapter 3, the assumption of the

logistic regression model is discussed, and The Method of Maximum Likelihood estimation

in the logistic regression model for non-repeated data as well as repeated data is derived.

Additionally, the application of the Ordinary Newton Raphson method and Weighted New-

ton Raphson method is demonstrated. In Chapter 4, the binary classification of diabetes

occurrence in the Pima Indians Diabetes Database is examined, including the logistic re-

gression model for the diabetes data and the derivation of the Weighted Newton-Raphson

algorithm. The application of the WNRM and the Reweighted Least Square method is

explored, along with the interpretation of the Maximum Likelihood Estimates (MLEs) for

the regression coefficients. Finally, methodologies for selecting the best predictive logistic

regression model, such as Forward Selection and Backward Selection, are discussed and

final conclusion is given in Chapter 4.
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CHAPTER 2

THE WEIGHTED NEWTON-RAPHSON METHOD (WNRM)

2.1 INTRODUCTION

In this chapter the ordinary Newton-Raphson algorithm (ONRM) [5] is revised and a new

and more efficient extension of the method called the Weighted Newton-Raphson Method

(WNRM) [5] is introduced. Recall [5] , the Newton-Raphson method is a numerical ap-

proach to determine the real roots α⃗ ∈ D of the nonlinear functions F (x⃗), where the

function F : D ⊆ R̂m → Rm, m > 0 and the vector

x⃗ =



x1

x2

.

.

xm


, F (x⃗) =



f1(x⃗)

f2(x⃗)

.

.

fm(x⃗)


.

That is, the method applies to solving the nonlinear equation F (x⃗) = 0. At the (n + 1)th

step in the ONRM, the solution of the system is given by

x⃗(n+1) = x⃗(n) − [JF (x⃗
(n))]−1F (x⃗(n)), (2.1)

where JF (x⃗
(n)) is the Jacobian matrix at the nth step. The following definition describes

the order of convergence of an algorithm.

Definition 1. Let {x⃗(n)}k≥0 be a sequence in Rn convergent to α⃗. Then, the convergence

is said to be

(a) linear, if there exists M , 0 < M < 1, and k0 such that∥∥x⃗(k+1) − α⃗
∥∥ ≤ M

∥∥x⃗(k) − α⃗
∥∥ , ∀k ≥ k0.

(b) of order p, p ≥ 2, if there exists M , M > 0, and k0 such that∥∥x⃗(k+1) − α⃗
∥∥ ≤ M

∥∥x⃗(k) − α⃗
∥∥p

, ∀k ≥ k0.
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The following result describes the convergence order of the iteration (2.1). The quadratic

convergence of the ONRM requires that the Jacobian JF (x⃗
(n)) is non-singular near the

solution, that is, |JF (x⃗)| ≠ 0, near α⃗ ∈ D. Further recall [5], the order of convergence ρ of

the iterations {x⃗(n)}n≥0 of an algorithm to the solution α⃗ is approximated by the following

ρ ≈
ln(

∥∥x⃗(k+1) − α⃗
∥∥)/∥∥x⃗(k) − α⃗

∥∥
ln(∥x⃗(k) − α⃗∥)/ ∥x⃗(k−1) − α⃗∥

,∀k ≥ 0. (2.2)

In the following, an example is given to show the ONRM.

Example 2.1. Consider the nonlinear system of equations below. Solve for the vector

x⃗ = (x, y, z).

3x− cos(yz)− 0.5 = 0,

x2 − 625y2 − 0.25 = 0,

e−xy + 20z + (10π − 3)/3 = 0. (2.3)

Solution 2.2. Define the following functions

f1 = 3x− cos(yz)− 0.5,

f2 = x2 − 625y2 − 0.25,

f3 = e−xy + 20z + (10π − 3)/3,

and compute the Jacobian matrix as follows.

[JF (x⃗)] =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z

 =


3 zsin(yz) ysin(yz)

2x −1250y 0

−ye−xy −xe−xy 20

 .

Applying the ONRM in (2.1), it is easy to see that

x⃗k+1 = x⃗k − [JF (x⃗
k)]−1F (x⃗k).
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Select initial solution x⃗(0) = (0.2, 0.2,−0.2)T ; the solution is given by

x̂ = 5.000000e− 01, ŷ = 7.718786e− 11, ẑ = −5.235988e− 01,

where the iteration converges after 31 steps. The R-code for the solution is given in A.1.

2.2 THE WEIGHTED NEWTON-RAPHSON METHOD (WNRM)

The ONRM fails, whenever the Jacobian matrix is singular. The WNRM is an itera-

tive method designed for achieving quadratic convergence in the Newton-Raphson method,

whenever the Jacobian |JF (x⃗)| = 0, near the solution α⃗ ∈ D.

2.2.1 DERIVATION OF THE WEIGHTED NEWTON-RAPHSON METHOD (WNRM)

The WNRM [5] is derived in this section. The following result will be used to derive the

WNRM.

Theorem 2.3. Let G(x) be a fixed point function with continuous partial derivatives of

order p with respect to all components of the vector x⃗ = (xj1 , xj2 , . . . , xjp)
T . The iterative

method x⃗(k+1) = G(x⃗(k)) is of order p, if G(α⃗) = α⃗;

∂kgi(α⃗)

∂xj1, ∂xj2, . . . , ∂xjk

= 0,

(2.4)

for all 1 ≤ k ≤ p− 1, 1 ≤ i, j1, . . . , jk ≤ n; and

∂pgi(α⃗)

∂xj1, ∂xj2, . . . , ∂xjp

= 0, (2.5)

for at least one value of i, j1, . . . , jp where gi, i = 1, 2, . . . , n, are the component functions

of G.

Proof. See [5].



21

The root α⃗ of F (x⃗) is obtained by solving the equation F (α⃗) = 0. Suppose |JF (x⃗)| = 0

near α⃗ ∈ D. In the Ordinary Newton Raphson method, the fixed point function is given by

G(x⃗) = x⃗− [JF (x⃗)]
−1F (x⃗). (2.6)

The Weighted Newton Raphson method is derived by replacing the function G by

Ĝ(x⃗) = x⃗− [JF (x⃗)]
−1MF (x⃗), (2.7)

where M is a diagonal matrix used to establish convergence for the failed Newton-Raphson

method. The diagonal element of M = diag(m1,m2, . . . ,mn), that is, mi are called

weights and given by

mi =
1

1− ∂gi(α⃗)
∂xi

, i = 1, 2, . . . , n, (2.8)

and

G(x⃗) = (g1(x⃗), g2(x⃗), . . . , gn(x⃗))
T = x⃗− [JF (x⃗)]

−1F (x⃗). (2.9)

Given the nonlinear system, F (x⃗) = 0,

F (x⃗) = (f1(x⃗), . . . , fn(x⃗))
T (2.10)

where F (α⃗) = 0 and |JF (α⃗)| = 0. Consider the auxiliary system,

F̂ (x⃗) =
(
ev1x1f1(x⃗)

1
m1 , . . . , evnxnfn(x⃗)

1
mn

)
= 0, (2.11)

where mi > 0, i = 1, 2, . . . , n, vi ∈ R, i = 1, 2, . . . , n are chosen to obtain |JF̂ .(α⃗)| ≠ 0.

Applying the ONRM in (2.1) to (2.11),

x⃗(k+1) = x⃗(k) −
[
JF̂ (x⃗

(k))
]−1

F̂ (x⃗(k)), (2.12)

where the Jacobian matrix of F̂ (x⃗)

JF̂ (x⃗) = diag

(
evixi

1

mi

fi(x⃗)
1

mi
−1

)
× (diag(vimifi(x⃗))) + JF (x⃗). (2.13)
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Substituting (2.13) to (2.12) yields,

x⃗(k+1) = x⃗(k) −
[
diag(vimifi(x⃗

(k))) + JF (x⃗
(k))

]−1 × diag
[
mie

−vixifi(x⃗
(k))

(1− 1
mi

)
]
F̂ (x⃗(k))

= x⃗(k) −
[
diag(vimifi(x⃗

(k))) + JF (x⃗
(k))

]−1
diag(mi)F̂ (x⃗(k)) (2.14)

The iteration (2.14) is the Generalized Newton Raphson Method(GRN). Observe that (2.14)

reduces to (2.15), when vi = 0, i = 1, 2, . . . , n

x⃗(k+1) = x⃗(k) − [JF (x⃗)]
−1diag(mi)F (x⃗(k)). (2.15)

The iteration (2.15) is Weighted Newton Raphson Method (WNRM).

Theorem 2.4. Under the above mentioned conditions, if fi(x) ∈ C2(D) : D ⊆ Rn, α ∈ D

and x(0) is chosen sufficiently close to the solution, then the method defined by (2.15) has

quadratic convergence.

Proof. see [5]

Algorithm 2.2.1. Algorithm for Weighted Newton Method

Step-1: Select initial solution x⃗0;

Step-2: Replace the fixed point function G(x⃗) = x⃗−[JF (x⃗)]
−1F (x⃗) by the function Ĝ(x) =

x− [JF (x)]
−1MF (x), where M is the diagonal matrix with weights mi.

Step-3: Using Ĝ(x⃗) = x⃗− [JF (x⃗)]
−1MF (x⃗), find

mi =
1

1− ∂gi(α)
∂xi

,

where G(x⃗) = (g1(x⃗), g2(x⃗), ..., gn(x⃗))
T = x⃗− [JF (x⃗)]

−1F (x⃗).

Step-4: Apply the Weighted Newton Raphson Method is given by

x⃗k+1 = x⃗k − [JF (x⃗
k)]−1diag(mi)F (x⃗k),∀k ≥ 0,
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where

x⃗k =



xk
0

xk
1

.

.

xk
k


, [JF ⃗(xk)] =



∂f1
∂β0

∂f1
∂β1

.... ∂fk
∂βk

∂f2
∂β0

∂f2
∂β1

.... ∂fk
∂βk

. . . .

. . . .

∂f3
∂β0

∂f3
∂β1

.... ∂fk
∂βk


, and F (x⃗k) =



f1(x
k
0, x

k
1, ...., x

k
2)

f2(x
k
0, x

k
1, ...., x

k
2)

.

.

fk(x
k
0, x

k
1, ...., x

k
2)


.

Step-5: If the discrepancy between the estimate in the current iteration β⃗k+1 and the es-

timate in the previous iteration β⃗k is less than a predetermined tolerance level ϵ, stop the

procedure and take the current estimate β⃗ as the root.

Step-6: Provide the ultimate approximation of the root.

Apply the WNRM in Example 2.1 to find the solution x⃗ = (x, y, z)T .

2.2.2 EXAMPLE FOR THE WEIGHTED-NEWTON RAPHSON METHOD

Example 2.5. Solve the system below for X⃗ = (x, y, z)T .

3x− cos(yz)− 0.5 = 0,

x2 − 625y2 − 0.25 = 0,

e−xy + 20z + (10π − 3)/3 = 0. (2.16)

Solution 2.6. Define the following functions

f1 = 3x− cos(yz)− 0.5,

f2 = x2 − 625y2 − 0.25,

f3 = e−xy + 20z + (10π − 3)/3,

[JF (x⃗)] =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z

 =


3 zsin(yz) ysin(yz)

2x −1250y 0

−ye−xy −xe−xy 20

 .
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and compute the Jacobian matrix as follows.

[JF (x⃗)] =


3 zsin(yz) ysin(yz)

2x −1250y 0

−ye−xy −xe−xy 20

 .

Fixed point function

G(x⃗) = x⃗− [JF (x)]
−1F (x⃗) = (g1(x⃗), g2(x⃗), ...., gk(x⃗))

T .

The weights of the diagonal matrix M = diag(mi)

mi =
1

1−
(

∂gi(x⃗)
∂xi

) ,M = diag(mi) =


m11 0 0

0 m22 0

0 0 m33

 .

Applying the Weighted Newton Raphson method in (2.15), it is easy to see that

x⃗k+1 = x⃗k − [JF (x⃗
k)]−1MkF (x⃗k).

Select initial solution x⃗(0) = (0.2, 0.2,−0.2)T ; The Solution is

x̂ =5.000000e− 01

ŷ =2.812312e− 09

ẑ =− 5.235988e− 01,

where the iteration converges after 31 steps. The R-code for the solution is given in A.2.
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CHAPTER 3

THE LOGISTIC REGRESSION MODEL

3.1 ABOUT THE LOGISTIC REGRESSION MODEL

The starting point for most statistical supervised learning methods for classification is the

classical logistic regression model. In this chapter the logistic regression model is defined

for both repeated and non-repeated response variables. Furthermore, the method of Max-

imum Likelihood Estimation is applied to find Maximum likelihood estimates (MLE) for

the parameters of the logistic regression model by the iterative method of the Weighted

Newton-Raphson Method introduced in Chapter 2.

3.2 ASSUMPTIONS OF THE LOGISTIC MODEL FOR NON-REPEATED DATA

It is assumed that the p regressors X1, X2, . . . Xp, where the ith observation in a sample of

size n is denoted by Xi1, Xi2, . . . Xip, i = 1, 2, . . . , n. Also, for each i = 1, 2, . . . , n, the

response variable yi takes on the value either 0 or 1 and yi is a Bernoulli random variable.

The cases yi and the regressors Xi1, Xi2, . . . Xip, are related as follows.

yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip + ϵi,

= (X⃗i)
T β⃗ + ϵi, ∀i = 1, 2, . . . , n (3.1)

where (X⃗i)
T = (1, Xi1, Xi2, . . . Xip), and ϵi is the error random variable not satisfying the

normality conditions as in the multiple linear regression model. In addition, the distribution

of yi, is given as follows.

P (yi = 1) = πi, P (yi = 0) = 1− πi ∀i = 1, 2, . . . , n. (3.2)
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The error variance is not constant, since from (3.1) var(ϵi) = var[yi−(x⃗i)
T β⃗] = var[yi] =

σ2
yi
, where

σ2
yi = E(yi − E(yi))

2

= (1− πi)
2P (yi = 1) + (0− πi)

2P (yi = 0)

= (1− πi)
2πi + π2

i (1− πi)

= πi(1− πi)(1− πi + πi)

= πi(1− πi),∀i ≥ 1, 2, . . . , n, (3.3)

and 0 ≤ E(yi) = πi ≤ 1. Since the expected value E[yi] = πi ∈ (0, 1) and nonlinear, then

the logistic growth function is selected given as follows

πi =
e(X⃗i)

T β⃗

1 + e(X⃗i)T β⃗
. (3.4)

From (3.4), it follows that the logit function is given by

log

(
πi

1− πi

)
= (X⃗ i)T β⃗. (3.5)

Every sample observation has a probability distribution that is based on the Bernoulli dis-

tribution, which is

P (yi) = (πi)
yi(1− πi)

1−yi ,∀yi = 0, 1; i = 0, 1, . . . , n. (3.6)

Note that for each i = 1, 2, . . . , n, the random variables yi are mutually independent

Bernoulli random variables i.e. y1, y2, . . . , yn are independent. Given the sample obser-

vations {y1, y2, . . . , yn} of the Bernoulli distribution, the log-likelihood function for the

parameter vector β⃗ in Section 3.1 is derived.

L(β⃗|y1, y2, . . . , yn) =
n∏

i=1

p(yi)

=
n∏

i=1

πyi
i (1− πi)

1−yi
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Taking logarithm function on both sides,

logL(β⃗|y1, y2, . . . , yn) = log

[
n∏

i=1

πyi
i (1− πi)

1−yi

]
=

n∑
i=1

yilog(πi) +
n∑

i=1

(1− yi)log(1− πi)

(3.7)

Using equation (3.5) into (3.7),

logL(β⃗|y1, y2, . . . , yn) =
n∑

i=1

yi(X⃗i)
T β⃗ −

n∑
i=1

log(1 + e(X⃗i)
T β⃗). (3.8)

In the next section, the ONRM and WNRM are applied to optimize (3.8) to find MLE for

β⃗.

3.3 THE METHOD OF MAXIMUM LIKELIHOOD ESTIMATION IN THE LOGISTIC

REGRESSION MODEL FOR NON-REPEATED DATA

In this section the log-likelihood function (3.8) is optimized by applying both the ONRM

and the WNRM. Recall (3.8)

logL(β⃗|y1, y2, . . . , yn) =
n∑

i=1

yi(X⃗i)
T β⃗ −

n∑
i=1

log(1 + e(X⃗i)
T β⃗) (3.9)

Optimizing the function (3.9) consist of solving the system of equations below.

∂ log
∂β0

(L(β⃗|y1, y2, . . . , yp)) = 0

∂log
∂β1

(L(β⃗|y1, y2, . . . , yp)) = 0

.

.

∂ log
∂βp

(L(β⃗|y1, y2, . . . , yp)) = 0.

(3.10)

Let fj(β⃗), j = 1, 2, . . . , p be as follows.

fj(β⃗) =
∂logL(β⃗|y1, . . . , yn)

∂βj

, j = 0, 1, 2, . . . , p (3.11)
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and

F (β⃗) = (f0(β⃗), f1(β⃗), . . . , fp(β⃗))
T . (3.12)

The system (3.10) reduces to

F (β⃗) = 0. (3.13)

The ordinary Newton Raphson method is given by,

β⃗k+1 = β⃗k − [JF (β⃗
k)]−1F (β⃗k), (3.14)

and the WNRM is given by

β⃗k+1 = β⃗k − [JF̂ (β⃗
k)]−1MF (β⃗k), (3.15)

where

β⃗ =



β0

β1

.

.

βp


, [JF (β⃗)] =



∂f1
∂β0

∂f1
∂β1

∂f1
∂β2

∂f2
∂β0

∂f2
∂β1

∂f2
∂β2

.

.

∂f3
∂β0

∂f3
∂β1

∂f3
∂β2


, F (β⃗) =



f1(β0, β1, β2)

f2(β0, β1, β2)

.

.

f3(β0, β1, β2)


,

G(β⃗) = (g1(β⃗), ..., gn(β⃗))
T = β⃗ − [JF (β⃗)]

−1F (β⃗), (3.16)

M = diag(mi), mi =
1

1− ∂gi(α)
∂βi

(3.17)

The steps for the ONRM in logistic regression are summarized in the algorithm below.

Algorithm 3.3.1. Algorithm for ONRM in logistic regression

Step-1: Begin by selecting an initial estimate β0, β1, β2 for the root of the function.
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Step-2: Compute the function value F (β⃗) = (f0(β⃗), f1(β⃗), f2(β⃗))
T and its derivative ∂f(β⃗)

∂βj
,

∀j = 0, 1, 2 to find the Jacobian matrix [JF (β⃗)] at the kth iteration β⃗k. Furthermore, apply

the following iteration to find the solution at the (k + 1)th step.

β⃗k+1 = β⃗k − [JF (β⃗)]
−1F (β⃗k) (3.18)

Step-3: If the discrepancy between the estimate in the current iteration β⃗k+1 and the esti-

mate in the previous iteration β⃗k is less than a predetermined tolerance level ϵ. Stop the

procedure and take the current estimate β⃗ as the root.

Step-4: Provide the ultimate approximation of the root.

Also, the steps for the WNRM in logistic regression based in the iteration in (3.15)

are summarized in the algorithm below.

Algorithm 3.3.2. Algorithm for WNRM in logistic regression

Step-1: Begin by selecting an initial estimate β0, β1, β2 for the root of the function.

Step-2: Compute the function value F (β⃗) = (f0(β⃗), f1(β⃗), f2(β⃗))
T and its derivative ∂f(β⃗)

∂βj
,

∀j = 0, 1, 2 to find the Jacobian matrix [JF (β⃗)] at the kth iteration β⃗k.

Step-3: At (k+1)th step, define Ĝ(β) = β⃗−[JF (β⃗)]
−1MF (β⃗) applied to system F (β⃗) = 0,

where M = diag(mi),

mi =
1

1− ∂gi(α)
∂βi

, G(β⃗) = (g1(β⃗), ..., gn(β⃗))
T = β⃗ − [JF (β⃗)]

−1F (β⃗).

Step-4: If the discrepancy between the estimate in the current iteration β⃗k+1 and the es-

timate in the previous iteration β⃗k is less than a predetermined tolerance level ϵ, stop the

procedure and take the current estimate β⃗ as the root.

Step-5: Provide the ultimate approximation of the root.

In the next section Algorithms 3.3.1 & 3.3.2 are applied to an example for a logistic regres-

sion model. It is shown that the ONRM is limited for finding MLE’s for the parameter β⃗,

while the WNRM is more efficient, whenever the Jacobian matrix is singular.
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3.4 EXAMPLE OF MAXIMUM LIKELIHOOD METHOD IN LOGISTIC REGRESSION WITH

NON-REPEATED DATA

In this section, an example of a multiple logistic regression model is given; and the

ONRM and the WNRM are applied to find MLE for β⃗. Consider the model

yi = β0 + β1x
2 + β2e

x + ϵi, (3.19)

where i = 1, 2, . . . , n;

V ar(ϵi) = σyi = πi(1− πi),

and

E(yi) = πi,∀i = 1, 2, . . . , n.

The iterative methods are applied to fit the model (3.19) to the data in Table (3.1).

y x

0 1.5

1 2

0 3.5

1 2.5

1 1

0 1.3

Table 3.1: Bivariate data for the example of non-repeated data logistic regression model.

From (3.5), it is easy to see that,

E(yi) =
eβ0+β1x2

i+β2exi

1 + eβ0+β1x2
i+β2exi

, i = 1, 2, . . . , n. (3.20)
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From (3.10), the MLE of β⃗ = (β0, β1, β2)
T is obtained by solving the system (3.13). Ob-

serve from (3.7) and (3.10) that the log-likelihood for the model (3.19) is expressed as

follows.

logL(y1, y2, ..., yn, β⃗) =
n∑

i=1

yi(β0 + β1x
2 + β2e

x)−
n∑

i=1

log(
1

1 + eβ0+β1x2+β2ex
). (3.21)

Applying (3.11),(3.12) and (3.13) to (3.21), it is easy to see that the system of equations,

fj(β⃗) =
∂logL(β⃗|y1, y2, . . . , yn)

∂βj

= 0, j = 0, 1, 2 (3.22)

is written as

F (β⃗) = (f0(β⃗), f1(β⃗), f2(β⃗)) = 0, (3.23)

where

f0(β0, β1, β2) =
n∑

i=1

[
yi − (1 + e−β0−β1x2

i−β2exi )−1
]
,

f1(β0, β1, β2) =
n∑

i=1

[
yi − (1 + e−β0−β1x2

i−β2exi )−1
]
(x2

i ),

f2(β0, β1, β2) =
n∑

i=1

[
yi − (1 + e−β0−β1x2

i−β2exi )−1
]
(exi), (3.24)

and

∂f0
∂β0

= −
n∑

i=1

[
e−β0−β1x2

i−β2exi

(1 + e−β0−β1x2
i−β2exi )2

]
,
∂f0
∂β1

= −
n∑

i=1

[
x2
i e

−β0−β1x2
i−β2exi

(1 + e−β0−β1x2
i−β2exi )2

]
,

∂f0
∂β2

= −
n∑

i=1

[
exie−β0−β1x2

i−β2exi

(1 + e−β0−β1x2
i−β2exi )2

]
,
∂f1
∂β0

= −
n∑

i=1

[
x2
i e

−β0−β1x2
i−β2exi

(1 + e−β0−β1x2
i−β2exi )2

]
,

∂f1
∂β1

= −
n∑

i=1

[
x4
i e

−β0−β1x2
i−β2exi

(1 + e−β0−β1x2
i−β2exi )2

]
,
∂f1
∂β2

= −
n∑

i=1

[
x2
i e

−β0−β1x2
i−β2exiexi

(1 + e−β0−β1x2
i−β2exi )2

]
,

∂f2
∂β0

= −
n∑

i=1

[
exie−β0−β1x2

i−β2exi

(1 + e−β0−β1x2
i−β2exi )2

]
,
∂f2
∂β1

= −
n∑

i=1

[
x2
i e

−β0−β1x2
i−β2exiexi

(1 + e−β0−β1x2
i−β2exi )2

]
,

∂f2
∂β2

= −
n∑

i=1

[
e2xie−β0−β1x2

i−β2exi

(1 + e−β0−β1x2
i−β2exi )2

]
.

(3.25)
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3.4.1 APPLICATION OF THE ONRM

Applying the steps of Algorithm 3.3.1 to solve (3.23) for β⃗, the following are obtained.

(1.) In Step 1, select β⃗(0) = (β0, β1, β2) = (1, 2, 3).

(2.) In Step 2, compute the function value F (β⃗) = (f0(β⃗), f1(β⃗), f2(β⃗))
T in (3.23) and

its derivative ∂fj(β⃗)

∂βj
, ∀j = 0, 1, 2 in (3.25) to find the Jacobian matrix [JF (β⃗)] at the

kth iteration β⃗k.

(3.) In Step 3, apply the ONRM iteration below to find the solution at the (k + 1)th step.

β⃗k+1 = β⃗k − [JF (β⃗)]
−1F (β⃗k). (3.26)

(4.) In Step-4: if the discrepancy between the estimate in the current iteration β⃗k+1 and

the estimate in the previous iteration β⃗k is less than a predetermined tolerance level

ϵ. Stop the procedure and take the current estimate β⃗ as the root.

(5.) Step-5: Provide the ultimate approximation of the root.

Applying steps (1.)-(4.) above for the data in Table 3.1 the results of the ORNM are given

below for 6 iterations.
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iteration β̂0 β̂1 β̂2 Error MSE

1 2.236146e+12 2.309280e+12 -1.672176e+12 1.672176e+12 NaN

2 NaN NaN NaN NaN NaN

3 NaN NaN NaN NaN NaN

4 NaN NaN NaN NaN NaN

5 NaN NaN NaN NaN NaN

6 NaN NaN NaN NaN NaN

Table 3.2: Results for the ONRM.This table shows the estimated 1st iteration for β⃗ =

(β0, β1, β2)
T at each iteration k = 1, 2, . . . , 6. The error statistics measures the distance

||β⃗k+1− β⃗k||max = max0≤j≤2 |βk+1
j − βk

j |, where ||β⃗k+1− β⃗k||max → 0, as k → ∞ implies

convergence. Subsequent iterations yield ‘NaN’ values for the estimated coefficients β̂0,

β̂1, and β̂2, indicating the inability to converge towards a solution.

Remark 3.1. Observe from Table 3.2 that the ONRM does not converge, and a singular

Jacobian matrix is obtained after the first iteration. This necessitates a more efficient itera-

tive method for finding MLE’s in the logistic regression. The computer code for the solution

is given in A.3.

3.4.2 APPLICATION OF THE WNRM

Applying the steps of Algorithm 3.3.2 to solve (3.23) for β⃗, the following are obtained.

(1.) In Step 1, select β⃗(0) = (β0, β1, β2) = (1, 2, 3).

(2.) In Step 2, compute the function value F (β⃗) = (f0(β⃗), f1(β⃗), f2(β⃗))
T in (3.23) and

its derivative ∂fj(β⃗)

∂βj
, ∀j = 0, 1, 2 in (3.25) to find the Jacobian matrix [JF (β⃗)] at the

kth iteration β⃗k.
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(3.) In Step 3, Define Ĝ(β) = β⃗− [JF (β⃗)]
−1MF (β⃗) applied to system F (β⃗) = 0, where

M = diag(mi),

mi =
1

1− ∂gi(α)
∂βi

, G(β⃗) = (g1(β⃗), ..., gn(β⃗))
T = β⃗ − [JF (β⃗)]

−1F (β⃗).

(4.) In Step-4: if the discrepancy between the estimate in the current iteration β⃗k+1 and

the estimate in the previous iteration β⃗k is less than a predetermined tolerance level

ϵ. Stop the procedure and take the current estimate β⃗ as the root.

(5.) Step-5: Provide the ultimate approximation of the root.

Applying steps (1.)-(4.) above for the data in Table 3.1 the results of the WRNM are given

below for 6 iterations.

iteration β̂0 β̂1 β̂2 Error MSE

1 15.29005 16.759264 -7.68669 10.68669 6.34577

2 15.29858 16.76787 -7.69300 0.00853 6.33949

3 17.64353 19.165757 -9.43779 0.00853 5.72467

4 17.70802 19.174725 -9.46479 0.00631 5.69493

5 30.41378 32.94553 -19.20651 0.006301 22.92075

6 21.11058 14.627347 -9.04506 0.006301 0.00000

Table 3.3: Results for the WNRM. This table shows the estimated for β⃗ = (β0, β1, β2)
T at

each iteration k = 1, 2, . . . , 6. The error statistics measures the distance ||β⃗k+1− β⃗k||max =

max0≤j≤2 |βk+1
j − βk

j |, where ||β⃗k+1−β⃗k||max → 0, as k → ∞ implies convergence. Since

norms are equivalent on Rm, the estimated mean square error given by the Euclidean norm

MSE = ||β⃗k − β⃗WNRM ||22 subsequently converges to zero for large iterations k.

Remark 3.2. Observe from Table 3.3 that the WNRM converges with nonsingular Jacobian

matrix is obtained. The computer code for the solution is given in A.4.
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3.5 ASSUMPTIONS FOR THE LOGISTIC REGRESSION MODEL WITH REPEATED DATA

It is assumed that the p regressors X1, X2, . . . Xp consists of m ≥ 1 levels, where the jth

level is denoted by Xj
1 , X

j
2 , . . . X

j
p , j = 1, 2, . . . ,m. Furthermore, at each level j, there

are nj cases denoted by the random variable yjij where i = 1, 2, . . . , nj . Also, for each

j = 1, 2, . . . ,m, the yjij are independent Bernoulli random variables i.e. yj1j, y
j
2j, . . . , y

j
njj

are independent random variables. The cases yjij and the regressors Xj
1 , X

j
2 , . . . X

j
p , are

related as follows.

yjij = β0 + β1X
j
1 + β2X

j
2 + · · ·+ βpX

j
p + ϵji ,

= (X⃗j)T β⃗ + ϵji , ∀j = 1, 2, . . . ,m;∀i = 1, 2, . . . , nj, (3.27)

where (X⃗j)T = (1, Xj
1 , X

j
2 , . . . X

j
p), and ϵji is the error random variable not satisfying the

normality conditions as in the multiple linear regression model. In addition, the distribution

of yjij is given as follows.

P (yjij = 1) = πj, P (yjij = 0) = 1− πj ∀j = 1, 2, . . . ,m;∀i = 1, 2, . . . , nj. (3.28)

Similarly as the case for non-repeated logistic regression, since the expected value E[yjij] =

πj ∈ (0, 1), then we select the logistic growth function as follows

πj =
e(X⃗

j)T β⃗

1 + e(X⃗j)T β⃗
. (3.29)

That is, from (3.29), it follows that the logit function is given by

log

(
πj

1− πj

)
= (X⃗j)T β⃗. (3.30)

Observe from (3.27) that the sum of the Bernoulli random variables has binomial distribu-

tion given as follows.

yjj =

nj∑
i=1

yjij ∼ Binomial(nj, πj). (3.31)
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That is,

P (yjj ) =

(
nj

yjj

)
(πj)

yjj (1− πj)
nj−yjj , ∀yjj = 0, 1, . . . , nj;∀j. (3.32)

Note that for each j = 1, 2, . . . ,m, the random variables yjj are mutually independent

binomial random variables i.e. y11, y
2
2, . . . , y

m
m are independent.

3.6 THE METHOD OF MAXIMUM LIKELIHOOD ESTIMATION IN THE LOGISTIC

REGRESSION MODEL FOR REPEATED DATA

Given the sample observations {y11, y22, . . . , ymm} of the binomial distribution, the log-likelihood

function for the parameter vector β⃗ in Section 3.5 is derived.

L(β⃗|y11, y22, . . . , ymm) =
m∏
j=1

p(yjj ); y
j
ij ∼ Binomial(nj, πj)

=
m∏
j=1

nj

yjj

 π
yjj
j (1− πj)

nj−yjj .

Taking logarithm function on both sides,

logL(β⃗|y11, y22, . . . , ymm) = log

 m∏
j=1

nj

yjj

 π
yjj
j (1− πj)

nj−yjj

 ,

where yjj are the number of 1’s and nj − yj are zeros in nj cases and

nj

yjj

 can be taken as

a constant C. The log-likelihood function from the binomial distribution can be written as,

logL(β⃗|y11, y22, . . . , ymm) = C +
m∑
j=1

yjj log(πj) +
m∑
j=1

(nj − yjj )log(1− πj).

Using equation (3.30),

logL(β⃗|y11, y22, . . . , ymm) = C +
m∑
j=1

yjj (X⃗
j)T β⃗ −

m∑
j=1

nj log(1 + e(X⃗
j)T β⃗). (3.33)
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To optimize the log-likelihood function in (3.33), the Weighted Newton Raphson Method(WNRM)

defined in Section 2.2 will be applied. In the following, the derivative of the log-likelihood

function with respect to the parameter vector β⃗ is given.

3.7 EXAMPLE OF MAXIMUM LIKELIHOOD METHOD IN LOGISTIC REGRESSION WITH

REPEATED DATA

The logistic model

y = β0 + β1x
2 + β2e

x + ϵ,

in (3.19) is reconsidered for the repeated data in Table 3.4, where it is assumed that there

are m = 5 levels of the regressors (x2, ex), where the values of x are given in Table 3.5.

Levels predictor value x case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8 case 9 case 10

1 3.78379 1 1 1 0 1 NA NA NA NA NA

2 4.637155 1 1 0 0 0 0 0 1 0 1

3 4.586748 0 1 1 0 1 1 0 NA NA NA

4 4.915587 1 0 0 0 0 NA NA NA NA NA

5 4.32147 1 0 1 1 1 1 1 NA NA NA

Table 3.4: The table provides a summary of repeated data, presenting the predictor values

(xj) and corresponding binary outcomes across multiple cases.

Denote by X1, X2, . . . , X5, the five levels

X1 = (3.78, e3.78), X2 = (4.64, e4.64), X3 = (4.59, e4.8), X4 = (4.92, e4.92),

X5 = (4.32, e4.32) (3.34)

At each level j = 1, 2, . . . , 5, Xj ∈ {X1, X2, X3, X4, X5}, Let yjij be the ith observa-

tion at level Xj. In Table 3.5, observe for X3 = (4.59, e4.59), y3i3 = 0, 1, 1, 0, 1, 1, 0,

∀i = 1, 2, . . . , 7. Furthermore, at level X3, y33 =
∑n3

i=1 y
3
i3

= 4. Similarly, the summary

of Table 3.4 for the repeated data is obtained in Table 3.5.
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Level j yjj nj

X1 y11 = 4 5

X2 4 10

X3 4 7

X4 1 5

X5 6 7

Table 3.5: Summary of a repeated data, detailing success counts yjj and corresponding total

observations nj across five levels X1 through X5. Each row represents a level, with the

success count indicating the number of positive outcomes observed within that level and nj

denoting the total number of observations.

Given the sample for the Binomial random variables (y11, y
2
2, . . . , y

m
m), where m = 5 and

yjj ,∀j is given in Table∼3.4, the log-likelihood function from (3.21) is given by

logL(β⃗|y11, . . . , ymm) = C +
m∑
j=1

yjj (β0 + β1x
2 + β2e

x)−
m∑
j=1

nj log(1 + eβ0+β1x2+β2ex).

(3.35)

From (3.35), let

fj(β⃗|y⃗) =
∂logL(β⃗|y⃗)

∂βj

, j = 0, 1, 2. (3.36)

It is easy to see that

f1(β⃗|y⃗) =
m∑
j=1

[
yjj −

nj

(1 + eβ0+β1x2+β2ex)

]
, f2(β⃗|y⃗) =

m∑
j=1

[
yjj −

nj(x
2)

(1 + eβ0+β1x2+β2ex)

]
,

f3(β⃗|y⃗) =
m∑
j=1

[
yjj −

nj(e
x)

(1 + eβ0+β1x2+β2ex)

]
. (3.37)

Let

F (β⃗) = (f1(β⃗|y⃗), f2(β⃗|y⃗), f3(β⃗|y⃗)). (3.38)
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To solve the system

F (β⃗) = 0, (3.39)

we apply the WNRM. The steps of the method and solution are given in the next section.

3.7.1 APPLICATION OF THE WNRM

Applying the steps of Algorithm 3.3.2 to solve (3.39) for β⃗, the following are obtained.

(1.) In Step 1, select β⃗(0) = (β0, β1, β2) = (0.1, 0.2, 0.3).

(2.) In Step 2, compute the function value F (β⃗) = (f0(β⃗), f1(β⃗), f2(β⃗))
T in (3.38) and

its derivative ∂fj(β⃗)

∂βj
, ∀j = 0, 1, 2 in (3.37) to find the Jacobian matrix [JF (β⃗)] at the

kth iteration β⃗k.

(3.) In Step 3, define Ĝ(β) = β⃗ − [JF (β⃗)]
−1MF (β⃗) applied to system F (β⃗) = 0, where

M = diag(mj), and

mj =
1

1− ∂gj(β)

∂βj

, j = 1, 2, ...,m,

G(β⃗) = (g1(β⃗), ..., gn(β⃗))
T

= β⃗ − [JF (β⃗)]
−1F (β⃗)

=


β0

β1

β2

−


∂f1
∂β0

∂f1
∂β1

∂f1
∂β2

∂f2
∂β0

∂f2
∂β1

∂f2
∂β2

∂f3
∂β0

∂f3
∂β1

∂f3
∂β2


−1

f1(β0, β1, β2|y⃗)

f2(β0, β1, β2|y⃗)

f3(β0, β1, β2|y⃗)

 (3.40)
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where the terms of the Jacobian matrix are given by

∂f1
∂β0

= −
m∑
j=1

nj

[
e−β0−β1x2−β2ex

(1 + e−β0−β1x2−β2ex)2

]
,
∂f2
∂β0

= −
m∑
j=1

nj

[
(x2)e−β0−β1x2−β2ex

(1 + e−β0−β1x2−β2ex)2

]
,

∂f1
∂β1

= −
m∑
j=1

nj

[
(x2)e−β0−β1x2−β2ex

(1 + e−β0−β1x2−β2ex)2

]
,
∂f2
∂β1

= −
m∑
j=1

nj

[
(x4)e−β0−β1x2−β2ex

(1 + e−β0−β1x2−β2ex)2

]
,

∂f1
∂β2

= −
m∑
j=1

nj

[
(ex)e−β0−β1x2−β2ex

(1 + e−β0−β1x2−β2ex)2

]
,
∂f2
∂β2

= −
m∑
j=1

nj

[
(x2)(ex)e−β0−β1x2−β2ex

(1 + e−β0−β1x2−β2ex)2

]
,

∂f3
∂β0

= −
m∑
j=1

nj

[
(ex)e−β0−β1x2−β2ex

(1 + e−β0−β1x2−β2ex)2

]
,

∂f3
∂β1

= −
m∑
j=1

nj

[
(x2)(ex)e−β0−β1x2−β2ex

(1 + e−β0−β1x2−β2ex)2

]
,

∂f3
∂β2

= −
m∑
j=1

nj

[
(ex)2e−β0−β1x2−β2ex

(1 + e−β0−β1x2−β2ex)2

]
.

(4.) In Step-4: if the discrepancy between the estimate in the current iteration β⃗k+1 and

the estimate in the previous iteration β⃗k is less than a predetermined tolerance level

ϵ. Stop the procedure and take the current estimate β⃗ as the root.

(5.) Step-5: Provide the ultimate approximation of the root.

Applying steps (1.)-(4.) above for the repeated data in Table 3.4 the results for the WRNM

to find the MLE for β⃗ are given below for 5 iterations.

iteration β̂0 β̂1 β̂2 MSE

1 -34.7136747 4.4465461 -0.2907909 13.698003

2 -35.3266133 4.5206603 -0.3009804 13.080517

3 -41.7527672 5.2971503 -0.4076345 6.606753

4 -44.6413870 5.6413478 -0.4540003 3.697331

5 -48.3129852 6.0730555 -0.5110502 0.000000

Table 3.6: Results for the repeated data of WNRM . This table shows the estimated for

β⃗ = (β0, β1, β2)
T at each iteration k = 1, 2, . . . , 5.
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Remark 3.3. Observe from Table 3.6 that the WNRM converges with nonsingular Jacobian

matrix obtained. The computer code for the solution is given in A.5.
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CHAPTER 4

BINARY CLASSIFICATION OF DIABETES OCCURRENCE IN THE PIMA INDIANS

DIABETES DATABASE

In this chapter, the WNRM is applied to classify the occurrence of of diabetes in the Pima

Indians Diabetes data[2]. The data was collected by the “National Institute of Diabetes and

Digestive and Kidney Diseases” describing different factors related to diabetes in the Pima

Indian native American population. The subjects of the study are female patients over the

age of 21.

4.1 DESCRIPTION OF THE PIMA INDIANS DIABETES DATA

In the data[2] there are eight predictors and one binary response variable denoted by “Out-

come” summarized in the Table 4.1 below. Furthermore, the all predictors are quantitative

and their ranges are given in the column denoted by “Range” in Table 4.1.

Attributes Description Range

Pregnancies No. of pregnancies 0–17

Glucose 2 hours of oral glucose tolerance test 0–199

Blood Pressure Blood pressure in mm Hg 0–122

Skin thickness Skinfold thickness of triceps (mm) 0–99

Insulin Two hours of serum insulin (mu U/ml) 0–846

BMI Body mass index (weight in kg/(height in m)2) 0–67

Diabetes Pedigree Function Attribute used in diabetes prognosis 0.078–2.4

Age Age (years) 21–81

Outcome Class variable (0 or 1) Y/N

Table 4.1: Predictor variables for the outcome of diabetes

The graphical summaries for the predictor variables are given in Figures 4.1 & 4.2.
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Figure 4.1: The boxplots are summaries for the predictor variables representing “number

of pregnancies”, “Blood pressure”, “Glucose level” and “Skin thickness”.
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Figure 4.2: The boxplots are summaries for the predictor variables representing “Level of

Insulin”, “BMI”, “Diabetes Pedigree Function” and “Age”.

Remark 4.1. The boxplot visually represents the midpoint, quartiles, and outliers, offering

valuable information regarding the extent and dispersion for the predictor variables “preg-

nancies”,“Blood pressure”,“Glucose”,“Skin thickness”,“Insulin”,“BMI”,“Diabetes Pedi-

gree Function” and “Age”.

4.2 THE LOGISTIC REGRESSION MODEL FOR THE DIABETES DATA AND

DERIVATION OF THE WEIGHTED NEWTON-RAPHSON ALGORITHM

The logistic model for the diabetes data based on (3.27 ) is given by

yi = β0 + β1Xi1 + β2Xi2 + · · ·+ β8Xi8 + ϵi,

= (X⃗i)
T β⃗ + ϵi, ∀i = 1, 2, . . . , n, (4.1)
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where

β⃗ = (β0, β1, . . . , β8)
T .

The WNRM for this example is given as follows.

β⃗k+1 = β⃗k − [JF (x⃗
k)]−1diag(mi)F (β⃗k), (4.2)

where the steps of the algorithm are given in Algorithm 3.3.2 , and the method is used to

optimize the log-likelihood function for the model defined subsequently.

Note that in the data[2] there 768 patients, and hence the binary responses are de-

noted by y⃗ = (y1, y2, . . . , y768) representing whether the patient has diabetes (yi = 1) or

not (yi = 0). Also, the eight factors that predict diabetes in the population are given in

Table 4.1. Thus, the log-likelihood function based on logistic regression in (3.30 ) is given

by

logL(y1, y2, ...., y768, β⃗) =
768∑
i=1

yi[x⃗
T
i β⃗] +

768∑
i=1

log

(
1

1 + ex⃗
T
i β⃗

)
, (4.3)

where

x⃗T
i = (1, xi1, xi2, . . . , xi8), i = 1, 2, . . . , 768

β⃗ = (β0, β1, . . . , β8)
T .

The function (4.3) is optimized by solving the system of nine equations

fj+1(β⃗) =
∂ logL(y⃗, β⃗)

∂⃗βj

= 0, j = 0, 1, 2, . . . , 8, (4.4)

also written as

F (f1(β⃗), f2(β⃗), . . . , f9(β⃗)) = 0, (4.5)

by applying the WNRM.
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4.2.1 APPLICATION OF THE WNRM

Note that the form of the Jacobian matrix is given by

J(β⃗) =



∂f1
∂β0

∂f1
∂β1

..... ∂f1
∂β8

∂f2
∂β0

∂f2
∂β1

..... ∂f2
∂β8

∂f3
∂β0

∂f3
∂β1

..... ∂f3
∂β8

. . . .

. . . .

. . . .

∂f9
∂β0

∂f9
∂β1

..... ∂f9
∂β8



.

From (4.3) and (4.4) it is easy to see that

fj(β⃗) =
n∑

i=1

[
yi −

ex⃗
T
i β⃗

(1 + ex⃗
T
i β⃗)

]
, j = 1, 2, . . . , 9. (4.6)

Furthermore, note that from (4.6) the following hold.

∂f1
∂β0

= −
n∑

i=1

[
ex⃗

T
i β⃗

(1 + ex⃗
T
i β⃗)2

]
; (4.7)

∂f1
∂βj

= −
n∑

i=1

[
(xij)e

x⃗T
i β⃗

(1 + ex⃗
T
i β⃗)2

]
, j = 1, 2, 3, . . . , 8; (4.8)

∂fj
∂β0

= −
n∑

i=1

[
(xij−1)e

x⃗T
i β⃗

(1 + ex⃗
T
i β⃗)2

]
, j = 2, 3, . . . , 9; (4.9)

∂fj
∂β1

= −
n∑

i=1

[
(xi1xij−1)e

x⃗T
i β⃗

(1 + ex⃗
T
i β⃗)2

]
, j = 2, 3, . . . , 9; (4.10)

∂fj
∂βl

= −
n∑

i=1

[
(xilxij−1)e

x⃗T
i β⃗

(1 + ex⃗
T
i β⃗)2

]
, j = 2, 3, . . . , 9; l = 1, 2 . . . , 8. (4.11)
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Also,

∂fj
∂β2

= −
n∑

i=1

[
(xi2xij−1)e

x⃗T
i β⃗

(1 + ex⃗
T
i β⃗)2

]
, j = 2, 3, . . . , 9; (4.12)

∂fj
∂β3

= −
n∑

i=1

[
(xi3xij−1)e

x⃗T
i β⃗

(1 + ex⃗
T
i β⃗)2

]
, j = 2, 3, . . . , 9; (4.13)

∂fj
∂β8

= −
n∑

i=1

[
(xi8xij−1)e

x⃗T
i β⃗

(1 + ex⃗
T
i β⃗)2

]
, j = 2, 3, . . . , 9. (4.14)

Now, setting the fixed point function

G(β⃗) = β⃗ − [JF (β)]
−1F (β⃗) = (g1(β⃗), g2(β⃗), ...., g9(β⃗))

T ,

the weights of the diagonal matrix M = diag(mi) are obtained using

mi =
1

1−
(

∂gi(β⃗)
∂βi

) ,
via approximating the derivative using the gradient of gi over the values of βi, ∀i.

For the selected initial solution β⃗(0) = (0.01, 0.02, 0.03, 0.07, 0.04, 0.1, 0.05, 0.06, 0.02)T ,

the MLE is obtained via the WNRM, and the solution of β⃗ for the system (4.5) at each

iteration is given in the Table 4.2. Moreover, the convergence of each coefficient βj of β⃗ to

the MLE is exhibited in Figures 4.3& 4.4 .
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It. β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 MSE

1 15.7018673 0.7207873 -0.1519086 0.2483672 -0.5704282 -0.1761688 0.2625451 3.3461076 -0.1398580 8.374106e+00

2 14.7761955 0.6634895 -0.1429595 0.2321221 -0.5314312 -0.1654340 0.2426316 3.1624618 -0.1273688 4.325943e+01

3 10.21810584 0.46278450 -0.09833367 0.15876069 -0.36497026 -0.11429201 0.16838205 2.11127009 -0.08637898 3.872988e+01

4 7.93874120 0.35911382 -0.07574936 0.12146202 -0.28008550 -0.08851523 0.12984334 1.55004888 -0.06451209 2.819186e+01

5 5.89668254 0.26252871 -0.05504916 0.08765787 -0.20190764 -0.06544913 0.09249635 1.06213816 -0.04465416 2.352459e+01

6 4.45153755 0.19251594 -0.04024674 0.06385739 -0.14631978 -0.04952900 0.06434748 0.74378561 -0.02985423 1.938498e+01

7 3.21853763 0.14029728 -0.02835819 0.04605900 -0.10528933 -0.03747026 0.04376092 0.53005845 -0.01782847 1.622250e+01

8 1.851895449 0.104670303 -0.018160393 0.033621043 -0.078124667 -0.027993939 0.035631828 0.417673308 -0.007978441 1.355642e+01

9 -3.714800e-01 8.486107e-02 -8.393908e-03 2.633933e-02 -6.554369e-02 -1.992756e-02 5.626866e-02 4.217423e-01 -8.969541e-05 1.132102e+01

10 -8.957442324 0.122643242 -0.010730962 0.027245318 -0.144730320 -0.015004728 0.375007430 0.327917770 0.004950934 9.113631e+00

11 12.4546557557 0.0040231075 -0.0005874807 0.0251019525 0.0408023944 0.0962392643 -0.6614690830 -0.7299445553 -0.0199102382 6.360850e+00

12 -5.79816632 0.19866922 -0.02121204 0.04442662 -0.08386838 -0.01272730 0.28144967 0.59429721 -0.07314947 3.703046e+01

13 -6.51668948 0.29960483 -0.02219140 0.07129287 -0.10681619 -0.01343488 0.31999545 0.87406400 -0.14239235 5.070423e+00

14 -3.967685118 0.180422495 -0.003334904 0.020379636 -0.049693464 -0.008946607 0.190576694 0.469802695 -0.081277393 4.986331e+00

15 -4.171962887 0.147377661 0.002247174 0.008237185 -0.034776848 -0.006929949 0.162026545 0.451151213 -0.052789558 1.588115e+01

16 5.1825778422 0.1325764386 -0.0096573608 -0.0429537327 -0.0096104542 -0.0004621504 -0.0096204239 0.0348891295 -0.0370879545 1.890119e+00

17 -5.1719825960 0.0661062498 0.0132293293 0.0198563687 0.0013620542 -0.0002064434 0.0332007956 0.5709185517 0.0034239544 2.138039e+00

18 -6.1692912763 0.1002159420 0.0215114439 0.0115973370 0.0053728009 -0.0003915115 0.0354331999 0.5966315746 0.0071004361 6.714345e+00

19 -23.734674048 0.097739460 0.057368699 0.035796185 -0.023586606 -0.002976117 0.322094734 2.074356640 0.056839318 9.018973e-01

20 -7.0991871563 0.1048108264 0.0272130305 0.0027434346 -0.0047700355 -0.0007498842 0.0662698855 0.6918541049 0.0065347607 2.302565e+00

21 -7.5040173002 0.1272051660 0.0300285769 -0.0007733009 -0.0033286322 -0.0008879174 0.0717268625 0.7826353585 0.0046136068 2.992251e-01

22 -9.194551528 0.115646035 0.037755194 -0.012809292 0.002455179 -0.001366140 0.092258025 1.023313323 0.023280618 1.583946e-01

23 -8.311481074 0.123196972 0.034726763 -0.013383206 0.000288166 -0.001163558 0.089841078 0.932409635 0.014221956 6.209808e-02

24 -8.4039595018 0.1232123879 0.0351360568 -0.0133431492 0.0005745193 -0.0011899499 0.0899413722 0.9443912302 0.0148502554 5.500343e-02

Table 4.2: Results for the diabetes data of WNRM . This table shows the estimated for

β⃗ = (β0, β1, β2, β3, β4, β5, β6, β7, β8)
T at each iteration k = 1, 2, . . . , 24. The MLE for β⃗

is given by the results at k = 24.
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Figure 4.3: Number of interactions until convergence for the Maximum Likelihood Esti-

mation for β⃗

Figure 4.4: Number of interactions until convergence for the Maximum Likelihood Esti-

mation for β⃗

Remark 4.2. The figure (4.3)-(4.4) is explained by emphasizing the relationship between

the quantity of iterations necessary for the Maximum Likelihood Estimation (MLE) algo-



50

rithm to reach a solution for the parameter vector β⃗. Each graph represents the number

of interactions required until convergence for different datasets or scenarios. Notably, all

four graphs demonstrate consistent convergence, reaching stability after approximately 24

iterations.

4.2.2 APPLICATION OF THE REWEIGHTED LEAST SQUARE METHOD

The classification of the response variable in the logistic model (4.1) is also con-

ducted by applying the Reweighted Least Square method in the glm(· · · ) function of the

R-software [1] for fitting Generalized Linear Models. The statistical method is explained

in the text[3]. The R-code is given in A.7 and the output is shown in Computer Output 1.

Computer-Output 1. The output in Table 4.3 is obtained from R, applying the Reweighted

Least Square method to find the MLE for the parameter β⃗ in 4.3.
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Coefficients: Estimate Std.Error z value Pr(> |z|)

(Intercept) -8.4046964 0.7166359 -11.728 < 2× 10−16 ***

Pregnancies 0.1231823 0.0320776 3.840 0.000123 ***

Glucose 0.0351637 0.0037087 9.481 < 2× 10−16 ***

Blood Pressure -0.0132955 0.0052336 -2.540 0.011072 *

Skin Thickness 0.0006190 0.0068994 0.090 0.928515

Insulin -0.0011917 0.0009012 -1.322 0.186065

BMI 0.0897010 0.0150876 5.945 2.76× 10−09 ***

Diabetes Pedigree F. 0.9451797 0.2991475 3.160 0.001580 **

Age 0.0148690 0.0093348 1.593 0.111192

Table 4.3: The output of a Generalized Linear Model (GLM) analysis for (4.1) using the

glm function in R is presented in the table. Every row in the dataset represents a predictor

variable, including information on the estimated coefficients, standard errors, z-values, and

corresponding p-values.

Remark 4.3.

(1.) Comparing the WNRM in Table 4.2 with the Re-weighted least squares in Table 4.3

methods in the glm() package in R. The results for the MLE are similar. But the Re-weighted

least squares methods in the glm() package in R converges after 5 iterations while the

Weighted NRM algorithm converges after 24 iterations.

(2.) While the Weighted NRM is more efficient that the ordinary NRM, it appears to less

efficient that the Re-weighted least squares algorithm for this particular problem.

We have applied Weighted NRM to fitted the model for non-repeated data and we have

extended the method for repeated data in logistic regression model.
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4.3 INTERPRETATION OF THE MLE’S FOR THE REGRESSION COEFFICIENTS

In logistic regression, the dependent variable is a dichotomous variable. Dichotomous vari-

ables are variables with only two values that is 0 and 1. In the model (4.1), 0 stands for not

having diabetes and 1 for having diabetes. The predictor variables- “Pregnancies”, “Glu-

cose”,“Blood Pressure”, “Skin-thickness”, “Insulin”, “BMI”, “Diabetes Pedigree Func-

tion”, “Age” and the dependent variable is “outcome” with values of 0 and 1. In our model,

the probability of the ith subject having diabetes is a function of the predictor variables

above and given by (3.4) and estimated by

π̂i = E[ŷi] =
(
1 + e−(x⃗i)

T β⃗
)−1

, i = 1, 2, . . . , n, (4.15)

where ⃗̂
β is the MLE of β⃗ obtained in Subsection 4.2.1. Furthermore,

log

(
π̂i

1− π̂i

)
= (x⃗i)

T ⃗̂β. (4.16)

To minimize complex notations, the population version of the model (4.1) given below will

be used for interpretation.

y = β0 + β1X1 + β2X2 + . . .+ β8X8 + ϵ,

= x⃗T β⃗ + ϵ, x⃗T = (1, X1, . . . , X8)
T ,

log

(
π

1− π

)
= β0 + β1X1 + β2X2 + . . .+ β8X8,

P (y = 1) = π, P (y = 0) = 1− π. (4.17)

The following notation is used to interpret the MLE β̂j , ∀j = 1, 2, . . . , 8 of the jth coeffi-

cient βj of the model (4.17). From (4.17), denote by

πlog+odd(Xj) = log (ODD(Xj))

= β0 + β1X1 + β2X2 + . . .+ βjXj + . . .+ β8X8;∀j = 1, 2, . . . , 8. (4.18)
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and

πlog+odd(Xj + 1) = log (ODD(Xj + 1))

= β0 + β1X1 + β2X2 + . . .+ βj(Xj + 1) + . . .+ β8X8;∀j = 1, 2, . . . , 8. (4.19)

It is easy to see from (4.18) & (4.19) that

πlog+odd(Xj + 1)− πlog+odd(Xj) = log

(
ODD(Xj + 1)

ODD(Xj)

)
= βj,∀j = 1, 2, . . . , 8,

(4.20)

and

ODD(Xj + 1)

ODD(Xj)
= eβj ,∀j = 1, 2, . . . , 8. (4.21)

It is also easy to see from (4.21) that for any positive real number c > 0,

ODD(Xj + c)

ODD(Xj)
= ecβj ,∀j = 1, 2, . . . , 8. (4.22)

Observe that (4.21) describes the odd ratio for increasing the regressor Xj by one unit; and

(4.22) describes the odd ratio for increasing the regressor Xj by c > 0 units.

(1.) Intercept: From Subsection 4.2.1, the MLE of the intercept is β̂0 = −8.4046963669 ≈

−8.405. From (4.16), observe that when x⃗i = (1, 0, 0, . . . , 0)T , the odd of diabetes

occurrence is given by

π̂i

1− π̂i

= eβ̂0 = e−8.4046963669 = 0.00022381374 (4.23)

That is, the odd of getting diabetes in the absence of “pregnancies”,“glucose”,“blood

pressure”,“skinthickness”,“insulin”,“BMI”,“diabetes predigree function”,“age” is 0.00022381374.

This relatively small odd value suggests it is unlikely to have diabetes in the absence

of the predictors.
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(2.) Pregnancies: From Subsection 4.2.1, the MLE of β̂1 = 0.1231822984 ≈ 0.123. From

(4.21)-(4.22), the odd ratios

ODD(X1 + 1)

ODD(X1)
= eβ̂1 = e0.1231822984 = 1.13109059816

ODD(X1 + c)

ODD(X1)
= e

ˆcβ1 = ec×0.1231822984. (4.24)

The equation (4.24) suggests that the odd ratio for getting diabetes increases by ap-

proximately 1.131, for every additional pregnancy. By increasing the number of

pregnancies by c > 0 units, the odd ratio further changes by ec×0.1231822984 units.

Also, since the p-value is 0.000123 < 0.05, this implies that the coefficient β1 for

Pregnancies is statistically significant at the 0.05 significance level. Hence, preg-

nancy significantly contributes to the occurrence of diabetes.

(3.) Glucose level: From Subsection 4.2.1, the MLE of β̂2 = 0.0351637146 ≈ 0.035.

From (4.21)-(4.22), the odd ratios

ODD(X1 + 1)

ODD(X1)
= eβ̂2 = e0.0351637146 = 1.03578926875

ODD(X1 + c)

ODD(X1)
= e

ˆcβ2 = ec×1.03578926875. (4.25)

The equation (4.24) suggests that the odd ratio for getting diabetes increases by ap-

proximately 1.035, for every additional glucose level. By increasing the number of

glucose level by c > 0 units, the odd ratio further changes by ec×0.0351637146 units.

Also, since the p-value is 2 × 10−16 < 0.05, this implies that the coefficient β2 for

Glucose is statistically significant at the 0.05 significance level. Hence, glucose sig-

nificantly contributes to the occurrence of diabetes.

(4.) Blood Pressure: From Subsection 4.2.1, the MLE of β̂3 = −0.0132955469 ≈ −0.013.
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From (4.21)-(4.22), the odd ratios

ODD(X1 + 1)

ODD(X1)
= eβ̂3 = e−0.0132955469 = 0.98679244847

ODD(X1 + c)

ODD(X1)
= e

ˆcβ3 = ec×0.98679244847. (4.26)

The equation (4.24) suggests that the odd ratio for getting diabetes increases by ap-

proximately 1.035, for every additional blood pressure. By increasing the number of

blood pressure by c > 0 units, the odd ratio further changes by ec×−0.0132955469 units.

Also, since the p-value is 0.011072 < 0.05, this implies that the coefficient β2 for

Blood Pressure is statistically significant at the 0.05 significance level. Hence, blood

pressure significantly contributes to the occurrence of diabetes.

(5.) Skin Thickness: From Subsection 4.2.1, the MLE of β̂4 = 0.0006189644 ≈ −0.0006.

From (4.21)-(4.22), the odd ratios

ODD(X1 + 1)

ODD(X1)
= eβ̂4 = e0.0006189644 = 1.000619156

ODD(X1 + c)

ODD(X1)
= e

ˆcβ4 = ec×0.0006189644. (4.27)

The equation (4.24) suggests that the odd ratio for getting diabetes increases by ap-

proximately 1.0006, for every additional skin thickness. By increasing the number of

blood pressure by c > 0 units, the odd ratio further changes by ec×0.0006189644 units.

Also, since the p-value is 0.928515 < 0.05, this implies that the coefficient β4 for

Skin Thickness is statistically significant at the 0.05 significance level. Hence, skin

thickness significantly contributes to the occurrence of diabetes.

(6.) Insulin: From Subsection 4.2.1, the MLE of β̂5 = 0.0006189644 ≈ −0.0006. From

(4.21)-(4.22), the odd ratios

ODD(X1 + 1)

ODD(X1)
= eβ̂5 = e0.0006189644 = 1.000619156

ODD(X1 + c)

ODD(X1)
= e

ˆcβ5 = ec×0.0006189644. (4.28)



56

The equation (4.24) suggests that the odd ratio for getting diabetes increases by ap-

proximately 1.0006, for every additional insulin. By increasing the number of insulin

by c > 0 units, the odd ratio further changes by ec×0.0006189644 units. Also, since the

p-value is 0.186065 > 0.05, this implies that the coefficient β5 for Insulin is statisti-

cally insignificant at the 0.05 significance level. Hence, insulin does not significantly

contributes to the occurrence of diabetes.

(7.) BMI: From Subsection 4.2.1, the MLE of β̂6 = 0.0006189644 ≈ −0.0006. From

(4.21)-(4.22), the odd ratios

ODD(X1 + 1)

ODD(X1)
= eβ̂6 = e0.0897009700 = 1.09384714168

ODD(X1 + c)

ODD(X1)
= e

ˆcβ6 = ec×0.0897009700. (4.29)

The equation (4.24) suggests that the odd ratio for getting diabetes increases by ap-

proximately 1.0006, for every additional BMI. By increasing the number of blood

pressure by c > 0 units, the odd ratio further changes by ec×0.0897009700 units. Also,

since the p-value is 2.76e − 09 < 0.05, this implies that the coefficient β6 for BMI

is statistically significant at the 0.05 significance level. Hence, BMI significantly

contributes to the occurrence of diabetes.

(8.) Diabetes Pedigree Function: From Subsection 4.2.1, the MLE of β̂7 = 0.9451797406 ≈

0.9452. From (4.21)-(4.22), the odd ratios

ODD(X1 + 1)

ODD(X1)
= eβ̂7 = e0.9451797406 = 2.57327585917

ODD(X1 + c)

ODD(X1)
= e

ˆcβ7 = ec×0.9451797406. (4.30)

The equation (4.24) suggests that the odd ratio for getting diabetes increases by ap-

proximately 2.5733, for every additional Diabetes Pedigree Function. By increas-

ing the number of blood pressure by c > 0 units, the odd ratio further changes by
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ec×0.9451797406 units. Also, since the p-value is 0.001580 < 0.05, this implies that the

coefficient β7 for Diabetes Pedigree Function is statistically significant at the 0.05

significance level. Hence, Diabetes Pedigree Function significantly contributes to

the occurrence of diabetes.

(9.) Age: From Subsection 4.2.1, the MLE of β̂8 = 0.9451797406 ≈ 0.9452. From (4.21)-

(4.22), the odd ratios

ODD(X1 + 1)

ODD(X1)
= eβ̂8 = e0.0148690047 = 1.01498009828

ODD(X1 + c)

ODD(X1)
= e

ˆcβ8 = ec×1.01498009828. (4.31)

The equation (4.24) suggests that the odd ratio for getting diabetes increases by ap-

proximately 2.5733, for every additional Age. By increasing the number of blood

pressure by c > 0 units, the odd ratio further changes by ec×0.0148690047 units. Also,

since the p-value is 0.111192 > 0.05, this implies that the coefficient β8 for Age

is statistically insignificant at the 0.05 significance level. Hence, Age is not signifi-

cantly contributes to the occurrence of diabetes.

4.4 SELECTING THE BEST PREDICTIVE LOGISTIC REGRESSION MODEL

Model performance and complexity must be balanced in order to select the best predictive

model. A more detailed model with many predictor variables might be able to identify

subtle patterns in the data, but it runs at risk of over-fitting, which happens when the model

catches up noise in the training set instead of actual underlying relationships. Conversely,

while a simpler model with fewer predictor variables could be easier to comprehend and

more flexible to new data, it might also lose some prediction accuracy. Numerous meth-

ods for selecting models have been developed, each with benefits and drawbacks of their

own. Among these methods, the most popular ones for choosing a subset of predictor vari-

ables that best enhance the model’s predictive ability are forward selection and backward
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elimination. In forward and backward selection method, some statistical goodness of fit

statistics applied include: Akaike information criterion (AIC); deviance; and p-value [3].

We define these statistics in the following.

Definition 4.4.1. Residual Sum of Squares (RSS):

In linear regression, RSS (Residual Sum of Squares) quantifies the difference between the

actual values of the dependent variable and the values estimated by the model. It is calcu-

lated as the sum of the squared differences between the observed values y and the predicted

values y. That is,

RSS =
n∑

i=1

(yi − ŷi)
2

RSS quantifies the overall fit of the model to the data. Smaller variations between actual

and predicted values are indicated by lower RSS values, which suggest a better fit.

Definition 4.4.2. Deviance:

Deviance in logistic regression is a measure that assesses the degree of compatibility be-

tween the observed data and the model’s predictions, similar to the residual sum of squares

in linear regression. Deviance quantifies the difference between the fitted model and the

saturated model derived from the logistic regression model. It is calculated as twice the

difference in log-likelihood between the null model (with only the intercept) and the fitted

model:

Definition 4.4.3. Null Deviance:

The deviation occurs when the model involves only the intercept term. The null deviance is

the difference between −2logL for the saturated model and −2logL for the intercept-only

model.

Definition 4.4.4. Residual Deviance:

Residual deviance is the difference between −2logL for the saturated model and −2logL

for the currently fit model.
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Definition 4.4.5. (Akaike information criterion) AIC:

AIC is a measure that evaluates the quality of a model by considering both its ability to fit

the data and its level of complexity. It imposes penalties on models with a higher number

of parameters. AIC is calculated as 2k - 2log(L), where k represents the quantity of pa-

rameters in the model, while L denotes the likelihood of the data given the model. Smaller

AIC values indicate better models, with a more optimal trade-off between accuracy and

complexity. In logistic regression, AIC is used to analyze multiple models and determine

the one that achieves the optimal trade-off between model fit and complexity.

Definition 4.4.6. Fisher Scoring Iterations: The reported number of Fisher scoring iter-

ations in the output signifies the total iterations needed for the method to achieve conver-

gence and estimate the model’s parameters.

In the following subsections, the statistical goodness of fit statistics are applied in the for-

ward and backward selection methods. Since the results of the WNRM are compartible

with the Re-weighted Least Squares method via the glm [1] function in R, the software R

is used in the rest of the analysis below.

4.4.1 FORWARD SELECTION

The forward selection method consists of the following steps.

Algorithm 4.4.1. Forward selection method

(1.) In Step 1 Forward selection starts with an initial model that does not include any pre-

dictors, and thereafter incorporates one predictor variable at each iteration, based

on the values of AIC and deviation.

(2.) In Step 2 The predictor variable that contributes the most to improving the model fit

is included in the model at each phase.
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(3.) In Step 3 The method continues until the model’s fit is no longer significantly en-

hanced by the inclusion of an additional predictor.

(4.) In Step 4 The Akaike Information Criterion (AIC) and deviance are utilized to assess

the adequacy of the model during the forward selection procedure. Following the ad-

dition of each predictor, the model’s fitness is assessed using AIC and deviation. The

balance between model fit and complexity is determined by the AIC, where lower AIC

values indicate models that fit better while also taking into account the complexity of

the model. Similarly, deviation measures the extent of disparity between the observed

and projected values, with lower deviance values indicating a more accurate fit of the

model.

(5.) In Step 5 If an additional regressor does not yield a significant improvement in the

model’s performance, it should not be included in the final model. Moreover, the

relevance of each additional predictor variable is assessed by considering its p-value.

A predictor is considered to have a substantial impact on the model fit if its p-value

is below the set significance level of 0.05. Conversely, a predictor will be excluded

from the final model if its p-value exceeds the significance level, suggesting that it

does not contribute significantly to improving the model’s fit.

Applying Algorithm 4.4.1 to model (4.1), the following results are obtained.

1. In Step 1, the output for the logistic null model, that is, the model with only intercept is

given below.

Coefficients Estimate Std. Error z value Pr(> |z|)

(Intercept) -0.62362 0.07571 -8.237 < 2× 10−16***

Table 4.4: Results of the initial step of forward selection only with intercept term.
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2. In Step 2, the predictors are added into the null model in Step 1 on a one by one basis

and the predictor that gives the lowest AIC is added to the model for Step 3. From

Table 4.5 observe that the lowest AIC is obtained for “Glucose”. Thus, glucose is

addded to the model moving forward to step 3.

coefficients Df Deviance AIC

+ Glucose 1 808.72 812.72

+ BMI 1 920.71 924.71

+ Age 1 950.72 954.72

+ Pregnancies 1 956.21 960.21

+ Diabetes Pedigree Function 1 970.86 974.86

+ Insulin 1 980.81 984.81

+ Skin Thickness 1 989.19 993.19

+ Blood Pressure 1 990.13 994.13

< none > 993.48 995.48

Table 4.5: Results of the 2nd step of forward selection. Each row indicates the addition of

a predictor variable to the model, along with the corresponding degrees of freedom (Df),

deviance, and Akaike Information Criterion (AIC) values.

(3.) In step 3, with “Glucose” already added to the model from Step 2, the next predictor

that gives the lowest AIC at the current Step 3 will be added to the model. The output

for this step is given in Table 4.6. Observe from Table 4.6 that “BMI” is the predictor

with the lowest AIC. Hence, moving to step 4, “BMI” and “Glucose” will be added

to the model.
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coefficients Df Deviance AIC

+ BMI 1 771.40 777.40

+ Pregnancies 1 784.95 790.95

+ Diabetes Pedigree Function 1 796.99 802.99

+ Age 1 797.36 803.36

< none > 808.72 812.72

+ Skin Thickness 1 807.07 813.07

+ Insulin 1 807.77 813.77

+ Blood Pressure 1 808.59 814.59

Table 4.6: Results of the 3rd step of forward selection along with the corresponding Df,

deviance, and AIC values

(4.) In step 4, with “Glucose” and “BMI” already added to the model from Step 3, the

next predictor that gives the lowest AIC at the current Step 4 will be added to the

model. The output for this step is given in Table 4.7. Observe from Table 4.7 that

”Pregnancies” is the predictor with the lowest AIC. Hence, moving to step 5, “BMI”,

“Glucose” and “Pregnancies” will be added to the model.
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coefficients Df Deviance AIC

+ Pregnancies 1 744.12 752.12

+ Age 1 755.68 763.68

+ Diabetes Pedigree Function 1 762.87 770.87

+ Insulin 1 767.79 775.79

+ Blood Pressure 1 769.07 777.07

< none > 771.40 777.40

+ Skin Thickness 1 770.20 778.20

Table 4.7: Results of the 4th step of forward selection along with the corresponding Df,

deviance, and AIC values

(5.) In step 5, with “BMI”, “Glucose” and “Pregnancies” already added to the model from

Step 4, the next predictor that gives the lowest AIC at the current Step 5 will be

added to the model. The output for this step is given in Table 4.8. Observe from

Table 4.8 that “Diabetes Pedigree Function” is the predictor with the lowest AIC.

Hence, moving to step 6, “BMI”, “Glucose”, “Pregnancies” and “Diabetes Pedigree

Function” will be added to the model.
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coefficients Df Deviance AIC

+ Diabetes Pedigree Function 1 734.31 744.31

+ Blood Pressure 1 738.43 748.43

+ Age 1 742.10 752.10

< none > 744.12 752.12

+ Insulin 1 742.43 752.43

+ Skin Thickness 1 743.60 753.60

Table 4.8: Results of the 5th step of forward selection along with the corresponding Df,

deviance, and AIC values

(6.) In step 6, with “BMI”, “Glucose”, “Pregnancies” and “Diabetes Pedigree Function”

already added to the model from Step 5, the next predictor that gives the lowest AIC

at the current Step 6 will be added to the model. The output for this step is given

in Table 4.9. Observe from Table 4.9 that “Blood Pressure” is the predictor with the

lowest AIC. Hence, moving to step 7, “BMI”, “Glucose”, “Pregnancies”, “Diabetes

Pedigree Function” and “Blood Pressure” will be added to the model.

coefficients Df Deviance AIC

+ Blood Pressure 1 728.56 740.56

+ Insulin 1 731.51 743.51

< none > 734.31 744.31

+ Age 1 732.51 744.51

+ Skin Thickness 1 733.06 745.06

Table 4.9: Results of the 6th step of forward selection along with the corresponding Df,

deviance, and AIC values
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(7.) In step 7, with “BMI”, “Glucose”, “Pregnancies”, “Diabetes Pedigree Function” and

“Blood Pressure” already added to the model from Step 6, the next predictor that

gives the lowest AIC at the current Step 7 will be added to the model. The out-

put for this step is given in Table 4.10. Observe from Table 4.10 that ”Age” is the

predictor with the lowest AIC. Hence, moving to step 7, “BMI”, “Glucose”, “Preg-

nancies”, “Diabetes Pedigree Function”, “Blood Pressure” and “Age” will be added

to the model.

coefficients Df Deviance AIC

+ Age 1 725.46 739.46

+ Insulin 1 725.97 739.97

< none > 728.56 740.56

+ Skin Thickness 1 728.00 742.00

Table 4.10: Results of the 7th step of forward selection along with the corresponding Df,

deviance, and AIC values

(8.) In step 8, with “BMI”, “Glucose”, “Pregnancies”, “Diabetes Pedigree Function” and

“Blood Pressure” already added to the model from Step 7, the next predictor that

gives the lowest AIC at the current Step 8 will be added to the model. The output for

this step is given in Table 4.11. Observe from Table 4.11 that “Insulin” is the predic-

tor with the lowest AIC. Hence, moving to step 9, “BMI”, “Glucose”, “Pregnancies”,

“Diabetes Pedigree Function”, “Blood Pressure”, “Age” and “Insulin” will be added

to the model.
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coefficient Df Deviance AIC

+ Insulin 1 723.45 739.45

< none > 725.46 739.46

+ Skin Thickness 1 725.19 741.19

Table 4.11: Results of the 8th step of forward selection along with the corresponding Df,

deviance, and AIC values

(9.) In step 9, with “BMI”, “Glucose”, “Pregnancies”, “Diabetes Pedigree Function”, “Blood

Pressure”, “Age” and “Insulin” already added to the model from Step 8, the next pre-

dictor that gives the lowest AIC at the current Step 9 will be added to the model.

The output for this step is given in Table 4.12. Observe from Table 4.12 that Skin

Thickness is not yield a significant improvement in the model’s performance, it will

not be included in the final model.

coefficient Df Deviance AIC

< none > 723.45 739.45

+ Skin Thickness 1 723.45 741.45

Table 4.12: Results of the 9th step of forward selection along with the corresponding Df,

deviance, and AIC values

The final model for this step is given in Table 4.13.
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Coefficients Estimate std.Error z value Pr(> |z|)

(Intercept) -8.4051362 0.7167033 -11.727 < 2× 10−16 ***

Pregnancies 0.1231724 0.0320688 3.841 0.000123 ***

Glucose 0.0351123 0.0036625 9.587 < 2× 10−16 ***

Blood Pressure -0.0132136 0.0051537 -2.564 0.010350 *

Insulin -0.0011570 0.0008142 -1.421 0.155275

BMI 0.0900886 0.0144619 6.229 4.68× 10−10 ***

Diabetes Pedigree Function 0.9475954 0.2980063 3.180 0.001474 **

Age 0.0147888 0.0092897 1.592 0.111393

Table 4.13: Results of the final step of forward selection including information on the

estimated coefficients, standard errors, z-values, and corresponding p-values.

The R-code for forward selection method given in A.8

Remark 4.4.

Interpretation: Applying Forward Selection method, we can observe that the p-values for

“Pregnancies”,“Glucose”,“Blood Pressure”,“BMI” and “Diabetes Pedigree Function”

are lower than the significance criteria of 0.05, so we choose to include these variables in

the final model. However, Since the p-values for “Age”, and “Insulin” are higher than the

significance criteria of 0.05, we choose not to include these variables in the final model.

This implies that, based on forward selection and analysis of p-values, the variables “Preg-

nancies,” “Glucose,” “Blood Pressure,” “BMI,” and “Diabetes Pedigree Function” have a

significant degree of association with the response variable while the predictors “Insulin,”

“Age,” and “Skin Thickness”have a insignificant degree of association with the response

variable.
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4.4.2 BACKWARD SELECTION

Algorithm 4.4.2. Backward Selection method

(1.) In Step 1 Backward elimination is a process that systematically eliminates predictor

variables one by one, using the values of AIC and deviation as criteria. The process

commences with a comprehensive model that includes all predictors.

(2.) In Step 2 At each phase, the predictor variable that has the least contribution to the

model fit is identified and removed from the model.

(3.) In Step 3 The method continues until the model’s fit is significantly enhanced by

deleting predictors.

(4.) In Step 4 The Akaike Information Criterion (AIC) and deviance are used to assess the

adequacy of the model throughout the backward selection procedure. We eliminate

the regressor that resulted in the most significant decrease in AIC and also exhibits

a statistically significant reduction in AIC relative to the other predictor variable

model. Furthermore, deviance is computed and in logistic regression, deviation is

used as an indicator of the quality of fit; smaller deviance values indicate superior

fits and the variable with the greatest p-value is eliminated from the model.

Remark 4.5. Backward selection is a method that begins with the whole model and grad-

ually simplifies it by eliminating predictors, therefore exploring the range of useful models.

In summary, The model selection criteria used for both forward and backward selection

strategies are AIC (Akaike Information Criterion) and deviation.In our study, we included

regressor variables for blood pressure, glucose, BMI, diabetes pedigree function, and preg-

nancies. By analyzing the data, we were able to create an optimal model. The p-values for

Age and Insulin were found to be 0.111393 and 0.155275, respectively, which is above the
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significance level of 0.05. This indicates that the coefficients for Age and Insulin are not

statistically significant, meaning that they do not make any meaningful contributions to the

model.

Applying Algorithm 4.4.2 to the model (4.1 ) the following results are obtained.

(1.) In Step 1, the backward selection begins with the complete model that includes all

predictor variables (“Pregnancies”, “Glucose”, “Blood Pressure”, “Skin Thickness”,

“Insulin”, “BMI”, “Diabetes Pedigree Function”, and “Age”). In the subsequent

steps, the predictors will be eliminated on a one by one basis based on reduced AIC.

At the current step 1, the output for the logistic model with all predictors is given in

Table 4.14. Note that the starting AIC for the model in Table 4.14 is 741.45. Hence,

moving to the next steps, the predictors that result in a lower AIC will remain in the

model, while those that give a higher AIC value are eliminated.

Coefficients Estimate Std. Error z value Pr(> |z|)

(Intercept) -8.4046964 0.7166359 -11.728 < 2× 10−16 ***

Pregnancies 0.1231823 0.0320776 3.840 0.000123 ***

Glucose 0.0351637 0.0037087 9.481 < 2× 10−16 ***

Blood Pressure -0.0132955 0.0052336 -2.540 0.011072 *

Skin Thickness 0.0006190 0.0068994 0.090 0.928515

Insulin -0.0011917 0.0009012 -1.322 0.186065

BMI 0.0897010 0.0150876 5.945 2.76× 10−09 ***

DiabetesPedigreeFunction 0.9451797 0.2991475 3.160 0.001580 **

Age 0.0148690 0.0093348 1.593 0.111192

Table 4.14: Full model for Backward Selection including information on the estimated

coefficients, standard errors, z-values, and corresponding p-values.
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(2.) By removing the regressors one at a time, observe in Table 4.15 that the lowest AIC

is obtained when “Skin Thickness” removed from the model in Step 1. Hence, mov-

ing to Step 3, “Skin Thickness” will no longer be a part of the model for the next

selection.

coefficient Df Deviance AIC

- SkinThickness 1 723.45 739.45

- Insulin 1 725.19 741.19

< none > 723.45 741.45

- Age 1 725.97 741.97

- BloodPressure 1 729.99 745.99

- DiabetesPedigreeFunction 1 733.78 749.78

- Pregnancies 1 738.68 754.68

- BMI 1 764.22 780.22

- Glucose 1 838.37 854.37

Table 4.15: Results of the 2nd step of backward selection along with the corresponding Df,

deviance, and AIC values

(3.) From the remaining predictors: (“Pregnancies”, “Glucose”, “Blood Pressure”, “In-

sulin”, “BMI”, “Diabetes Pedigree Function”, and “Age”) from Step 2, additional

predictors are removed on a one by one basis, and the predictors that give the lowest

AIC at this level will remain the model, while the predictor that results in a higher

AIC is removed. Observe from Table 4.16 that the lowest AIC (739.45) is obtained

by no longer removing any predictors from the model.
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coefficient Df Deviance AIC

< none > 723.45 739.45

- Insulin 1 725.46 739.46

- Age 1 725.97 739.97

- Blood Pressure 1 730.13 744.13

- Diabetes Pedigree Function 1 733.92 747.92

- Pregnancies 1 738.69 752.69

- BMI 1 768.77 782.77

- Glucose 1 840.87 854.87

Table 4.16: Results of the 3rd step of backward selection along with the corresponding Df,

deviance, and AIC values

(4.) In the final step, the explicit logistic regression model with only the predictors (“Preg-

nancies”, “Glucose”, “Blood Pressure”, “Insulin”, “BMI”, “Diabetes Pedigree Func-

tion”, and “Age”) and their p-values are shown in Table 4.18.
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Coefficients Estimate Std. Error z value Pr(> |z|)

(Intercept) -8.4051362 0.7167033 -11.727 < 2× 10−16 ***

Pregnancies 0.1231724 0.0320688 3.841 0.000123 ***

Glucose 0.0351123 0.0036625 9.587 < 2× 10−16 ***

Blood Pressure -0.0132136 0.0051537 -2.564 0.010350 *

Insulin -0.0011570 0.0008142 -1.421 0.155275

BMI 0.0900886 0.0144619 6.229 4.68× 10−10 ***

Diabetes Pedigree Function 0.9475954 0.2980063 3.180 0.001474 **

Age 0.0147888 0.0092897 1.592 0.111393

Table 4.17: Results of the final step of backward selection including information on the

estimated coefficients, standard errors, z-values, and corresponding p-values.

The R-code for the forward method is given in A.9.

Remark 4.6.

Interpretation: Applying Backward Selection method, we can observe that the p-values for

“Pregnancies”,“Glucose”,“Blood Pressure”,“BMI” and “Diabetes Pedigree Function”

are lower than the significance criteria of 0.05, so we choose to include these variables in

the final model. However, Since the p-values for ”Age”, and ”Insulin” are higher than the

significance criteria of 0.05, we choose not to include these variables in the final model.

This implies that, based on backward selection and analysis of p-values, the variables

“Pregnancies,” “Glucose,” “Blood Pressure,” “BMI,” and “Diabetes Pedigree Function”

have a significant degree of association with the response variable while the predictors

“Insulin,” “Age,” and “Skin Thickness”have a insignificant degree of association with the

response variable.
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4.4.3 OPTIMUM MODEL

• The Optimum model of our model (4.1) is given below:

Coefficients Estimate Std. Error z value Pr(> |z|)

Intercept -7.954952 0.675823 -11.771 < 2× 10−16 ***

Pregnancies 0.153492 0.027835 5.514 3.5× 10−08 ***

Glucose 0.034658 0.003394 10.213 < 2× 10−16 ***

Blood Pressure -0.012007 0.005031 -2.387 0.01700 *

BMI 0.084832 0.014125 6.006 1.9× 10−09 ***

Diabetes Pedigree Function. 0.910628 0.294027 3.097 0.00195 **

Table 4.18: Results of the optimum model with estimated values, std. Error, Z value and P

value.

4.5 THESIS CONCLUSION

This paper presents the development and evaluation of a new Weighted Newton Raphson

Method (WNRM) for the analysis of diabetic data. The model, which includes a Jacobian

matrix and a unique weighting scheme, enables the application of Maximum Likelihood

Estimation (MLE) in logistic regression for data that is non repeated. Furthermore, an

overview of the WNRM algorithm and its practical implementation has been provided.

In addition, the model incorporates both forward and backward selection approaches, and

employs p-value analysis to determine the most suitable model fit. In addition, a thorough

comparison has been provided between the traditional Newton Raphson Method (NRM)

and WNRM, focusing specifically on their suitability for dealing with repetitive data.
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Appendix A

THE WEIGHTED NEWTON RAPHSON METHOD (WNRM)

A.1 R-CODE FOR EXAMPLE 2.1

The R code for Example 2.1 is given below.

Computer-Code A.1.

x = c ( 0 . 2 , 0 . 2 , − 0 . 2 )

F = f u n c t i o n ( x ) {

f 1 = sum (3 * x [ 1 ] − cos ( x [ 2 ] * x [ 3 ] ) − 0 . 5 )

f 2 = sum ( ( x [ 1 ] ) ˆ 2 − 625 * ( x [ 2 ] ˆ 2 ) − 0 . 2 5 )

f 3 = sum ( exp (− x [ 1 ] * x [ 2 ] ) + 20 * x [ 3 ] + (10 * p i − 3) / 3 )

r e s = c ( f1 , f2 , f 3 )

r e t u r n ( r e s )

}

# J a c o b i a n m a t r i x

J = f u n c t i o n ( x ) {

r e s = m a t r i x ( c (

3 , sum ( x [ 3 ] * s i n ( x [ 2 ] * x [ 3 ] ) ) , sum ( x [ 2 ] * s i n ( x [ 2 ] * x [ 3 ] ) ) ,

sum (2 * x [ 1 ] ) , sum( −1250 * x [ 2 ] ) , 0 ,

sum(− x [ 2 ] * exp (− x [ 1 ] * x [ 2 ] ) ) , sum(− x [ 1 ] * exp (− x [ 1 ] * x [ 2 ] ) ) , 20)

, nrow =3 , byrow=T )

r e t u r n ( r e s )

}

x o l d = c ( 0 , 0 , 0 )

x . v e c t o r = x

#F ( x )
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# J ( x )

e r r o r = c ( )

f o r ( i i n 1 : 3 1 ) {

e r r o r = c ( e r r o r , sum ( abs ( F ( x ) ) ) )

x new = x − s o l v e ( J ( x ) ) %*% F ( x )

x = x new

# p r i n t ( b e t a )

x . v e c t o r = c ( x . v e c t o r , x )

}

x

A.2 R CODE FOR EXAMPLE 2.5

The R code for Example 2.5 is given below.

Computer-Code A.2.

x <− c ( 0 . 2 , 0 . 2 , −0.2)

F = f u n c t i o n ( x ) {

f 1 = sum (3 * x [ 1 ] − cos ( x [ 2 ] * x [ 3 ] ) − 0 . 5 )

f 2 = sum ( ( x [ 1 ] ) ˆ 2 − 625 * ( x [ 2 ] ˆ 2 ) − 0 . 2 5 )

f 3 = sum ( exp (− x [ 1 ] * x [ 2 ] ) + 20 * x [ 3 ] + (10 * p i − 3) / 3 )

r e s = c ( f1 , f2 , f 3 )

r e t u r n ( r e s )

}

# J a c o b i a n m a t r i x

J = f u n c t i o n ( x ) {

r e s = m a t r i x ( c (
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3 , sum ( x [ 3 ] * s i n ( x [ 2 ] * x [ 3 ] ) ) , sum ( x [ 2 ] * s i n ( x [ 2 ] * x [ 3 ] ) ) ,

sum (2 * x [ 1 ] ) , sum( −1250 * x [ 2 ] ) , 0 ,

sum(− x [ 2 ] * exp (− x [ 1 ] * x [ 2 ] ) ) , sum(− x [ 1 ] * exp (− x [ 1 ] * x [ 2 ] ) ) , 20)

, nrow =3 , byrow=T )

r e t u r n ( r e s )

}

g o l d = c ( 0 , 0 , 0 )

x o l d = c ( 0 , 0 , 0 )

x . v e c t o r = x

e r r o r = c ( )

f o r ( i i n 1 : 3 3 ) {

g = x − ( s o l v e ( J ( x ) ) ) %*% F ( x )

e r r o r = c ( e r r o r , sum ( abs ( F ( x ) ) ) )

m = rep ( 0 , l e n g t h ( x ) )

f o r ( i i n 1 : l e n g t h ( x ) ) {

i f ( abs ( x [ i ] − x o l d [ i ] ) < 0 . 0 0 0 0 1 ) {

m[ i ] = 1 / (1 − 0)

} e l s e {

m[ i ] = 1 / (1 − ( g [ i ] − g o l d [ i ] ) / ( x [ i ] − x o l d [ i ] ) )

}

}

m = diag (m)

x new = x − s o l v e ( J ( x ) ) %*% m %*% F ( x )

x o l d = x

x = x new

g o l d = g
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x . v e c t o r = c ( x . v e c t o r , x )

}

p r i n t ( x new )

A.3 R CODE FOR EXAMPLE 3.19

The R code for Example 3.19 is given below.

Computer-Code A.3.

# E n t e r t h e da ta p o i n t s

x=c ( 1 . 5 , 2 , 3 . 5 , 2 . 5 , 1 , 1 . 3 )

y=c ( 0 , 1 , 0 , 1 , 1 , 0 )

# E n t e r t h e f u n c t i o n f1 , f2 , f 3

F = f u n c t i o n ( be ta , x , y ) {

f 1 = sum ( y − 1 / ( 1 + exp (− b e t a [ 1 ] − b e t a [ 2 ] * x ˆ 2

− b e t a [ 3 ] * exp ( x ) ) ) )

f 2 = sum ( ( y − 1 / ( 1 + exp (− b e t a [ 1 ] − b e t a [ 2 ] * x ˆ 2

− b e t a [ 3 ] * exp ( x ) ) ) ) * x ˆ 2 )

f 3 = sum ( ( y − 1 / ( 1 + exp (− b e t a [ 1 ] − b e t a [ 2 ] * x ˆ 2

− b e t a [ 3 ] * exp ( x ) ) ) ) * exp ( x ) )

r e s = c ( f1 , f2 , f 3 )

r e t u r n ( r e s )

}

# J a c o b i a n m a t r i x

J = f u n c t i o n ( be ta , x ) {

c o e f = exp (− b e t a [ 1 ] − b e t a [ 2 ] * x ˆ 2
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− b e t a [ 3 ] * exp ( x ) )

c o e f = −( c o e f / (1 + c o e f ) ˆ 2 )

r e s = m a t r i x ( c (

sum ( c o e f ) , sum ( c o e f * x ˆ 2 ) , sum ( c o e f * exp ( x ) ) ,

sum ( c o e f * x ˆ 2 ) , sum ( c o e f * x ˆ 4 ) , sum ( c o e f * x ˆ2 * exp ( x ) ) ,

sum ( c o e f * exp ( x ) ) , sum ( c o e f * x ˆ2 * exp ( x ) ) , sum ( c o e f * exp (2* x ) )

) , nrow =3 , byrow=T )

r e t u r n ( r e s )

}

b e t a = c ( 1 , 2 , 3 )

e r r o r = c ( )

f o r ( i i n 1 : 6 ) {

e r r o r = c ( e r r o r , sum ( abs ( F ( be ta , x , y ) ) ) )

be ta new = b e t a − s o l v e ( J ( be ta , x ) ) %*% F ( be ta , x , y )

b e t a = be ta new

p r i n t ( b e t a )

}

A.4 R CODE FOR EXAMPLE 3.19

The R code for Example 3.19 is given below.

Computer-Code A.4.

%%T h i s i s t h e R−code t h i s example

x=c ( 1 . 5 , 2 , 3 . 5 , 2 . 5 , 1 , 1 . 3 )

y=c ( 0 , 1 , 0 , 1 , 1 , 0 )
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F = f u n c t i o n ( be ta , x , y ) {

f 1 = sum ( y − 1 / ( 1 + exp (− b e t a [ 1 ] − b e t a [ 2 ] * x ˆ 2

− b e t a [ 3 ] * exp ( x ) ) ) )

f 2 = sum ( ( y − 1 / ( 1 + exp (− b e t a [ 1 ] − b e t a [ 2 ] * x ˆ 2

− b e t a [ 3 ] * exp ( x ) ) ) ) * x ˆ 2 )

f 3 = sum ( ( y − 1 / ( 1 + exp (− b e t a [ 1 ] − b e t a [ 2 ] * x ˆ 2

− b e t a [ 3 ] * exp ( x ) ) ) ) * exp ( x ) )

r e s = c ( f1 , f2 , f 3 )

r e t u r n ( r e s )

}

J = f u n c t i o n ( be ta , x ) {

c o e f = exp (− b e t a [ 1 ] − b e t a [ 2 ] * x ˆ 2 − b e t a [ 3 ] * exp ( x ) )

c o e f = −( c o e f / (1 + c o e f ) ˆ 2 )

r e s = m a t r i x ( c (

sum ( c o e f ) , sum ( c o e f * x ˆ 2 ) , sum ( c o e f * exp ( x ) ) ,

sum ( c o e f * x ˆ 2 ) , sum ( c o e f * x ˆ 4 ) , sum ( c o e f * x ˆ2 * exp ( x ) ) ,

sum ( c o e f * exp ( x ) ) , sum ( c o e f * x ˆ2 * exp ( x ) ) , sum ( c o e f * exp (2* x ) )

) , nrow =3 , byrow=T )

r e t u r n ( r e s )

}

g o l d = c ( 0 , 0 , 0 )

b e t a o l d = c ( 0 , 0 , 0 )

b e t a = c ( 1 , 2 , 3 )

e r r o r = c ( )

f o r ( i i n 1 : 6 ) {

g = b e t a − ( s o l v e ( J ( be ta , x ) ) ) %*% F ( be ta , x , y )
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e r r o r = c ( e r r o r , sum ( abs ( F ( be ta , x , y ) ) ) )

m = 1 / (1 − ( g − g o l d ) / ( b e t a − b e t a o l d ) )

m = d iag (m[ , 1 ] )

be ta new = b e t a − s o l v e ( J ( be ta , x ) ) %*% m %*% F ( be ta , x , y )

b e t a o l d = b e t a

b e t a = be ta new

g o l d = g

p r i n t ( b e t a )

}

A.5 R CODE FOR EXAMPLE 3.19

The R code for Example 3.19 is given below.

Computer-Code A.5.

%%T h i s i s t h e R−code t h i s example

da ta=da ta . f rame ( r e p e a t e d l o g i s i c s a m p l e 2 )

d a t a s u b s e t <− da ta [ −1 , ]

x <− c ( d a t a s u b s e t $ L e v e l s )

y <− as . v e c t o r ( rowSums ( d a t a s u b s e t [ , c ( 3 : 1 2 ) ] , na . rm = TRUE ) )

d a t a s u b s e t 1 <− d a t a s u b s e t [ , −c ( 1 , 2 ) ]

n <− as . v e c t o r ( rowSums ( ! i s . na ( d a t a s u b s e t 1 ) ) )

# E n t e r t h e f u n c t i o n f1 , f2 , f 3

F = f u n c t i o n ( be ta , x , y , n ) {

f 1 = sum ( y− n / ( 1 + exp (− b e t a [ 1 ] − b e t a [ 2 ] * ( x ˆ 2 )

− b e t a [ 3 ] * exp ( x ) ) ) )

f 2 = sum ( ( y − n / ( 1 + exp (− b e t a [ 1 ] − b e t a [ 2 ] * ( x ) ˆ 2
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− b e t a [ 3 ] * exp ( x ) ) ) ) * ( x ˆ 2 ) )

f 3 = sum ( y − n / ( 1 + exp (− b e t a [ 1 ] − b e t a [ 2 ] * ( x ) ˆ 2

− b e t a [ 3 ] * exp ( x ) ) ) * exp ( x ) )

r e s = c ( f1 , f2 , f 3 )

r e t u r n ( r e s )

}

# J a c o b i a n m a t r i x

J = f u n c t i o n ( be ta , x , n ) {

c o e f = exp (− b e t a [ 1 ] − b e t a [ 2 ] * ( x ) ˆ 2 − b e t a [ 3 ] * exp ( x ) )

c o e f = −n * ( c o e f / (1 + c o e f ) ˆ 2 )

r e s = m a t r i x ( c (

sum ( c o e f ) , sum ( c o e f * ( x ) ˆ 2 ) , sum ( c o e f * exp ( x ) ) ,

sum ( c o e f * ( x ) ˆ 2 ) , sum ( c o e f * ( x ) ˆ 4 ) , sum ( c o e f * ( x ) ˆ 2 * exp ( x ) ) ,

sum ( c o e f * exp ( x ) ) , sum ( c o e f * exp ( x ) * ( x ˆ 2 ) ) , sum ( c o e f * exp ( x ) ˆ 2 )

) , nrow =3 , byrow=T )

r e t u r n ( r e s )

}

g o l d = c ( 0 , 0 , 0 )

b e t a o l d = c ( 0 , 0 , 0 )

b e t a = c ( 0 . 1 , 0 . 2 , 0 . 3 )

m <− l e n g t h ( x )

b e t a . v e c t o r = b e t a

%F ( be ta , x , y , n )

%J ( be ta , x , n )

e r r o r = c ( )

f o r ( j i n 1 :m) {
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g = b e t a − ( s o l v e ( J ( be ta , x , n ) ) ) %*% F ( be ta , x , y , n )

e r r o r = c ( e r r o r , sum ( abs ( F ( be ta , x , y , n ) ) ) )

mi = rep ( 0 , l e n g t h ( b e t a ) )

f o r ( j i n 1 : l e n g t h ( b e t a ) ) {

i f ( abs ( b e t a [ j ] − b e t a o l d [ j ] ) < 0 . 0 0 0 0 0 1 ) {

mi [ j ] = 1 / (1 − 0)

} e l s e {

mi [ j ] = 1 / (1 − ( g [ j ] − g o l d [ j ] ) / ( b e t a [ j ] − b e t a o l d [ j ] ) )

}

}

mi = d iag ( mi )

be ta new = b e t a − s o l v e ( J ( be ta , x , n ) ) %*% mi %*% F ( be ta , x , y , n )

b e t a o l d = b e t a

b e t a = be ta new

g o l d = g

b e t a . v e c t o r = c ( b e t a . v e c t o r , b e t a )

}

p r i n t ( e r r o r )

p r i n t ( be ta new )

A.6 R CODE FOR EXAMPLE 4.1

The R code for Example 4.1 is given below.

Computer-Code A.6.

l i b r a r y ( r e a d r )

d i a b e t e s d a t a <− r e a d c s v (” d i a b e t e s d a t a . c s v ” ,
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c o l t y p e s = c o l s ( P r e g n a n c i e s = co l number ( ) ,

Glucose = co l number ( ) , B l o o d P r e s s u r e = co l number ( ) ,

S k i n T h i c k n e s s = co l number ( ) , I n s u l i n = co l number ( ) ,

BMI = co l number ( ) , D i a b e t e s P e d i g r e e F u n c t i o n = co l number ( ) ,

Age = co l number ( ) , Outcome = co l number ( ) ) )

View ( d i a b e t e s d a t a )

# E n t e r t h e f u n c t i o n f1 , f2 , f3 , f4 , f5 , f6 , f7 , f 8

F = f u n c t i o n ( b e t a ) {

f 1 = sum ( d i a b e t e s d a t a $ O u t c o m e − 1 / ( 1 + exp (− b e t a [ 1 ]

− b e t a [ 2 ] * ( d i a b e t e s d a t a $ P r e g n a n c i e s )

− b e t a [ 3 ] * ( d i a b e t e s d a t a $ G l u c o s e )

− b e t a [ 4 ] * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e )

− b e t a [ 5 ] * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s )

−b e t a [ 6 ] * ( d i a b e t e s d a t a $ I n s u l i n )

− b e t a [ 7 ] * ( d i a b e t e s d a t a $ B M I )

− b e t a [ 8 ] * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n )

− b e t a [ 9 ] * ( d i a b e t e s d a t a $ A g e ) ) ) )

f 2 = sum ( ( d i a b e t e s d a t a $ O u t c o m e − 1 / ( 1 + exp (− b e t a [ 1 ]

− b e t a [ 2 ] * ( d i a b e t e s d a t a $ P r e g n a n c i e s )

− b e t a [ 3 ] * ( d i a b e t e s d a t a $ G l u c o s e )

− b e t a [ 4 ] * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e )

− b e t a [ 5 ] * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s )

−b e t a [ 6 ] * ( d i a b e t e s d a t a $ I n s u l i n )

− b e t a [ 7 ] * ( d i a b e t e s d a t a $ B M I )

− b e t a [ 8 ] * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n )



86

− b e t a [ 9 ] * ( d i a b e t e s d a t a $ A g e ) ) ) ) * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) )

f 3 = sum ( ( d i a b e t e s d a t a $ O u t c o m e − 1 / ( 1 + exp (− b e t a [ 1 ]

− b e t a [ 2 ] * ( d i a b e t e s d a t a $ P r e g n a n c i e s )

− b e t a [ 3 ] * ( d i a b e t e s d a t a $ G l u c o s e )

− b e t a [ 4 ] * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e )

− b e t a [ 5 ] * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s )

−b e t a [ 6 ] * ( d i a b e t e s d a t a $ I n s u l i n )

− b e t a [ 7 ] * ( d i a b e t e s d a t a $ B M I ) − b e t a [ 8 ] * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n )

− b e t a [ 9 ] * ( d i a b e t e s d a t a $ A g e ) ) ) ) * ( d i a b e t e s d a t a $ G l u c o s e ) )

f 4 = sum ( ( d i a b e t e s d a t a $ O u t c o m e − 1 / ( 1 + exp (− b e t a [ 1 ]

− b e t a [ 2 ] * ( d i a b e t e s d a t a $ P r e g n a n c i e s )

− b e t a [ 3 ] * ( d i a b e t e s d a t a $ G l u c o s e )

− b e t a [ 4 ] * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e )

− b e t a [ 5 ] * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s )

−b e t a [ 6 ] * ( d i a b e t e s d a t a $ I n s u l i n )

− b e t a [ 7 ] * ( d i a b e t e s d a t a $ B M I )

− b e t a [ 8 ] * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n )

− b e t a [ 9 ] * ( d i a b e t e s d a t a $ A g e ) ) ) ) * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) )

f 5 = sum ( ( d i a b e t e s d a t a $ O u t c o m e − 1 / ( 1 + exp (− b e t a [ 1 ]

− b e t a [ 2 ] * ( d i a b e t e s d a t a $ P r e g n a n c i e s )

− b e t a [ 3 ] * ( d i a b e t e s d a t a $ G l u c o s e )

− b e t a [ 4 ] * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e )

− b e t a [ 5 ] * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s )
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−b e t a [ 6 ] * ( d i a b e t e s d a t a $ I n s u l i n )

− b e t a [ 7 ] * ( d i a b e t e s d a t a $ B M I )

− b e t a [ 8 ] * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n )

− b e t a [ 9 ] * ( d i a b e t e s d a t a $ A g e ) ) ) ) * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) )

f 6 = sum ( ( d i a b e t e s d a t a $ O u t c o m e − 1 / ( 1 + exp (− b e t a [ 1 ]

− b e t a [ 2 ] * ( d i a b e t e s d a t a $ P r e g n a n c i e s )

− b e t a [ 3 ] * ( d i a b e t e s d a t a $ G l u c o s e )

− b e t a [ 4 ] * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e )

− b e t a [ 5 ] * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s )

−b e t a [ 6 ] * ( d i a b e t e s d a t a $ I n s u l i n )

− b e t a [ 7 ] * ( d i a b e t e s d a t a $ B M I )

− b e t a [ 8 ] * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n )

− b e t a [ 9 ] * ( d i a b e t e s d a t a $ A g e ) ) ) ) * ( d i a b e t e s d a t a $ I n s u l i n ) )

f 7 = sum ( ( d i a b e t e s d a t a $ O u t c o m e

− 1 / ( 1 + exp (− b e t a [ 1 ] − b e t a [ 2 ] * ( d i a b e t e s d a t a $ P r e g n a n c i e s )

− b e t a [ 3 ] * ( d i a b e t e s d a t a $ G l u c o s e )

− b e t a [ 4 ] * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e )

− b e t a [ 5 ] * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s )

− b e t a [ 6 ] * ( d i a b e t e s d a t a $ I n s u l i n )

− b e t a [ 7 ] * ( d i a b e t e s d a t a $ B M I )

− b e t a [ 8 ] * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n )

− b e t a [ 9 ] * ( d i a b e t e s d a t a $ A g e ) ) ) ) * ( d i a b e t e s d a t a $ B M I ) )

f 8 = sum ( ( d i a b e t e s d a t a $ O u t c o m e − 1 / ( 1 + exp (− b e t a [ 1 ]
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− b e t a [ 2 ] * ( d i a b e t e s d a t a $ P r e g n a n c i e s )

− b e t a [ 3 ] * ( d i a b e t e s d a t a $ G l u c o s e )

− b e t a [ 4 ] * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e )

− b e t a [ 5 ] * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s )

− b e t a [ 6 ] * ( d i a b e t e s d a t a $ I n s u l i n )

− b e t a [ 7 ] * ( d i a b e t e s d a t a $ B M I )

− b e t a [ 8 ] * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n )

− b e t a [ 9 ] * ( d i a b e t e s d a t a $ A g e ) ) ) ) * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) )

f 9 = sum ( ( d i a b e t e s d a t a $ O u t c o m e − 1 / ( 1 + exp (− b e t a [ 1 ]

− b e t a [ 2 ] * ( d i a b e t e s d a t a $ P r e g n a n c i e s )

− b e t a [ 3 ] * ( d i a b e t e s d a t a $ G l u c o s e )

− b e t a [ 4 ] * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e )

− b e t a [ 5 ] * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s )

−b e t a [ 6 ] * ( d i a b e t e s d a t a $ I n s u l i n )

− b e t a [ 7 ] * ( d i a b e t e s d a t a $ B M I )

− b e t a [ 8 ] * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n )

− b e t a [ 9 ] * ( d i a b e t e s d a t a $ A g e ) ) ) ) * ( d i a b e t e s d a t a $ A g e ) )

r e s = c ( f1 , f2 , f3 , f4 , f5 , f6 , f7 , f8 , f 9 )

r e t u r n ( r e s )

}

# J a c o b i a n m a t r i x

J = f u n c t i o n ( b e t a ) {

c o e f = exp (− b e t a [ 1 ] − b e t a [ 2 ] * ( d i a b e t e s d a t a $ P r e g n a n c i e s )

− b e t a [ 3 ] * ( d i a b e t e s d a t a $ G l u c o s e )

− b e t a [ 4 ] * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e )
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− b e t a [ 5 ] * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s )

− b e t a [ 6 ] * ( d i a b e t e s d a t a $ I n s u l i n )

− b e t a [ 7 ] * ( d i a b e t e s d a t a $ B M I )

− b e t a [ 8 ] * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n )

− b e t a [ 9 ] * ( d i a b e t e s d a t a $ A g e ) )

c o e f = −( c o e f / (1 + c o e f ) ˆ 2 )

r e s = m a t r i x ( c (

sum ( c o e f ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ G l u c o s e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ I n s u l i n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ B M I ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ A g e ) ) ,

sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) ˆ 2 ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) * ( d i a b e t e s d a t a $ G l u c o s e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) * ( d i a b e t e s d a t a $ I n s u l i n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) * ( d i a b e t e s d a t a $ B M I ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) * ( d i a b e t e s d a t a $ A g e ) ) ,

sum ( c o e f * ( d i a b e t e s d a t a $ G l u c o s e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) * ( d i a b e t e s d a t a $ G l u c o s e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ G l u c o s e ) ˆ 2 ) , sum ( c o e f * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) * ( d i a b e t e s d a t a $ G l u c o s e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) * ( d i a b e t e s d a t a $ G l u c o s e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ I n s u l i n ) * ( d i a b e t e s d a t a $ G l u c o s e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ B M I ) * ( d i a b e t e s d a t a $ G l u c o s e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) * ( d i a b e t e s d a t a $ G l u c o s e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ A g e ) * ( d i a b e t e s d a t a $ G l u c o s e ) ) ,

sum ( c o e f * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ G l u c o s e ) * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) ˆ 2 ) , sum ( c o e f * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ I n s u l i n ) * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ B M I ) * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ A g e ) * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) ) ,

sum ( c o e f * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ G l u c o s e ) * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) ˆ 2 ) , sum ( c o e f * ( d i a b e t e s d a t a $ I n s u l i n ) * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ B M I ) * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ A g e ) * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) ) ,

sum ( c o e f * ( d i a b e t e s d a t a $ I n s u l i n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) * ( d i a b e t e s d a t a $ I n s u l i n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ G l u c o s e ) * ( d i a b e t e s d a t a $ I n s u l i n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) * ( d i a b e t e s d a t a $ I n s u l i n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) * ( d i a b e t e s d a t a $ I n s u l i n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ I n s u l i n ) ˆ 2 ) , sum ( c o e f * ( d i a b e t e s d a t a $ B M I ) * ( d i a b e t e s d a t a $ I n s u l i n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) * ( d i a b e t e s d a t a $ I n s u l i n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ A g e ) * ( d i a b e t e s d a t a $ I n s u l i n ) ) ,

sum ( c o e f * ( d i a b e t e s d a t a $ B M I ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) * ( d i a b e t e s d a t a $ B M I ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ G l u c o s e ) * ( d i a b e t e s d a t a $ B M I ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) * ( d i a b e t e s d a t a $ B M I ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) * ( d i a b e t e s d a t a $ B M I ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ I n s u l i n ) * ( d i a b e t e s d a t a $ B M I ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ B M I ) ˆ 2 ) , sum ( c o e f * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) * ( d i a b e t e s d a t a $ B M I ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ A g e ) * ( d i a b e t e s d a t a $ B M I ) ) ,

sum ( c o e f * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ G l u c o s e ) * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ I n s u l i n ) * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ B M I ) * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) ˆ 2 ) , sum ( c o e f * ( d i a b e t e s d a t a $ A g e ) * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) ) ,

sum ( c o e f * ( d i a b e t e s d a t a $ A g e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ P r e g n a n c i e s ) * ( d i a b e t e s d a t a $ A g e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ G l u c o s e ) * ( d i a b e t e s d a t a $ A g e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ B l o o d P r e s s u r e ) * ( d i a b e t e s d a t a $ A g e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ S k i n T h i c k n e s s ) * ( d i a b e t e s d a t a $ A g e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ I n s u l i n ) * ( d i a b e t e s d a t a $ A g e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ B M I ) * ( d i a b e t e s d a t a $ A g e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ D i a b e t e s P e d i g r e e F u n c t i o n ) * ( d i a b e t e s d a t a $ A g e ) ) , sum ( c o e f * ( d i a b e t e s d a t a $ A g e ) ˆ 2 )

) , nrow =9 , byrow=T )
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r e t u r n ( r e s )

}

g o l d = c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

b e t a o l d = c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

b e t a = c ( 0 . 0 1 , 0 . 0 2 , 0 . 0 3 , 0 . 0 7 , 0 . 0 4 , 0 . 1 , 0 . 0 5 , 0 . 0 6 , 0 . 0 2 )

e r r o r = c ( )

f o r ( i i n 1 : 4 0 ) {

g = b e t a − ( s o l v e ( J ( b e t a ) ) ) %*% F ( b e t a )

e r r o r = c ( e r r o r , sum ( abs ( F ( b e t a ) ) ) )

m = rep ( 0 , l e n g t h ( b e t a ) )

f o r ( i i n 1 : l e n g t h ( b e t a ) ) {

i f ( abs ( b e t a [ i ] − b e t a o l d [ i ] ) < 0 . 0 0 0 0 0 1 ) {

m[ i ] = 1 / (1 − 0)

} e l s e {

m[ i ] = 1 / (1 − ( g [ i ] − g o l d [ i ] ) / ( b e t a [ i ] − b e t a o l d [ i ] ) )

}

}

m = diag (m)

be ta new = b e t a − s o l v e ( J ( b e t a ) ) %*% m %*% F ( b e t a )

b e t a o l d = b e t a

b e t a = be ta new

g o l d = g

}

p r i n t ( e r r o r )

p r i n t ( be ta new )
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A.7 R CODE FOR EXAMPLE 4.1

The R code for Example 4.1 is given below.

l i b r a r y ( r e a d r )

d i a b e t e s d a t a <− r e a d c s v ( ” d i a b e t e s d a t a . c sv ” ,

c o l t y p e s = c o l s ( P r e g n a n c i e s = co l number ( ) ,

Glucose = co l number ( ) , B l o o d P r e s s u r e = co l number ( ) ,

S k i n T h i c k n e s s = co l number ( ) , I n s u l i n = co l number ( ) ,

BMI = co l number ( ) , D i a b e t e s P e d i g r e e F u n c t i o n = co l number ( ) ,

Age = co l number ( ) , Outcome = co l number ( ) ) )

View ( d i a b e t e s d a t a )

d i a b e t e s d a t a $ O u t c o m e <− as . f a c t o r ( d i a b e t e s d a t a $ O u t c o m e )

log m <− glm ( Outcome ˜ P r e g n a n c i e s + Glucose + B l o o d P r e s s u r e + S k i n T h i c k n e s s

+ I n s u l i n +BMI+ D i a b e t e s P e d i g r e e F u n c t i o n +Age ,

d a t a = d i a b e t e s d a t a , f a m i l y = b i n o m i a l ( l i n k = ” l o g i t ” ) )

summary ( log m )

A.8 R CODE FOR EXAMPLE 4.1

The R code for Model 4.1 is given below.

Computer-Code A.7. library(readr)

diabetes_data <- read_csv("diabetes_data.csv",

col_types = cols(Pregnancies = col_number(),

Glucose = col_number(),

BloodPressure = col_number(),

SkinThickness = col_number(),
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Insulin = col_number(),

BMI = col_number(),

DiabetesPedigreeFunction = col_number(),

Age = col_number(), Outcome = col_number()))

#View(diabetes_data)

diabetes_data

full_model <- glm(Outcome ˜ ., data = diabetes_data, family =

binomial(link = "logit"))

summary(full_model)

# Forward selection (start with no regressor)

# Step 1

f1 <- glm(Outcome ˜ 1, data = diabetes_data,

family = binomial(link = "logit"))

summary(f1)

# Step 2

step_result <- step(f1, direction = "forward", scope =

formula(full_model))

step_result

A.9 R CODE FOR EXAMPLE 3.19

The R code for Model 3.19 is given below.

Computer-Code A.8.

l i b r a r y ( r e a d r )

d i a b e t e s d a t a <− r e a d c s v (” d i a b e t e s d a t a . c s v ” ,

c o l t y p e s = c o l s ( P r e g n a n c i e s = co l number ( ) ,



93

Glucose = co l number ( ) , B l o o d P r e s s u r e = co l number ( ) ,

S k i n T h i c k n e s s = co l number ( ) , I n s u l i n = co l number ( ) ,

BMI = co l number ( ) , D i a b e t e s P e d i g r e e F u n c t i o n = co l number ( ) ,

Age = co l number ( ) , Outcome = co l number ( ) ) )

View ( d i a b e t e s d a t a )

f u l l m o d e l <− glm ( Outcome ˜ . , da ta = d i a b e t e s d a t a , f a m i l y = b i n o m i a l ( l i n k = ” l o g i t ” ) )

summary ( f u l l m o d e l )

# Forward s e l e c t i o n ( s t a r t w i t h no r e g r e s s o r )

# S t e p 1

f 1 <− glm ( Outcome ˜ 1 , da ta = d i a b e t e s d a t a ,

f a m i l y = b i n o m i a l ( l i n k = ” l o g i t ” ) )

summary ( f 1 )

# S t e p 2

s t e p r e s u l t <− s t e p ( f1 , d i r e c t i o n = ” forward ” , scope = f o r m u l a ( f u l l m o d e l ) )

s t e p r e s u l t

# Backward s e l e c t i o n ( s t a r t w i t h a l l r e g r e s s o r )

s t e p r e s u l t <− s t e p ( f u l l m o d e l , d i r e c t i o n = ”backward ”)

s t e p r e s u l t

# S t e p 3 ( F i n a l model a f t e r fo rward & backward s e l e c t i o n )

f i n a l m o d e l <− glm ( Outcome ˜ P r e g n a n c i e s + Glucose +

B l o o d P r e s s u r e + I n s u l i n +

BMI + D i a b e t e s P e d i g r e e F u n c t i o n + Age ,

da ta = d i a b e t e s d a t a , f a m i l y = b i n o m i a l ( l i n k = ” l o g i t ” ) )

summary ( f i n a l m o d e l )

s t e p r e s u l t
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Appendix B

APPLICATION OF THE WNRM TO DIABETES DATA

B.1 COMPUTER CODE FOR THE WEIGHTED NEWTON-RAPHSON ALGORITHM IN

THE DIABETES DATA

The following is R-code for numerically solving the iterative equation (A.6).

B.2 COMPUTER CODE FOR THE REWEIGHTED LEAST SQUARES ALGORITHM IN THE

”GLM” FUNCTION IN R FOR THE DIABETES DATA

(A.7) The output of Reweighted Least Squares algorithm:

Call: glm(formula = Outcome ∼ Pregnancies+Glucose+BloodPressure+

SkinThickness+Insulin+BMI+DiabetesPedigreeF.+Age, family = binomial(link =

”logit”), data = diabetesdata)

Coefficients: Estimate Std.Error z value Pr(> |z|)

(Intercept) -8.4046964 0.7166359 -11.728 < 2e− 16 ***

1 Pregnancies 0.1231823 0.0320776 3.840 0.000123 ***

2 Glucose 0.0351637 0.0037087 9.481 < 2e− 16 ***

3 Blood Pressure -0.0132955 0.0052336 -2.540 0.011072 *

4 Skin Thickness 0.0006190 0.0068994 0.090 0.928515

5 Insulin -0.0011917 0.0009012 -1.322 0.186065

6 BMI 0.0897010 0.0150876 5.945 2.76e-09 ***

7 Diabetes Pedigree F. 0.9451797 0.2991475 3.160 0.001580 **

8 Age 0.0148690 0.0093348 1.593 0.111192

Table B.1: Results for the Reweighted Least Squares including information with on the

estimated coefficients, standard errors, z-values, and corresponding p-values
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter

for binomial family taken to be 1)

Null deviance: 993.48 on 767 degrees of freedom

Residual deviance: 723.45 on 759 degrees of freedom

AIC: 741.45

Number of Fisher Scoring iterations: 5
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