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APPLICATIONS OF PREDICTIVE AND GENERATIVE AI ALGORITHMS: REGRESSION 

MODELING, CUSTOMIZED LARGE LANGUAGE MODELS, AND TEXT-TO-IMAGE 

GENERATIVE DIFFUSION MODELS 

by 

SUHAIMA JAMAL 

Under the Direction of Hayden Wimmer 

ABSTRACT 

The integration of Machine Learning (ML) and Artificial Intelligence (AI) algorithms has radically changed 

predictive modeling and classification tasks, enhancing a multitude of domains with unprecedented 

analytical capabilities. Predictive modeling leverages ML and AI to forecast future trends or behaviors 

based on historical data, while classification tasks categorize data into distinct classes, from email filtering 

to medical diagnosis. Concurrently, text-to-image generation has emerged as a transformative potential, 

allowing visual content creation directly from textual descriptions. These advancements are pivotal in 

design, art, entertainment, and visual communication, as well as enhancing creativity and productivity. This 

work explores three significant studies in ML and AI research, focusing on predictive and classification 

solutions on cloud platforms. First, a study evaluates regression-type ML models across cloud platforms, 

offering critical insights for optimizing models and deployment strategies. Second, research on customizing 

large language models for email classification addresses cybersecurity concerns, bolstering email security 

measures. Moreover, this work demonstrates how LLMs can be customized via training existing models on 

new data. Finally, investigation into text-to-image generation diffusion models highlights the evolving 

landscape of AI-driven visual content generation while informing future advancements and applications. 

Together, these studies advance the capabilities and applications of ML and AI technologies, addressing 

real-world challenges and driving innovation. 

INDEXED WORDS: Artificial intelligence, Machine learning, Large language models, Text-to-image 

generation, Diffusion models, Deep learning, Cloud computing, Microsoft Azure, AWS, GCP, DistilBERT, 

RoBERTA, Fine-tuning, Model optimization 
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CHAPTER 1:  

INTRODUCTION 

Machine learning (ML) and artificial intelligence (AI) algorithms are pivotal in predictive modeling and 

classification tasks while analyzing complex datasets and extracting valuable insights. These algorithms 

have revolutionized various domains by enabling accurate predictions, pattern recognition, and decision-

making processes. In the domain of predictive modeling, ML and AI algorithms facilitate the development 

of predictive models that can forecast future trends, outcomes, or behaviors based on historical data. 

Similarly, in classification tasks, these algorithms categorize data into distinct classes or categories, 

empowering applications ranging from email filtering to medical diagnosis. Moreover, the advent of text-

to-image generation has further expanded the horizons of AI applications, allowing for the creation of visual 

content directly from textual descriptions. This capability holds immense potential in diverse fields such as 

design, art, entertainment, and visual communication, where AI-driven image synthesis enhances creativity 

and productivity. ML and AI algorithms continue to drive innovation and transformation across industries, 

shaping the future of predictive modeling and image synthesis. 

The first study on the regression-type machine learning modeling focuses on the performance evaluation 

of ML models of different cloud platforms.  The significance of adopting cloud technology in enterprises 

is accelerating and becoming ubiquitous in business and industry. Due to migrating the on-premises servers 

and services into the cloud, companies can leverage several advantages such as cost optimization, high 

performance, and flexible system maintenance, to name a few. As the data volume, variety, veracity, and 

velocity are rising tremendously, adopting machine learning (ML) solutions in the cloud platform bring 

benefits from ML model building through model evaluation more efficiently and accurately. This study will 

provide a comparative performance analysis of the three big cloud vendors: Amazon Web Service (AWS), 

Microsoft Azure and Google Cloud Platform (GCP) by building regression models in each of the platforms. 

For validation purposes, i.e., training and testing the models, five different standard datasets from the UCI 

machine learning repository have been employed. This work utilizes the ML services of AWS Sagemaker, 

Azure ML Studio, and Google Big Query for conducting the experiments. Model evaluation criteria include 

measuring R-squared values for each platform, calculating the error metrics (Mean Squared Error, Mean 

Absolute Error, Root Mean Squared Error etc.) and comparing the results to determine the best-performing 

cloud provider in terms of ML service. The study concludes by presenting a comparative taxonomy of 

regression models across the three platforms. 

The second study is on customizing and fine-tuning of large language models on a classification task which 

is identification of spam, ham, and phishing types of emails. Phishing and spam detection are long-standing 
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challenges that have been the subject of much academic research. Large Language Models (LLM) have 

vast potential to trans- form society and provide new and innovative approaches to solve well-established 

challenges. Phishing and spam have caused financial hardships and lost time and resources to email users 

all over the world. They frequently serve as entry points for ransomware threat actors. While detection 

approaches exist, especially heuristic- based approaches, LLMs offer the potential to venture into a new 

unexplored area for understanding and solving this challenge. LLMs have rapidly altered the landscape 

from business, consumers, and throughout academia and demonstrate transformational potential for 

society's potential. Based on this, applying these new and innovative approaches to email detection is a 

rational next step in academic research. In this work, we present IPSDM, an improved phishing spam 

detection model based on fine-tuning the BERT family of models to detect phishing and spam email 

specifically. We demonstrate our fine-tuned version, IPSDM, is able to better classify emails in both 

unbalanced and balanced datasets.  

Finally, the third study is on text-to-image generation diffusion models, where we worked on the perception 

and evaluation of text-to-image generative AI models. Generative Artificial Intelligence (AI) model is a 

revolutionary type of AI capable of producing high-quality images based on textual inputs. These models 

utilize natural language processing (NLP) techniques and computer vision to understand and interpret the 

textual descriptions and then generate images that align with the given descriptions. This study evaluates 

four prominent text-to-image generative models- DALL-E, Google Imagen, Stable Diffusion, and GROK 

AI emphasizing on the text-to-image diffusion models. Using a comprehensive evaluation approach, we 

employ three mathematical formulas the Fréchet Inception Distance (FID), Structural Similarity Index 

(SSIM), and Peak Signal-to-Noise Ratio (PSNR) to assess image quality and realism across datasets 

collected from these AI platforms. Additionally, human evaluations are conducted to compare the 

perceptual impact of AI-generated images with mathematical metrics. Our findings contribute to the 

advancement of text-to-image synthesis and advocate for responsible AI development. 

These three studies hold significant importance in the realm of machine learning and AI research, 

particularly in their focus on predictive and classification solutions deployed on cloud platforms. Firstly, 

the study on regression-type machine learning modeling contributes to our understanding of the 

performance evaluation of machine learning models across different cloud platforms. This insight is crucial 

for organizations and researchers seeking to optimize their model deployment strategies and choose the 

most suitable cloud infrastructure for their specific needs. Secondly, the research on customizing and fine-

tuning large language models for classification tasks, such as identifying spam, ham, and phishing emails, 

addresses a pressing cybersecurity concern. Email classification plays a vital role in mitigating the risks 

associated with malicious activities and enhancing the accuracy and efficiency of these classification 
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models can significantly strengthen email security measures. Lastly, the investigation into text-to-image 

generation diffusion models explores the burgeoning field of AI-driven visual content generation. As the 

demand for AI-generated imagery continues to rise across various industries, understanding the perception 

and evaluation of text-to-image generative AI models becomes paramount. This research sheds light on the 

capabilities and limitations of such models, informing future advancements and applications in this rapidly 

evolving domain. Collectively, these studies contribute to advancing machine learning and AI technologies 

across various contexts, tackling real-world challenges and fostering innovation. 
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CHAPTER 2:  

LITERATURE REVIEW  

2.1 STUDY A – LITERATURE REVIEW: REGRESSION MODELS EVALUATION ON CLOUD 

PLATFORMS: AWS VS AZURE VS GCP 

There are many scholarly works on ML algorithms’ comparisons, specifically on supervised models, but a 

few of them are noted in section 2.1.1. Later, the papers on the performance analysis of ML models on 

several open-source data mining tools are summarized in section 2.1.2. Furthermore, studies which focus 

on comparing different cloud vendors are summarized in section 2.1.3.  

 2.1.1. Supervised ML Algorithms’ Performance Comparison  

Abdulqader, et al. [1] presented several techniques of supervised machine learning algorithms for gene 

selection dataset. Various supervised algorithms: Support Vector Machine (SVM), Neural Network, K-

nearest Neighbor, Naïve Bayes, Random Forest are elaborately discussed here. A survey has been conducted 

using supervised machine learning algorithms on gene selection methods. The performance has been 

measured as highest while using the SVM technique on four sets of microarray data. The lowest accuracy 

seems to be from Naïve Bayes which is 74.83% [1]. Similarly, from the experimental results of Meyer, et 

al. [2] on four machine learning algorithm (Random Forest, Neural Network, Averaged Neural Network 

and Support Vector Machine) on MSG SEVIRI data over Germany, SVM has relatively high error (123%) 

and its prediction rate is lower than other three. The R-squared values of each model increases significantly 

with the aggregation on to 24 hours [2]. 

    Likewise, another comparative study was conducted by Osisanwo, et al. [3]  where the classification 

indicates that SVM has the highest correctly classified instance (77.3021%). In another work, Maulud and 

Abdulazeez [4] described linear regression models elaborately and reviewed 23 papers on different types 

of linear regression: Simple, Polynomial and Multivariate Linear Regression (MLR) models. The paper 

discussed all the related equations for each model, and how the least square method is utilized to find the 

best fit line or curve. The higher accuracy is 99.89%, obtained by using MLRM technique on the Aero-

Material dataset. The lowest accuracy (82.15) is found for the Pima Indian Diabetes dataset while using the 

same MLRM method [4]. Moreover, on the types, techniques and implementations of machine learning 

algorithms, Wang, et al. [5] discussed in detail on linear regression models. It is noted that principal 

components analysis (PCA) has significance in reducing data dimensionality of unsupervised learning. 

Other important concepts like local representation, interpolation with kernel and smoothness prior also have 

impacts on predictive functions which are clearly demonstrated in this paper [5].  
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    Again, Kolisetty and Rajput [6] aimed to facilitate the understanding of ML's significance for large data 

analysis. High volume data processing needs more computational power and increased hardware, it also 

becomes high in cost. Impact of these perspectives on real time data analysis is a major factor to be 

considered. This paper also suggests the opportunities from the encouraging features development in the 

field of machine learning with the use of big data [6]. On the other hand, Asim, et al. [7] have adopted the 

three different machine learning approaches: lazy learning, decision tree with different variants and 

ensembling technique identifying professional bloggers. While working with D tree classifiers, famous 

algorithms for D trees, such as Random Tree, REP Tree, Random Forest, Simple Cart, NB Tree, and AD 

Tree, are used. Evaluating the results, it is found that the best correctly classifiers are Random Tree and 

Random Forest with 92% accuracy rate having only 8% error [7]. Moreover, Love [8] focused on the modes 

of unsupervised learning model: intentional and incidental, and their relationships with supervised 

classification learning. After running three algorithms on the collected data, four types were observed, with 

type 2 supervised learning having the highest accuracy (95%). The overall work after result evaluation 

summarizes that there are no advantages of engaging intentional unsupervised learning over incidental 

except the target concept is low in dimension and non-linear [8].  

     2.1.2. ML Model Evaluation on Open-source Data Mining Tools 

Numerous research works have compared the performances of machine learning algorithms on open-source 

data mining tools. Like, Ratra and Gulia [9] 2020 aimed at analyzing data mining tools, Orange, and WEKA 

by implementing three classification algorithms: Naïve Bayes, K-nearest Neighbor and Random Forest. 

While comparing the precision metrics, the results show that WEKA has a higher percentage than Orange. 

Naïve Bayes performs the highest in both platforms which is 83.7% in WEKA and 82.4% in Orange [9]. 

Similarly, Kodati and Vivekanandam [10] presented a comparative review on WEKA and Orange tools for 

mining and analyzing of Heart Disease Dataset from UCI data repository. Authors have conducted an 

analytical study on four machine learning algorithms: Naïve Bayes, SMO, Random Forest, and K-Nearest 

Neighbor. When the dimension of the inputs is high, Naïve Bayes has the highest performance in Precision 

and Recall in WEKA and Orange tools. The Precision and Recall values of K-Nearest Neighbor is 0.753 

and 0.752 in WEKA, whereas in Orange it is consecutively 0.58 and 0.547. K-Nearest Neighbor has the 

lowest performance among the four [10]. Moreover, Jamal, et al. [11] developed boosting methods on 

WEKA and Orange tools to predict heart disease death rate with an accuracy of 72% in Orange tool and 

77% in WEKA. In another study, Kavitha, et al. [12] worked on regression models and compared two 

potential functions for linear regression algorithm: SMOReg function and LeastMedSq function. Open 

University Learning Analytics dataset has been used which is multivariate, time series and sequential. While 

comparing both models, it is obvious that the SMO regression function took 2.42 seconds which is less than 
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the LeastMedSq function of linear regression (3.29 seconds). However, all the error metrics (mean absolute 

error, relative absolute error, root mean squared error) are less in LeastMedSq linear regression than SMO 

regression. The result concludes that the LeastMedSq function performs better for linear regression 

algorithm [12].  

Moreover, another experiment was conducted by Rajagopal, et al. [13] on UNSW NB-15 dataset for 

intrusion detection. The experiment is conducted in Azure Machine Learning Studio to evaluate the models 

where 10-fold cross-validation technique has been applied. Four classification models (Random Forest, 

Decision Tree, Naïve Bayes and SVM) have been compared while Apache Spark is used as a processing 

paradigm. Result indicates that as a classifier, Decision Forest performs the highest. Moreover, the eight 

two class models took minimal time for training which ranged in 6 to 9 seconds. The study also emphasized 

that Microsoft Azure Machine Learning Studio (MAMLS) can be considered a potential integrated 

development environment for handling large volumes of datasets [13]. 

     2.1.3. Cloud Vendors’ Comparison: Services and Design Taxonomies 

Related to cloud platform comparison based on general services, Kaushik, et al. [14] discussed and 

compared among three large cloud vendors: Amazon AWS, Microsoft Azure and Google Cloud Platform. 

It elaborated the different computing platforms of cloud as can be segmented into two elements front end 

and back end. Authors have tabulated all the prices of services that are provided by these three cloud vendors 

where it is obvious that Azure is the most expensive for general purpose instances. However, AWS has the 

cheapest options for choosing instances. For testing the performance, Phoronix Test Suite3 was adopted on 

Linux systems. The test processes were completed in Apache, RAM speed and Dbench benchmark. In the 

Apache measurement, it is seen that Azure handles more HTTP requests better than the two. Again, in the 

Dbench test, AWS and Azure differences are negligible while GCP performs less than the two [14]. 

Similarly, in another survey by Alkhatib, et al. [15], the finding shows that market shares of AWS (32%) is 

larger than Azure (19%) and GCP (7%). In terms of security, AWS has AWS Security Hub, Azure uses 

Azure Security Center and Google has their Cloud Security Command Center. While considering the 

weakness, Azure seems most expensive which can cut down their customers, AWS is sometimes considered 

as difficult to use and GCP has comparatively fewer features than others [15].  

      Another taxonomy of services is provided by Sikeridis, et al. [16] on the four dominants in perspective 

of market share and the sub-services designating storage, data pipeline, analytics, databases, machine 

learning etc. While using cloud services, customers can choose to pay per usage model for billing. Major 

cloud vendors provide a combination of low cost (Zero installation and maintenance cost) and high 

performance. Based on the service types of computer services and virtual machines, the offered services by 
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Amazon, Microsoft, Google, and IBM have been tabulated where it is found that Max memory is used by 

Amazon (1952 GB: X1) and the lowest is IBM (242 GB). The virtualization of hypervisor-based, and 

container based have been drawn as well. The serverless computing services for each provider are Amazon: 

AWS Lambda, Microsoft: Azure Function, Google: Cloud Functions and IBM: Open Whisk. All the four 

providers have no SQL, petabyte-scale and relational databases [16].   

     So far, other studies focused on the comparisons of ML algorithms in open-source data mining tools or 

offline tools. However, the performance evaluation of these models in cloud platforms is yet to be measured. 

Hence, our first study aims to build such an analysis among Azure, AWS, and GCP by conducting 

experiments on individual platforms.  

2.2 STUDY B – LITERATURE REVIEW: An Improved Transformer-based Model for Detecting 

Phishing, Spam and Ham Emails: A Large Language Model Approach  

  
2.2.1. Machine Learning and Deep Learning-based Methods  

Numerous machine learning and deep learning-based spam email detection and classification applications 

have been carried out over the past few decades by many researchers.  In such studies [17-22], authors have 

proposed, reviewed, and evaluated spam filtering models where the classification models are based on 

traditional machine learning algorithms, i.e., Naïve Bayes, Random Forest, SMV mostly. Govil, et al. [17] 

created a dictionary named “stopwards” to remove the helping verbs from email. Then, the algorithm is 

executed for checking the possibility of being spam or not. A machine learning classifier, Naïve Bayes has 

been applied for the identification purpose where non-spam emails were classified as spam, 1 and non-

spam, 0 [17].  

Similarly, Chen, et al. [18] have evaluated machine learning algorithms for detecting spam tweets. A large 

dataset containing around 600 million public tweets have been collected first. Later, Trend Micro’s Web 

Reputation System was applied to label the spam emails. Experiments on different data sizes revealed that 

TP rate is increased from 78% to 85% following KNN and 70% to 75% following the Random Forest 

classifier. Another potential finding is the classifier could detect continuously sampled spam tweets better 

than randomly selected tweets [18]. In the similar context of Twitter spam detection, Wu, et al. [23] 

introduced a WordVector Training-based model with a  classification accuracy of around 80%. This work 

has achieved an average 30% higher F-measures compared to other existing models.  

Moreover, Guzella and Caminhas [21] reviewed the textual and image-based spam email filtering 

approaches focusing on designing new filters. Most common method selecting the feature is information 

gain and this way of collecting features might increase accuracy. Regarding datasets, SpamAssassian and 

LingSpam are considered the most popular ones, whereas TREC corpora can produce a more realistic online 
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setting. Moreover, Chetty, et al. [24] proposed a deep learning-based model combining Word Embedding 

and Neural Network aiming to detect spams from various text documents. Naïve Bayes model is considered 

as the baseline model for comparing with the deep learning model. Datasets were collected from UCI 

machine learning repository for developing the models. For the SMS dataset, the highest performance 

(accuracy 98.7%) is achieved from the combined Word Embedding and neural network model. Apart from 

the supervised learning approaches, there are numerous works on unsupervised modeling as well [25-30].  

Utilizing Modified Density-Based Spatial Clustering of Applications with Noise (M-DBSCAN), 97.848% 

accuracy has been obtained by Manaa, et al. [26]. An online unsupervised spam detection scheme, 

SpamCampaignAssassin (SCA) could detect around 92.4% spam for DEPT trace email dataset [25].  

2.2.2 Transformer Model-based Approaches 

The research works and literature landscape on transformer-based methods are relatively limited. The 

domain of fine-tuned transformers or attention mechanism techniques for identifying spam emails is still 

an emerging new field. Related to this specific area,  Yaseen [31] has introduced an effective word 

embedding technique for spam classification. Pre-trained transformer, BERT is fine-tuned to detect the 

spam emails from non-spam emails. Deep Neural Network with BiLSTM is considered as a baseline model 

to compare the model. Two open-source datasets from UCI machine learning repository and Kaggle have 

been employed to train and test the model. The proposed model could achieve 98.67% classification 

accuracy. Similarly, Liu, et al. [32] have developed and evaluated a modified spam detector transformer 

using the publicly available datasets, Spam Collection v.1 and UtkMI’s Twitter Spam Detection 

Competition dataset. This model could obtain 98.92% accuracy with a recall and F1 scores rate respectively, 

0.9451 and 0.9613.  

Furthermore, Guo, et al. [33] and Tida and Hsu [34] focused on BERT models implying the significance of 

self-attention mechanism. Guo, et al. [33] utilized two public datasets, Enron [35] and a simple spam email 

classifier dataset from Kaggle for classifying ham or spam emails using pre-trained BERT model. Similarly, 

an Universal Spam Detection Model (USDM) has been developed and tested using four publicly available 

datasets: Ling-spam dataset [36], spam text dataset from Kaggle, Enron dataset and spam assassin dataset. 

This model has gained overall accuracy of 97% with 0.96 F1 score [34] . Moreover, for detecting phishing 

URL and cyberbullying identification models, researchers worked on fine-tuning BERT-based models [37-

40]. Wang, et al. [37] have scrapped 2.19 million pieces of URL data from PhishTank while pre-training 

PhishBERT model. This model exhibited 92% accuracy in detecting phishing URLs. Similarly, Maneriker, 

et al. [38] fine-tuned BERT and RoBERTa models and proposed a URLTran transformer.  Microsoft Edge 

and Internet Explorer browsing telemetry data have been employed for training, testing, and validating 

purpose. Down sampling method is applied for balancing the datasets where the final training dataset had 
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77,870 URLs. The final models had a True Positive Rate (TPR), 86.80% compared to the baseline models 

URL-Net [41] and Texception [42].   

In the current state of machine learning, deep learning, and transformer-based models, a notable gap persists 

in the literature where the fine-tuning of BERT families has not been extensively explored. Despite the 

remarkable achievements of BERT-based architectures in several natural language processing tasks, there 

remains a lack of comprehensive research on fine-tuning these models to address specific domain 

challenges. In our second work, we aim to close this gap by implementing fine-tuning techniques on BERT 

variants such as DistilBERT and RoBERTA. By customizing and fine-tuning these models on datasets 

relevant to specific applications, we seek to enhance their adaptability and effectiveness in addressing 

sophisticated real-world problems in complex domains, thereby contributing to the advancement of 

machine learning and deep learning methodologies.  

2.3 STUDY C – LITERATURE REVIEW: PERCEPTION AND EVALUATION OF TEXT-TO-

IMAGE GENERATIVE AI MODELS: A COMPARATIVE STUDY OF DALL-E, GOOGLE 

IMAGEN, GROK, AND STABLE DIFFUSION 

The research landscape in text-to-image generation is still relatively nascent, with a limited number of 

works exploring this emerging field. While interest in text-to-image synthesis has been growing, 

particularly in recent years, the volume of literature remains relatively modest compared to more established 

areas of machine learning and computer vision. In the context of image tuning,  et al. [43] introduced 

UniTune, an innovative approach to image editing that accepts any image along with a textual description 

of the desired edit. It is capable of executing the modification while preserving the original image's quality. 

Unlike other methods, UniTune doesn't rely on additional inputs like masks or sketches and can handle 

multiple edits without retraining. In evaluations against another similar potential model, SDEdit, UniTune 

demonstrated a clear advantage, with a 72% preference over SDEdit's 28%. These results indicate that while 

both methods excel when edits are minor, UniTune outperforms significantly in scenarios requiring 

substantial pixel alterations, such as object duplication, movement, or resizing. In another study related to 

versatile diffusion model, Xu, et al. [43] extended the original single-flow diffusion pipeline into a versatile 

multi-task multimodal network called Versatile Diffusion (VD), capable of handling various tasks such as 

text-to-image and image-to-text conversions within a single unified model. VD comprises three key 

components: a diffuser that operates within a multi-flow multimodal framework, variational autoencoders 

(VAEs) for converting data samples into latent representations, and context encoders for embedding 

contextual information. In comparison to existing models like CogView, LAFITE, GLIDE, and Make-a-

Scene, VD demonstrates superior FID performance, with a score of 11.21 ±0.03 compared to 11.10 ±0.09. 
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Furthermore, another  method has been developed by Elarabawy, et al. [44] for featuring multiple easily 

adjustable hyperparameters, enabling a diverse array of real image edits. This method, termed as 

optimization-free and zero fine-tuning, relies on text-based semantic instructions for flexible editing. Unlike 

approaches generating numerous outputs and relying on additional mechanisms for filtering, this method 

allows for systematic modulation of target edits. Moreover, Ruiz, et al. [45] introduced a method called 

Dream Booth, which synthesizes new renditions of a subject using a small set of subject images and a text 

prompt as guidance. This framework is developed by fine-tuning a text-to-image model with the input 

images and text prompts containing a unique identifier followed by the class name of the subject. Two 

metrics, CLIP-I and DINO were used to evaluate the performance. Dream Booth (based on the Imagen 

model) achieves higher scores for both subject and prompt fidelity compared to Dream Booth (based on 

Stable Diffusion), nearing the upper limit of subject fidelity achievable with real images. 

For image synthesis, several research have been carried on blended diffusion models which combine ideas 

from diffusion models and autoregressive models to achieve high-quality image generation [46, 47]. A 

latent diffusion model (LDM) was designed by Avrahami et al. [48] to accelerate the diffusion process by 

functioning within a lower-dimensional latent space. This design eliminates the necessity for resource-

intensive CLIP gradient computations at each diffusion step, thereby enhancing efficiency without 

compromising on the quality of image synthesis. Numerous researchers have directed their attention toward 

transformer-based applications to achieve rapid and high-resolution image synthesis[48-50]. Ding, et al. 

[51] designed a solution leveraging hierarchical transformers and local parallel autoregressive generation. 

They pretrained a 6-billion-parameter transformer using a straightforward and adaptable self-supervised 

task, namely a cross-modal general language model called CogLM, and further refined it for swift super-

resolution tasks. Their novel text-to-image system, CogView2, exhibits highly competitive generation 

capabilities when compared to contemporary state-of-the-art models like DALL-E-2, while also inherently 

supporting interactive text-guided editing of images.  

Another two-stage model has been developed by Ramesh, et al. [52] where the first stage generates a CLIP 

image embedding from a provided text caption, and the second stage consists of a decoder that generates 

an image conditioned on this embedding. Moreover, Latent diffusion models offer significant advantages 

for tasks such as image inpainting, class-conditional image synthesis, as well as competitive performance 

across various other tasks like unconditional image generation, text-to-image synthesis, and super-

resolution. In one such study, Rombach, et al. [53] analyzed the behavior of their latent diffusion models 

(LDMs) across different down sampling factors. These models are denoted as LDM-f, where LDM-1 

corresponds to pixel-based diffusion models. This LDM (Latent Diffusion Model) has achieved new state-

of-the-art scores for tasks such as image inpainting and class-conditional image synthesis. Moreover, it 
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demonstrates highly competitive performance across a range of tasks, including unconditional image 

generation, text-to-image synthesis, and super-resolution. 
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Chapter 3:  

Study A- Regression Models Evaluation on Cloud Platforms: AWS vs Azure vs GCP 
 

3.1. INTRODUCTION 

In the technological revolution, cloud computing has been the biggest buzz, impacting business and industry 

from every conceivable angle. The tendency to migrate to the cloud from local data centers, also known as 

on-premise [54] is quite a common scenario in almost every institution. Cloud computing plays a significant 

role in managing complex and sophisticated IT infrastructure, scaling up and down required resources, and 

focusing more on business operations. For working in the cloud platforms, migrating all on-premises data 

or applications to cloud, managing the virtualized resources efficiently [55, 56], and optimizing the cloud 

computing, it is an intelligent way to work with one of the cloud partners. In terms of big data and increased 

workloads, integrating machine learning solutions to the cloud and to deploy in the enterprise applications 

have added many advantages including flexibility, cost effectiveness and efficiency. To build, train, deploy, 

and test ML models with low coding experience, less maintenance, and required expertise, companies 

increasingly rely on cloud vendors [57]. Figure 3.1 represents the general ML service structure of cloud 

environment. Larger cloud computing service providers offer multiple options to implement the intelligent 

features in the enterprise applications which don’t demand highly skilled professionals to work with AI or 

ML projects thereby offering cost savings.  

 

 

Figure 3. 1 ML service environment of cloud platform 

     Enabling a computer system or machines to learn without explicit intervention or instruction of humans 

can be defined as Machine learning. Learning by the machine itself using algorithms or statistical 

approaches or models for analyzing data patterns and predicting outcomes is the basic idea behind this. ML 
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and artificial intelligence are making a steady approach into every industry sector such as enterprise, health 

care, education, engineering, and manufacturing [58-60]. These technologies are becoming integral in 

language processing and natural language processing (NLP) tasks. As organizations seek to leverage data-

driven insights and automation to enhance efficiency, decision-making, and innovation, ML and AI are 

playing an increasingly vital role in transforming various aspects of business operations and service delivery 

across diverse domains [61]. 

Deployment of machine learning models in the cloud brings extended benefits by removing many technical 

hurdles. Algorithms are widely adopted for handling resource management, scheduling tasks, and 

optimizing energy ML [62]. Cloud providers like Azure, AWS, and GCP offer to work with a variety of 

machine learning algorithms, still there are significant differences in terms of front-end interface, 

background setup etc. AWS is called the most mature provider with a range of offers for small development 

companies, large enterprises and even governments. They have the largest set of services. Microsoft Azure 

is popular for their drag and drop interface, which doesn’t require prior coding experience. The geographic 

coverage of Azure appears broader than others. GCP on the other hand is the smallest of the big three 

providers, however, it provides a robust set of solutions to any kind of application. 

      Since our data is increasing in an enormous volume, the significance and dependency on machine 

learning is also escalating gradually. The greater the data volume, the more computational power is required, 

and machine learning is playing a vital role in this case. For machine learning workloads, cloud is providing 

a pay-per-use model which is very cost effective. Certain barriers exist to bringing machine learning 

solutions to enterprises. To build, train and deploy models specialized skills are required. Apart from this, 

there is a high demand of computational power and special hardware adding up to high cost for 

development, labor, and infrastructure. All these barriers can be overcome with cloud computing solutions. 

Companies can leverage the highest speed and Graphical Processing Unit (GPU) power while training and 

experimenting machine learning models in cloud environment. Similarly, obstacles to storing high volume 

data have also been overcome. Not only the large enterprises, but also small to medium companies are 

taking the advantages of this cloud computing technology [63]. While choosing cloud vendors for machine 

learning service, reviewing the performance and offerings for each platform is recommended. During the 

collaboration with ML solutions, different cloud providers use different backend services, frameworks, and 

algorithms. Hence, performance of ML models might vary from platform to platform. It is strongly advised 

to understand and analyze the features and performance of the different cloud vendors while choosing one 

for machine learning implementation. 

This study addresses the performance evaluation of ML models on different cloud platforms. At first, the 

relevant literatures to our work are summarized. Next, our method collected five standard datasets from the 
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UCI machine learning data repository, examined the datasets and prepared data to input as for feeding into 

linear regression models, segregated the data for training and testing purposes, developed linear regression 

models in the three cloud platforms (Azure, AWS and GCP). Following the illustration of our methods, the 

results evaluate the models using the metrics like R Squared Value, Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE) and Mean Absolute Error (MAE) on the three largest cloud platforms. Our research 

will assist enterprises in effective decision-making when choosing a suitable cloud vendor when they 

consider leveraging cloud technology infused with machine learning solutions. 

3.2. METHODS  

The overall flow diagram of the project has been presented in figure 3.2, where in the beginning of the 

process, a total of five datasets have been collected from UCI Machine Learning data repository. All these 

data are standard and publicly available. The WEKA tool has prepared data to feed as inputs of the machine 

learning models. It has been ensured that there are no null or missing values in our data samples. After 

analyzing the data, linear regression models were built consecutively. At first ML model was built in 

Amazon AWS using the AWS Sage maker service. Then utilizing Azure ML studio, all the pipelines for ML 

models have been created. Later, taking the service of Google Big Query, model creation was performed. 

Finally, all the models have been evaluated by calculating the metrics Mean Squared Error (MSE), Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), Coefficient of determination or R-square etc.  

 

Figure. 3.2.  

Figure 3. 2 Flow Diagram of Overall Project 

3.2.1. Datasets 

All the datasets have been collected from UCI Machine Learning Data Repository, standard for regression 

model analysis. UCI machine learning repository has a large collection of datasets, data generators and 

domain theories which scholars, students, and researchers widely used as an authentic source of datasets.  
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Insurance Dataset. There are a total of 6 features (age, sex, bmi, children, smoker, and region) and one 

target variable, ‘charges’ in the data set. It has 1437 tuples in total. As sex, smoker and region attributes are 

non-numeric, numeric values have been assigned to these variables to make all data samples numeric [20]. 

It is a widely used dataset available publicly for exploratory data analysis and hypothesis testing on 

specifically regression models.  

 

Figure 3. 3 A snapshot of the insurance dataset 

 

Iris Dataset. This dataset contains a total of 4 independent variables (sepal width, petal length, and species) 

and one dependent variable, ‘sepal length’. The dataset has a total 150 data samples. The species are of Iris-

setosa, Iris-versicolor, and Iris-virginica. Based on these 4 features, the regression model will make the 

prediction on the sepal length variable [21].  

 

Figure 3. 4 A snapshot of iris dataset 

Real Estate Home Price Prediction Dataset. Real estate house price prediction is also a standard UCI 

machine learning data repository dataset. It has a total 6 feature variables and one target variable, which is 

‘unit area price’. Depending on the 6 features, the model makes predictions of the house price on a unit 

area. All the values of this dataset are numerical [22].  
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Figure 3. 5 A snapshot of real state home price prediction dataset 

 

Wine Quality-Red Dataset. It has a total of 1598 data rows with twelve independent variables and one 

dependent variable, quality. As the dataset has all numeric variables, it has been kept unmodified while 

loading for further model build-up [23]. 

 

 

Figure 3. 6 A snapshot of wine quality red dataset 

Wine Quality-White Dataset. This is also a standard dataset for working with regression models. The 

dataset contains a total of 13 attributes. Quality is the target or dependent variable here, which is predicted 

using the 12 independent variables. The number of rows in the dataset is 4897. The values are all numeric, 

and there are not any missing values. Hence, this dataset has been used without any modification [24].  

 

 

Figure 3. 7 A snapshot of wine quality white dataset 
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3.2.2. Cloud Platforms  

With the evolution of computing and technology, cloud computing has been a blessing for implementing 

and working with machine learning algorithms. Different platforms have different orientations and 

interfaces for building models. For building and training cost-effective, memory-efficient solutions with 

simple or complex machine learning algorithms, several cloud platforms like Azure, AWS and GCP have 

their different service levels. In this work, we will implement regression models using above five different 

datasets for running the experiment into three platforms (Azure, AWS and GCP). 

3.2.3. Algorithm 

Linear regression is one of the most famous supervised algorithms used for predictive analysis. It makes 

predictions for real or continuous or numeric values like age, salary, product price etc. The formula stands 

as:  

Y = a + bX 

Where Y is dependent or target variable, X is predictor or independent variable, and b is the slope of the 

line. This algorithm provides a straight line between these variables X and Y, as shown in figure 3.8. 

 

Figure 3. 8 Linear Regression Graph 

We will be working with a linear regression model and analyzing the performance metrics in three cloud 

environments. This has been ensured that all the datasets were kept the same for all three platforms. Also, 

the procedures, data splitting process etc. were kept similar while building the models.  

3.2.4. Procedure 
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Amazon AWS. In the AWS platform, the Sage maker service has been used which is a fully managed 

machine learning Amazon Elastic Compute Cloud (Amazon E2C) Compute Instance. With Sage Maker, 

different machine learning models can be easily and quickly built, trained, tested, and deployed in the 

production ready environment. A Jupyter notebook instance has been created to build linear regression 

models. Initially the datasets have been loaded into Amazon S3 bucket, which is the public cloud storage 

available in Amazon Web Service. The datasets have been split into 70%-30% ratio for training and testing 

using sk-learn functions. Using Sage maker boto3 services, the model was trained, and the model summary 

was evaluated. The interface of the AWS sage maker is presented in Figure 3.9. 

 

 

Figure 3. 9 Amazon AWS Sage Maker Interface 
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Figure 3. 10 Code Snippet from AWS Sage Maker Jupyter Notebook 

Microsoft Azure. In our experiment, Azure Machine Learning Studio was used to create the machine 

learning pipelines in the designer and authoring section. Azure blob storage has been used to store the 

datasets. The default computing instances of Azure have been utilized here. Randomization and splitting 

data ratio were kept as 70%-30%. The Azure ML Studio interface and the flow of one of our pipeline 

creations are shown consecutively in figures 3.11 and 3.12.  

 

 

 

Figure 3. 11 Azure ML Studio Interface 
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Figure 3. 12 Azure ML Studio: Linear Regression Model Pipeline for Wine Quality Dataset 

Google Cloud Big Query. Using Google Big Query, our linear regression model is built in Google Cloud. 

Google Big Query is a serverless and cost-effective warehouse that works with big data and gets insights 

by extracting features. After building the model, all the results have been evaluated for our five datasets. 

The snapshot of the evaluation criteria using insurance dataset has been attached in figure 3.13 where 

different error metrics like Mean Absolute Error, Mean Squared Error, Mean Squared Log Error etc. can be 

found. 



29 
 

 

 

Figure 3. 13 Google Big Query Model Evaluation for Wine Quality Dataset 

3.3. EXPERIMENTAL RESULTS 

We have used five different datasets standard for regression models from UCI machine learning and run 

our experiments in three cloud platforms (Azure, AWS and GCP). First, linear regression models have been 

built using AWS Sage maker Jupyter Notebook instance. Then in Azure ML studio, the pipelines of the 

models have been created for all the five datasets and the evaluation results are recorded. All the results 

were collected from these two platforms. Later, we worked on Google Big Query for building and 

evaluating our model in Google Cloud Platform. Finally, the comparison of R squared values and different 

error metrics are calculated and compared among the three platforms’ results. 

3.3.1. R Squared Value or Coefficient of Determination 

This statistical measure in the regression model determines the variance proportion of the dependent 

variable which the independent variable can explain. This value can determine the fitness of the model. The 

higher R-squared value is the better for the model fitness. 

R-Squared Formula is defined in equation 3.1: 

RSquared =  
SSRegression

SSTotal
                    

𝑆𝑆𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = Sum of squares due to regression 

𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = Total sum of squares  

Interpretation of R-Squared values. The higher the R-squared value, the better the regression models fit 

with the testing data. When the values of x account for R-squared = 1, all the variations of y values. 
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When R-squared = 0.5, 50% of the variations of y values are accounted for by the values of x. When R-

squared = 0, None of the variation of y is accounted for by x. 

Table 3. 1 R squared value comparison 

Platform Dataset Name Average 

  Insurance Iris Real 

Estate 

Home 

Price 

Wine 

Quality 

Red 

Wine 

Quality 

White 

  

Azure 0.745 0.870 0.594 0.296 0.281 0.557 

AWS 0.751 0.868 0.582 0.361 0.261 0.565 

GCP 0.784 0.868 0.582 0.359 0.261 0.571 

 

Our experiments obtained R-squared values from Azure, AWS and GCP, which have been tabulated in table 

3.1. At first R-squared values are calculated for each of the dataset and then the average is calculated to 

compare the results. The higher average R-squared value is obtained from GCP (0.571) and then AWS 

(0.565). However, Azure (0.557) performs comparatively less than the other two. The bar chart in figure 

3.14 shows the performance comparison among these three cloud providers. 

 

Figure 3. 14 Comparison Graph of R-Squared Value 

3.3.2. Error Metrics 

Error metrics are used to quantify performance of models and provide ways for forecasting to compare 

different models quantitatively. These metrics give a precise gauge on the performance of the models. There 
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are few common error metrics for reporting and evaluating linear regression model performance, these are: 

Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Mean 

Squared Log Error (MSLE).  

Root Mean Squared Error (RMSE). This calculates the square root of average squared distance, which 

is the difference between the actual and predicted values. This is a popular evaluating metric for regression 

models as it calculates how the prediction is close to the actual average and indicates the effects of large 

error. Large errors will always have a significant impact on the RMSE value. The formula for RMSE is as 

below equation 3.2: 

𝑅𝑀𝑆𝐸 = 𝑆𝐷𝑦√(1 − 𝑟2)                        

SD is the standard deviation. The lower the RMSE value, the better the model fits to the dataset.  

Mean Absolute Error (MAE). Mean Absolute Error is the loss function of a regression model. The loss 

denotes the mean of the absolute differences between actual and predicted values or, the deviation from the 

actual value. Less MAE value is better and if it tends to zero the model is more accurate. MAE formula is 

as following equation 3.3: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑌 − 𝑌𝑛

1  |                     

Here Y is the output value. 

 𝑌 is the predicted value. 

 n is the total data points.  

Mean Squared Log Error (MSLE). The measurement of the ratio between log-transformed actual and log 

transformed predicted value of a model can be noted by Mean Squared Log Error (MSLE) as shown in 

equation 3.4. 

𝑀𝑆𝐿𝐸 =  
1

𝑁
 ∑(𝑙𝑜𝑔𝑒(1 + 𝑦𝑖) −  𝑙𝑜𝑔𝑒 (1 + 𝑦𝑖))2

𝑁

𝑖

    

Table 3. 2 Error metrics of Microsoft Azure Platform 

Datasets 
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Error Metrics Insurance Iris 

Real 

Estate 

Home 

Price 

Wine 

Quality 

Red 

Wine 

Quality 

White 

Mean Absolute Error 

(MAE) 
7197.14 0.213 6.273 0.554 0.596 

Relative Absolute 

Error 
0.4698 0.340 0.609 0.781 0.878 

Relative Squared 

Error 
0.255 0.130 0.406 0.704 0.719 

Root Mean Squared 

Error (RMSE) 
6217.802 0.276 8.371 0.719 0.770 

 

The error metrics from Azure and GCP are tabulated in the tables 3.2 and 3.3. For the five datasets Mean 

Absolute Error, Mean Squared Error, Mean Squared Log Error and Root Mean Squared Error are calculated 

here. Table 4 shows the average MAE and RMSE error rate between Azure and GCP, where the error values 

are lowest for GCP which makes this platform better performing than the other.  

Table 3. 3 Error metrics of Google Cloud Platform 

Datasets 

Error Metrics Insurance Iris 

Real 

Estate 

Home 

Price 

Wine 

Quality 

Red 

Wine 

Quality 

White 

Mean Absolute Error 

(MAE) 

3820.149 0.242 6.131 0.497 0.585 

Mean Squared Error 30712073 0.090 77.132 0.395 0.555 

Mean Squared Log Error 0.528 0.002 0.064 0.009 0.012 
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Median Absolute Error 2143.254 0.209 4.97 0.391 0.496 

 

Table 3. 4  Average Error Metrics of Azure and GCP 

Platform Average MAE Average RMSE 

Azure 1440.955 1245.587 

GCP 765.521 1124.004 

 

 

 

Figure 3. 15 Comparison Graph of Avg. Error between Azure and GCP 

3.4. DISCUSSION 

The evaluation criteria include calculating the R-Squared values and error metrics to understand how well 

the ML models are performing across platforms. From our experimental results in the three platforms: 

Azure, AWS and GCP, the average R-Squared value was found in GCP, 0.57, which is higher than the AWS 

and Azure. As the higher R-Squared values indicate better fitness of the ML models, it can be said that the 

best regression model performance is obtained in GCP. AWS is in the second position having a R2 value 

0.565. On the other side, Azure has a comparatively lower R2 value (0.557) than the others which is open 

to interpretation. While comparing the error metrics among AWS and GCP, it is noticeable that the average 

record of error metrics in GCP (average MAE = 765.521, average RMSE = 1124.004) are comparatively 

lower than Azure (average MAE = 1440.955, average RMSE = 1245.5876) which denotes that linear 

regression model performance in GCP is better than Azure. As a continuation of the current study, we are 
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keen to develop further analytical and comparative study on other ML models to scrutinize more on the 

performance of different cloud vendors in terms of Machine Learning collaboration. 

3.5. CONCLUSION  

Cloud technology is making the way for enterprises to perform their technological operations more 

efficiently and effectively. Cloud platforms are utilized tremendously when working with ML models. 

However, the leadership is very competitive among the cloud vendors, i.e., Amazon Web Service (AWS), 

Microsoft Azure and Google Cloud Platform (GCP). It is always hard to select the -performing provider, 

but it is still a strong recommendation to understand the machine learning algorithms’ performance before 

choosing any cloud vendor to work with. From the experiment conducted in the three big cloud giants, we 

have a clear idea of regression model performance in these platforms, and it reveals that the performance 

variation is not much for the three, still, it is slightly higher in GCP than the other two. Our findings will 

assist enterprises in understanding the performance variations of machine learning services while selecting 

a cloud platform to work on. Further study on other models, like, classification can be conducted and 

compared among the cloud platforms to achieve more insights on machine learning model performance. 
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Chapter 4:  Study B- An Improved Transformer-based Model for Detecting Phishing, Spam and 

Ham Emails: A Large Language Model Approach  
  

4.1. INTRODUCTION 

Phishing and spam emails are pervasive and cost business resources, both time and money. This fraudulent 

endeavor attempts to deceive individuals into revealing sensitive and confidential information, such as 

financial details or login credentials. More concerning are the cyber-security implications as many breaches 

and attacks originate via social engineering. Threat actors use social engineering to gain an entry point via 

human manipulation and as a platform to launch their attacks. The majority of ransomware attacks have 

been linked to entry from social engineering. While Artificial Intelligence (AI) approaches have attempted 

to assuage these issues, heuristic-based systems continue to dominate. Radical new approaches are 

necessary and have emerged due to technological advances and increased research investment by both the 

public and private sector. The recent advancements in AI-based solutions have led to the development of 

innovative and unconventional strategies to combat spam and phishing tactics.  

Transformer-based models have a revolutionary impact on developing spam and phishing classification 

models while processing, understanding, and interpreting the text data inputs. For email-based datasets, 

such models are continuously evolving providing additional opportunity to address the detection challenge. 

Furthermore, attention-based mechanisms in transformer allows model interpretability, improving the 

understanding of classification decisions. Large Language Models made famous by Open AI’s ChatGPT, 

have emerged triumphant in solving new problems while being adapted to well-established challenges such 

as phishing and spam [64, 65]. Open AI’s ChatGPT runs on its GPT engine and has made large strides in 

consumer and business adoption. The most famous competing LLMs are available from a plethora of 

vendors such as Google, Meta, and MIT while the emergence of competing LLMs such as Llama and Bert 

have been open sourced thereby fueling research and development from large institutions all the way down 

to the consumer. While these models are available for download, the ability to run pre-trained models such 

as BERT is still in nascent stages. As more consumers have access to local GPU technology as well as 

organizations like Google with Collaboratory and Hugging Face with its transformer’s library and model 

hosting the options for implementation of applications have improved.  

LLMs are general, pre-trained by the creators, and published for commercial and non-commercial licenses. 

There are a multitude of inputs to train a LLM such as web scraping, document corpus, and even text 

sources such as email and transcribed books, discussions, or speeches. While LLMs perform well on general 
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tasks, they can be fine-tuned to improve their performance on more specific tasks. One such example is 

FinBERT where BERT (Bidirectional Encoder Representations from Transformers) was trained on 

financial-specific documents and is able to better respond to use prompts on financial applications. Other 

such advances are in progress for medical data to aid in both physician decision making and end-user 

queries. BERT employs a self-attention mechanism that enables the model to capture contextual information 

and dependencies among words in any text sequence. Through the self-attention method, the weights of 

relevant important words are calculated. Attention scores are measured for all words or input tokens and 

passed through SoftMax function. A rich contextual embedding can be generated by BERT-based models 

which allow to excel in several natural language understanding tasks.  

Within the family of BERT-based models, DistilBERT and RoBERTA are two promising variants and have 

been used for tasks such as fake news detection or to make predictions via Twitter data. Both models are 

built based on a transformer architecture and excel in NLP processing tasks. DistilBERT is designed for 

reducing the number of parameters making it faster and smaller version of BERT whereas Roberta is 

considered a more optimized and robust version. In this work, we aimed to leverage LLMs' powerful natural 

language processing capabilities to accurately classify and distinguish between these different types of 

emails. We present an Improved Phishing and Spam Detection Model (IPSDM), a custom trained and fine-

tuned version of DistilBERT and RoBERTA. The issue of spam, ham (legitimate), and phishing email 

detection have been addressed here by developing this fine-tuned model specifically on phishing, spam, 

and ham data from multiple sources. We demonstrate that our fine-tuned IPSDM outperforms basic BERT 

and RoBERTA on both imbalanced and balanced datasets of phishing, spam, and ham.  

The contribution of our work is to demonstrate a new application of LLM technology to a common problem 

plaguing business and society, phishing, and spam. We illustrate how an LLM can be used to approach this, 

and we demonstrate how fine-tuning an existing model can improve performance. This is an important step 

towards the application of LLMs on a large range of challenges. As LLM technology improves, our methods 

can be applied to improve the performance of more advanced LLMs as they are released. The rest of the 

paper is outlined as follows; section 4.2 explains the proposed model’s framework and methodology. In 

section 4.3, the experimental outcomes and results are broadened. Furthermore, section 4.4 encompasses 

an elaborated discussion of the results. Finally, section 4.5 holds this work's concluding remarks and future 

prospects.  

4.2. METHODOLOGY  

In this paper, transformer-based self-attention mechanism models are explored to improve the pre-trained 

baseline BERT models. Our collected and prepared dataset is used to develop and compare models in two 
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different settings. 1) DistilBERT and RoBERTA were pretrained using both imbalanced and balanced 

phishing-ham-spam dataset, and 2) the base models’ training process has been improved through applying 

optimization and fine-tuning mechanism. We named our proposed model as Improved Phishing Spam 

Detection Model (IPSDM). This model’s classification performance is compared with the baseline models 

(DistilBERT and RoBERTA). At the end of the experiment, IPSDM exhibited substantial improvement in 

performance both for balanced and imbalanced scenarios compared to baseline models while detecting 

phishing and spam emails and texts. The top-level methodology of this research is presented in figure 4.1. 

Later, the breakdown of detailed flow diagram of model optimization and fine-tuning are illustrated in 

figure 4.5 and 4.8 of section 4.2.6. 

 

Figure 4. 1 Overall Methodology 
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4.2.1. Data Collection and Preparation  

The data for training, testing, and validating this experiment is developed by concatenating two opensource 

data sources [41,42]. One dataset has ham and spam emails which is merged with another phishing email 

dataset. The three categories of data have been explained in the following section: 

Category 1: Spam Emails- These are unsolicited messages sent in bulk to a large number of recipients, 

typically for advertising or fraudulent purposes. These emails often contain irrelevant or misleading content, 

including links to malicious websites or scams. Spam emails can clog up email inboxes, waste time and 

resources, and pose security risks to recipients by exposing them to potential malware or phishing attacks.  

Category 2: Ham Emails- Ham emails refer to legitimate, non-spam messages that are relevant and 

solicited by the recipient. These emails can include personal or professional correspondence, newsletters, 

notifications, and other legitimate communications. While ham emails are not inherently harmful, the 

presence of spam and phishing emails can make it difficult for recipients to distinguish between legitimate 

and malicious messages, leading to potential security breaches or loss of trust in email communication 

systems.  

Category 3: Phishing Emails- Phishing emails are fraudulent messages designed to deceive recipients into 

revealing sensitive information such as usernames, passwords, credit card numbers, or personal details. 

These emails often mimic legitimate communications from trusted sources, such as banks, social media 

platforms, or government agencies, in an attempt to trick recipients into clicking on malicious links, 

downloading malware, or providing confidential information. Phishing emails can lead to identity theft, 

financial fraud, data breaches, and other serious consequences for individuals and organizations.  

The concatenated dataset has 747 spams, 189 phishing, and 4825 ham samples which is highly imbalanced. 

Such imbalanced datasets can adversely affect the performance of machine learning models, especially in 

terms of accuracy, precision, and recall. By balancing the class distribution through sampling, models can 

better learn from and accurately classify instances from all classes, leading to improved performance 

metrics. Moreover, the class imbalance situation can lead to biased models that perform poorly on minority 

classes. Sampling techniques help address this issue by either oversampling the minority class, under-

sampling the majority class, or generating synthetic samples to balance the class distribution.  

Here, the initial dataset has been further resampled following adaptive synthetic sampling (ADASYN) 

technique where minor classes (ham and spam) are oversampled by generating synthetic samples with a 

focus on difficult-to-learn instances. This process reduces the bias towards the majority class, making the 

overall predictive model more accurate and efficient. This versatile technique of sampling assists in 

mitigating the risk of overfitting as well. Figure 4.2 presents the feature distribution before and after 
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sampling. ADASYN has been preferred for its adaptability, targeted synthetic sample generation, and ability 

to improve model performance on imbalanced datasets while mitigating the risk of overfitting. Figure 4.3 

shows a snapshot of the final dataset.  

 

 

 
        

Figure 4. 2 Feature Distribution 

 

 

Figure 4. 3 A Snapshot of Dataset Overview 

4.2.2. Data Splitting  

The overall dataset is split into 80% (training set) and 20% (testing set). Later, from the 80% set, 60% kept 

for training and 20% for validation. This 20% validation set is used after the completion of each training 
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a. Original data  

 
 

b. Resampled data 

 



40 
 

 

epoch which aids in identifying the optimal model performance. It is an integral part of the development 

process that ensures the model’s effectiveness on unseen data identification and prediction.  

4.2.3. DistilBERT  

DistilBERT is a derivation of Bidirectional Encoder Representations from Transformers (BERT), which is 

a transformer-based model that is pre-trained for developing natural language processing tasks. The idea 

here is to compress the original model to make it more computationally efficient and faster. The models can 

be further finetuned for any specific downstream tasks on any customized dataset. DitilBERT model 

achieves the compression by mimicking a teacher-student model where the customized model is trained. 

The input tokens are the raw text inputs that need to be preprocessed. The tokenizer uses a vocabulary to 

tokenize the input words into sub-words. Later, the tokenized inputs are mapped to numerical embedding. 

The relationships between the words are captured through the attention layer. This attention mechanism 

works by calculating the attention score between tokens inside a sequence allowing the model to focus more 

on the significant relevant words than the irrelevant ones. The pooling section indicates that the entire input 

sequence has a fixed representation. The classifier head can be modified for any specific task, and the final 

prediction layer will predict the corresponding model output. For our case, this is detecting 

spam/ham/phishing emails.  

 

Figure 4. 4 Basic Architecture of DistilBERT and RoBERTA 

4.2.4. RoBERTA  



41 
 

 

A Robustly Optimized BERT Pretraining Approach (RoBERTA) is an extended version of the transformer-

based model, BERT, where model can operate on large batch size and train longer sequences. The 

pretraining process follows improved bidirectional context-oriented mechanism while learning the masked-

out tokens for longer sequences. The architecture is similar as DistilBERT having transformer encoder 

layers with multi-head attention mechanisms. However, model has a byte-level tokenizer which is different 

than BERT. The dynamic masking works at different epochs and uses BPE as a subunit, not as characters. 

RoBERTA receives tokens as inputs and a tokenizer preprocess these. It passes through encoding, pooling, 

decoding and attention mechanism. The basic architecture of the DistilBERT and RoBERTA model is 

similar which is illustrated in figure 4.4.  

4.2.5. Improving the Training Process  

Employing the phishing-ham-spam dataset, base models of DistilBERT and RoBERTA were first measured. 

We aim to improve the model performance and efficiency through optimization, i.e., learning rate 

scheduling, adjusting batch size, sequence length and loss function, hyper parameter tuning, early stopping 

and fine tuning. Necessary measures have been taken to handle overfitting issue. At the end of the process, 

it was demonstrated that the accuracy achieved was not affected by overfitting. This proposed methodology 

is also employed on imbalanced dataset which was collected initially. A noteworthy improvement is 

observed while developing models with imbalanced dataset as well.  

4.2.6. Model Optimization  

The preprocessed final phishing dataset is tokenized using Hugging Face Transformers tokenizer. A sub-

word-based approach is utilized by this tokenizer while breaking down the text into small unit. This allows 

the model to acknowledge the meaning and context of the words. The pre-trained DistilBERT and 

RoBERTA models are initialized with their respective pre-trained weight obtained from the pre-training 

process. The batch size is set 32 for training data and 64 for the validation data while trading off between 

memory consumption and training speed. This choice balances memory consumption and training speed, 

ensuring efficient utilization of computational resources while maintaining model performance. Training 

data is shuffled in each epoch to ensure the model’s visibility of the different unseen data. This will help 

memorizing the training dataset and mitigating overfitting issues.  

Moreover, in the optimization stage of our model training pipeline, another significant technique has been 

employed to enhance the learning process and prevent overfitting: choosing an optimization function. In 

this work, AdamW (Adam Weight Decay), an efficient optimization algorithm is used to update the weights 

of pre-trained models. This algorithm computes the adaptive learning rate for each parameter by combining 

exponential moving gradient averages and root mean square gradients. It adapts the learning rate for each 
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parameter in the network [66]. This means it can use different learning rates for different parts of the model, 

which can help speed up training and improve performance.  

 

Figure 4. 5 Model optimization 

L2 regularization, a weight decay mechanism, adds a penalty to the loss function, which is proportional to 

magnitude squared weights. This promotes the model to utilize small weights and mitigate overfitting risk 

by reducing the complexity of the acquired parameters. The model’s parameter, Z is initialized with 

exponential decay rate, 𝛽1, 𝛽2 and 𝜀 with a very small value preventing division by zero. Initially, the first 

moment, 𝑚0 = 0 𝑎𝑛𝑑 second moment,  𝑣0 = 0. In each iteration, the gradient loss is calculated as below, 

Gradient loss, 𝑔 =  ∇𝑧𝐿(𝑧). 

Then, the first moment is updated, 𝑚𝑖 =  𝛽1 ∗ 𝑚𝑖−1 + (1 − 𝛽1) ∗ 𝑔 

The updated second moment,  𝑣𝑖 = 𝛽2 ∗ 𝑣𝑖−1 + (1 − 𝛽2) ∗ 𝑔2 

Later, first and second-moment bias get corrected, 

𝑚𝑖̂ =
𝑚𝑖

1 − 𝛽1𝑖 
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𝑣𝑖̂ =
𝑣𝑖

1 − 𝛽2𝑖 
 

Finally, the parameters are updated using the AdamW updating rule, 

 

𝑍𝑖 =  𝑍𝑖−1 −
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

√𝑣𝑖̂ +  𝜀
. ( 𝑚𝑖̂ + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑐𝑎𝑦 ∗  𝑍𝑖−1) 

This weight decay regularization process assists in controlling the growth of parameter values during the 

training, mitigating the risk of overfitting.  

In the context of loss function, as this is a multiclass classification task, Cross-Entropy Loss is used which 

combines both SoftMax activation and negative log likelihood into a single loss term. The difference 

between ground truth label and probability is measured here to minimize the loss during the training 

process. PyTorch provides cross-entropy loss implementation that handles SoftMax computation and 

logarithmic computation. For a single training epoch, the loss can be defined as follow,  

𝐿𝑜𝑠𝑠𝑖 =  − ∑ 𝑍𝑖 , 𝑘

𝑛

𝑘=1

∗ log (𝑝𝑖,𝑘) 

Here, 𝑍𝑖 , 𝑘 is the ground-truth label and 𝑝𝑖,𝑘 is predicted probability made by the model. 

The cross-entropy loss for the overall training is the average of individual loss,  

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙= 1/n ∑ 𝐿𝑜𝑠𝑠𝑖
𝑛
𝑘=1  

The models output logits for each of the class, which is passed through a SoftMax activation function for 

converting them into class probability. The predicted probability 𝑝𝑖,𝑘 is computed as below, where 𝑍𝑖 , 𝑘 is 

the produced logit value. 

𝑝𝑖,𝑘 =
𝑒𝑍𝑖,𝑘

∑ 𝑒𝑍𝑖,𝑚𝑘
𝑚=1

 

 

The optimization process diagram is presented in figure 4.5. 

4.2.7. Learning Rate  

An ideal learning rate for model optimization and fine-tuning depends on several factors, including model 

architecture, optimization algorithms and the specific task domain. It is a crucial parameter which controls 
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step size during the optimization process. A high learning rate might lead the model in unstable mode, 

resulting in poor performance for unseen data. Again, lower learning rate can slow down the convergence 

process. The training process might require more epochs for achieving a good result resulting in higher 

computational cost. An ideal learning rate graph is presented in Figure 4.6.  

 

Figure 4. 6 Learning rate 

In our experiment, a commonly accepted learning rate, 2e-5 (0.00002) is set, which is standard for BERT 

based models, i.e., RoBERTA and DistilBERT. Later, we plot validation vs test accuracy comparison to 

demonstrate the effectiveness of the selected learning rate.  

4.2.8. Fine Tuning  

Fine tuning involves adapting a pre-trained model to get trained on specific tasks and datasets. This 

enhances the ability of any pre-trained NLP model to perform any domain-specific task, i.e., email 

classification for our case. The models are finetuned using training dataset, the 80% of the data which was 

separated beforehand. Training data is passed in each epoch as batches through the models, calculating the 

gradient using backpropagation method. To facilitate an efficient batching, DataLoader is used during the 

training. Code snippet is attached for RoBERTA model in figure 4.7. A similar approach is employed for 

DistilBERT as well. Train_loader is configured for creating mini batches of size, 32, which promotes 

parallel processing and optimize the memory use. Val_loader is designed to batch of 64 samples for 

validation ensuring most efficient evaluation method without shuffling the data. 

RobertaForSequenceClassification class is used to adapt the pre-trained model for specifically email 

classification task. This class enables an additional classification layer for the target label prediction. The 

overall fine-tuning process flow diagram is illustrated in figure 4.8.  
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Figure 4. 7 Code snippet of RoBERTA model DataLoader 

 

 

Figure 4. 8 Fine tuning process flow 

4.3. RESULTS  

The proposed IPSDM model is validated and tested using both unbalanced and balanced datasets. The 

IPSDM result metrics are compared to baseline modes, i.e., pretrained DistilBERT and RoBERTA models. 
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Various key metrics, including overall accuracy, precision, recall and F1-score, are calculated to assess the 

performance more comprehensively. These provide crucial insights of the model performance. 

4.3.1. Evaluation metrics  

A. Precision 

The ratio of true positive predictions and the total number of positive predictions is called precision. It 

indicated how many predicted positive samples made by the model are actually positive. The formula for 

precision is as follow,  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

𝑇𝑃 + 𝐹𝑃
 

High precision value suggests that the model’s predicted positive instance rate is truly positive and correct. 

Whereas low precision indicates about making many false positive errors by the model.  

B. Recall 

       Recall is the measurement of model’s sensitivity for understanding true positive rate. It presents the 

ratio of true positive instances which is predicted as positive by the model. The formula for calculating 

recall is stated below, 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Higher recall conveys that the model can successfully predict the positive samples as positive making a 

little false negative error. However, low recall suggests that a higher number of actual positive samples are 

getting missed while the model predicts the false negatives.  

C. F1- Score 

This is a statistical metric which is the average of precision and recall which balances these values. This 

provides a comprehensive view of how a model deals with imbalanced datasets by trading between 

precision and recall. If either of precision or recall is low, then the overall F1 score will be lower. This 

metric validates the model’s ability for predicting the positive rates and how many instances are actually 

positive. The formula is as follow,  

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

D. Accuracy  
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Accuracy is the ratio of accurately predicted samples to the total number of samples made by the model[67]. 

It is calculated by following formula, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

However, some notable points need to consider carefully when interpreting the model accuracy because it 

suffers from some limitations while dealing with imbalanced data. Feature distribution across all the classes 

is required to be observed meticulously. Otherwise, it might raise a biased classification result. Hence, in 

this study, all of the essential metrics are calculated and combined together to interpret our proposed IPSDM 

results after running a vigilant examination.   

4.3.2. Imbalanced Dataset Results 

This experiment was initially carried on imbalanced datasets to assess IPSDM model’s performance on 

imbalanced dataset. The initial collected dataset was highly imbalanced having a majority class, ham 

(Figure 4.2). Comparison tables (Table 4.1 and 4.2) and graphs (Figure 4.9 and 4.10) between baseline 

model’s performance and IPSDM model’s performance clearly reflect that IPSDM has a better performance 

in the imbalanced setting. Although the model performance is biased towards' ham' class due to the highly 

uneven distribution of data samples across the three classes, it has achieved comparatively higher values 

than the baseline models.  

Table 4. 1 Baseline DistilBERT vs IPSDM Performance (Imbalanced Dataset) 

Evaluation Metrics Base DistilBERT IPSDM 

Validation 

Accuracy 30.28% 51.32% 

Test Accuracy 31.60% 53.67% 

Validation 

Precision 0.841 0.972 

Test Precision 0.852 0.981 

Validation Recall 0.302 0.561 

Test Recall 0.311 0.582 

Validation F1-Score 0.432 0.613 
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Test F1-Score 0.451 0.621 

 

Figures 4.9 and 4.10 show that the precision values are higher than recall for both cases (DistilBERT and 

RoBERTA). In the context of highly imbalanced characteristics of this dataset, the model can identify the 

majority class, ‘ham’, however, for the model struggles for classifying the minor classes, ‘spam’ and 

‘phishing’.   

 

  

Figure 4. 9 Comparison graph of baseline DistilBERT vs IPSDM performance (imbalanced dataset) 
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Figure 4. 10 Comparison graph of baseline RoBERTA vs IPSDM performance (imbalanced dataset) 

There is a noticeable disparity between Precision and Recall values for both models. Recall values are 

considerably lower compared to the precision. Validation and test recall for base DistilBERT model are 

0.30 and 0.31 (shown in Table 4.1). For the base RoBERTA model, the recall values are 0.47 and 0.49 

(shown in 4.2). This suggests that the models are facing challenges for identifying the minor classes, ‘spam’ 

and ‘phishing’ due to the imbalanced nature. However, it is noteworthy that the performance of IPSDM for 

DistilBERT and RoBERTA is notably higher even though the dataset is imbalanced.  

Table 4. 2 Baseline RoBERTA vs IPSDM performance (imbalanced dataset) 

Evaluation Metrics Base RoBERTA IPSDM 

Validation 

Accuracy 43.78% 66.97% 

Test Accuracy 45.24% 67.86% 

Validation 

Precision 0.892 0.981 

Test Precision 0.912 0.981 

Validation Recall 0.465 0.693 

Test Recall 0.492 0.731 
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Validation F1-Score 0.567 0.874 

Test F1-Score 0.581 0.893 

 

4.3.3. Balanced Dataset Results 

       The collected email datasets have been resampled and balanced. After preparing this balanced dataset, 

baseline DistilBERT and RoBERTA models were trained and validated. Again, using a similar dataset, we 

worked on model optimization and fine tuning. The evaluation metrics of our proposed model, IPSDM and 

the baseline models are tabulated in Tables 4.3 and 4.4. Accuracy, precision, and recall for validation and 

test cases are presented here. Also, the values are illustrated in comparison graphs (Figure 4.11 and Figure 

4.12).  

Table 4. 3 Baseline DistilBERT vs IPSDM performance (balanced dataset) 

Evaluation Metrics Base DistilBERT IPSDM 

Validation 

Accuracy 82.63% 97.50% 

Test Accuracy 88.95% 97.10% 

Validation 

Precision 0.8543 0.9755 

Test Precision 0.9025 0.9716 

Validation Recall 0.6971 0.9750 

Test Recall 0.7532 0.9710 

Validation F1-Score 0.8867 0.9749 

Test F1-Score 0.8943 0.9710 
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Figure 4. 11 Comparison graph of Baseline DistilBERT vs IPSDM performance (balanced dataset) 

The evaluation metrics from Figures 4.11 and 4.12 exhibit an increase in validation accuracy- 

approximately 14.87% and 11.89%; test accuracy approximately 8.15% and 5.71% respectively for base 

DistilBERT and RoBERTA models vs IPSDM. A consistent rise in F1scores suggests that the IPSDM has 

elevated performance across both cases. This score is the harmonic mean of recall and precision, a crucial 

metric for assessing the balance between the crucial aspects of classification performance.  

Table 4. 4 Baseline ROBERTA vs IPSDM performance (balanced dataset) 

Evaluation Metrics Base ROBERTA IPSDM 

Validation Accuracy 87.10% 98.99% 

Test Accuracy 93.29% 99.00% 

Validation Precision 0.921 0.982 

Test Precision 0.853 0.991 

Validation Recall 0.903 0.989 

Test Recall 0.923 0.991 

Validation F1-Score 0.911 0.982 
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Test F1-Score 0.931 0.985 

 

 

Figure 4. 12 Comparison graph of Baseline RoBERTA vs IPSDM performance (balanced dataset) 

4.3.4. Avoiding Overfitting 

A common issue in statistical modellings and machine learning is overfitting which occurs when a model 

is performs too well on the training dataset, however, too poorly on the new or unseen data, i.e., testing 

dataset. Overfitting can be effectively managed in balanced situations while a model has consistent 

performance on validation and test datasets. A close alignment between test and validation accuracy 

suggests that the classification models yield good results on unseen, new data. In the balanced scenario, test 

and validation accuracy values indicate minimal disparity, i.e., 97.10% vs 97.50% and 99. 00% vs 98.99%.  

Table 4. 5 Validation vs test accuracy 

Model Name 

Validation 

accuracy Test accuracy 

Balanced_ IPSDM/ 

DistilBERT 97.50% 97.10% 
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Balanced_ IPSDM/ 

RoBERTA 98.99% 99.00% 

Imbalanced_ 

IPSDM/ 

DistilBERT 51.32% 53.67% 

Imbalanced_ 

IPSDM/ RoBERTA 66.97% 67.86% 

 

 

Table 4. 6 Validation vs test accuracy graph 

Based on the data from Table 4.5 and Figure 4.13, there is no large gap between validation and test accuracy. 

When training or validation accuracy is notably higher than test accuracy, there is a high chance of 

overfitting. Moreover, the precision, recall and F1 measures from table 4.1 through 4.4 also suggest a 

harmonic distribution of these metrics which is also a positive indication. The comparison graph for both 

validation and test accuracy lines almost overlap with each other, indicating that the model is performing 

well on the unseen data.  

4.4. DISCUSSION  

The results from imbalanced and balanced settings depict an enhancement in performance for the IPSDM 

model. Validation and test accuracy are separately measured to understand if there is any overfitting issue 

persist. Baseline DistilBERT has 82.63% validation accuracy and 88.95% testing accuracy whereas IPSDM 

has 97.50% and 97.10% validation and test accuracy, respectively. The baseline model’s accuracy variation 
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is 6 (+-32) % in training and testing performance reveal that base DistilBERT is exhibiting a minor 

overfitting problem. However, this has been effectively handled during the development of IPSDM 

DistilBERT version. Again, a similar trait is visible for base RoBERTA and IPSDM for RoBERTA as well. 

Base RoBERTA model’s validation and testing accuracy gap is around 6 (+- 19) % whereas IPSDM has 

0.01% of difference between these two values.  

Such evaluation has also been extended to imbalanced dataset to analyze how IPSDM performs in 

challenging scenarios. In the imbalanced setting, Tables 4.3 and 4.4 presents that our proposed model has 

outperformed the baseline models in this scenario. While the IPSDM model has demonstrated significant 

improvements in performance compared to baseline models, there are still areas for improvement. One 

limitation is the potential bias towards the majority class (’ham’) due to the heavy skew- ness of the sample 

distribution. The precision values for both baseline and IPSDM models are notably higher which are 0.85 

and 0.98 for base DistilBERT and IPSDM test precision; 0.91 and 0.98 for base RoBERTA and IPSDM 

respectively, present that the model is predicting most of the instances as ‘ham’. This bias can result in 

higher precision but lower recall, indicating that the model may be overly conservative in classifying 

instances as ’ham’. Future research could explore techniques to balance the dataset further or modify the 

model architecture to better handle class imbalances. However, later applying ADASYN, an advanced 

sampling technique, this class imbalanced situation is handled at the initial stage. A prominent change in 

performance is hence demonstrated in IPSDM models both for DistilBERT and RoBERTA both for 

balanced and imbalanced datasets scenarios.  

Our work shows how emergent large language model (LLM) technology can be leveraged to solve existing 

issues presented in the phishing and spam problem. While NLP and other traditional machine learning 

approaches are viable, using LLMs has vast potential as LLMs advance and continue to transform society. 

We illustrate how a LLM can be custom trained to improve results. In our case, we show that we can have 

an impact in improving phishing and spam detection. While the future of LLM is vast, we are at the nascent 

stages of applying LLMs to existing problems. Our results can help secure cyberspace and save businesses 

time and money by detecting phishing and spam thereby improving their cyber-defense and improving their 

overall cyber-health. Furthermore, our method can be extended to new emerging LLM models which are 

improving at an astounding pace. Future researchers can base studies by applying our method to newly 

emerging LLMs and apply our method to a wide array of other challenges facing business and researchers.  

4.5. CONCLUSION 

Solving long-standing societal issues via radical new approaches, specifically LLMs, shows great promise 

to improving the lives and experiences of computing users the world over. Phishing and Spam have long 
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since been an issue causing lost time and straining the financial resources of consumers and organizations. 

We demonstrate how leveraging new technology can be applied to these persistent challenges. LLMs offer 

society great benefits and we have only scratched the surface on their potential. In the future, improving 

the quality of life via multiple dimensions will be realized such as medical diagnoses, chat-bots, education, 

and security to name a few. This work demonstrates how LLMs can be leveraged to detect phishing and 

spam by leveraging LLMs and then presenting our fine-tuned version, IPSDM. Following the proposed 

mechanism, modified DistilBERT could achieve 97.50% of validation and 97.10% of test accuracy with a 

F1-score of 0.97. Again, the modified RoBERTA model obtained 98.99% of validation and 99.00% of test 

accuracy, including a F1-score of 0.98. The result of this study presents the effectiveness of IPSDM model 

while reducing the overfitting issues and handling imbalanced datasets. The attained accuracy has surpassed 

the existing state-of-the-art models.  

While the IPSDM model has shown promising results in both balanced and imbalanced dataset scenarios, 

further evaluation and validation are necessary to ensure its robustness and generalizability across different 

datasets and settings. This could involve testing the model on larger and more diverse datasets and 

conducting cross-validation experiments to assess its performance under various conditions. Future work 

entails further refinement of IPSDM via incorporation of additional tuning techniques as well as hyper-

parameter tuning and combining with ensemble modeling. Applying data augmentation such as text 

rotation, contrastive learning, and synonym replacement might also increase the diversity and improve the 

training performance. Furthermore, the field of Large Language Models has attracted substantial investment 

from industry and consumers causing it to develop rapidly with new open-source models being released 

nearly daily. We aim to experiment with further LLMs such as Meta’s Llama and Llama 2. Infusing such 

solutions into chatbot, web applications and other real-world practical systems would serve society in 

numerous valuable ways.  
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Chapter 5:  Study C- Perception and Evaluation of Text-to-Image Generative AI Models: A 

Comparative Study of DALL-E, Google Imagen, GROK, and Stable Diffusion 

 
5.1. INTRODUCTION  

 The emergence of generative AI frameworks has transformed the landscape of the creation of digital image 

creation, marking a new era of AI to generate diverse and realistic images from text prompts. Text to image 

generative models are AI models that leverage Natural Language Processing (NLP) techniques while 

interpreting the textual inputs to visual representation [68]. Such generative models enable users to 

articulate ideas and visual concepts thorough natural language, offering numerous opportunities for various 

applications, i.e., entertainment, art, design, and visual communication. Some renowned text-to-image 

generation models include DALLE, Google Imagen, GROK, and Stable Diffusion. Although deepfake 

technology has garnered considerable attention and scrutiny, recent advancements in text-to-image 

generative models have unlocked new opportunities in creative fashion and practical applications. However, 

alongside the remarkable potentials of AI-generated images, challenges and considerations exist regarding 

their quality, realism, and societal impact. 

Text-to-image synthesis, the process of generating images from textual prompts, offers both promises and 

complexities. On one hand, this technology holds potential across various domains such as design, art, 

entertainment, and visual storytelling. On the other hand, ensuring the accuracy, coherence, and ethical 

implications of AI-generated images presents significant challenges. The reliance on textual prompts 

introduces complexities in accurately conveying desired visual concepts, leading to potential discrepancies 

between the intended and generated images. Furthermore, other concerns such as misinformation, bias, and 

manipulation highlight the significance of rigorous evaluation techniques and safeguards in developing and 

deploying text-to-image synthesis systems.  

While mathematical methods provide quantitative assessments of text-to-image synthesis, metrics such as 

the Fréchet Inception Distance (FID), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio 

(PSNR) offer objective benchmarks for evaluating image fidelity and similarity to real-world counterparts. 

These metrics employ computational algorithms to assess various aspects of image quality, including 

perceptual similarity, structural integrity, and noise levels. By quantifying these attributes, mathematical 

metrics offer valuable insights into the technical performance of AI-generated images and enable 

comparisons across different models and datasets. 

However, despite their utility, mathematical metrics have inherent limitations. Mathematical algorithms 

may not fully capture the subjective nature of human perception. Human observers possess the ability to 
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discern subtle details, interpret contextual cues, and make qualitative judgments that extend beyond 

numerical measurements. Thus, human evaluation remains indispensable in the assessment of image 

realism and perceptual fidelity based on certain criteria such as contextual coherence, emotional resonance, 

and aesthetic appeal. By incorporating human evaluation alongside mathematical metrics, researchers can 

validate the technical accuracy of AI-generated images while contextualizing their perceptual impact within 

real-world contexts. In essence, the integration of mathematical metrics and human evaluation represents a 

synergistic approach to assessing the quality and realism of text-to-image synthesis.  

This study evaluated four popular AI tools, including DALL-E, Google Imagen, Stable Diffusion, and 

GROK AI, focusing on their text-to-image diffusion models. Ten real images were collected from diverse 

sources to serve as benchmarks for evaluation. Our research addresses the challenges and opportunities 

inherent in text-to-image synthesis through a robust evaluation approach. We explored three mathematical 

formulas- FID, SSIM, and PSNR metrics across the image datasets, collected from four AI platforms to 

measure image quality and realism. Additionally, we conducted human evaluations in which participants 

assessed the realism and quality of AI-generated images, enabling a comparative analysis between 

mathematical metrics and human perception. Through this interdisciplinary approach, we aim to contribute 

to understanding and advancing text-to-image synthesis while promoting responsible and ethical AI 

development. 

5.2. METHODS  

This study explores text-to-image diffusion models, focusing on four prominent text-to-image generation 

models: DALL-E, Google Imagen, Stable Diffusion, and GROK AI. Ten real images were collected from 

diverse sources to serve as benchmarks for evaluation. Utilizing identical text prompts, ten sets of images 

were generated using each of the four platforms. The null hypothesis suggests that there is no significant 

distinction between the generated images and real images. To investigate this, another alternative research 

hypotheses has been initially formulated. That suggests that DALLE and Google Imagen produce more 

realistic images than the other platforms. Two techniques were employed to evaluate the generated images: 

computer evaluation and human evaluation via a survey. For computer evaluation, metrics such as FID 

score, PSNR, and SSIM were computed for each set of generated images in comparison to the real ones. 

The results were analyzed and further validated through a survey involving thirty participants. The overall 

methodology is presented in figure 5.1. 
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Figure 5. 1 Overall Method Flow Diagram 

5.2.1. Text to image diffusion models 

The diffusion process in image generation refers to a method where noise is gradually added to an initial 

image over multiple steps. The noise is smoothed or diffused at each step, resulting in a new image that 

becomes increasingly distorted or randomized [69]. This process is typically guided by a diffusion model, 

which defines how the noise is applied and how it evolves over time. An ideal text-to-image diffusion model 

follows the below general steps:  

Step 1: Text Embeddings: 

• At first the text descriptions are converted into a dense vector representation, which is known as 

text embedding, using techniques such as pre-trained language models (i.e., BERT, RoBERTA) 

or word embeddings. 

Step 2: Diffusion Process: 

• The diffusion process involves iteratively applying noise to the input text embeddings to generate 

intermediate noisy embeddings [70]. 

• These noisy embeddings are then passed through a diffusion model, which gradually improves 

the image features to generate more realistic images. 
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Step 3: Image Generation: 

• The final refined embeddings are passed through a decoder network to generate images which 

correspond to the original textual description. 

• Theis decoder network may consist of convolutional neural networks (CNNs), or other 

architectures tailored for particular image generation [71]. 

Step 4: Training: 

• During this training process, the model learns to minimize the difference between the generated 

and ground truth images corresponding to the input text descriptions. 

• The diffusion model and decoder network parameters are optimized using techniques like 

maximum likelihood estimation or adversarial training. 

Step 5: Evaluation: 

• The quality of the generated images is evaluated using metrics such as FID score, SSIM, or 

human perceptual studies to assess realism and coherence with the input text descriptions. 

5.2.2. DALL-E  

DALL-E, stands for "Distribute Aggregate Linear Latent Encoder," is a groundbreaking text-to-image 

generation model developed by OpenAI. DALL-E is built upon the transformer-based architecture, which 

is similar to the one used in the GPT series of models, to encode the textual description into a dense vector 

representation [72]. This text embedding serves as conditioning information for any image generation 

process. Unlike traditional image generation models that rely on continuous latent spaces, DALL-E 

introduces a discrete latent space via a Vector Quantized Variational Autoencoder (VQ-VAE-2) model. Such 

discrete latent space allows for the representation of diverse image features in a compact and interpretable 

manner.  

One of the key strengths of DALL-E is producing highly diverse and semantically meaningful images based 

on a wide range of textual prompts. By leveraging the rich semantic representations encoded in the text 

embeddings, DALL-E can capture intricate details and nuances in the generated images, ranging from 

simple objects to complex scenes and abstract concepts. Additionally, the discrete latent space introduced 

by the VQ-VAE-2 model allows for fine-grained control over the generated images, enabling users to 

manipulate various visual attributes such as style, color, and compositions.  

5.2.3. Google Imagen 
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Google Imagen is a text-to-image generation platform developed by Google, which leverages advanced 

machine-learning techniques for image synthesis from textual descriptions [73]. While specific details of 

the architecture are not publicly disclosed, Google Imagen likely employs transformer-based models similar 

to those used in DALL-E or GPT for text encoding and generation. The platform may incorporate additional 

components for image synthesis, such as attention mechanisms or generative adversarial networks (GANs), 

to enhance the realism and diversity of generated images.  

5.2.4. Stable Diffusion  

Stable Diffusion, introduced in 2022, stands as a prominent deep learning model within the ongoing surge 

of AI advancements. Utilizing diffusion techniques, it primarily functions as a text-to-image model, capable 

of generating intricate visuals based on textual inputs. Beyond image generation, Stable Diffusion 

demonstrates versatility across tasks such as inpainting, outpainting, and facilitating image-to-image 

translations guided by text prompts. Additionally, it offers an "img2img" sampling script, which takes a text 

prompt, an existing image path, and a strength value ranging from 0.0 to 1.0. This script outputs a new 

image derived from the original one, integrating elements specified in the text prompt. The strength 

parameter controls the level of noise injected into the output image, influencing the degree of variation. 

Higher strength values yield more diverse images but may stray from semantic coherence with the provided 

prompt.  

5.2.5. GROK AI 

GROK AI is another prominent text-to-image generation platform that utilizes deep learning techniques 

based on textual descriptions for image synthesis. GROK AI employs transformer-based models or similar 

architectures for text encoding and image generation. The platform incorporates custom components or 

optimizations tailored to the text-to-image generation task to enhance the quality and fidelity of generated 

images. GROK AI aims to provide users with a seamless experience for creating realistic images from 

textual prompts, leveraging state-of-the-art machine learning algorithms for efficient and effective image 

synthesis.  

5.3. EXPERIMENT AND RESULT ANALYSIS 

We collected real images from 10 subjects. Then, using a specific similar text prompt, similar images were 

generated using AI-based image generation tools: DALL-E, Imagen, Stable Diffusion, and GROK. 

Consequently, for each subject, a set of five images was compiled, comprising the original real image 

alongside four AI-generated images. For instance, the figure 5.2 below displays a real image featuring a cat 
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swimming, accompanied by four additional images generated by AI tools. This process was repeated across 

all subjects, resulting in a comprehensive collection of images for evaluation and analysis.  

 

 

Figure 5. 2 Input Image of a Cat Sswimming 

5.4. EVALUATION  

Two distinct evaluation methods were employed to assess the realism of the generated images. Method A 

involved mathematical evaluation, where metrics such as Fréchet Inception Distance (FID) score, Structural 

Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR) ratios were calculated using Python 

frameworks and libraries. Method B consisted of a human study conducted via a survey, with data gathered 

from 28 subjects. Statistical evaluation was performed on the collected data, including ANOVA tests and 

Tukey post hoc analysis, to determine the significance of each group. These two evaluation methods will 

be elaborated upon in the following sections. 

   5.4.1. Method A: Mathematical Evaluation  

The Fréchet Inception Distance (FID) Score 

The Fréchet Inception Distance (FID) score is a metric commonly used to evaluate the quality of generated 

images in generative adversarial networks (GANs) and other image generation models. It measures the 



62 
 

 

similarity between the distributions of real and generated images in a feature space learned by an Inception-

v3 neural network [74]. The FID score is computed based on the mean and covariance of feature 

representations of real and generated images. Given two sets of feature representations 𝜇𝑟 and 𝜇𝑔  (mean);  

∑ 𝑟 and ∑ 𝑔 (covariance) for real and generated images respectively, the FID score is calculated using the 

following formula:  

𝐹𝐼𝐷 = |𝜇𝑟 − 𝜇𝑔 |
2

2
+ 𝑇𝑖 (∑ 𝑟 + ∑ 𝑔 − 2 ((∑ 𝑟 ∑ 𝑔)

1

2)) 

Where: 

• |𝜇𝑟 − 𝜇𝑔 |
2

2
 presents the squared Euclidean distance between the mean feature vectors. 

• 𝑇𝑖  represents the trace of matrix. 

• ∑ 𝑟 and ∑ 𝑔 are the covariance matrices of real and generated feature representations, respectively. 

The Structural Similarity Index (SSIM) 

It is a metric used to quantify the similarity between two images, considering their luminance, contrast, and 

structure. It measures the perceptual difference between the original and processed images [75]. 

SSIM is calculated using three components: luminance comparison, contrast comparison, and structure 

comparison. The overall SSIM score is the product of these three components. 

The formula for SSIM is as follows: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
𝑙(𝑥, 𝑦) 𝑐(𝑥, 𝑦)

𝑀1 𝑀2
 

 

Here, 𝑙(𝑥, 𝑦) =  
2 𝜇𝑥 𝜇𝑦+𝐶1

 𝜇𝑥
2+ 𝜇𝑦

2+𝐶1 
 

 

𝐶(𝑥, 𝑦) =  
2 𝜎𝑥 𝜎𝑦 + 𝐶2

 𝜎𝑥
2 +  𝜎𝑦

2 + 𝐶2 
 

 

𝐶1 and 𝐶2 are constants here and the values are chosen to avoid zero instability.  

𝑥 and 𝑦 are the two images that are being compared. 
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A code snippet of this calculation using Python programming is attached in figure 5.3.   

Peak Signal-to-Noise Ratio (PSNR)  

This metric is commonly used to evaluate the quality of reconstructed or compressed images. It measures 

the difference between the original image and its approximation, considering the difference's magnitude 

and the image's maximum possible range. The PSNR is calculated based on the Mean Squared Error (MSE) 

between the original image I and the reconstructed 𝐼′ in decibels (dB). When the maximum possible pixel 

value is MAX, i and j are image dimensions, the formula for PSNR is as follows: 

𝑃𝑆𝑁𝑅 = 10. 𝑙𝑜𝑔10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
) 

Here, 𝑀𝑆𝐸 =
1

𝑖𝑗
∑ ∑ [𝐼(𝑘, 𝑛)𝑛=−1

𝑙=0
𝑖=−1
𝑘=0 − 𝐼′ (𝑘, 𝑛)]2 

 

 

Figure 5. 3 Code snippet of FID Score Calculation 

Necessary libraries are imported, including numpy for numerical computations, skimage.metrics for SSIM 

calculation, and tensorflow for PSNR calculation.  A function called calculate_metrics is defined for 

calculating the metrics, which takes the real image and generated image as input. Inside the function, the 

FID score is first calculated using a function called calculate_fid. This function, assumed to be defined 

elsewhere, takes real and generated images along with an inception model as input. The SSIM score is then 

obtained using the SSIM function from skimage.metrics. This function computes the structural similarity 

between two images. Finally, the PSNR score is evaluated using the tf.image.psnr function from 
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TensorFlow. PSNR measures the quality of an image in terms of signal-to-noise ratio. These scores are 

provided as quantitative assessments of the realism and quality of the generated images, complementing 

the human evaluation conducted in the study.  

The average FID, SSIM and PSNR scores are noted in table 5.1 below. 

Table 5. 1 Mathematical Evaluation Metrics 

 AI Tool\ Metrics FID SSIM PSNR 

DALLE 9.00% 1.35% 9.88 

IMAGEN 10.43% 0.86% 10.20 

GROK 10.69% 1.50% 10.51 

Stable Diffusion 15.95% 0.95% 9.21 

These three values have been illustrated in the graph to get the comparison results among three AI tools. As 

the lower percentages of FID indicate better similarity between real and generated images, implying higher 

quality and realism, DALL-E has the lowest FID score (9.0%) indicating better similarity with real images. 

On the other hand, the FID score is higher in Stable Diffusion (15.95%) than the other three. Moreover, the 

higher SSIM and PSNR score mean the better similarity with the real image. In this case, DALL-E has the 

highest value compared to other three suggesting its generated images have better quality and realism. 

 

 

Figure 5. 4 Comparison of Mathematical Metrics 

 5.4.2. Method B: Human Evaluation  
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In this study, as a part of human evaluation, a survey was developed and administered using the Qualtrics 

online survey platform to gather subjective evaluations of the images generated by human participants. The 

participants were asked to provide ratings for image realism on a scale of 1 to 7. The survey consisted of 

10 sets of questions, with each set containing five sets of images. Participants were asked to rate the realism 

of the images, with 1 indicating less realistic and 7 indicating more realistic. The responses collected from 

the survey were structured and grouped based on five categories, including real images and images 

generated by DALL-E, Imagen, Stable Diffusion, and GROK AI. Each category represented a different 

image generation model. 

5.4.1. Survey Result and Statistical Analysis 

A total of 28 subjects responded during the survey comprising adults aged 18 to 44, with a gender 

distribution of 17 males and 11 females, all of whom were citizens of the United States of America. Each 

participant was randomly allocated four out of ten sets of questions, providing a diverse perspective on 

image realism assessment across different age groups and genders. Statistical analyses were conducted 

using ANOVA tests and Tukey's Honest Significant Difference (HSD) test to determine the significance of 

differences among the groups. Figure 5.5 presents a snapshot of survey question. 
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Figure 5. 5 Survey Questions Snapshot 

Analysis of Variance (ANOVA) 

ANOVA is a statistical technique used to compare the means of two or more groups to check if they are 

significantly different from each other. ANOVA assesses the impact of one or more factors by comparing 

the means of different samples [76]. 

The formula for one-way ANOVA is: 

𝐹 =  
𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦   

𝑊𝑖𝑡ℎ𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑡𝑦 
 

Tukey's Honest Significant Difference (HSD) Test 

This post hoc test is conducted following ANOVA to assess the significance of differences between pairs 

of group means [77]. It identifies which specific groups differ significantly from each other. The formula 

for Tukey’s HSD calculation is as below, 

𝐻𝑆𝐷 =  √
𝐸𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟

𝑛
∗ 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 

 

The results of these statistical tests are tabulated in the following tables, providing insights into the 

significance of differences among the image generation models. Table 5.2 summarizes the one-way ANOVA 

test result, including each group's average and variance.  

Table 5. 2 Group Summary 

Groups Count Sum Average Variance 

DALL-E 112 639 5.71 4.03 

Stable Diffusion 112 535 4.78 4.90 

Imagen 112 642 5.73 3.68 

GROK  112 458 4.09 4.95 

Real Image 112 650 5.80 4.11 
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The difference between groups from ANOVA test is tabulated in table 5.3. The Between Groups Sum of 

Squares represent the sum of squares of the differences between the group means and the overall mean. It 

quantifies the variability in ratings among the different groups of images. The value between groups is 

257.619, indicating significant variability in ratings among the different image generation models. 

Degrees of Freedom (df) suggests the degrees of freedom associated with each source of variation [78]. For 

the Between Groups source, df = k - 1, where k is the number of groups. For the Within Groups source, df 

= N - k, where N is the total number of observations and k is the number of groups.  

Table 5. 3 Group Differences 

 
Sum of 

Squares 

df Mean 

Square 

F Sig. 

Between Groups 257.619 4 64.405 14.856 0.000 

Within Groups 2401.755 554 4.335 
  

Total 2659.374 558 
   

The F-value is the ratio of the between-groups mean square to the within-groups mean square. It indicates 

whether the differences between group means are statistically significant. A larger F-value suggests a 

greater difference between group means. This is the p-value associated with the F-statistic. It indicates the 

probability of obtaining the observed F-value if the null hypothesis (i.e., no differences between group 

means) is true. A significance value less than the chosen alpha level (e.g., 0.05) indicates that the differences 

between group means are statistically significant. In this case, F= 14.856, with a significance value of 0.000, 

suggests that the differences between group means are statistically significant. Therefore, we can reject the 

null hypothesis and conclude that there are significant differences in image realism ratings among the 

different image generation models. 

For further understanding the variance among groups, Tukey's Honest Significant Difference (HSD) Test 

have been conducted. The results are noted in table 5.4. Each pair of groups is compared in this test, and 

the mean difference, standard error, significance level, and confidence interval are provided. 
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Table 5. 4 Tukey HSD Result 

Multiple Comparisons 

Tukey HSD 

(I) 1.000000 Mean 

Difference (I-

J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1 

DALL-E 

2 .917* 0.279 0.009 0.15 1.68 

3 -0.038 0.279 1.000 -0.80 0.72 

4 1.604* 0.279 0.000 0.84 2.37 

5 -0.110 0.279 0.995 -0.87 0.65 

2 

Stable 

Diffusio

n 

1 -.917* 0.279 0.009 -1.68 -0.15 

3 -.955* 0.278 0.006 -1.72 -0.19 

4 0.688 0.278 0.099 -0.07 1.45 

5 -1.027* 0.278 0.002 -1.79 -0.27 

3 

Imagen 

1 0.038 0.279 1.000 -0.72 0.80 

2 .955* 0.278 0.006 0.19 1.72 

4 1.643* 0.278 0.000 0.88 2.40 

5 -0.071 0.278 0.999 -0.83 0.69 

4 

GROK 

1 -1.604* 0.279 0.000 -2.37 -0.84 

2 -0.688 0.278 0.099 -1.45 0.07 

3 -1.643* 0.278 0.000 -2.40 -0.88 

5 -1.714* 0.278 0.000 -2.48 -0.95 

5 1 0.110 0.279 0.995 -0.65 0.87 



69 
 

 

Real 

Image 

2 1.027* 0.278 0.002 0.27 1.79 

3 0.071 0.278 0.999 -0.69 0.83 

4 1.714* 0.278 0.000 0.95 2.48 

* The mean difference is significant at the 0.05 level. 

 

The highlighted values are less than 0.05, indicating that the group difference is significant in these cases. 

Considering this fact, the groups with differences between each other are illustrated as comparative graphs 

in figures 5.6 and 5.7. 

 

 

Figure 5. 6 Groups with Significant Difference 
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Figure 5. 7 Groups with No Significant Difference 

5.5. DISCUSSION 

In terms of mathematical evaluation, lower FID scores and higher SSIM and PSNR values generally 

indicate better image quality and similarity to real images. Referring to table 1, DALL-E exhibited the most 

promising performance, with the lowest FID score (9.0%) and highest SSIM (1.35%) and PSNR values 

(9.88), suggesting its capability to produce images that closely resemble real images. Conversely, Stable 

Diffusion demonstrated the highest FID score (15.95%) and lowest PSNR (9.21%) value, indicating 

potential limitations in generating realistic images compared to other models. These results provide 

valuable insights into the relative performance of these AI models in generating high-quality images.  

Furthermore, the statistical analysis of the human perception survey data using Tukey's HSD test revealed 

significant differences in perceived realism between certain pairs of image-generative AI models. Like the 

mathematical evaluation, DALL-E showed significant differences in perceived realism compared to Stable 

Diffusion (p = 0.009), GROK (p = 0), and Real Image (p = 0.002), indicating that images generated by 

DALL-E were perceived as more realistic than those generated by these models. Similarly, Imagen did not 

exhibit significant differences in perceived realism compared to Real Image (p = 0.999), indicating that the 

perceived realism of images generated by Imagen was comparable to those generated by Real Image.  

In summary, according to the participants' perceptions, the findings highlight the varying degrees of 

perceived realism among different image generative AI models, with DALL-E and Imagen generally being 

perceived as more realistic than Stable Diffusion and GROK. As examined, human evaluation is the current 

gold standard in text-to-image evaluation; however, mathematical based metrics also have promise and 

value. FID is growing as the standard evaluation method, and our results illustrate it most closely 
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represented human evaluation. However, this underscores the importance of considering both objective 

metrics and subjective human perception in evaluating the performance of image generative AI models. 

5.6. CONCLUSION 

The demand for AI-generated images continues to rise across various domains, understanding the 

capabilities and limitations of these models is crucial. By combining mathematical evaluation with human 

perception studies, we have comprehensively understood the relative performance of prominent text-to-

image generative AI models. The mathematical evaluation of the image generative AI models indicates that 

lower FID scores and higher SSIM and PSNR values generally correspond to better image quality and 

similarity to real images. FID has emerged as a robust metric, often aligning closely with human perception 

as observed in our survey data. Therefore, FID could be considered a superior metric for mathematical 

evaluation compared to SSIM and PSNR. Additionally, the statistical analysis of the human perception 

survey data using Tukey's HSD test unveiled significant differences in perceived realism between certain 

pairs of image-generative AI models. DALL-E showed significant differences in perceived realism 

compared to Stable Diffusion (p = 0.009), GROK (p = 0), and Real Image (p = 0.002), suggesting that 

images generated by DALL-E were perceived as more realistic. Conversely, Imagen did not exhibit 

significant differences in perceived realism compared to Real Image (p = 0.999), indicating comparable 

perceived realism between images generated by Imagen and Real Image. The findings highlight varying 

degrees of perceived realism among different image-generative AI models, with DALL-E and Imagen 

generally perceived as more realistic than Stable Diffusion and GROK. This underscores the importance of 

considering both objective metrics and subjective human perception in evaluating the performance of 

image-generative AI models. 
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CHAPTER 6:  CONCLUSION 
 

Machine learning and artificial intelligence algorithms are increasingly vital in our lives due to their 

transformative impacts. These algorithms automate repetitive tasks, freeing up human resources for more 

complex and creative endeavors. They streamline processes in industries ranging from manufacturing and 

logistics to finance and healthcare, leading to increased efficiency and productivity [79-81]. Predictive 

modeling, leveraging ML and AI, facilitates the forecasting of future trends or behaviors based on historical 

data, while classification tasks play a crucial role in categorizing data into distinct classes, spanning from 

email filtering to medical diagnosis. Concurrently, the emergence of text-to-image generation represents a 

transformative potential, enabling the direct creation of visual content from textual descriptions. These 

advancements are significant in design, art, entertainment, and visual communication, fostering creativity 

and productivity. This paper has explored three significant studies in ML and AI research, focusing on 

predictive and classification solutions on cloud platforms. Firstly, a study evaluating regression-type ML 

models across cloud platforms provides crucial insights for optimizing model deployment strategies. 

Secondly, research on customizing large language models for email classification addresses cybersecurity 

concerns, thereby bolstering email security measures. Lastly, an investigation into text-to-image generation 

diffusion models highlights the evolving landscape of AI-driven visual content generation, informing future 

advancements and applications. 

Finally, it can be said that these studies advance the applications of ML and AI technologies, addressing 

real-world challenges and driving innovation. The ongoing integration of ML and AI algorithms promises 

to unlock reshape industries, enhancing decision-making processes, and unlocking new possibilities for 

human-machine collaboration. 
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