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ABSTRACT 

 
Accurate prediction of flight delays remains a formidable challenge within the aviation industry, 

owing to its inherent complexity and the interconnectivity of its operations. Traditional flight 

prediction methods frequently utilize meteorological conditions—such as temperature, humidity, 

and dew point—alongside flight-specific data like departure and arrival times. However, these 

predictors often fall short of capturing the nuanced dynamics that lead to delays. This thesis 

introduces network centrality measures as novel predictors for enhancing the binary 

classification of flight arrival delays. Furthermore, it emphasizes the application of tree-based 

ensemble models, which are recognized for their superior ability to model complex relationships 

compared to single-base classifiers. Empirical testing reveals that incorporating centrality 

measures notably improves the models' average performance. The most effective model achieves 

an accuracy rate of 86%, surpassing the baseline accuracy by 2%. 
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CHAPTER 1 

 
INTRODUCTION 

 
In the realm of aviation, the efficiency of flight operations significantly hinges on the 

ability to anticipate and mitigate delays. As the Federal Aviation Administration (FAA) reports, 

its Air Traffic Organization (ATO) orchestrates the movement of over 45,000 flights daily, 

servicing 2.9 million passengers across an expansive airspace exceeding 29 million square miles. 

This volume is projected to swell by 4.9% annually over the next two decades, underscoring a 

pressing need for robust predictive models that can adeptly forecast flight delays, thereby 

enabling airlines to optimize scheduling and resource allocation. Despite the proliferation of 

predictive methodologies ranging from traditional statistical techniques to advanced machine 

learning algorithms like Decision Trees, Random Forests, Bayesian Networks, and Linear 

Regression, the quest for high-accuracy predictions remains largely unfulfilled. This challenge is 

compounded by the unpredictable nature of many delay-inducing factors, such as adverse 

weather conditions, and the computational demands posed by the voluminous and growing 

datasets of airline operations. 

Against this backdrop, this thesis introduces a novel approach to predicting whether a 

flight will be delayed or not, leveraging network centrality measures within a binary 

classification framework. By constructing a network model wherein airports serve as nodes and 

flight routes as edges, this study integrates centrality metrics to enhance the predictive 

capabilities of tree-based ensemble models. These models are renowned for their efficacy in 

capturing complex, non-linear relationships that elude traditional base classifiers. This 

integration aims to shed light on how the structural properties of the flight network can influence 

delay propagation and, by extension, overall network performance. 



 8 

The motivation for this research is twofold: Firstly, flight delays are a pervasive issue that 

undermines operational efficiency and diminishes passenger satisfaction, with a notable 20% of 

flights in 2023 experiencing delays across the United States alone. Secondly, existing predictive 

models often fall short of the accuracy needed for effective planning and resource management, 

partly due to their reliance on a limited set of predictors that may not fully encapsulate the 

intricacies of the aviation system. By incorporating network centrality measures into the 

predictive models, this study aspires to bridge this gap, offering a more comprehensive and 

nuanced understanding of the factors that contribute to flight delays. 

This paper is organized as follows: It begins with a literature review of the current 

landscape of delay prediction methodologies. Subsequent sections describe the methodology 

employed in constructing the network model and integrating centrality measures into the 

ensemble predictive models. The results section presents a comparative analysis of model 

performances, highlighting the enhanced accuracy achieved through the inclusion of centrality 

measures. Finally, the conclusion and future works sections reflect on the implications of these 

findings for airline operations and future research directions in the domain of flight delay 

prediction. 
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CHAPTER 2 

LITERATURE REVIEW 

Gui et al compared random forest and long short-term memory (LSTM) models on a 

dataset that includes weather, flight schedule, airport information, and automatic dependent 

surveillance-broadcast (ADS-B) messages. Their tests showed that the LSTM captured the time 

correlation of flight delay. However, it suffered an overfitting problem due to limited training 

data. On the other hand, the random forest-based architecture presented better adaptation when 

handling the limited dataset.  

Wei et al created clusters for over 200 Chinese airports with similar network properties 

and then applied a TS-BiLSTM-Attention model to predict the delay per hour for each airport in 

the clusters. Since the traditional LSTM is unidirectional, Wei et al combined a forward LSTM 

layer and a reverse LSTM layer to capture "past" moment information from front to back and 

"future" moment information from back to front, respectively.  

Kim et al used a deep recurrent neural network (RNN) architecture to predict departure 

delays in two stages. In the first stage, the flight delay status is predicted using the deep RNN. In 

the second stage, delays of individual flights are predicted using results from the first stage, 

historical on-time performance, and weather data. The researchers achieved a 90% accuracy for 

day-to-day delay status prediction. They also discovered that deep input-to-hidden architectures 

slightly improved their model accuracy. 

Güvercin et al proposed a “Clustered Airport Modeling”. In the first step of the approach, 

the researchers built a network of the airports and extracted graph-based features, including hub 

score, betweenness centrality, articulation point, in-degree, and weighted-in-degree. Next, they 

cluster the airports via K-means using the features and delay time series patterns of airports. 
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Finally, they applied a time series model, REG-ARIMA, to each cluster of airports using the 

extracted features as regressors. The study showed that betweenness centrality was effective both 

for clustering the airports and as a regressor in the REG-ARIMA model. 

Esmaeilzadeh et al employed a support vector machine (SVM) model to explore the non-

linear relationship between flight delay outcomes. Individual flight data were gathered from 20 

days in 2018 to investigate causes and patterns of air traffic delays at three major New York City 

airports. The study revealed that factors such as pushback delay, taxi-out delay, ground delay 

program, and demand-capacity imbalance were significantly associated with flight departure 

delay. 

Nigam et al used a logistic regression model to predict delay in departure times of 

aircraft. In addition to airport data, the researchers used weather data such as temperature, 

humidity, precipitation, and dew point as features for training the model on Microsoft Azure 

Learning Studio. Their method achieved an 80% accuracy in predicting whether or not a flight 

would be delayed. 

Yu et al proposed a combined Deep Belief Network and Support Vector Regression 

(DBN–SVR) model, an unsupervised learning method that is combined with a supervised 

learning algorithm to perform predictive analyses. In the  DBN–SVR prediction model, the DBN 

extracts the main factors with tangible impacts on flight delays, reduces the dimension of inputs, 

and eliminates redundant information. The output of DBN is then used as the input of the SVR 

model to capture the key influential factors (leading to flight delays) and generate the prediction 

value of delays. SVR is used at the top layer to perform supervised fine-tuning within the 

predictive architecture. The authors examined the performance of the DBN-SVR based on 

accuracy, robustness, and parameter tuning. Based on the evaluation metrics, the model 
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successfully outperformed three traditional models: K-Nearest Neighbors, Linear Regression, 

and Support Vector Machines. 

Cai et al proposed a novel model called the Multiscale Spatial-Temporal Adaptive Graph 

Convolutional Neural Network (MSTAGCN). The researchers first converted the flight delay 

prediction problem to a time-series analysis task on a time-evolving airport network graph 

convolutional neural network (GCN). Their model then integrates two advanced multiscale 

spatial-temporal adaptive graph convolutional layers, each reinforced with a residual connection 

to enhance the stability throughout the training process. These layers are ingeniously composed 

of a temporal convolutional block to capture the dynamic temporal patterns of flight delays, and 

an adaptive spatial convolutional block tailored to model the complex spatial interactions within 

airport networks. The core of MSTAGCN operates on sequential graph snapshots representing 

the evolving airport network over time, alongside historical data on flight delays. By processing 

this information through its dual graph convolutional layers and concluding with a fully 

connected output layer, the model adeptly forecasts future delays. The performance of 

MSTAGCN is meticulously assessed through the lens of Mean Squared Error, a statistical 

measure that quantifies the variance between predicted and actual delay times. Delving deeper, 

the temporal convolutional block employs the relational GCN (R-GCN) framework to model the 

spatial dynamics within each snapshot of the airport network, acknowledging both incoming and 

outgoing flight relations. This approach is further refined to accommodate the temporal evolution 

of flight delays, leveraging the Markov property for enhanced predictive accuracy. On the spatial 

front, the adaptive graph convolutional block is introduced to capture unknown spatial 

interactions, potentially overlooked in conventional models. This block comprises a spatial GCN, 

a temporal GCN, a dropout layer, and a residual connection, all aimed at accurately modeling the 
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complex, ever-changing spatial relationships within airport networks. Notably, the model 

innovates by integrating importance and similarity matrices, which adaptively update to reflect 

the dynamic significance and connections between airports, thereby capturing emergency and 

unforeseen flight routes. 

Choi et al applied decision trees, random forests, AdaBoost, and K-nearest neighbors to 

predict weather-induced airline delays. The researchers used specific weather fields such as wind 

direction angle, wind speed rate, visibility, and precipitation, in addition to flight information 

such as departure and arrival time, as features for model training. Furthermore, they evaluated 

the models' performances using a 10-fold cross-validation and Receiver Operating Characteristic 

(ROC) curve. To balance the data, they employed a Synthetic Minority Oversampling Technique 

(SMOTE) – an over-sampling approach – to create synthetic minority class examples. The 

proposed methodology produced an average accuracy of ~75% with sampling and 82% without 

sampling.  

Jiang et al also applied traditional machine learning methods like Support Vector 

Machines, Decision Trees, Random Forests, and Multilayer Perceptron to the flight delay 

prediction problem. This is similar to the methodology used by Choi et al. However, Jiang et al 

went further to apply a Convolutional Neural Network (CNN), which is significant since CNNs 

are typically used for image recognition tasks. The proposed methodology involves treating the 

features as a pattern and rearranging their shape as a map before being fed to the network. In the 

CNN architecture, dense connections between convolutional layers are used along with 1x1 

convolution kernels. The researchers also employed Cross entropy as the loss function and a 

Parametric Rectified Linear Unit (PReLU) as the activation function. The CNN showed a slight 

increase in accuracy compared to the traditional models.  
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CHAPTER 3 

METHODOLOGY 

This study employs a multifaceted methodology integrating network centrality metrics 

with advanced machine learning models. Initially, the study quantifies the structural importance 

of airports within the aviation network using centrality measures such as degree, betweenness, 

and closeness centrality. These metrics highlight key airports that significantly influence flight 

delay propagation. Subsequently, leveraging Random Forests, Gradient Boosting, and CatBoost 

algorithms, the research models the complex, non-linear relationships between network 

characteristics and flight delays. Random Forests mitigate overfitting through ensemble learning, 

Gradient Boosting sequentially minimizes prediction error by combining weak learners, and 

CatBoost enhances performance by addressing prediction shift and target leakage.  

3.1 Network Centrality 

Network centrality is a measure used in network analysis to identify the importance of 

nodes (individual entities or points) within a network. It provides insights into the structural and 

functional significance of nodes based on their connections or interactions with other nodes in 

the network. Network theory is a part of graph theory in mathematics and has extensive 

applications in various fields including computer science, biology, and social science. A network 

(or graph) consists of nodes (or vertices) and edges (or links) that connect these nodes.  



 14 

 

Figure 1: Network diagram 

 

In the context of aviation, nodes can represent airports, while edges can represent flight 

routes between these airports. There are several measures of centrality, and each provides a 

different perspective on node importance. 

3.1.1 Degree Centrality  

This is the simplest centrality measure and is defined as the number of edges incident 

upon a node. Said another way, the degree centrality of a node is simply its degree—the number 

of edges it has. The higher the degree, the more central the node is (Golbeck #25). In a directed 

graph, the degree of a node can be further split into two categories: indegree and outdegree. The 

in-degree represents the number of edges directed to the node while the outdegree is the number 



 15 

of vertices that the node directs to other nodes. In a weighted network, the degree centrality of a 

node is calculated as the sum of weights assigned to the node’s direct connections. 

In the context of an aviation network, an airport with a high degree centrality would typically be 

a major hub with a large number of direct flights. 

3.1.2 Betweenness Centrality 

The betweenness centrality of a node quantifies the number of times a node acts as a 

bridge along the shortest path between two other nodes. This is measured with the number of 

shortest paths (between any couple of nodes in the graphs) that pass through the target node 

(denoted by z). (Layton and Watters #103). 

𝛴
𝛿𝑥,𝑦(𝑧)
𝛿𝑥,𝑦

 

𝛿!,#(𝑧) is the number of shortest paths that pass through node z while 𝛿!,# represents the total 

number of shortest paths in the network. Nodes with high betweenness hold substantial influence 

within a network because they govern the transmission of information among other nodes. 

Additionally, the removal of these nodes can greatly disrupt the network's communication, as 

they are located on the most frequented paths for message exchange 

An airport with high betweenness centrality would be one that frequently appears on the shortest 

routes between pairs of other airports, serving as a critical connector within the network. 

3.1.3 Closeness Centrality 

Closeness centrality indicates how close a node is to other nodes in a network. 

Specifically, it is the inverse of the average shortest distance between the vertex and all other 

vertices in the network. In an airport network, closeness centrality is a measure of the average 

shortest distance from each airport to each other airports. Airports with high closeness centrality 
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are often critical for network robustness, as their removal could significantly increase the average 

distance between nodes, thereby slowing down the movement of passengers and goods. 

Conversely, airports with lower closeness centrality might be more peripheral, serving fewer 

destinations directly and relying more heavily on connections through more central airports. 

3.1.4 Eigenvector Centrality 

Eigenvector Centrality is used to measure a node’s influence in a network. In essence, a 

node with links from important nodes (measured by degree centrality) would have a higher 

eigenvector centrality than a node with unimportant nodes linking to it.  It is determined by 

performing a matrix calculation to determine what is called the principal eigenvector using the 

adjacency matrix. 

3.1.5 PageRank Centrality 

PageRank is an algorithm that was originally developed by Google founders Larry Page 

and Sergey Brin to rank pages in search results. The original Google paper describes PageRank 

as the principal eigenvector of the normalized link matrix of the web. Essentially, the algorithm 

is a variant of Eigenvector Centrality, with the only difference being that it measures the number 

of incoming links to a node in addition to the importance of the incoming nodes. PageRank is 

defined as follows:  

We assume page A has pages T1...Tn which point to it (i.e., are citations). The parameter d is a 

damping factor that can be set between 0 and 1. Also, C(A) is defined as the number of links 

going out of page A (Brin and Page). The PageRank of a page A is given as follows:  

PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn)) 

 

3.2 Machine Learning Models 
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Machine learning (ML) is a branch of artificial intelligence that gives computers the 

ability to learn patterns from data. ML applies to several domains, including healthcare, 

telecommunications, recommendation systems, and so on. There are several machine learning 

models. However, three models will be used for this paper: Random Forests, Gradient Boosting, 

and CatBoost.  

3.2.1 Random Forests 

Random forests are a combination of predictors called decision trees. Before diving into 

what a random forest model is, it is important to explain the idea behind decision trees. Decision 

trees are supervised learning models that make predictions based on possible outcomes. In other 

words, decision trees ‘decide’ what the label of a class is based on rules inferred from the 

relationship between the features. 

 

Figure 2: Tree diagram 
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Because of their structure, decision trees, especially when deep, are prone to overfitting. 

Hence, a decision tree with a high depth may not generalize well and, consequently, perform 

poorly on new data. Random forests solve this problem with an ensemble method that involves 

constructing a set of decision trees from the training data and the combination of the predictions 

made by the classifiers for class label prediction. The image below shows how it works. 

 

Figure 3: The ensemble learning algorithm for Random forests 

 

Random Forests reduce overfitting by manipulating the training data (through bagging) 

or manipulating input features (through feature randomness). Also known as bootstrap 

aggregation, bagging is a process in which each tree in the random forest repeatedly samples 

(with replacement) from the dataset according to a uniform probability distribution, resulting in 

different trees. This randomization helps to reduce the correlation among decision trees so that 

the generalization error of the ensemble can be improved. On the other hand, feature randomness 

is an approach RFs use to randomly select K input features to split at each decision tree node. As 

a result, the decision to split a node is determined from these selected K features instead of all the 

features. After the decision trees are constructed, the ensemble model then takes a majority vote 
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of all the predictors and returns the result of the tree with the most votes. In addition to 

classification, random forests can be used for regression analysis which is the focus of this 

project. Leo Breiman, one of the inventors of random forests, explained that the algorithm works 

for regression “by growing trees depending on a random vector Θ such that the tree predictor 

h(x, Θ) takes on numerical values as opposed to class labels.” 

3.2.2 Gradient Boosting  

Gradient Boosting is an ensemble algorithm used in classification and regression tasks. It 

enhances the predictive accuracy by sequentially combining multiple weak learners into a robust 

ensemble model. Fundamentally, it operates on the principle that an optimal subsequent model, 

when synergized with preceding models, minimizes the cumulative prediction error. This process 

involves iteratively adjusting the target outcomes for the next model to mitigate the error. 

To elucidate, the computation of target outcomes for each instance in the dataset is contingent 

upon the sensitivity of the overall prediction error to modifications in that instance's prediction: 

1. If a marginal alteration in an instance's prediction substantially reduces the error, then the 

ensuing target outcome for that instance is assigned a significant value. Consequently, 

predictions by the new model that align closely with these targets will diminish the error. 

2. Conversely, if a slight change in an instance's prediction does not affect the error, the 

subsequent target outcome for that instance is zero, indicating that adjusting this 

prediction will not contribute to error reduction. 

The terminology 'gradient boosting' is derived from this methodology, where target 

outcomes for each instance are determined based on the gradient of the error with respect to the 

prediction. Each successive model is developed to take a step towards minimizing the prediction 

error, navigating through the space of potential predictions for each training instance. 
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Boosting, as an advanced ensemble technique in machine learning, distinguishes itself from 

traditional models that learn independently from the data. Instead, it amalgamates the outputs of 

numerous weak learners to formulate a single, substantially accurate strong learner. 

Weak Learners Defined: 

A 'weak learner' refers to a model that performs marginally better than random guessing. 

For instance, in classifying mushrooms as edible or inedible, if a model based on random 

guessing achieves a 40% accuracy, a weak learner would exhibit slightly higher accuracy, 

ranging between 50% and 60%. Through the integration of several weak learners, boosting 

aspires to construct a strong learner capable of achieving accuracy levels exceeding 95% for 

analogous problems. 

The decision tree stands out as the preferred choice of weak learners due to its versatility 

across diverse datasets. For those unfamiliar with decision trees, they are highly recommended 

for exploration due to their foundational role in many machine learning algorithms. 

Gradient Boosting Algorithm: A Detailed Examination 

The gradient boosting algorithm is designed for tabular data comprising a set of features (X) and 

a target variable (y). Its objective mirrors that of other machine learning algorithms: to learn 

from training data sufficiently to generalize effectively to unseen data points. 

Loss Function in Gradient Boosting: 

A pivotal component in machine learning, the loss function, enables the quantification of the 

discrepancy between a model’s predictions and actual values, thus measuring model 

performance. It serves three critical functions: 

● Error Calculation: It compares the model's predicted output against the actual observed 

values, employing various methodologies to compute the difference. 
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● Training Guidance: The model strives to minimize the loss function, continually 

adjusting its parameters to reduce the loss to the lowest possible level. 

● Evaluation Metric: By analyzing the loss across training, validation, and test datasets, one 

can gauge the model's generalization capability and guard against overfitting. 

Among the prevalent loss functions, Mean Squared Error (MSE) is widely used in regression 

tasks within gradient boosting frameworks, emphasizing the importance of accurately measuring 

and minimizing prediction errors 

3.2.3 CatBoost 

CatBoost (CB) is a high-performing variant of the gradient boosting (GB) algorithm. CB 

was proposed by Prokhorenkova1 et al who pointed out that GB suffers from a prediction shift 

caused by a target leakage. Hence, the researchers proposed an alternative algorithm, called 

Ordered Boosing, to fix the problem.   

Ordered Boosting 
 

Traditional gradient boosting methods can easily overfit the training data. CatBoost 

addresses this issue through ordered boosting, a novel approach that reduces overfitting without 

significantly increasing the computational cost. It involves creating a random permutation of the 

training data and, for each instance, fitting models using only the data before it in the 

permutation. It is important to note that CatBoost uses different permutations for different steps 

of gradient boosting. This approach ensures that the model being trained does not see the current 

data point, thereby reducing the likelihood of overfitting. 



 22 

 

Figure 4: Ordered Boosting algorithm 

  



 23 

CHAPTER 4 

ANALYSIS AND RESULTS 

The experiment involved the following steps: 

 
4.1: Data Collection  

The dataset employed in this research was acquired from the U.S. Bureau of 

Transportation Statistics (BTS), comprising detailed records of on-time arrival and departure for 

non-stop domestic flights. Specifically, origin airport ID, destination airport ID, departure time, 

and arrival time were selected. For this study, data spanning July 2022 to June 2023 were 

extracted. 

 

4.2: Data processing 

After the extraction process, the data set was imported using the pandas package in 

Python. The data set containing the latitudes and longitudes of each airport was merged with the 

flight data. Next, records containing null or missing values were removed, thereby ensuring the 

integrity and reliability of the dataset for analytical purposes. Since the goal was a binary 

classification of a flight’s arrival, the arrival delay column was converted to a categorical format 

by setting parameters greater than zero to 1 and there rest to 0. 

Table 1: Attribute description of the dataset 

Attribute Name Description Type 

ORIGIN_AIRPORT_ID Origin Integer 

DEST_AIRPORT_ID Destination Integer 

DEP_TIME Actual departure time Float 

DEP_DELAY Number of minutes a flight is Float 
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delayed for 

Origin_Degree_Centrality Origin Degree Centrality Float 

Destination_Degree_Centralit
y 

Destination Degree Centrality Float 

Origin_Betweenness_Centrali
ty  

Origin Betweenness 
Centrality 

Float 

Destination_Betweenness_Ce
ntrality 

Destination Betweenness 
Centrality 

Float 

Origin_Closeness_Centrality Origin Closeness Centrality Float 

Destination_Closeness_Centr
ality 

Destination Closeness 
Centrality 

Float 

 

4.3: Network Graph Construction  

With the data processed, a network graph representing the airport system was created 

using the NetworkX package in Python. The plot below represents the top 20 airports with the 

highest scores for each centrality measure. 
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Figure 5: Top 20 centrality scores in the airport network 
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Figure 6: U.S. airport network (Towards Data Science) 

 

Next, the dataset was split into 80% training and 20% testing. To reduce variance and 

risk of overfitting, the dataset was also shuffled. In this paper, the target variable for prediction 

was designated as the arrival delay, encompassing both positive (indicating delays) and negative 

(indicating arrivals on or before time) values. These values were transformed into categorical 

variables, with positive delays coded as one and on-time or early arrivals coded as zero. 

4.4 Model Training 

For this study, I used the default parameters in the Random Forest and Gradient Boosting 

methods provided by Scikit-learn. For CatBoost, I used the open-source algorithm provided by 

Yandex. The model training was split into two phases. In the first phase, the models underwent 

training exclusively on a set of baseline features, namely the origin, destination airport, departure 

delay, and departure time.  

4.5 Model Evaluation 
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To get a better sense of the impact of the centrality measures on prediction performance, 

the models were evaluated with the following metrics: 

4.5.1 Permutation Feature Importance 

The permutation feature importance (PFI) is a model inspection technique that is used to 

measure the contribution of each feature to a model’s performance. Unlike intrinsic methods that 

rely on the specific structure of a given model (e.g., feature importance in decision trees), 

permutation feature importance is model agnostic, making it applicable across a wide range of 

model types. 

The core idea behind permutation feature importance is straightforward: by randomly 

shuffling the values of a single feature in the dataset, one can break the association between that 

feature and the target outcome. If the model's performance deteriorates significantly after this 

permutation, it indicates that the model relied heavily on that feature for making predictions. 

Conversely, if the performance remains largely unchanged, the feature is likely not crucial for 

the model's predictions. PFI can be calculated multiple times with different permutations of the 

same feature; doing this provides a measure of the variance in the estimated feature importances 

for the specific trained model. PFI is calculated as follows: 

 1. Empirical Loss Calculation (𝐸(𝑓)): 

● Train the predictive model (𝑓)  using the full dataset Z 

● Calculate the original empirical loss 𝐸(𝑓), using the model's predictions and the 

actual outcomes. This is done by averaging the loss 𝐿 over all instances in the 

dataset, providing a baseline measure of model performance. 

 

 2. Switch Operation: 
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● For a given feature set 𝑋1, perform a "switch" operation by systematically 

recalculating the model's loss after switching 𝑋1 values among all pairs of 

observations, while keeping 𝑋2 and 𝑦 paired as originally. This step assesses the 

impact of reshuffling 𝑋1’s values on model performance. 

 

 3. Divide Operation (alternative method for large datasets): 

● As an alternative to the computationally intensive switch operation, divide the 

dataset in half and swap 𝑋1 values between these halves. Then, calculate the 

model's loss for these adjusted pairings. This operation serves as a simpler method 

to estimate the importance of 𝑋1. 

 4. Empirical Model Reliance (MR) Estimation: 

● Calculate the empirical MR as the ratio of the switch operation to 𝐸(𝑓), reflecting 

the model's reliance on the feature set 𝑋1. A higher MR indicates a greater 

dependency on 𝑋1 for making accurate predictions. 

 5. Repeat for Additional Features: 

● If assessing multiple features or feature sets for their importance, repeat steps 2 

and 3 (and potentially step 4) for each feature or set of features under 

consideration. 

To analyze each model’s reliance on each feature, I implemented a function to calculate 

the PFI scores, which were then ranked from highest to lowest, as demonstrated in the figures 

below. 
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 Figure 7: Permutation Feature Importance for Random Forests 

  

 Figure 8: Permutation Feature Importance for Gradient Boosting   
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 Figure 9: Permutation Feature Importance for CatBoost 

 

4.5.2 Cross Validation 

Cross-validation (CV) is a cornerstone technique in the field of machine learning, crucial 

for assessing the predictive performance of models. This technique is especially valuable in 

applied machine learning tasks, where the goal is to develop models that generalize well to 

unseen data. CV's primary advantage lies in its ability to mitigate model evaluation biases and 

variances, offering a more reliable estimate of model performance across different subsets of 

data. 

At its core, cross-validation involves repeatedly dividing the dataset into distinct training 

and testing sets, training the model on the former, and evaluating it on the latter. This process not 

only aids in comparing the effectiveness of different models but also in fine-tuning the 

parameters of a single model. Unlike simpler validation approaches that split the data only once, 
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CV systematically uses different portions of the data for training and validation, ensuring that the 

evaluation is robust and less susceptible to the idiosyncrasies of a single data partition. 

4.5.3 Receiver Operating Characteristic (ROC) Curve 

The ROC curve is a graph showing the performance of binary classifiers. The plot 

illustrates the True Positive Rate (TPR) vs False Positive Rate (FPR) at different classification 

thresholds.  

TPR = 
!"

!"	$	%&
 

FPR = %"
%"	$	!&

 

The area under the ROC curve — also known as the AUC curve — from (0, 0) to (1, 1) is used 

as an accurate measure of prediction performance. The closer the AUC score is to 1, the better 

the prediction.   

Table 2: Metrics for models trained with baseline features 

Model Accuracy Precision Recall F1 Score 

Random Forest 0.845 0.863 0.729 0.790 

Gradient 
Boosting 

0.851 0.876 0.733 0.798 

CatBoost 0.850 0.885 0.720 0.795 

 

Table 3: Metrics for models trained with baseline and centrality-based features 
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Model Accuracy Precision Recall F1 Score 

Random Forest 0.862 0.895 0.742 0.812 

Gradient 
Boosting 

0.858 0.888 0.740 0.808 

CatBoost 0.856 0.885 0.735 0.803 

 

The tables above show that the metrics of all the models increased after the centrality 

values were added as features.  

 

Figure 10: Grouped bar chart of accuracy scores 
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Figure 11: Grouped bar chart of precision scores 
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Figure 12: Grouped bar chart of recall scores 
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Figure 13: Grouped bar chart of F1 scores 
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CHAPTER 5 

CONCLUSION 

In this study, I showed that centrality measures — particularly degree, betweenness, and 

closeness centrality — can improve the performance of traditional machine learning models for 

predicting flight delays. In addition, the goal was to prove that this methodology would work 

well in the real world. By using several evaluation metrics like recall, F1 score, accuracy, and 

precision, I compared the models trained with centrality and traditional features to the models 

trained with only the traditional features. My tests show that the centrality measures increased 

the evaluation metrics of the models.  

Furthermore, I used the PFI to calculate the importance of each feature and also to show 

that the models relied on the centrality measures in making predictions. This study would be 

valuable for government agencies like the Federal Aviation Administration (FAA) that oversee 

the aviation industry in the United States.   
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CHAPTER 6 

FUTURE WORK 

In this study, I explored the integration of centrality measures alongside traditional 

features like destination airport ID, origin airport ID, departure time, and departure delay to 

enhance predictive models in the context of air traffic networks. This innovative approach opens 

up several avenues for future research to further understand and leverage the complex dynamics 

of air traffic systems. 

One promising direction for future work involves a detailed comparative analysis of 

various centrality measures to assess their predictive power across different scenarios within air 

traffic management. By examining how different centrality metrics influence predictions, 

researchers can identify which measures are most relevant for specific predictive tasks, such as 

forecasting flight delays or determining route popularity.  

The concept of treating air traffic networks as multilayer networks presents another 

intriguing research opportunity. In such networks, layers could represent various airlines, flight 

types (e.g., domestic versus international), or time slots, enabling a more granular analysis of 

network dynamics and their implications for air traffic predictions. Furthermore, extending the 

analysis to include additional network features—beyond centrality—such as community 

structure, network resilience, or network efficiency, could provide deeper insights into the 

factors influencing air traffic systems. This broader perspective might reveal new strategies for 

optimizing flight scheduling, route planning, and congestion management. 

Exploring the operational impact of integrating centrality measures into predictive 

models also warrants further investigation. Collaborating with industry stakeholders, such as 

airlines and airport authorities, could help assess the practical benefits and challenges of 
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implementing these advanced models in real-world settings. Such collaborations could also 

facilitate studies on the scalability of these models, particularly for applications requiring real-

time or near-real-time predictions, which are crucial for effective air traffic management. 

Moreover, the potential of this research extends beyond the immediate realm of air traffic 

management. Investigating whether the findings from air traffic networks can be applied to other 

types of transportation networks could uncover universal principles applicable to broader 

transportation system optimization efforts. Additionally, examining the environmental and 

economic impacts of optimizing air traffic operations based on network-centric predictive 

models could contribute valuable insights into achieving sustainable and economically viable 

transportation solutions. 
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