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ASSESSMENT OF ATMOSPHERIC CORRECTION ALGORITHMS FOR THE REMOTE 

SENSING OF WATER QUALITY IN SOUTHEASTERN U.S. ESTUARIES 

by 

JEROME REIMERS 

(Under the Direction of Christine Hladik) 

ABSTRACT 

Water quality is a key indicator in understanding and representing an environment's overall 

health. Through developments in remote sensing, we can utilize satellite imagery to measure 

water parameters in each aquatic system. When accurate atmospheric correction is performed, 

remote sensing can account for atmospheric attenuation and scattering effects to better measure 

the reflectance and estimate optically active constituents (OAC) present in upper water columns. 

Atmospheric Correction for OLI lite (ACOLITE) is an atmospheric correction algorithm 

designed specifically for robust atmospheric correction of water surfaces, in comparison to 

algorithms designed more for land surfaces such as the European Space Agency’s (ESA) 

Sen2Cor. An evaluation of atmospheric correction methods for coastal water quality for Georgia, 

USA, where contributions from pigments, inorganic matter, and organic matter are quite 

variable, has not been performed. This project analyzes the application and accuracy of 

atmospheric correction methods for several Georgia estuaries with spatially and temporally 

variable concentrations of water quality constituents using satellite imagery, in situ close-range 

spectral reflectance remote sensing match-up data, and field and laboratory analysis of water 

variables. The objectives of this study are: (1) Characterize study sites and individual water 

samples based on their concentrations of chlorophyll-a pigments, inorganic matter, and color-



dissolved organic matter based on hyperspectral close-range reflectance, multispectral Sentinel-2 

MultiSpectral Instrument (MSI) reflectance, and analysis bulk water samples and; (2) Evaluate 

and compare the accuracy of spectral reflectance data with no atmospheric correction, and 

ACOLITE and Sen2Cor atmospheric correction algorithms. It was found that hierarchical 

clustering had inconclusive results at characterizing optical water types, and some variation in 

optical water types were even seen within study sites. Further, ACOLITE and Sen2Cor 

atmospheric correction algorithms performed comparably at each specific wavelength in these 

environments (ACOLITE R²=0.215 (band 5) to 0.33 (band 2), Sen2cor R²=0.061 (band 5) to 

0.299 (band 3)), and further validation would be required for a deeper understanding of their 

performance on more than a band-to-band comparison. 
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CHAPTER 1 

INTRODUCTION 

1.0 Introduction 

Water quality consists of all biological, chemical, and physical characteristics required to 

meet the needs of various water usages including drinking, irrigation, and recreation (Chawla et 

al., 2020). Water is considered polluted when impurities are severe enough to restrict the use of 

and may or may not be the result of human interaction (Lillesand et al., 2015). Access to clean 

water and sanitation remains the sixth sustainable development goal of the 2030 Agenda for 

Sustainable Development committed to by the United Nations (Sustainable Development 

Summit, 2023). With approximately one-third of the global population lacking access to clean 

drinking water, constant innovation is necessary to manage global waterways that are not only 

accessible but also clean and sanitary (WHO, 2019). The management strategies used to 

maintain water constituent sources and fate are crucial. Poor water management practices have 

direct consequences for our economy and society. Considering the combined effects of global 

warming and socioeconomic conditions, Koutroulis et al. (2019) suggested that as many as four 

billion people could be placed under freshwater resource stress with a 4-degree Celsius global 

temperature increase. This increase would potentially affect the water cycle through an increase 

in evaporation, intensifying extreme weather events (including flooding, droughts, and cyclones), 

which place additional strain on water demand and resources (Chawla et al., 2020). 

1.1 The Georgia Coastline 

The Georgia coastline, where this study was conducted, represents a unique environment 

compared to its neighboring northern and southern state neighbors. In the 1970s, the Coastal 
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Marshland Protection Act (CMPA), and the Shore Protection Act, were passed to give policy 

makers the ability to regulate activities that affect the coastal marshlands of the state in the 

interest of the public, aimed to balance economic development with conservation by establishing 

protection zones to restrict construction and vegetation removal (Georgia Rules & Regulations, 

n.d.). The implementation of this kind of policy was ahead of its time and has resulted in the 

relatively undeveloped coastline present across the state today in contrast to that of Florida and 

North and South Carolina. This undeveloped coastline in combination with strong tidal action 

allows for strong tidal magnitudes to pull out water contaminants and constituents into the ocean, 

and flush in saline Atlantic Ocean water, less laden with nutrients optimal for algal propagation 

(Sanford et al., 1992).  

The Georgia Department of Natural Resources Coastal Resources Division releases an 

annual report card for the Georgia Coastline, which provides information on the current health 

and condition (CRD, 2022). For 2022 the Georgia coastline was given a moderately good score 

“B” score of 74% based on several indicators including fecal coliform, enterococcus, dissolved 

oxygen, and various fauna. Notably, dissolved oxygen fell in 2022 from 2021 to 75%. This score 

is a function of Georgia’s ability to maintain its healthy coastal and estuarine systems. NOAA 

provides data detailing the economy connected to coastal regions of the United States. Most of 

the economic activity in coastal Georgia fell into the category of Manufacturing, with a GPD 

total of over $4,500,000,000 in 2020 (NOAA, 2021). Financial activities were the next biggest 

category, followed by education and health services, and professional and business services. 

Natural resources and mining only accounted for slightly over $108,800,000 of the 

$30,162,000,000 GPD total in 2020. Only 620 employees fell into the natural resources category, 
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while manufacturing accounted for almost 22,200 people. Coastal economic activity because 

primary industry is limited within the region (NOAA, 2021). 

1.2 Water Quality Threats 

Eutrophication describes a natural aging process of a body of water that results from the 

accumulation of dissolved nutrients over time (Chislock et al., 2013). This process is often 

accelerated unnaturally by nutrient nitrogen and phosphorous loading caused by pollution and 

sediment accumulation (Lillesand et al., 2015). An imbalance of nutrients through eutrophication 

often propagates algal growth, and more phytoplankton productivity can produce turbid waters. 

Over longer time periods nutrient overloading can cause water bodies to become hypereutrophic, 

where nutrients and minerals such as clay loading becomes extreme (Li & Li., 2004). 

Additionally, a large biomass of phytoplankton produces an algal bloom, which has the potential 

to be categorized as a harmful algal bloom (HAB). A HAB causes harm through the production 

of toxins, or the alteration of food web dynamics through the proliferation of a particularly 

harmful species of algae (Anderson, 2009). Algal blooms can dominate an aquatic environment’s 

access to sunlight, denying access to all other species below the water’s surface (Lillesand et al., 

2015; Richardson, 1996). During bloom decay, algal matter sinks and decomposes, consuming 

dissolved oxygen, and leading to hypoxia and major mortality in other aquatic species 

(Anderson, 2009). The range and frequency of algal blooms are expected to increase in response 

to climate change, as temperature largely determines the potential for HABs to form and has 

already contributed to the growth of specific species (Gobler et al., 2017). 

Algal growth is determined by a combination of multiple factors, where even the 

alteration of food web dynamics through practices such as overfishing can contribute to algal 
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bloom propagation, and even the nutrient composition of nutrient loading plays a role in 

determining the algal species that benefit (Heisler et al., 2008). Nutrient loading is  exacerbated 

by climate change, which can boost algal growth (Rodgers, 2021). Along the lines of climate 

change, the global warming of water surface temperature specifically is recognized as a cause of 

algal growth (Paerl and Huisman, 2008). Combined, higher amounts of nutrients in warmer 

water temperatures create conditions for cyanobacteria, or blue-green algae, to thrive (Nazari-

Sharabian et al., 2018). He et al. (2017) studied other factors affecting phytoplankton density 

within the Three Gorges Reservoir in China. Building on existing literature, the authors used 

principal component analysis (PCA) to demonstrate that ammoniacal nitrogen, nitrate, as well as 

phosphate, total phosphorus, and total nitrogen all influence phytoplankton density. These 

compounds are often introduced to water bodies through anthropogenic products and practices 

such as the use of mineral fertilizers, septic systems, and animal manure runoff. Nitrate 

specifically acts as a substantial water contaminant and is highly correlated to anthropogenic 

activities (Widory et al., 2005). He et al. (2017) also observed that light attenuation decreased 

with an increase in flow, as suspended matter increased in the surface layer of water. This 

decrease in light attenuation can compensate for depths and limit algal growth. Flow and 

adsorption also have the potential to reduce the amount of nutrients available for algal growth. 

Total suspended solids (TSS) or turbidity has also been connected to the transportation of bound 

nutrients throughout a body of water, which could expand the area in which algal blooms have 

the right conditions for growth, or simply create a problem elsewhere (Lillesand et al., 2015).  

Another major contributing factor to the decline of the health of a body of water is urban 

development. Urbanization and increases in population density can generate the need for river 

impoundments along with an increase in anthropogenic practices, like increases in primary 
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industry land use, which has been researched as the driving force behind wider ecosystem 

change (Takagi et al., 2017). Wang et al. (2001) found that urban development creating 

connected impervious surfaces is a significant metric for determining urbanization’s effect on 

water quality, with measurements as low as 12% connected imperviousness demonstrating a 

strong influence on surrounding water quality through anthropogenic runoff sources. Correlated 

to development density, increases in nitrogen and phosphorus use and runoff within surrounding 

watersheds, connect human practices with impacts on surrounding water bodies (Carle et al., 

2007). 

1.3 Remote Sensing Approach 

The remote sensing approach provides a methodology to broadly inform water quality 

management decisions. Ability to see and respond to space and time patterns can greatly improve 

assessments of water resource and local, regional, and global scales, with significant advantages 

to in situ and water sampling using traditional station-based-point collections. In some cases, 

buoyant gas vesicles suspend algae just below the surface making them detectable through 

remote sensing (Richardson, 1996). Hydrometeorological monitoring through in situ methods is 

challenging due to the outdated and disproportionately distributed existing monitoring network 

as well as the inability to conduct large-scale spatiotemporal analysis with a time-sensitive 

approach (Mishra and Coulibaly, 2007, Richardson, 1996). Remote sensing from satellite-based 

sensors with accurate atmospheric correction provides a quantitative measure of reflected light 

from the Earth’s surface, potentially allowing for cost-effective studies of larger spatial extents 

and higher temporal resolution of an aquatic ecosystem’s water quality (Sagan et al., 2020, Li 

and Li, 2004). Through the combination of large-spatial scale multi-temporal imagery, an in situ 
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spectroradiometer instrument, and laboratory-analyzed bulk water samples, an interdisciplinary 

approach can be incorporated to calibrate entire satellite scenes (Caballero et al., 2020). 

1.4 Remote Sensing of Water Quality 

Broad water quality assessments can be made using remote sensing by measuring the 

combined effects of Optically Active Constituents (OACs) on water reflectance. These water 

quality parameters include chlorophyll-a (Chl-a) pigment, inorganic matter (seston, total 

suspended solids (TSS), turbidity), and colored dissolved organic matter (CDOM). Chl-a is an 

indicator demonstrating the presence of littoral-zone macrophytes, eukaryotic algae, and 

cyanobacteria. TSS represents all organic and inorganic suspended solids in the entire water 

column. CDOM comprises decomposing organic plant and bacterial matter and is the largest 

component of dissolved natural organic matter found in water bodies (Brezonik et al., 2015). 

These water quality parameters are of particular importance for measuring overall water quality 

as they are OACs, and estimations of OACs can be derived across large a spatial scale, as total 

light reflected is a function of the inherent optical properties (IOPs) of these constituents at 

respective wavelengths of light (Chawla et al., 2020; Gordon, 1978; Lillesand, 2015). Knowing 

which OACs, and their IOPs, are in the water that is tested may allow researchers to make 

appropriate adjustments to accurately calibrate and validate water constituent algorithms for 

testing water quality on a larger scale and with greater accuracy. 

Optical remote sensing is simply an observation of backscattered light from surface 

water, features of the water column, and potentially in extremely shallow and clearer waters, 

benthic substrates. Photons of light can transmit, scatter, or backscatter (change their direction of 

travel), or absorb, and when light undergoes either scattering or absorption, it is said to have 
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attenuated or undergone attenuation (Dekker and Peters 1993). Total absorption can be expressed 

in terms of the sum of absorption from the water itself, the absorption of CDOM (aCDOM), 

phytoplankton, and TSS. Total backscattering can be expressed by the sum of backscattering 

from water, phytoplankton, and TSS (Giardino, 2019). This will be discussed in more detail for 

each of the water constituents involved in section 1.5 Optically Active Constituents. 

When calculating the reflectance of a body of water (or any surface), reflectance is 

proportional to backscattered photons, and absorption is inversely proportional to reflectance. 

This means that as backscattering increases, so does the upwelling water radiance, and as 

absorption increases, upwelling water radiance decreases. 

Remote sensing reflectance is calculated as a ratio of upwelling water radiance and 

hemispherical downwelling irradiance, 

(1) 𝑟𝑟𝑠(𝜆) =
𝐿𝑤(𝜆)

𝐸𝑑(𝜆)
 

where 𝑟𝑟𝑠(𝜆) is reflectance, 𝐿𝑤(𝜆) is upwelling water radiance, which is measured by a sensor 

from the water, in response to 𝐸𝑢(𝜆), downwelling irradiance, which is hemispherical 

downwelling radiance (Giardino, 2019; Lillesand et al., 2015). 

 For close-range reflectance measurements, taking measurements above- and below-water 

has been an ongoing debate within the remote sensing community. Both approaches bring with 

them unique advantages and disadvantages, however Bhatti et al. (2009) settled on 

measurements being taken just below the water’s surface. This conclusion was reached as the 

above surface reflectance is affected by waves and sun glint, which determined to be too 

impactful when collecting above-water measurements. 
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Approaching water quality from the context of remote sensing allows for the estimation 

of OACs that backscatter light; any uniquely detectable parameter that has an overall effect on 

water leaving radiance of reflected water. Commonly used OACs included in this project include 

TSS, Chl-a, and CDOM, which in combination dominate overall effects on reflectance curves in 

Case II waters (Caballero et al., 2020; Brezonik et al., 2015). Evaluating constituents 

unmeasurable by satellites including total nitrogen and phosphorus, dissolved oxygen, and other 

microorganisms are only possible through close-range hyperspectral data or other in situ 

methodologies; however, OACs, themselves, can provide major insights into the overall water 

quality of a given body of water (Anderson, 2009; Brezonik et al., 2015; Palmer et al., 2015; 

Sagan et al., 2020). 

The reflectance of water is very dependent on the presence or absence of OACs, however 

pure water absorbs weakly in the blue and into green regions of the electromagnetic spectrum 

(400-550 nm), before, in higher wavelengths in the red and near-infrared, absorption increases 

very strongly (Dekker and Peters, 1993; Lillesand 2015). It is for this reason water appears blue. 

Dekker and Peters (1993) attribute bands 1-4 (450-900 nm) of the Thematic Mapper onboard 

Landsat 4 and Landsat 5 as being the spectral range where light backscatters off water to make 

determinations about water quality, however, 850 nm is around the region in which absorption 

increases more rapidly within water. 

GLORIA, the GLObal Reflectance community (Lehmann et al., 2023), provides a library 

of over 7,500 close-range hyperspectral curves at 1 nm intervals between the wavelengths of 350 

and 900 nm. At least one water quality measure is also associated with these curves, and this 

dataset provides the primary database of in situ coastal and inland aquatic optical diversity. 

Included in this database are 17 different approaches to obtaining close-range reflectance, 
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including the below water reflectance method used in this study, by which a pole suspends the 

tip of a fiber optics cable connected to a spectrometer below the surface of the water. Thirteen 

optical water types are defined in this dataset, and data is readily available to expand and 

compare a close-range reflectance dataset from a study to a larger sample size. 

1.5 Water Quality and Ocean Color Satellite Systems 

 Multiple studies have been conducted utilizing ocean color satellite systems, like Sea-

viewing Wide Field-of-view Sensor (SeaWiFS) and MODerate resolution imaging spectrometer 

(MODIS) (Dall’Olmo et al., 2005), MERIS (Gilerson et al., 2010), and Ocean and Land Color 

Instrument (OLCI) (Smith et al., 2016), for the retrieval of Chl-a and other OACs. These systems 

are designed with water reflectance characteristics in mind and leverage key regions of 

electromagnetic reflectance. They also focus on spectral resolution within the visible and near-

infrared region of the electromagnetic spectrum, at the sacrifice of spatial resolution, specifically 

pixel size, as the focus of these systems is a large open-water area. This ultimately allows for a 

greater signal-to-noise ratio when compared with a typical earth-observation system such as 

Sentinel-2 or Landsat-8 or 9, which becomes important considering the small signal value 

emitted from aquatic surfaces (Cabellero et al., 2020). 

Frouin et al. (2019), identified current generation ocean color sensors including the 

MODIS, Visible Infrared Radiometer Suite (VIIRS), OLCI, Geostationary Ocean Color Imager 

(GOCI), and the Second-Generation GLobal Imager (SGLI), as limited within their spectral 

resolution for modern water quality analysis. The Ocean Color Instrument (OCI) on board the 

Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite, which is scheduled to be launched 

in January of 2024, is the upcoming proposed solution, with 5 nm spectral resolution from 350 to 
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885 nm and a swath width of 1,500 km (Frouin et al., 2020). This higher spectral resolution 

comes with trade-offs as later discussed in section 1.7 Challenges of Water Quality Remote 

Sensing. For example, with a pixel size of 125 meters OCI is designed specifically for ocean 

water quality remote sensing but becomes challenging to use in estuaries, narrow inland 

waterways, and coastal and nearshore environments, where the large pixels mix with the 

reflectance from adjacent terrestrial surfaces. Nearshore remote sensing requires a smaller pixel 

size, not incorporated in the traditional ocean-color satellite systems (Cabellero et al., 2020; Lang 

et al., 2022). 

A potential alternative product for coastal and inland environments is that of systems like 

the Vegetation and Environment monitoring on a New MicroSatellite (VENµS), which carries a 

single sensor, the VENµS SuperSpectral Camera (VSSC) (CNES, 2015). VENµS has a potential 

2-day revisit time, with spatial resolution of up to 4-meters per pixel from a 13 km swath width, 

and 12 spectral bands from central wavelengths of 420 - 910 nm (Herrmann et al., 2010). 

Although primarily designed for land applications, VENµS also has the temporal resolution, 

spatial resolution, and spectral bands to complete successful coastal ocean color research, 

however the use of satellite missions such as these requires much effort for their use to calibrate 

for atmospheric correction (Dick et al., 2022). 

1.6 Optically Active Constituents 

 Reflectance curves derived from surface water can have a diverse range of shapes and 

features based on the makeup of optically active constituents (OACs). Figure 1.1a-e contains a 

few sample reflectance curves inspired from curves collected in Schalles (2006), from different 



17 
 

 

 

sites in response to varying quantities of OACs, to demonstrate the variability possible within 

water quality remote sensing. 

1.6.1 Chlorophyll-a (Chl-a) 

Phytoplankton, and by proxy its main pigment of Chl-a, is optically active and allows for 

the determination of the presence of algal matter in a water body. Spectrally, Chl-a (as well as 

other accessory pigments) absorbs and scatters light in very specific regions to conduct its 

function of photosynthesis and reflects other light to avoid damaging photosynthetic cells 

(Richardson, 1993).  

Absorption peaks because of Chl-a, carotenoids, and accessory pigments are visible in 

the blue (440 nm) wavelengths in addition to the red and near-infrared (680 nm) region of the 

electromagnetic spectrum. Backscattering within the 560 nm region is high, giving Chl-a its 

green color (Chawla et al. 2020; Richardson, 1996; Kutser 2004). In response to absorption 

peaks from algal pigment and troughs from scattering of light, researchers have devised many 

different models to quantify Chl-a content in μg/L, which can reach values as high as over 100 

ug/L in coastal estuary systems, as when concentrations are higher, absorption characteristics 

intensify (Schalles, 2006; Chawla, 2020; Monobet, 1992). Reflectance algorithms are discussed 

in more detail in section 1.6 Retrieval Algorithms. Figure 1.1a-e contains a typical reflectance 

curve in response to extreme chl-a concentration, with extreme peaks and troughs caused by 

chlorophyll pigment absorption and reflection. 

While distinct in optical activity, interference with other constituents including CDOM 

and TSS complicates water leaving reflectance curves across visible wavelengths (Dekker and 

Peters, 1993). It is also important to note that most light that enters the water is absorbed in the 
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upper water column, Chl-a has little to no effect on a reflectance curve at depths below two 

meters (Lillesand, 2015; Richardson, 1996). 

1.6.2 Total Suspended Sediment (TSS) 

TSS is particulate matter that is suspended within the water, including organic and 

inorganic matter. The dominant effect of TSS on water quality reflectance is limiting light’s 

ability to transmit further into water, resulting in scattering, however in blue wavelengths, TSS 

absorbs some incoming light which can complicate algorithm development in this region with its 

combined effect with CDOM (Chawla, 2020; Dekker and Peters, 1993; He et al., 2017). 

Turbidity is directly linked to TSS, and an increase in turbidity is a result of more suspended 

particles, meaning turbidity can be used as a measure of TSS (Chawla, 2020; Davies-Colley and 

Smith, 2001; Wass et al., 1997). TSS present in water bodies also alters nutrient concentrations 

and reduces dissolved oxygen, having a greater effect on water quality and the overall health of 

the wider ecosystem (He et al., 2017). Figure 1.1d contains a sample reflectance curve that may 

be expected in response to higher TSS concentrations. 

Caballero et al. (2020) determined that Chl-a retrieval algorithms may overestimate Chl-a 

concentrations due to an increase in light being scattered within the red and near-infrared regions 

of the electromagnetic spectrum in response to TSS or turbid waters, resulting in a stronger Chl-a 

reflectance peak where a trough is usually expected in a typical reflectance curve dominated by 

Chl-a. This peak is also partly the result of a shift in Chl-a reflectance peaks in green 

wavelengths (560 nm) to longer wavelengths closer to the red (591 nm), and an increase in 

reflectance can be seen in all visible wavelengths, as well as the near-infrared (Schalles, 2001). 

This area of the electromagnetic spectrum, specifically in the red and near-infrared region, is 
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used in many Chl-a algorithms (Gitelson, 1992; Gitelson et al., 2008; Gurlin et al., 2011; Yacobi 

et al., 2011), as TSS is an OAC within water, Pahlevan et al. (2017), were able to utilize 

Sentinel-2 in mapping turbidity across moderately turbid coastal waters. This was achieved by 

leveraging the red-to-near infrared, single-band algorithm designed by Nechad et al. (2010) that 

can be applied to any ocean color sensor. 

1.6.3 Colored Dissolved Organic Matter (CDOM) 

CDOM is the major component of dissolved organic matter within a body of water, 

specifically comprised of aromatic, carboxylic, fulvic, and humic acids obtained from 

decomposed plant matter, bacterial growth, algal growth, and sediment loading (Brezonik et al., 

2015; Chawla et al., 2020). CDOM loading alters physical, chemical, and biological properties 

within the water, and attenuates the penetration of light into water, creating an environment 

suitable to promote algal growth near the surface of a body of water (Osburn and Stedmon, 

2011). Brezonik et al., (2005) found that CDOM is strongly correlated to the other OACs, and 

absorption is strongest at 440 nm, which coincides with a Chl-a absorption region (Richardson, 

1993). Using remote sensing systems, calculating aCDOM is a challenge, as CDOM absorbs 

light, but does not cause scattering, and has no specific reflectance peaks or troughs, instead 

following an exponential decrease in absorption with an increase in wavelength (Brezonik et al., 

2015). The relationship between aCDOM and Chl-a concentration is a challenge, and the 

presence of suspended solids also complicates calculating total aCDOM. When calculating 

aCDOM, Brezonik et al. (2015), found that the natural log of aCDOM at given wavelengths 

between 450 - 750 nm could be calculated using stepwise regression, by using the natural log of 

a wavelength’s reflectance with reasonable accuracy (r²=0.856 for simulated Sentinel-2 MSI 
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bands for in situ measurements). Figure 1.1b contains a reflectance curve typical of high CDOM 

absorption. 

The OACs mentioned above when combined create a difficult-to-predict cocktail effect 

on a resulting reflectance curve, affecting the resulting total reflectance value at each bandwidth. 

Constituents present in a specific location of a body of water can also disperse depending on 

water movement through flow or tide in a short amount of time. Palmer (2015) described that 

OACs do not necessarily co-vary across an entire study site, and ephemeral and quickly 

changing water conditions disperse constituents if in situ data is not collected within a limited 

time and area relative to the satellite flyover. Many studies with flow or intertidal effects limit in 

situ data collection to a three-hour window before or after satellite flyover as OAC at stations 

may not remain constant or even comparable to satellite-acquired reflectance data, yielding 

inaccurate results (Martins et al., 2017; Warren et al., 2019).  

1.7 Retrieval Algorithms 

Retrieval algorithms are a fundamental approach within remote sensing literature to 

derive the concentration of an OAC present in a body of water. This is accomplished by creating 

a model with statistical calibration in an empirical approach or reviewing the interaction of 

physical light in a semi-analytical model (Sagan et al., 2020). Sagan et al. (2020), in their review 

of inland retrieval algorithms, discuss how approaches have diversified in formula, range, and 

use, and many algorithms are still being developed and refined for characterizing OACs today. 

Spectral methods mentioned include simple band ratios, in which a ratio is created between the 

reflectance of multiple bands; spectral shape algorithms, where absorption and reflectance 

properties- including slope or peak differences- of the OAC are isolated and determined by 
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fitting available bands of a given sensor; empirical estimation, which leverages a regression-

based approach between OACs and spectral reflectance (requiring in situ measurements to 

establish); and bio-optical estimation focusing on the radiative transfer equation for OACs from 

the water leaving radiance, which requires spectral information of AOCs within a region. 

Retrieval algorithms estimate concentrations of OACs, by incorporating a mathematical 

formula of one or more spectral bands. Dekker and Peters (1993) explored the use of multiple 

band ratios as an approach for monitoring the presence and quantity of Chl-a in turbid inland 

waters, setting a precedence for band ratio use. Detection of Chl-a has seen much earlier and 

wider success in case I waters, where green and blue spectral regions remain clear of absorption 

from TSS or CDOM, which allows for band ratios within these regions. This spectral blue-green 

region is optically complex in case II waters, meaning Chl-a retrieval algorithms are dependent 

on the more challenging red-NIR region of the electromagnetic spectrum. (Gons, 1999; Giardino 

et al., 2019; Gitelson et al., 1993). 

Gitelson (1992) made note of the 700 nm reflectance peak in the near-infrared region of 

the electromagnetic spectrum for inland and coastal waters as a potential site for further 

exploration, as within water the peak occurring in this region was found to be strongly correlated 

with Chl-a. For case II waters, early work utilizing the 700 nm region of interest for Chl-a 

allowed Gons (1999) to explore the relationship between the 704 nm reflectance peak, and the 

672 nm reflectance trough, in a simple semi-analytical method to estimate this OAC. The basis 

of this and most other algorithms for Chl-a is the absorption-reflectance characteristics of 

phytoplankton at these wavelengths, and this work is novel in evaluating Chl-a in optically 

complex waters. 
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 Mishra and Mishra (2012) provide a brief review of the current literature to categorize 

spectral indices as an approach to determining Chl-a concentrations, classifying empirical 

modeling into three groups, specifically, two-band empirical, four-band empirical, and three-

band semi-analytical models. Further, Mishra and Mishra (2012) developed an index leveraging 

the 655 to 708 nm regions referred to as normalized difference chlorophyll index (NDCI), an 

approach with some success in turbid waters where in situ data may be unavailable (R²=0.95 in 

Chl-a ranges between 1-60 mg m⁻³). Other work around this time also identified a return to this 

region of interest in Chl-a estimation (Gurlin et al., 2011). 

 TSS and CDOM algorithms have also been proposed, including a linear regression TSS 

model for Landsat-7 using band 4 in the red region of the electromagnetic spectrum (Hicks et al., 

2013), a non-linear regression approach for Landsat missions also using red-centered bands 

(Lobo et al., 2015), and multiple hyperspectral predictive models for CDOM based on in situ 

data those described in including Brezonik et al. (2005), Brezonik et al. (2015), Kutser et al. 

(2005), all of which focus on the relationship between multiple bands. While only using one 

variable, Brezonik (2015) utilized a hierarchical cluster to achieve this, separating their study 

sites from high to low CDOM absorption. 

1.8 Challenges of Water Quality Remote Sensing 

Remote sensing offers multiple benefits in water quality-based monitoring and studies 

including the ability to conduct large-scale spatiotemporal analysis with a more time-sensitive 

approach. Beyond the contrasting and overlapping effects of OAC in which one constituent may 

mask or enhance the presence of another (Giardino et al., 2019), additional challenges are 

presented within remote sensing-based approaches and will be discussed in this section. These 
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challenges include limited infrastructure, and limitations of satellites and sensors themselves, sun 

glint, and adjacency effects. 

 The immediate concern within the inland and coastal aquatic remote sensing community 

is the limitations presented by sensor design. Remote Sensing sensor design is challenging, as 

trade-offs are often made between spatial, spectral, radiometric, and temporal resolution when 

designing a sensor (Lillesand, et al., 2015). A sensor typically cannot simultaneously possess a 

good spatial resolution (small pixel size and large swath width, which translates to the area 

covered), while also having good spectral resolution (small bandwidths, giving more information 

from the object detected) (Lillesand et al., 2015). As inland and coastal remote sensing requires 

fidelity in a smaller pixel size, spectral information is limited in typical multispectral instruments 

(Cabellero et al., 2020; Palmer et al., 2015) 

Mouw et al. (2015) assessed that modern radiometers are created with the purpose of 

measuring global ocean or land surfaces, which makes it challenging to explore coastal and 

inland aquatic environments with this technology. Giardino (2019) noted the low signal-to-noise 

ratio of Landsat 8’s Operational Land Imager, and Sentinel 2’s MultiSpectral Instrument (MSI) - 

often used in these case II environments - in contrast to offshore remote sensing systems. The 

low reflectance of water surfaces requires a greater signal-to-noise ratio for accurate 

quantification of water reflectance. Water reflectance values are minimal, typically less than 2% 

reflectance across all wavelengths in clear water, and 0% reflectance beyond 900 nm. When 

comparing this to terrestrial-based pixels, reflectance is typically much greater at all wavelengths 

of interest. In the case of bare soil, 2% reflectance is only present around 400 to around 430 nm 

wavelengths, and all other wavelengths greater than that average greater than 15% reflectance 

(Lillesand et al., 2015). This trend of higher reflectance at other wavelengths is also present 
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when evaluating urban environments, vegetation, sand, snow, and clouds (Lillesand et al., 2015). 

Further, ocean color instruments typically used for Chl-a content retrieval become difficult to use 

nearshore, due to the need for high spatial resolution within inland and coastal waters so as to not 

combine water-based pixels with the shoreline (Kuhn et al., 2019). Pahlevan et al. (2017) outline 

the importance of aggregating Sentinel-2 MSI pixels from 10 m to 20 meters to increase the 

signal-to-noise ratio. This is possible as visible bands 2 (497 nm), 3 (560 nm), and 4 (664 nm) on 

the MSI have a spatial resolution of 10 meters, and near-infrared bands 5 (704 nm), and 6 (760 

nm) (Table 1.1) already have a spatial resolution of 20 meters, meaning the resulting size of 

produced pixels can be uniform at a 20-meter pixel size. Further, improvements in sensor design 

hold potential for new insights in inland and coastal remote sensing, particularly through 

increasing the signal of sensors when compared to the noise detected at each bandwidth. 

In contrast, the Landsat Thematic Mapper (TM) sensor onboard Landsat 4 (USGS, 2023) 

and 5 (USGS, 2023b), along with the Enhanced Thematic Mapper Plus (EMT+) onboard Landsat 

7 (USGS, 2023c) offer seven bands (and a panchromatic band on the EMT+) for remote sensing 

analysis at 30-meter spatial resolution (the thermal band which is not relevant to OAC related 

water quality studies is 120 meters in the Thematic mapper, and 60 meters in the Enhanced 

Thematic Mapper). These sensors are whiskbroom systems, which results in a lower signal-to-

noise ratio, and data is prone to stripping without perfect calibration.  

Landsats 8 (USGS, 2023d) and 9 (USGS, 2023e) utilize the Operational Land Imager 

(OLI/OLI2) sensors, which have 9 spectral bands, including a blue (band 2), green (band 3), red 

(band 4), and one singular near-infrared band (band 5) useful in water remote sensing. Pahlevan 

et al. (2017b) found these OLI bands have a signal-to-ratio ranging from 45 to 321, which when 
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compared to Sentinel-2 MSI visible bands (bands 2, 3, and 4) meaning that OLI performs two to 

three times better than Sentinel-2 MSI. With that being said, Pahlevah et al. (2017b) found 

Sentinel-2 MSI performs 40% better in terms of signal-to-noise in the aerosol band (band 1 of 

both systems) and ultimately determined both systems are comparable in their signal-to-noise 

ratio, as this ratio is proportional to pixel size, and Sentinel-2 has smaller, 10 m, visible bands 

(bands 2, 3, and 4) (Table 1.1).  

When comparing OLI to the EMT+, there are improvements in the signal-to-noise ratio, 

as OLI to a push broom system, which increases the signal-to-noise ratio. Additionally, a band 

(band 1) for cirrus cloud detection, and another for detecting aerosols were added in the short-

wave infrared, and the narrow blue regions of the electromagnetic spectrum respectively.  

The major advantage of Landsat mission satellites over Sentinel-2 is that of continuity. 

Landsat 1 was first launched in 1972 and has been collecting data since. In addition to Sentinel-2 

A and B satellites having a higher revisit time than the eight days provided by Landsat 8 and 9 

used in tandem, Sentinel-2 provides greater spatial resolution than the 30 meters provided by 

OLI, and the additional bands including 5 (704 nm) and 6 (740 nm) on board MSI sensors allow 

for greater water quality analysis (Table 1.1).  

One further challenge to water remote sensing is an external factor: sun glint. Depending 

on the study site's longitude and time of scan, sun glint may corrupt specific pixels or regions 

within a scene, rendering them unusable. Sun glint damaged pixels can be masked out of the 

scene; however, this results in a loss of pixels with spectral information (Caballero., 2020; 

Drusch, 2012; Pahlevan 2017). Sun glint may provide additional issues using the MSI sensor on 
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board Sentinel-2 satellites, as the equatorial crossing time is 30 minutes later than that of the OLI 

sensor onboard Landsat 8 (Drusch, 2012). 

 Due to limitations in the satellite sensor designs, infrastructure, and mechanisms coupled 

with high upfront costs and limited funding of satellite missions, there becomes a dependency on 

in situ data. This means that resources need to be dedicated to monitoring in the field with both 

substantial frequency and range (Caballero et al., 2020; Palmer, 2015, Sagan et al., 2020). This 

dependency comes at an additional cost, particularly when algal bloom identification is of 

interest to determine if there is a potentially harmful algal bloom, as bloom species identification 

cannot be conducted through satellite remote sensing, particularly considering other limitations 

mentioned (Caballero et al., 2020). 

1.9 Atmospheric Correction 

 From space, determining water reflectance becomes a challenge, as in a cloudy sky, 

scattering caused by cloud droplets makes seeing the surface potentially impossible. Even in 

clear sky conditions, gaseous absorption, molecular scattering and absorption, and water surface 

reflection make removing their effects a necessity in a process called atmospheric correction 

(Frouin, 2019, Gao et al., 2009) Atmospheric correction is the most important step in the remote 

sensing process to accurately measure water quality and quantify parameters. In most conditions, 

90% of the light reaching a satellite over water is derived from the atmosphere (IOCCG, 2010). 

As a result, when measuring reflectance from space, the largest source of potential residual error 

is from atmospheric correction (Mouw et al., 2015). To quantify the biogeochemical properties 

of water from surface reflectance, atmospheric correction must remove attenuation from active 

atmospheric constituents including water vapor, ozone, oxygen, and carbon dioxide, and is not 
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easy to achieve perfectly (Gao et al., 2009). These particle effects are particularly noticeable 

within the lower 400 nm blue wavelengths, where atmospheric is greatest, and therefore also the 

most important (Brezonik et al., 2015; Giardino., 2019; Kutser et al., 2005; Warren et al., 2019). 

In the case of Sentinel-2 and other multispectral satellites, ozone cannot be retrieved for every 

individual pixel, and as such climatological averages in what is called ‘lookup tables’ are 

leveraged to calculate whole-scene estimates (L2A products algorithm theoretical basis 

document).  

 Landsat has implemented a provisional aquatic reflectance product as a step to 

contributing to aquatic remote sensing in coastal and inland waters (USGS, 2023f). Aquatic 

reflectance is calculated to determine the water-leaving radiances for bands 1-5 (visible and near 

infrared bands), in a similar methodology to that of SeaWiFS. Although promising, the validity 

of this surface reflectance product is questionable. Maciel et al. (2023), finding high uncertainties 

that narrowly meet target accuracy, with as much as 110% uncertainty within coastal aerosol and 

blue bands (band 1 and 2). 

Martins et al.’s (2017) study on atmospheric correction in the Amazon floodplain lakes 

highlights challenges surrounding the remote sensing approach. Many inland and coastal waters 

are home to a dynamic system, with complex OACs, making it difficult to often apply a one-

size-fits-all approach to case II water atmospheric correction. Additionally, seasonal variability 

also creates challenges for how a given approach plays out within a single aquatic environment. 

Equatorial locations like the Amazon within Martins et al.’s (2017) study also are susceptible to 

high cloud cover and cirrus contamination, rendering sections of images unusable as atmospheric 

correction cannot overcome this interference effectively. Adjacency effects are also present, 

creating mixed pixels contaminated with reflectance from nearby terrestrial areas. 
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 Frioun et al. (2019), provides a summary of atmospheric correction through history. The 

standard approach suggested by Gordon (1978), involves estimating surface reflectance around 

red and near-infrared regions where a body of water is theoretically absorbing all incoming light, 

before extrapolating this reflectance to shorter wavelengths of interest affected by aerosol 

effects. This approach has been expanded on over the following decades, and falls into the 

category of a two-step solution, however, may be difficult to implement into Case 1 waters. 

Alternatively, a single-step approach calculates the aerosols and water characteristics in the 

atmosphere at the same time. This is achieved through a model simulating how light would travel 

under these conditions before applying the model to the measured top-of-atmosphere reflectance 

recorded by the satellite and can be readily applied to both Case 1 and Case 2 waters. Another 

route used includes atmospheric correction through a Bayesian analysis approach. A relationship 

is determined by using the assumed relationship between the top-of-atmosphere reflectance, and 

the water on the earth’s surface. An example of this would be Schroeder et al. (2007), where they 

used a neural network model with simulated data. The commonality among all these approaches 

outside of the first is assumptions are made about water reflectance and the atmospheric state 

outside the non-reflectance near-infrared assumption. These assumptions are not always 

representative of real-world conditions. 

All these approaches rely on radiation transfer codes, which predict how light interacts 

with the earth through the use of lookup tables consisting of Rayleigh scattering and the effects 

of aerosol optical properties based on ozone concentration (Frioun et al., 2019). Within this 

project, image-based approaches are utilized, where atmospheric effects from the image are, 

before removing them from the top of the atmosphere signal. This is done with a semi-empirical 

algorithm with integrated look-up tables to remove atmospheric effects (Martins et al., 2017). 
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The Sentinel toolbox, Sentinel Application Platform (SNAP), provides the Sen2Cor 

processor for atmospheric correction. As a standard product, many researchers and product users 

may not even consider their atmospheric correction product, using Sen2Cor by proxy as it is 

applied by default. All L2A products downloaded from the European Space Agency leverage the 

atmospheric correction product by default (ESA, 2023). Prior to atmospheric correction, a pre-

classification of the scene is needed. Next, aerosol optical thickness at 550 nm is calculated 

through the dark dense vegetation algorithm (Kaufman and Sendra, 1988), which uses Sentinel-

2’s band 12 (2,200 nm) to search for dark pixels, so a correlation of band 12 (2,200 nm), band 2 

(497 nm) and band 4 (664 nm) can estimate visibility. Water vapor maps are also derived at this 

step by leveraging the water vapor algorithm, which employs band 8a (865 nm) and band 9 (945 

nm) to calculate lookup tables. Sen2Cor uses two ancillary variables within this approach: the 

atmospheric look-up table from the libRadtran radiative transfer model to help determine 

atmospheric optical thickness, and the digital elevation model to calibrate a bottom-of 

atmospheric reflectance. A comprehensive explanation of the Sen2Cor atmospheric correction 

process can be found in Richer et al. (2012). 

Atmospheric Correction for OLI lite (ACOLITE) was developed by the Royal Belgian 

Institute for Remote Sensing and is primarily leveraged for ocean and inland water studies. The 

ACOLITE code, built on Python, has been made open access online, and is readily available 

(Royal Belgian Institute of Natural Sciences, 2023). ACOLITE is completed in two steps: First, 

Rayleigh correction for scattering caused by air molecules is performed using a lookup table 

generated from the 6SV model (Vermote et al., 2016). Next, the dark spectrum fitting algorithm 

computes aerosol depth at 550 nm using multiple targets from within the scene. The dark 

spectrum fitting algorithm assumes that values in one band of the sensor are near-zero, and 
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atmospheric conditions have some level of homogeneity. Linear interpolation calculates the 

aerosol model using what is called a dark spectrum, built by calculating the lowest value 

recorded from every other band (Valdivieso-Ros et al., 2021). The process is fully described in 

depth along with the dark spectrum fitting algorithm in Vanhellemont and Ruddick (2018). 

Sen2Cor and ACOLITE differ in a few main areas. For one, Sen2Cor is developed 

exclusively for the Sentinel-2 satellites, while ACOLITE was originally developed for MODIS 

and SeaWiFS sensors before being adapted for Landsat and Sentinel-2 sensors. Additionally, 

Unlike Sen2Cor, ACOLITE explicitly attempts to correct some adjacency effects through the 

incorporation of the dark spectrum fitting algorithm. Adjacency effects occur from water 

scattering off the surface of the water and being reflected to the water by either land or 

atmospheric effects (Frouin, 2019; Vanhellemont, 2019). The two methods, however, are similar 

in their overall methodology. 

Studies have also been conducted comparing atmospheric correction products in different 

aquatic habitats. Mograne et al. (2017), compare Sen2Cor and ACOLITE by a band-to-band 

comparison with in situ close-range reflectance in Amazon floodplains, an area heavily 

susceptible to adjacency effects. The two algorithms in this study show similar root mean 

standard error (RMSE) values depending on the reflectance characteristics of the lake of interest, 

however, this study was performed using the ACOLITE-shortwave infrared (SWIR) approach, 

which has since been made obsolete by the dark spectrum fitting approach.  

Kuhn et al. (2019), compared LaSRC, SeaDAS, and ACOLITE atmospheric correction 

products in their study in the Amazon, Columbia, and Mississippi Rivers. This study differed 

however, as algorithm performance was based on the ability to perform accurate Chl-a 
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estimation using the OC3 algorithm, which leverages blue and green bands, and red and near-

infrared bands in turbid waters (Sun et al., 2014). ACOLITE outperformed other algorithms 

tested in Chl-a retrieval (Rt=0.7, RMSD=0.13). 

Mograne et al. (2019), performed an evaluation of five atmospheric correction algorithms 

in optically complex waters in France using Sentinel-3. This study again leveraged close-range 

reflectance and compared atmospherically corrected reflectance from a satellite instrument using 

statistical analysis. Unlike previous studies mentioned, this study was able to provide a 

conclusive measurement that provided an overall best-performing atmospheric correction, 

through a complex scoring method incorporating slope, intercept, bias, RE, RMSE, and R2. No 

atmospheric correction performance study has been performed on the southeastern coast of the 

United States. 

Although no atmospheric correction studies have been performed on the Georgia 

coastline, where the current study takes place, in these environments, other in situ remote sensing 

studies have been conducted along the coastline. Bhatti et al. (2009), used the Altamaha River as 

their study site to compare above-water and subsurface spectral reflectance products to determine 

the best practice for future studies. Reader and Miller (2013) utilized hyperspectral remote 

sensing reflectance in the Duplin River to calculate the photochemical rate, which is heavily 

influenced by CDOM concentration.  

Hladik (2004) conducted a remote sensing-based studies of the Georgia Coastline to 

develop a bio-algorithm model for Chl-a retrieval in Apalachicola Bay, Florida; ACE Basin, 

South Carolina; and Sapelo Island, Georgia, which included the Duplin River (Doboy Sound), 

the Altamaha River, and the St. Marys River (r=0.72). Using these data, Schalles (2006) 
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incorporated reflectance from the southeastern coastline in a chapter exploring Chl-a estimation 

in varying CDOM and TSS environments including the Altamaha River, the Duplin River; the 

Ashepoo River; Apalachicola Bay; and St. Marys River. 

1.10 Project Overview 

 The following section contains an overview of the scope of my thesis project. My 

objectives are outlined before connecting them to greater significance in reference to the remote 

sensing community, and water quality assessment. 

1.10.1 Objective 1 

 My first objective is to characterize three study sites and individual stations along the 

Georgia coast into optical water types based on bulk water sample analysis of Chl-a, TSS, and 

CDOM and close-range remote sensing hyperspectral data. To do this, I collected and processed 

in situ close-range remote sensing data using an Ocean Optics spectroradiometer, along with 

bulk water samples for all sites in coastal Georgia near the Duplin River, Altamaha River, and 

St. Marys Rivers.  

1.10.2 Objective 2 

 Next, an analysis of the accuracy of Sen2Cor and ACOLITE atmospheric correction 

processors compared to in situ data was conducted through statistical analysis. 

1.10.3 Significance of Project 

 This project is of particular importance due to the relationship between humans and 

surrounding case II waters, along with the dependency and effect anthropogenic effects can have 

on the surrounding environment. A decrease in water quality through eutrophication and nutrient 
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loading has environmental and economic ramifications. Hoagland et al. (2002) conducted a study 

to assess the economic effects of harmful algal blooms, estimating around $50 million lost to 

sectors across the US, including public health, commercial industries, tourism, and recreation, 

along with monitoring and management. Of notable concern, the rate and range of algal blooms 

are expected to continue to increase in response to climate change, along with external 

anthropogenic effects like agricultural land use and urbanization, demonstrating a clear need for 

management and monitoring practices of water quality (Whitehead et al., 2009; He, et al., 2017). 

Improvements to atmospheric correction would allow for on-demand accurate monitoring of 

water quality across the Georgia coastline.  

Similar research has been conducted (Martins et al., 2017; Warren et al., 2019), however, 

limited research has been conducted in connection to atmospheric correction on the Georgia 

coastline. This coastal area is of particular importance as it is largely undeveloped relative to 

surrounding areas of the Atlantic coast. This research gives way to advancements in cost-

effective water quality management that in a timely manner can help decision-makers and 

stakeholders understand surrounding environments. 
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Figure 1.1a-e: Sample reflectance curves inspired from actual stations collected in Schalles 

(2006), demonstrating different reflectance curves in response to optically active constituent 

concentrations, including low chl-a, TSS and CDOM  (a), high CDOM absorption (b), high TSS 

and CDOM absorption (c), average chl-a and TSS (d), and high chl-a (e). 

  

e) e) 
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Table 1.1: Sentinel 2A band wavelengths and resolutions. λ denotes the central wavelength, B is 

the bandwidth, Res. is the pixel size (spatial resolution), and SNR is the signal to noise ratio as 

calculated in (Pahlevan et al. (2017) 

Band 1 2 3 4 5 6 7 8 8a 11 12 

λ (nm) 444 497 560 664 704 740 783 843 865 1,613 2,200 

B (nm) 20 55 35 30 15 15 15 115 20 90 175 

Spatial 

Res. (m) 

60 10 10 10 20 20 20 10 20 20 20 

SNR 439 102 79 45 45 34 26 20 16 2.8 2.2 
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CHAPTER 2 

METHODS 

2.0 Introduction 

 This project includes analyses of bulk water sample data, close-range hyperspectral 

reflectance, and the atmospheric correction of water quality remote sensing imagery. A flow 

diagram detailing the methods for this project is represented in Figure 2.1 Station sites were 

determined before field sampling was conducted collecting bulk water samples for laboratory 

water quality analysis. Results from water quality analysis could then be used to characterize 

stations and sites into optical water types (objective 1). Additionally, close-range reflectance was 

used to determine both site and station optical water type. Sentinel-2 imagery was also 

downloaded and processed to evaluate atmospheric correction performance by comparing results 

to close-range reflectance values collected from in situ field sampling in line with objective 2. 

2.1 Study Sites 

The estuaries of three coastal Georgia rivers are included in this study (Figure 2.2a). 

Sampling locations were selected to capture a large dynamic range of water characteristics 

within a study site on a given day. Preliminary transects were selected along the river from the 

mouth in the upstream direction, approximately 1,000 or more meters apart to capture gradation 

within physical, chemical, and biological characteristics along the estuaries. Sampling site 

locations were then slightly adjusted when needed in the field to account for characteristics such 

as shallow or difficult-to-navigate waterways. 

Tidal movement and weather conditions are considered when selecting sampling days 

because these factors can affect the number of stations that can be completed within a day. Tides 
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along the Georgia coast are classified as semi-diurnal, and an extreme tidal influence can reach 

up to three meters (NPS, 2021). Selecting sampling days with limited to no cloud cover that 

coincides with satellite flyover was critical, so comparisons could be made between the satellite 

imagery and ground data. 5-11 stations were completed in a full day, however, station ALA7 

(3:15 pm), fell slightly outside of the ±3-hour time window (Figure 2.2a, Table 3.1). ALB 5, 6, 7, 

and 8 all are missing a Secchi depth measurement due to the instrument breaking in the field 

(Table 3.2). 

2.1.1 Duplin River 

The Duplin River located near Sapelo Island, Georgia, represents a region containing 

higher TSS content and lower CDOM values compared to the other sampling locations, which 

has led to higher reflectance in blue and green wavelengths in other studies (Schalles, 2006). 

Schalles (2006) reported a station mean TSS of 38.2mg/l at this site. The habitat surrounding the 

Duplin River is largely undeveloped salt marsh, with a small local community at Hog Hammock 

Historic District near the Duplin River (Schalles, 2013). The Duplin River feeds into Doboy 

Sound, where ten stations were collected over two days (Figure 2.2b). The region is heavily 

tidally influenced, and due to its location near the Altamaha River, is affected by discharge from 

the river. Residence times are two days on average, however, they can peak to as much as two or 

in extreme cases even three weeks (McKnight, 2016). 

Of the Schalles (2006) reflectance and lab results, the Duplin River was characterized by 

average Chl-a (26.5 ug/L), average to high TSS (38.2 mg/L) and aCDOM at 440 nm (1.1 m-1). 

The resulting Duplin River reflectance demonstrated an absorption trough of around 680 nm, and 

a reflectance peak at 580 nm of around 5.5%.  
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Sampling days include TRA (Test Run A, sampled on December 4, 2020) and TRB 

(sampled on October 31, 2020) (Figure 2.2b, Table 2.1). Field conditions on these days were not 

conducive to collecting cloud-free satellite imagery (Table 3.2). For TRA stations, discharge 

from the Altamaha River was 123.5 m³ sec-1 the previous day, and the average discharge rate for 

the 30 days leading up to sampling was 155.2 m³ sec-1 (Table 3.1). For TRB stations, discharge 

the previous day was 249.5 m³ sec-1, and the 30 days leading up to sampling was 542.7 m³ sec-1 

(Table 3.1). Precipitation totaled 119 mm in the 30 days leading up to TRA stations being 

sampled, and 96 mm leading up to TRB stations being sampled (Table 3.1). Sampling for TRA 

stations (Figure 2.2b) was completed on a falling tide from a high of 2.1 meters above low tide. 

TRB stations were surveyed mostly on a rising tide, suggesting strong constituent mixing 

occurred (Table 3.1). These days were beneficial in establishing practical field research methods, 

testing and learning the equipment as well and collecting some preliminary data.  

2.1.2 Altamaha River 

The Altamaha River has the greatest discharge on the Georgia coast and is the third 

largest contributor of freshwater to the Atlantic Ocean from North America (Schafer and Alber, 

2007). It is characterized as turbid with high concentrations of clay and low concentrations of 

dissolved organic carbon (Hladik, 2004; Alber, 2000). Daily mean discharge of the Altamaha 

River for 2020 was 602 m3 s-1, and prior-to-sampling discharge was recorded by the Doctortown 

stream gauge 40 miles upstream (USGS, 2021) (Table 3.1). Residence time averages a few days 

but can reach several weeks within some parts of the estuary system (Sheldon and Alber, 2002)  

The Altamaha watershed is the largest of nine river basins in Georgia. It is fed from the 

Ocmulgee, Little Ocmulgee, Oconee, and Ohoopee watersheds, receiving water from Atlanta, 
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Macon, and Athens before draining into Altamaha Sound. The lower watershed contains the 

study site, receiving much of its water from groundwater sources and tidal flow, decreasing in its 

high clay content and turbidity with distance downstream and increasing in salinity towards the 

mouth, before arriving at the coastal plains where drainage is lower (EPD, 2004). Forestry and 

agricultural practices are a majority of the anthropogenic land use in the greater watershed, and 

contribute to a majority of non-point source pollution, however, the amount of pollution has not 

been quantified and is identified as a future need (Regional Water Plan Altamaha, 2023). In the 

Altamaha Water Basin, forest accounts for approximately half of the area’s land use, and 

cropland accounts for just under a quarter of land use, but along the Altamaha River itself, this 

land use is closer to 32%, while impervious built-up area almost always accounts for less than 

20%, however, most of this built-up area falls in the upper areas of the water basin (Georgia 

DNR, 2021; Takagi et al., 2017). Takagi et al. (2017) explored the nutrient dynamics across the 

Altamaha River Watershed over 2000-2012 found that the upper watersheds behave 

chemostactically, meaning the geochemical behavior of the discharge is affected by the within-

system processes that affect the hydrochemistry of the water body. With this in mind, high 

nutrient concentrations can be attributed to anthropogenic factors. 

Sampling days along the Altamaha River included ALA (Altamaha River route A, 

sampled on January 1, 2021), ALB (Altamaha River route B, sampled on January 23, 2021), and 

ALC (Altamaha River route C, sampled on April 8, 2021) (Figure 2.2c). Discharge the day prior 

to sampling was 549.3 m³ sec-1 for ALA stations, 640 m³ sec- for ALB stations, and 453.1 m³ 

sec-1 for ALC stations (Table 3.1). Average discharge for the 30 days leading up to sampling was 

267.3 m³ sec-1 for ALA, 538.6 m³ sec-1 for ALB, and 447.3 m³ sec-1 for ALC (Table 3.1). 

Precipitation leading up to sampling was 39 mm for ALA, 45 mm for ALB, and 223 mm for 
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ALC (Table 3.1). Tide varied 1.5 meters during ALA and ALB sampling days, and a little under 

1 meter while ALC stations were sampled (Table 3.1). ALB fell from its high tide around two 

hours earlier in the day than ALA (Table 3.1). ALC was sampled under tidal conditions similar 

to TRB. 

2.1.3 St. Marys River 

The St. Marys River is a blackwater river on the Florida-Georgia border. The 130-mile-

long river can be divided into three distinct sections; the Okefenokee Swamp headwaters, the 

Pinhook Swamp, and Cumberland Sound where tide influences marsh regions feeding in and out 

of the Atlantic (St. Marys River Management Plan, 2003). As water is sourced from the 

Okefenokee swamp, much of the biogeochemistry of the St. Marys River consists of low total 

suspended solids and high CDOM concentrations with a lower pH (Gates and Smith., 2008). 

Schalles (2006) recorded a station with CDOM absorption of 12.3 m-1 at 440 nm. Annual high 

tide discharge of the St. Marys River for 2020 is around 700 m3 m s-1 (USGS., 2021). Human 

interaction with the St. Marys River is largely limited, with only 0.9% of basin land use being 

agricultural, however much of the surrounding economy derives from forestry with 48.5% of the 

basin classified as forest, which is dependent on the basin’s health. Flow varies largely with 

rainfall and tidal influences, causing restrictions in fish productivity; however much of the river’s 

classification is fishing use (EPD, 2014). No prior studies have been conducted detailing 

residence time for the St. Marys River. 

The St. Marys River has been characterized by low Chl-a (0.93 ug/L), moderate TSS 

(5.18 mg/L), and extremely high aCDOM at 440 nm (12.3 m-1) (Schalles, 2006). The resulting 
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St. Marys River reflectance has been recorded well below 1% for wavelengths between 400-800 

nm (Schalles, 2006). 

Sampling was conducted over one day at the St. Marys River, and St. Marys River route 

B (SMB) was utilized (Figure 2.2d). During the day and time of sampling, stations were recorded 

on a falling tide of 1.6 meters (Table 3.1). The mean discharge the day prior to sampling was 111 

m² sec-1, and the average discharge 30 days prior to sampling was 131 m² sec-1 (Table 3.1). 

Precipitation for the 30 days leading up to sampling was 165 mm. 

2.2 Data Sources 

 Two primary sources of  data were used in this study, including in situ data, and satellite 

imagery. Beyond these, some ancillary data was also collected, including discharge and tidal 

influence and times from the Altamaha River at the USGS station at Doctortown (USGS, 2023g) 

for Duplin River and Altamaha River sampling days, and discharge from the St. Marys River 

near Macclenny for its sampling day, along with tidal data from the USGS station Near 

Kingsland (USGS, 2023g) (Table 3.1). Precipitation 30 days prior to sampling was also collected 

at the UGAMI weather station (GCE LTER, 2023) for Duplin River and Altamaha River 

sampling days, and for the St Marys River sampling day, this same precipitation data was 

collected from the NOAA weather station at St. Marys (NOAA, 2018). 

2.2.1 In Situ Data 

During sampling, stations were navigated to with the use of a handheld Garmin GPS, and 

in addition to hyperspectral close-range reflectance discussed below, field measurements of 

depth, salinity on a gradient, and pH were collected by a YSI sonde (YSI, 2023). A 30cm Secchi 

disk was also used to record Secchi depth at each station as a visual measurement of turbidity.  
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2.2.1.1 Close-range Ocean Optics 

For objectives 1 and 2 close-range hyperspectral reflectance data are used. Following the 

methods described in Schalles (2006) and Hladik (2004), spectral reflectance was obtained with 

the use of a pair of Ocean Optics USB 2000 spectrometers (Ocean Optics, Inc., Dunedin, Fl), one 

affixed to collected 180o hemispherical solar downwelling irradiance (Ed) with the other 

collecting upwelling irradiance (Lw) from approximately 0.3 centimeters below the water’s 

surface (Figure 2.3). It is important to note that below-water spectra and above-water spectra are 

different from each other, with above-water reflectance being susceptible to sun glint and surface 

waves (Bhatti et al., 2009). Approximately 2000 bands were collected from a spectral range of 

350 to 1050 nm using a bandwidth channel of approximately 1.5 nm. Light was collected and 

filtered to the spectrometers through shielded fiber optics cables with an effective field of view 

of 23o. To calibrate transfer functions, the upwelling radiance of a white Spectralon (Labshere, 

North Sutton, NH) reflectance standard was recorded simultaneously with incident irradiance 

prior to data collection. Upwelling radiance was recorded as an average of seven scans and was 

collected from each site in order to account for subtle variability. 

Spectrometer data was fed to a digital converter card (Quatech QSP-100, Figure 4) from 

which computer-processed ratioed signals from the two fibers, creating a fractional percent 

spectral reflectance value, as calculated by equation 1. This was achieved using custom software 

titled “CALMIT Data Acquisition Program” (CDAP, which was written by Brian Leavitt at the 

Center for Advanced Land Management Technologies (CALMIT), Lincoln, NE). CDAP next 

converted reflectance data into a text format before it was imported into Microsoft Excel for 

further computation. A smoothing macro (written by Giorgio Dall’Olmo at CALMIT) next 

resampled data to one nm intervals across a 400 to 900 nm range, which simplified data analysis 
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by reducing 2000 wavelengths to a magnitude of 500. Spectra greater than three standard 

deviations from most of the curves were eliminated, as this is indicative of upwelling irradiance 

being recorded above the water’s surface when the fiber optics cable is lifted above the surface 

of the water in response to wave action. Resampled spectra were next matched to Sentinel-2’s 

MSI spectral bands by averaging the below-water reflectance across the wavelengths used by 

MSI for each band.  

2.2.1.2 Laboratory water quality analysis 

For each station, a bulk water sample of approximately four liters was taken for lab 

testing using cubitainers. For objective 1, following the methods of Schalles (2006) and Hladik 

(2004), water samples for each station were taken back to the lab, refrigerated, and analyzed 

within a day. Water samples were filtered through 47mm Gelman Type AE glass fiber filters 

(Figure 5) for Chl-a and TSS. Chl-a filters were first frozen overnight for the pigment to be 

preserved for extraction. Chl-a was then extracted from fiber filters in 10 ml of 90% acetone in a 

tissue grinder after being left in a freezer overnight in complete darkness. Filters were macerated 

using tissue grinders and then were centrifuged before the resulting extract was measured with a 

10 cm quartz cuvette in a Spectronic Genesys II spectrophotometer (Spectronics, Inc). Total Chl-

a in μg/L was then calculated with the trichromatic equation: 

(3) 11.85 × 𝐴𝐵𝑆(664 𝑛𝑚) − 1.54 × 𝐴𝐵𝑆(647 𝑛𝑚) − 0.08 × 𝐴𝐵𝑆(630 𝑛𝑚) (American 

Public Health Association, 1989) 

Chl-a measurements for each station were then recorded (Table 3.2). 

To record TSS, water was processed through preweighed filters to record their “wet 

weight”. Next, the preweighed filters were dried in an oven at 60o for 24 hours. At this point, 
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filters were then reweighed, and any weight gain was in response to TSS dry weight added. The 

total mL of water processed through the filter was factored in using the following equation to 

determine TSS for each station sample in μg/L: 

 (4) 𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑇𝑎𝑟𝑒 × 1000 

TSS measurements for each station were then recorded in Table 3.2. 

CDOM absorption was measured from filtrate acquired from either the Chl-a or TSS 

process, using a 1 cm quartz cuvette, taking measurements at 40 nm intervals between 360 and 

600 nm from the Genysis II spectrophotometer. CDOM is reported at absorption per meter at 440 

nm. 

2.2.2 Satellite Data 

 Satellite images were downloaded from the Copernicus Data and Information Access 

Service cloud environment (ESA, 2019) for sampling dates from the corresponding tile (Table 

3.1). Satellite image analysis was completed with the use of ENVI software. Pixel values were 

extracted from a 3x3 pixel window centered at the observation station for greater analysis of 

spatial variability by taking the mean of all 9-pixel values.  

2.2.2.1 Sentinel-2 MSI 

For completion of objective 2, the satellite data was acquired from Sentinel-2A/B MSI. 

Sentinel-2 satellites A and B were launched on June 23, 2015, and March 7, 2017, respectively. 

MSI collects spectral information in 12 bands ranging from the visible to the SWIR and at three 

spatial resolutions (10, 20, 60 m) (Table 1.1). Six spectral bands of interest are relevant to water 

quality studies, and bands 2 (497 nm), 3 (560 nm), and 4 (664 nm) were resampled from 10-



47 
 

 

 

meter to 20-meter spatial resolution (Table 1.1). Resampling pixels to a 20-meter spatial 

resolution allows for a uniform comparison between pixels and stations across all bands. With a 

5-day revisit time, more field data at a slightly greater spatial resolution was collected in a 

shorter period than the use of Sentinel-2’s closest counterparts from Landsat missions, and with a 

185 km swath width, study sites are conveniently covered within the same tile to minimize the 

need to stitch multiple satellite tiles together (Drusch, et al., 2012). 

2.2.2.2 Image Processing 

Atmospherically uncorrected top-of-atmosphere imagery (L1C) was obtained to apply 

custom Sen2Cor and ACOLITE atmospheric correction methodologies. L1C imagery is 

radiometrically corrected and ortho-corrected to within less than 12 meters of absolute 

geolocation, and 5.5 meters of multitemporal region, meaning that a pixel is no further than 12 

meters from the specific geolocation as recorded from the earth’s surface, and that same pixel is 

no further than 5.5 meters from the same pixel sampled on a different date (95.5% confidence 

interval). L1C imagery once downloaded is processed following its respective atmospheric 

correction algorithm. For Sen2Cor correction, version 2.10.0 was implemented through the 

command line before preprocessing was conducted within the SNAP software. Tiles were 

spatially subset (N lat. 31.491, W Long. -81.747, S Lat. 30.663, and E Long. -81.158) and 

spectrally subset (bands 2-7, 8A, 11, and 12) (Table 1.1). All bands were resampled to 20 m 

spatial resolution. 

2.2.2.3 Atmospheric Correction algorithms 

The performance of an uncorrected product, and three satellite atmospherically corrected 

images were evaluated in this study (1) Sentinel-2 MSI level L1C top-at-atmosphere reflectance 
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that is not atmospherically corrected (ESAa); (2) Sentinel-2 MSI level L2A surface reflectance 

standard product generated by the ESA (ESAb); (3) Sentinel-2 MSI imagery corrected to surface 

reflectance using the SNAP software and Sen2Cor atmospheric correction processor (ESAc); and 

(4) Sentinel-2 MSI imagery corrected to surface reflectance using the ACOLITE atmospheric 

correction processor (RBINS, 2023). Differences between the L2A (2) and the SNAP product (3) 

expectedly were nonexistent, and as a result, the SNAP product was used for further analysis. A 

rural aerosol type was selected for the Sen2Cor correction product. No other settings were 

altered in either the ACOLITE or Sen2Cor correction as both products should automatically 

correct based on derived aerosol conditions. To assess the accuracy of these products (objective 

2), they were compared to close-range hyperspectral reflectance data collected in situ (section 

2.3.1 Close-range Hyperspectral Data). 

2.3 Statistical Analysis 

2.3.1 Close-range Hyperspectral Reflectance  

The mean, standard deviation, and standard error were calculated for all laboratory 

analyses of Chl-a, TSS, and CDOM, grouped by site to determine site separability by optically 

active constituent (objective 1, Table 3.5). A nonparametric Kruskal-Wallis H test (one-way 

ANOVA on ranks) was performed to quantify the separability or similarity among all sites. If the 

site was significant, a post hoc Steel-Dwass nonparametric test for multiple comparisons was 

performed to evaluate site uniqueness between each of the sites. All statistical tests used an alpha 

value of 0.05, and p and z scores were recorded for each test as well as the N. All statistical tests 

were performed using JMP software (JMP 16, 2021). 
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2.3.2 Pearson Product-moment Correlation Matrix 

A Pearson product-moment correlation matrix was also compiled to determine the 

relationship between the various optically active constituents in addition to Secchi depth. A 

Pearson product-moment correlation matrix was used in Kothari (2021), to identify the 

relationship between water quality parameters in drinking water. More like this study, Schalles 

and Hladik (2012) used a Pearson product-moment correlation matrix in case 2 coastal waters 

along the east and south US coastline, and Schalles (1998) has also used a Pearson product-

moment correlation matrix for variables present within the water column of the estuarine mixing 

zone along coastal Georgia. 

2.3.3 Hierarchical Clustering Dendrogram 

To separate individual stations into optical water types (objective 1), water type 

classification was performed using hierarchical clustering based on bulk water analysis results of 

Chl-a, TSS, and CDOM as variables. JMP software was used to develop a hierarchical cluster 

dendrogram, capable of separating stations into groups with similar constituent concentrations. 

Hierarchical clustering merges all similar clusters from each individual sample- or in this case 

station- until they are all together in one cluster. This was achieved with Ward's clustering 

method, which agglomerates each group in a way that minimizes the within-group error. 

Essentially, the two groups combined are the two groups that are the most like each other. 

Utilizing a dendrogram can be difficult, as where to define clusters is somewhat arbitrary as this 

method is exploratory in nature, however best practice is to separate clusters at a point where 

there is a great distance for the next cluster to agglomerate (Nielson and Nielson, 2016). For this 
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project, clusters were defined primarily based on the distance between each cluster for the next 

agglomeration, a common method for separating clusters (Parlett, 2019).  

With Hierarchical clusters created based on bulk water analysis of Chl-a, TSS, and 

CDOM, the Kruskal-Wallis H test and Steel-Dwass nonparametric tests were used to determine 

cluster uniqueness. Atmospheric correction performance was then evaluated based on the optical 

water type classified by the dendrogram (objective 2, Figure 2.1). 

Following the same method of the hierarchical cluster dendrogram from bulk water 

analysis, a hierarchical cluster dendrogram was created from close-range hyperspectral 

reflectance for all wavelengths between 450 and 750 nm, and for close-range hyperspectral 

reflectance resampled wavelengths aligning with Sentinel-2’s MSI bands (objective 1). From 

these hierarchical clusters, additional Kruskal-Wallis and Steel-Dwass nonparametric tests were 

performed to determine site uniqueness based on spectral reflectance. Additionally, the 

hierarchical cluster dendrograms created from both the bulk water sample and close-range 

reflectance were also compared to determine their differences using the same statistical methods. 

2.3.4 Atmospheric Correction Performance 

To assess the performance of atmospheric correction (objective 2), in line with existing 

literature (Mograne et al., 2019; Martins et al., 2017; Page et al., 2019), a simple statistical 

intercomparison between atmospheric processors and in situ close-range ocean optics reflectance 

(resampled to Sentinel-2 MSI bands) was conducted. This intercomparison is completed with the 

use of Pearson’s product correlation (equation 4), root mean square difference (RMSD), 

(equation 5), mean absolute percent difference (MAPD) (equation 6), to provide comparative 

statistics indicating atmospheric correction effectiveness at each band for each processor at each 
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station, or optical water type classification. A smaller RMSD and MAPD value means the 

atmospheric correction product is performing better within that bandwidth according to the 

close-range hyperspectral reflectance. 

(4) 𝑅² =
(𝛴(𝑥𝑖−𝑥) (𝑦𝑖−𝑦)

√𝛴(𝑥𝑖−𝑥)𝛴(𝑦𝑖−𝑦)²
 

(5) 𝑅𝑀𝑆𝐷 = √
1

𝑁
× ∑ (𝑥𝑖 − 𝑥𝑒)²𝑁

𝑖=1  

(6) 𝑀𝐴𝐷𝑃 =
𝛴|(𝑥𝑖−𝑥𝑒)|

𝑥𝑖
× 100 
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Figure 2.1: Workflow Diagram detailing the steps taken for the methods of this project. The left 

side of the figure follows the steps for objective 2, while the right side shows the steps for 

objective 1. 
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Figure 2.2a: Overview map of the Georgia coastline showing the location of all stations 

sampled. Crosses denote a Duplin River station. Squares indicate an Altamaha River station, 

and the circles were stations sampled from St. Marys river. 
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Figure 2.2b: Site map detailing the location of all Duplin River stations. Five TRA stations (red 

crosses) were sampled on December 4, 2021. Five TRB stations (blue crosses) were sampled on 

October 30, 2021. 
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Figure 2.2c: Station map detailing the location of all Altamaha River stations. Seven ALA 

stations (pink squares) were sampled on January 8, 2022. Eight ALB stations (teal squares) were 

sampled on January 23, 2022. Eleven ALC stations (green circles) were sampled on April 8, 

2022. 
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Figure 2.2d: Station map detailing the location of all St. Marys River stations (SMB), where 

eight stations (green circles) were sampled on April 23, 2022. 
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Figure 2.3: Collecting a close-range hyperspectral reflectance scan with Ocean Optics USB2000 

fiber optics, just below the water’s surface. 
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Figure 2.4: Digital converter cards used to receive incoming upwelling and downwelling 

reflectance. 
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Figure 2.5: Filter system utilized for processing bulk water samples through fiber filters for Chl-

a and TSS quantification. Filtrate collected here was used to measure aCDOM absorption in a 

spectrophotometer. 
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CHAPTER 3 

RESULTS 

3.0 Introduction 

Over six field sampling days, a total of 44 stations were sampled, with 41 close-range 

hyperspectral reflectance curves collected, 31 satellite reflectance curves obtained within a 3x3 

window around a station, resulting in 28 close-range reflectance curves matching up to its 

corresponding satellite reflectance. CDOM absorption was collected for all 44 stations, Chl-a 

results were included for 43 stations, and TSS was included from 40 of the stations (Table 3.3). 

3.1 In Situ Data Collection and Analyses 

 In situ data was collected from a small vessel with a crew of 3-4 members. Stations were 

navigated with a handheld Garmin GPS, and an anchor was thrown overboard to secure the boat in place 

while necessary data was collected. A station could be completed in approximately 20 minutes when 

navigated with a crew this size. 

3.1.1 In Situ Environmental Data 

Depths varied by station, averaging 6.8 meters at Duplin River stations, 5.2 meters at 

Altamaha River stations, and 7.9 meters at St. Marys River stations ranging from 10.7 meters at 

station SMB6 to 1.3 meters at station ALC9 (Table 3.1). Shallow stations included ALC 4, 7, 8, 

9, and 10, which were all sampled on the same channel in the Altamaha River (Table 3.1, Figure 

2.2c). SMB stations were generally deeper stations in more open waters near the mouth of the St. 

Marys River, like at station SMB1, with a depth of 9 meters, and through Cumberland Sound, 

like at the SMB6 stations (Table 3.1, Figure 2.2d).  
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The St. Marys River, with Secchi depths ranging from 0.7 to 1 meter with an average of 

0.8 meters, had deeper Secchi depths than the Altamaha River, which averaged 0.6 meters and 

ranged from 0.4 to 1 meter, and Duplin River stations, which averaged 0.6 meters and ranged 

from 0.25 to 1.3 meters (Table 3.2). It is worth mentioning that Secchi depths were not recorded 

for stations ALB 5, 6, 7, and 8, as the Secchi disk broke while in the field. 

3.1.2 In Situ Bulk Water Samples and Type (Objective 1) 

To conduct station and cluster statistical analysis (Figure 2.1), stations were initially 

separated by site (Duplin River, Altamaha River, and St. Marys River) (Figure 2.2a-d) and bulk 

water sample lab results were used to classify each site (Table 3.5). At Duplin River stations, 

TRA 2, 3, and 4 had TSS values of more than three standard deviations (SD = ±19.14 mg/L) 

from the overall station mean of 21.605 mg/L and were removed from results and further 

analysis (Table 3.3, Table 3.5). ALC6 did not have a recorded TSS value due to an error in the 

lab (Table 3.4). All sites had Chl-a concentrations that were largely consistent with the overall 

station mean of 2.786 μg/L and fell within three standard deviations (SD= ±1.431 μg/L), after 

removing an outlier at TRB3 of 20.462 μg/L (Table 3.4). No outliers in aCDOM at 440 nm were 

recorded (Table 3.3). 

At Duplin River stations, Chl-a ranged from 1.546 μg/L at TRB1 to 6.918 μg/L at TRB4, 

had a mean of 1.605 μg/L, with a standard deviation of ±0.54 μg/L (Table 3.5). TSS ranged from 

17.681 mg/L TRB1 to 65.026 mg/L at TRA1, had a mean of 40.555 mg/L, and a standard 

deviation of ±23.71 mg/L, and aCDOM ranged from 0.039 m-1 at TRA4 to 0.227 m-1 at TRB2 

and TRB5 at 440 nm had a mean of 0.134 m-1, with a standard deviation of ±0.137 m-1, and this 

absorption amount decreased with stations closer to offshore (Figure 2.2b, Table 3.5).  
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At Altamaha River stations, Chl-a ranged from 0.978 μg/L at ALB4, to 7.217 μg/L at 

ALC10, had a mean of 2.257 μg/L, with a standard deviation of ±0.1.249 (Table 3.5). TSS 

ranged from 0.405 mg/L at ALC8 to 68.396 mg/L at ALA3, had a mean of 13.239 mg/L, and has 

a standard deviation of ±15.04 mg/L (Table 3.5). aCDOM at 440 nm ranged from 0.019 m-1 at 

ALA3 to 0.369 m-1 at ALB8 and had a mean of 0.232 m-1 with a standard deviation of ±0.109 m-

1 (Figure 2.2b, Table 3.5).  

 At St. Marys River stations, Chl-a ranged from 3.023 μg/L at SMB2, to 4.791 μg/L at 

SMB3, with a site mean of 4.083 μg/L, and a standard deviation of ±0.795 μg/L (Table 3.4, 

Table 3.5). TSS ranged from 20.552 mg/L at SMB4, located upriver from Cumberland Sound to 

a high of 45.558 mg/L at SMB5 between the St. Marys River mouth and Cumberland Sound, 

with a site mean of 31.166 mg/L, and a standard deviation of ±8.336 mg/L (Table 3.4, Table 

3.5). CDOM ranged from absorption at 440 nm of 0.125 m-1 at SMB2 to a high of 0.479 at 

SMB4, with a site mean of 0.134 m-1, and a standard deviation of ±0.115 (Table 3.4, Table 3.5).  

A Kruskal-Wallis H test was conducted to determine if a site was unique based on the 

recorded lab observations (Figure 3.1a-c). Chl-a content between the St Marys site and the 

Altamaha site was different (p=0.002, z=3.340), as St. Marys River stations recorded a higher 

Chl-a content across most stations (Table 3.2, Figure 3.1a). TSS was significantly lower for the 

Altamaha site in comparison to both the Duplin River (p=0.011, z=2.872) and St. Marys River 

sites (p=0.002, z=3.340) (Figure 3.1b). CDOM content was not significantly separated by any of 

the sites (Figure 3.1c).  

As part of Laboratory water quality analysis (Figure 2.1), the water quality constituent 

Pearson product-moment correlation matrix (Table 3.6) highlights the relationship between each 
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OAC and Secchi depth, in addition to whether the correlation was significant. TSS and Chl-a 

were positively correlated (r=0.377, p=0.0.16), while TSS and CDOM were strongly negatively 

correlated (r=-0.706, p=<0.001). The only other significant correlation within the constituents 

was Chl-a to Secchi (r=0.449, p=0.004) (Table 3.6). 

3.1.3 In Situ Bulk Water Sample Hierarchical Clustering 

To complete statistical analysis with the bulk water samples (Figure 2.1), hierarchical 

clustering (Figure 3.2) was used to separate the stations by water type (objective 1). Clusters 

were separated into three major groups, as there was a great distance for any of the clusters to 

agglomerate, meaning the clusters were distant in their relationship from each other. Lab cluster 

1 was home to four Duplin River stations, four Altamaha River stations, and seven St. Marys 

River stations. Lab cluster 2 included just one Duplin River and one St. Marys River station, 

along with 13 Altamaha River stations. Lab cluster 3 included one Duplin River station, and 

eight Altamaha River stations (Figure 3.2). TRA 2, 3, 4, and ALC6 were not included in a lab 

cluster as these stations did not have results for all OACs (Table 3.3). 

When relating the lab clusters to water variables, in lab cluster 1 a significantly higher 

Chl-a content was observed from both cluster 2 (p=<0.001, z=3.857) and cluster 3 (p=<0.001, 

z=3.995), with values ranging from 2.38 μg/L at ALA3 to ALC10 at 7.22 μg/L (Figure 3.3a). 

TSS for cluster 1 had the greatest range when compared to the other clusters (Figure 3.3b). TSS 

values ranged from 25.033 mg/L at SMB3 to 68.399 mg/L at ALA3, and TSS was significantly 

separable in cluster 1 from cluster 2 (p=<0.001, z=4.480), and from cluster 3 (p=0.005, z=-

3.160) (Figure 3.3b). Stations with the largest TSS measurements all fell into lab cluster 1 (Table 

3.7). Lab cluster 1 was also categorized by lower-than-average aCDOM (Figure 3.3c) ranging 
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from 0.019 m-1 absorption at 440 nm at ALA3 to 0.304 m-1 at ALC10. aCDOM in cluster 1 was 

significantly separable from cluster 2 (p=<0.001, z=4.439), but not cluster 3 (p=0.772, z=0.686) 

(Figure 3.3c), Overall, cluster 1 is largely characterized by high Chl-a content (mean=4.166 

μg/L, SD= ±1.399), a wide range of TSS content (mean=39.527 mg/L, SD= ±18.663), and lower 

CDOM concentration (mean=0.137 m-1, SD= ±0.924 m-1) (Table 3.7, Figure 3.3a-c). 

The defining characteristic of lab cluster 2 was high CDOM absorption (Figure 3.3c). 

Cluster 2 included every station with a value above the mean (0.207 m-1) of all stations, ranging 

from 0.273 m-1 at ALA7 to 0.476 m-1 for SMB4, however, cluster two was not separable from 

cluster 1 based on CDOM absorption (p=0.772, z=0.686), but was separable from lab cluster 2 

(p=<0.001, z=3.997) (Table 3.7). Lab cluster 2 Chl-a content (mean=4.166 μg/L, SD= ±1.399 

μg/L) was not statistically different from lab cluster 3 (p=0.136, z=1.908) (Figure 3.3a, Table 

3.7). Lab cluster 2 Chl-a content ranged from a low of 1.299 μg/L at ALA7 to 3.833 μg/L at 

SMB4 (Figure 3.3a). TSS content was lowest in lab cluster 2 (mean= 6.558 mg/L, SD= ±5.904 

mg/L), well below a majority of the stations in lab cluster 1 (mean= 39.527 mg/L) and some in 

lab cluster 3 (mean = 17.183 mg/L) (Figure 3.3b). TSS ranged from 0.405 mg/L at ALC8 to 

20.552 mg/L at SMB4. 

Lab cluster 3 represented stations primarily sampled from the Altamaha River, and OACs 

were all generally lower in comparison to lab clusters 1 and 2 (Table 3.7, Figure 3.3a-c). Lab 

cluster 3 Chl-a was comparable to lab cluster 2 and ranged from 0.978 μg/L at ALB4 to 2.212 

μg/L at ALB2 with a mean of 1.594 μg/L (SD= ±0.448 μg/L) (Table 3.7). TSS ranged from a 

low of 3.8 mg/L at ALC2 to a high of 34.031 mg/L at ALA5 with a mean of 17.183 mg/L (Table 

3.7). While slightly higher than lab cluster 2, lab cluster 3 still fell below the overall mean TSS 

of all stations (21.605 mg/L). CDOM absorbance (mean=0.159 m-1, SD= ±0.054 m-1) was 
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similar to lab cluster 1, however did not include as many low stations (Figure 3.3c). Lab cluster 3 

CDOM absorption at 440 nm ranged from 0.102 m-1 at ALB3 to 0.208 m-1 at ALA5 (Figure 

3.3c).  

3.1.4 In Situ Close-range Reflectance Samples and Types 

As part of the water quality analysis (Figure 2.1), close-range hyperspectral reflectance 

spectra by the site are summarized in Figure 3.6a-c. Close-range reflectance was excluded from 

ALC1, SMB3, and SMB4, due to errors in field data collection. The Duplin River spectra appear 

to be heavily influenced by TSS, as reflectance values peak within the red to near-infrared region 

of the electromagnetic spectrum. A minimal Chl-a trough is present in most close-range 

hyperspectral reflectance curves, however TRB4 has a more substantial Chl-a trough at 670 nm 

and a reflectance peak near 580 nm. Altamaha River spectra are largely consistent with the 

trends of the Duplin River site. ALA3 has notable Chl-a features present, like that found in 

TRB4’s reflectance. Except for SMB8, St. Marys River stations have low reflectance values not 

exceeding a value of 2%, consistent with absorption from CDOM.  

3.2 Satellite Data Collection and Analyses 

3.2.1 Close-range Reflectance Data and Satellite Imagery Matchups 

For the validation of atmospheric correction performance (Figure 2.1), Resampled close-

range reflectance to match Sentinel-2 bandwidths for Sentinel-2’s MSI top-of-atmosphere 

reflectance (L1A), and both Sen2Cor and ACOLITE atmospherically corrected spectra for the 

significant satellite bands relevant to water quality remote sensing appears per station in the 

panels for figure 3.7a-d. Satellite imagery for TRA and TRB sampling days was not used due to 

cloud cover interfering with reflectance (Table 3.3). Satellite reflectance was also not included 
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from ALA 5, 6, and 7 due to cloud and shadow interference, meaning 28 stations have close-

range reflectance and satellite reflectance that match-up (Table 3.3). 

In the same way bulk water samples were used to create hierarchical clusters, 

hyperspectral close-range reflectance between 450 nm and 750 nm was used to create 

hierarchical clusters (Figure 3.4a). Four Duplin River stations, 15 Altamaha River stations, and 

five St. Marys River stations are included in hyperspectral cluster 1. In hyperspectral cluster 2, 

there are two Duplin River stations, six Altamaha River stations, and one St. Marys River 

station. Hyperspectral cluster 3 includes four Duplin River stations, and four Altamaha River 

stations (Figure 3.4a). ALC1, and SMB 3 and 4 were not included as these stations contained 

errors in the close-range reflectance data. 

Based on the Kruskal-Wallis H test, the hyperspectral clusters did not have significantly 

different Chl-a (p=0.791), or TSS (p=0.22) concentrations between the clusters. There was 

however a significant difference within CDOM absorption of the hyperspectral clusters 

(p=0.008, f=5.448). A Steel-Dwass nonparametric test was run and determined that there is a 

significant difference in CDOM absorption at 440 nm between hyperspectral cluster 1, and 

hyperspectral cluster 2 (p=0.012, z=2.851). 

A hierarchical cluster analysis was also performed using resampled wavelengths to match 

the Sentinel-2 MSI sensor’s bandwidths for bands 2 (479 nm), 3 (560 nm), 4 (664 nm), 5 (704 

nm), and 6 (740 nm) (Table 1.1, Figure 3.4b). Resampled cluster 1 included three Duplin River 

stations, three Altamaha River stations, and five St. Marys River stations. Resampled cluster 2 

consisted of two Duplin River stations, three Altamaha River stations, and four St. Marys River 

stations. Resampled cluster 3 had four Duplin River stations, nine Altamaha River stations, and 
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one St. Marys River station (Figure 3.4b). ALC1, and SMB 3 and 4 were not included as these 

stations contained errors in the close-range reflectance data. From the hyperspectral hierarchical 

cluster tree to the resampled hierarchical cluster tree (Figure 3.4a-b), stations ALA7, ALB 5, 6, 

7, 8, and SMB 8 moved from cluster 2 to cluster 3 in the resampled hierarchical cluster. Clusters 

for both the hyperspectral and resampled hierarchical trees were separated into three branches, as 

the clusters formed had a substantial distance to agglomerate.  

The resampled clusters did not have significantly different Chl-a, TSS, or CDOM based 

on bulk water sample analysis (Figure 3.5a-c). Chl-a (p=0.358, f=1.057) (Figure 3.5a), TSS 

(p=0.921, f=0.083) (Figure 3.5b), and CDOM (p=0.400, f=0.940) (Figure 3.5c), were not 

significantly different from one another based on the Kruskal-Wallis H test (Figure 3.5a-c). The 

lab statistics are summarized for these clusters in Table 3.8. 

Grouped reflectance spectra based on resampled close-range reflectance hierarchical 

clusters (Figure 3.8a-c) show some difference in reflectance, however, this difference largely 

relates to intensity more than shape. In cluster 1, a low reflectance value can be observed across 

all wavelengths not exceeding a 3% reflectance value. There is a minimal Chl-a trough in cluster 

1 at approximately 680 nm when compared to cluster 3 and even some spectra in cluster 2 

(Figure 3.8a). Cluster 2 represents an increase in overall reflectance with some spectra exceeding 

4%. A distinct peak becomes more visible at 580 nm (Figure 3.8b). Cluster 3 represents spectra 

with the greatest reflectance intensity with most curves exceeding 4% reflectance at 5,860 nm 

where most curves show a peak (Figure 3.8c). A reflectance trough can also be seen in most 

spectra at 680 nm. The main deciding factor in where resampled reflectance curves are clustered 

appears to be in relation to the intensity of reflectance. 
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3.2.2 Sentinel-2 MSI Reflectance Samples and Type (Objective 2) 

 To determine the performance of each atmospheric correction processor, a linear 

regression analysis by band with resampled close-range reflectance was conducted (Table 3.9). 

The uncorrected L1C reflectance appears to perform well based on a strong significant 

correlation value in band 2 (497 nm) (r²=0.494, p=<0.001), band 3 (560 nm) (r²=0.624, 

p=<0.001), band 4 (664 nm) (r²=0.349, p=<0.001), band 5 (704 nm) (r²=0.241, p=0.008), and 

band 6 (740 nm) (r²=0.145, p=0.046) (Table 3.9). A negative slope, high intercept, and high error 

values from RMSD and MAPD tell us this correlation is negative and contains a larger amount 

of variation than seen in both the Sen2Cor and ACOLITE reflectance. 

When comparing Sen2Cor and ACOLITE on a band-to-band basis, ACOLITE performs 

better in all bands. In band 2 (497 nm), Sen2Cor did not demonstrate a significant correlation 

(p=0.417), while ACOLITE did (r²=0.33, p=0.001), with slightly higher RMSD (ACOLITE 

RMSD=0.717, Sen2Cor RMSD=0.7), but lower MAPD (ACOLITE MAPD=138.167, Sen2Cor 

MAPD=232.47) (Table 3.9). Both Sen2Cor and ACOLITE had significant correlations to 

resampled close-range reflectance in band 3 (560 nm) (Sen2Cor r²=0.299, p=0.003; ACOLITE 

r²=0.33, p=0.001), band 4 (664 nm) (Sen2Cor r²=0.192, p=0.02; ACOLITE r²=0.319, p=0.002), 

and band 5 (704 nm) (Sen2Cor r²=0.061, p=<0.001; ACOLITE r²=0.215, p=0.013), but neither 

Sen2Cor or ACOLITE had a significant correlation for band 6 (740 nm) (Sen2Cor p=0.101, 

ACOLITE p=0.813) (Table 3.9). In band 3 (560 nm), ACOLITE had a lower RMSD and MAPD 

(RMSD=0.807, MAPD=78.097) than Sen2Cor (RMSD=0.857, MAPD=116.485), and this trend 

continued in band 4 (664 nm) (ACOLITE RMSD=0.888, MAPD=65.092; Sen2Cor 

RMSD=0.899, MAPD=91.054), band 5 (704 nm) (ACOLITE RMSD=0.825, MAPD=74.882; 
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Sen2Cor RMSD=0.846, MAPD=99.18.3), as well as band 6 (740 nm) (ACOLITE RMSD=0.782, 

MAPD=247.744; Sen2Cor RMSD=0.799, MAPD=258.918). 
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Figure 3.1a-c: Lab results for Chl-a (a), TSS (b), and aCDOM (c) for each site. A Kruskal 

Wallis H test was conducted to determine if there was site uniqueness before a Steel-Dwass 

nonparametric test was conducted to determine the specific site uniqueness between study 

sites. Chl-a content (a) between the St Marys site and the Altamaha site was different 

(p=0.008, z=3.634), and TSS content (b) was different between the Altamaha site and the 

Duplin River site (p=0.011, z=2.872), as well as the Altamaha to the St Marys site (p=0.002, 

z=3.340). aCDOM content was not significantly separated by site (p=0.056, z=5.783). The St. 

Mary’s and Duplin River site lab statistics were not separated based on any parameter. 
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Figure 3.2: Lab Stat Hierarchical Cluster. Hierarchical clusters separating stations by lab 

characteristics. Chl-a, TSS, and CDOM were all used as variables to determine lab statistic 

separability. Group colors denote where clusters were separated, with cluster 1 in purple, 

cluster 2 in orange, and cluster 3 in aqua. 
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Figure 3.3a-c Lab results for Chl-a (a), TSS (b), and CDOM (c) for each hierarchical cluster as 

determined by the lab statistics. A Kruskal Wallis test was conducted to determine if there was 

cluster uniqueness before a Steel-Dwass nonparametric test was conducted to determine the 

specific cluster uniqueness. Chl-a content (a) was different in cluster 1 from both cluster 2 

(p=<0.001, z=3.857) and 3 (p=<0.001, z=3.995), however, no difference was observed between 

cluster 2 to 3 (p=0.136, z=1.908). TSS was different in all the clusters from each other as 

follows. Cluster 1 differed from cluster 2 (p=<0.001, z=4.480), cluster 1 differed from cluster 3 

(p=0.005, z=-3.160), and cluster 2 from cluster 3 (p=0.012, z=2.862). While CDOM content 

was not significantly separated from cluster 1 to 3 (p=0.772, z=0.686), CDOM was separable in 

cluster 1 from 2 (p=<0.001, z=4.439) and cluster 2 from 3 (p=<0.001, z=3.997). 
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Figure 3.4a Ocean Optics Hierarchical Cluster (above) and Figure 3.4b Resampled Ocean 

Optics Hierarchical Cluster (below): Hierarchical clusters separating stations by reflectance. 

Resampled close-range reflectance only utilizing Sentinel-2 satellite bandwidths performed 

comparable to close-range reflectance including 400-750nm values. Group colors denote where 

clusters were separated. 
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Figure 3.5a-c: Chl-a (a), TSS (b), and CDOM (c) for each hierarchical cluster as determined by 

resampled close-range reflectance to align with bands utilized by Sentinel-2’s MSI. A Kruskal-

Wallis test was conducted to determine if there was cluster uniqueness. For all variables, 

including Chl-a (p=0.358, f=1.057), TSS (p=0.921, f=0.083), and CDOM (p=0.400, f=0.940), 

there was no uniqueness among the clusters. 
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Figure 3.6a-c: Duplin River (a), Altamaha  River (b), and St. Marys River (c) close-range 

hyperspectral reflectance. The y-axis represents reflectance as a percentage, and the x-axis 

represents wavelength in nanometers (nm). 
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Figure 3.7a: Duplin River stations. Resampled close range reflectance (OO) 
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Figure 3.7b: Altamaha River stations. Resampled close range reflectance (OO), atmospherically uncorrected reflectance 

(L1C), Sen2Cor atmospherically corrected reflectance, and ACOLITE atmospherically corrected reflectance. 
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Figure 3.7c: Altamaha River stations. Resampled close range reflectance (OO), atmospherically uncorrected reflectance 

(L1C), Sen2Cor atmospherically corrected reflectance, and ACOLITE atmospherically corrected reflectance. 
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Figure 3.7c: Altamaha and St. Marys River stations. Resampled close range reflectance (OO), atmospherically uncorrected 

reflectance (L1C), Sen2Cor atmospherically corrected reflectance, and ACOLITE atmospherically corrected reflectance. 
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Figure 3.8a-c: Reflectance of Sentinel-2 resampled hierarchical clusters. 
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Table 3.1: Sampling Conditions. Tidal data was collected from USGS. Precipitation data was 

collected from the national weather station at the UGA Marine Institute on Sapelo Island for 

TRA, TRB, ALA, ALB, and ALC, while precipitation was collected from the NOAA weather 

station located at St. Marys for SMB.  

 TRA TRB ALA ALB ALC SMB 

Sampling 

Date 

12/4/21 10/30/21 1/8/22 1/23/22 4/8/22 4/23/22 

Sampling 

Time 

11:59 am - 

1:19 pm 

11:35 pm - 

2:17 pm 

12:05 pm - 

3:15 pm 

11:30 am - 

1:45 pm 

10:48 am - 

2:27 pm 

10:37 am - 

1:04 pm 

High Tide 8:48 am 

(2.07m) 

9:04 pm 

(1.77m) 

4:55 am 

(1.46m) 

5:15 pm 

(1.68m) 

1:23 am 

(1.52m) 

1:53 pm 

(1.55m) 

11:54 am 

(1.49m) 

2:47 am 

(1.49m 

3.25 pm 

(1.28m) 

7:38 am 

(1.86m) 

8:02 pm 

(2.04m) 

Low Tide 3:59 am (-

0.24m) 

4:48 pm 

(-0.18m) 

12:12 am 

(0.4m) 

12:32 pm 

(0.34m) 

8:57 am 

(0.09 m) 

9:29 pm 

(0.03m) 

7:21 am 

(0m) 

7:44 pm 

(0m) 

10:29 am 

(0.37m) 

10:41 pm 

(0.36m) 

1:20 am 

(0.37m) 

1:31 pm 

(0.3m) 

Tidal Effect Falling 

tide 

Into low 

tide before 

rising 

Into high 

tide before 

falling 

High tide 

into falling 

Low tide 

into rising 

Falling into 

low tide 

 Mean 

discharge 

day before 

123.5 m³ 

sec-1 

249.5 m³ 

sec-1 

549.3 m³ 

sec-1 

640 m³ sec-1 453.1 m³ 

sec-1 

33.7 m³ sec-

1 

Mean 

Discharge 30 

days before 

155.2 m³ 

sec-1 

542.7 m³ 

sec-1 

267.3 m³ 

sec-1 

538.6 m³ 

sec-1 

447.3 m³ 

sec-1 

39.8 m³ sec-

1 

Precipitation 

previous 30 

days 

97 mm 80 mm 35 mm 42 mm 223 mm 165 mm 

Station count 5 5 7 8 11 8 

Satellite Tile - - S2B_T17R

MQ 

S2A_T17R

MQ 

S2B_T17R

MQ 

S2A_T17R

MQ 
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Flyover Time - - 11:07 am 11:07 am 11:58 am 11:58 am 
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Table 3.2: Station location, sampling time and characteristics 

Station Time Long (DD) Lat (DD) Depth (m) Secchi Depth (m) 

TRA1 11:59 AM 81.34033°W 31.44713°N 9.69 0.6 

TRA2 12:21 PM 81.32383°W 31.42808°N 8.32 0.57 

TRA3 12:39 PM 81.30033°W 31.39416°N 8.96 0.3 

TRA4 12:54 PM 81.28583°W 31.37461°N 10.97 0.25 

TRA5 1:19 PM 81.29525°W 31.42383°N 4.39 0.55 

TRB1 11:35 AM 81.31295°W 31.32418°N 6.86 0.68 

TRB2 12:47 PM 81.33171°W 31.37705°N 1.49 0.8 

TRB3 1:17 PM 81.30856°W 31.38786°N 5.70 1.3 

TRB4 1:43 PM 81.27381°W 31.37641°N 3.96 0.78 

TRB5 2:17 PM 81.29470°W 31.42280°N 6.34 0.66 
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ALA1 12:05 PM 81.41040°W 31.24568°N 5.43 0.65 

ALA2 12:26 PM 81.43091°W 31.19421°N 8.90 1 

ALA3 12:55 PM 81.42788°W 31.14140°N 8.84 0.7 

ALA4 1:28 PM 81.41170°W 31.16920°N 9.02 0.9 

ALA5 2:12 PM 81.38445°W 31.27628°N 6.10 0.45 

ALA6 2:45 PM 81.42001°W 31.30843°N 3.47 0.5 

ALA7 3:15 PM 81.44351°W 31.33961°N 4.05 0.61 

ALB1 11:30 AM 81.28596°W 31.32145°N 3.66 0.55 

ALB2 11:55 AM 81.31638°W 31.32298°N 5.36 0.65 

ALB3 12:17 PM 81.32601°W 31.31923°N 6.10 0.7 

ALB4 12:30 PM 81.34473°W 31.31258°N 7.01 0.6 

ALB5 12:45 PM 81.36888°W 31.32011°N 5.52 - 
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ALB6 12:56 PM 81.38541°W 31.31710°N 6.55 - 

ALB7 1:31 PM 81.39470°W 31.30476°N 5.64 - 

ALB8 1:45 PM 81.41245°W 31.30766°N 9.14 - 

ALC1 10:48 AM 81.45171°W 31.32645°N 6.46 0.46 

ALC2 11:21 AM 81.46227°W 31.33362°N 6.00 0.49 

ALC3 11:29 AM 81.47025°W 31.33448°N 8.32 0.51 

ALC4 11:38 AM 81.47823°W 31.34529°N 2.35 0.49 

ALC5 11:49 AM 81.48428°W 31.36516°N 5.52 0.46 

ALC6 12:02 PM 81.49366°W 31.37678°N 1.19 0.46 

ALC7 1:12 PM 81.47675°W 31.36316°N 1.55 0.4 

ALC8 1:27 PM 81.47452°W 31.37046°N 1.37 0.57 

ALC9 1:48 PM 81.46246°W 31.36633°N 1.28 0.6 
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ALC10 2:11 PM 81.45057°W 31.35611°N 1.46 0.57 

ALC11 2:27 PM 81.44015°W 31.34827°N 4.27 0.43 

SMB1 10:37 AM 81.44702°W 30.70586°N 9.02 1.07 

SMB2 10:56 AM 81.47980°W 30.72440°N 7.68 1.01 

SMB3 11:12 AM 81.50925°W 30.72244°N 8.96 0.91 

SMB4 11:50 AM 81.48520°W 30.73257°N 6.07 0.82 

SMB5 12:12 PM 81.48288°W 30.75233°N 11.70 0.7 

SMB6 12:30 PM 81.47297°W 30.76197°N 10.73 0.82 

SMB7 12:51 PM 81.47114°W 30.77302°N 5.79 0.73 

SMB8 1:04 PM 81.46929°W 30.70931°N 3.51 0.73 
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Table 3.3: Matchup Summary Information 

Station Close-range 

Reflectance 

Satellite 

Reflectance 

Matchup Lab Data 

TRA1 Yes Removed, 

Cirrus 

No Yes 

TRA2 Yes Removed, 

Cirrus 

No TSS removed, 

outlier 

TRA3 Yes Removed, 

Cirrus 

No TSS removed, 

outlier 

TRA4 Yes Removed, 

Cirrus 

No TSS removed, 

outlier 

TRA5 Yes Removed, 

Cirrus 

No Yes 

TRB1 Yes Removed, 

Clouds 

No Yes 

TRB2 Yes Removed, 

Clouds 

No Yes 

TRB3 Yes Removed, 

Clouds 

No Chl-a 

removed, 

outlier 

TRB4 Yes Removed, 

Clouds 

No Yes 

TRB5 Yes Removed, 

Clouds 

No Yes 

ALA1 Yes Yes Yes Yes 

ALA2 Yes Yes Yes Yes 

ALA3 Yes Yes Yes Yes 

ALA4 Yes Yes, Light 

Cirrus 

Yes Yes 
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ALA5 Yes Removed. 

Shadow 

No Yes 

ALA6 Yes Removed, 

Cloud 

No TSS removed, 

lab error 

ALA7 Yes Removed, 

Shadow 

No Yes 

ALB1 Yes Yes Yes Yes 

ALB2 Yes Yes Yes Yes 

ALB3 Yes Yes Yes Yes 

ALB4 Yes Yes Yes Yes 

ALB5 Yes Yes Yes Yes 

ALB6 Yes Yes Yes Yes 

ALB7 Yes Yes Yes Yes 

ALB8 Yes Yes Yes Yes 

ALC1 Removed, 

recording 

error 

Yes No Yes 

ALC2 Yes Yes Yes Yes 

ALC3 Yes Yes Yes Yes 

ALC4 Yes Yes Yes Yes 

ALC5 Yes Yes Yes Yes 

ALC6 Yes Yes Yes Yes 

ALC7 Yes Yes Yes Yes 

ALC8 Yes Yes Yes Yes 

ALC9 Yes Yes Yes Yes 
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ALC10 Yes Yes Yes Chl-a 

removed, 

outlier 

ALC11 Yes Yes Yes Yes 

SMB1 Yes Yes Yes Yes 

SMB2 Yes Yes Yes Yes 

SMB3 Removed, 

recording 

error 

Yes No Yes 

SMB4 Removed, 

recording 

error 

Yes No Yes 

SMB5 Yes Yes Yes Yes 

SMB6 Yes Yes Yes Yes 

SMB7 Yes Yes Yes Yes 

SMB8 Yes Yes Yes Yes 

Total N 

Matchups 

41/44 31/44 28/44 43/44 Chl-a 

40/44 TSS 

44/44 CDOM 

 

 

 

 

 

 

 

Table 3.4: Lab measurements 

  Chl-a TSS CDOM 440 
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(μg/L) (mg/L) nm (m-1) 

TRA1 3.337 65.026 0.07 

TRA2 3.572 89.941* 0.045 

TRA3 2.257 107.742* 0.045 

TRA4 2.382 97.826* 0.039 

TRA5 3.66 63.7 0.051 

TRB1 1.546 17.681 0.458 

TRB2 1.751 19.194 0.227 

TRB3 20.462* 18.279 0.146 

TRB4 6.918 67.088 0.035 

TRB5 3.036 32.917 0.227 

ALA1 1.956 13.24 0.136 

ALA2 3.506 20.889 0.059 

ALA3 2.38 68.396 0.019 

ALA4 3.602 37.71 0.031 

ALA5 1.088 34.031 0.208 

ALA6 1.195 12.716 0.189 

ALA7 1.299 8.765 0.273 

ALB1 1.706 19.426 0.085 

ALB2 2.212 18.014 0.107 

ALB3 2.066 18.958 0.102 

ALB4 0.978 15.265 0.159 

ALB5 1.128 10.403 0.298 
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ALB6 1.306 7.322 0.318 

ALB7 2.385 2.267 0.367 

ALB8 2.589 3.873 0.369 

ALC1 2.297 0.686 0.301 

ALC2 1.395 3.8 0.221 

ALC3 2.323 2.669 0.325 

ALC4 1.9 4.381 0.317 

ALC5 2.257 2.786 0.303 

ALC6 2.246 * 0.302 

ALC7 1.951 4.943 0.318 

ALC8 1.629 0.405 0.314 

ALC9 3.604 3.333 0.309 

ALC10 7.217 8.399 0.304 

ALC11 2.458 8.309 0.298 

SMB1 4.254 31.456 0.17 

SMB2 3.023 29.412 0.125 

SMB3 4.791 25.033 0.259 

SMB4 3.833 20.552 0.479 

SMB5 3.182 45.558 0.135 

SMB6 5.332 23.577 0.245 

SMB7 3.715 38.095 0.184 

SMB8 4.53 35.648 0.148 
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Table 3.5: Lab data summary 

Site Chl-a (μg/L) SD SE N Group 

Altamaha 

Rivers 

2.257 1.249 0.25 26 a 

Duplin 

River 

3.162 1.605 0.54 9 ab 

St. Marys 

River 

4.083 0.795 0.28 8 b 

Overall 2.786 1.431 0.22 43   

  TSS (mg/L)         

Altamaha 13.239 15.04 3.01 25 a 

Duplin 

River 

40.555 23.71 8.96 7 b 

St. Marys 31.166 8.335 2.95 8 b 

Overall 21.605 19.14 3.03  40   

  aCDOM 440 nm 

(m⁻¹) 

        

Altamaha 

River 

0.232 0.109 0.02 26 a 

Duplin 

River 

0.1343 0.137 0.04 10 a 

St. Marys 

River 

0.2178 0.115 0.04 8 a 

Overall 0.207 0.018 0.12  44   
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Table 3.6: Constituent Correlation matrix and calculated p-value. An * denotes a significant p-

value with either a positive or negative correlation.. 
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Table 3.7: Lab Cluster data summary (based on Figure 3.1). 

Lab Cluster Chl-a (μg/L) SD SE N Group 

1 4.166 1.399 0.361 15 a 

2 2.167 0.782 0.202 15 b 

3 1.594 0.448 0.149 9 b 

  TSS (mg/L)         

1 39.527 18.663 4.819 15 a 

2 6.558 5.904 1.524 15 b 

3 17.183 8.024 2.675 9 c 

  aCDOM 440 nm 

(m⁻¹) 

        

1 0.137 0.924 0.024 15 a 

2 0.336 0.059 0.015 15 b 

3 0.159 0.054 0.018 9 a 
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Table 3.8:Close-range reflectance resampled hierarchical cluster data summary. 

OO Resampled 

Hierarchical Cluster 

Chl-a (μg/L) SD SE N Group 

1 3.077 1.204 0.381 10 a 

2 2.883 1.798 0.45 16 a 

3 2.285 1.06 0.283 14 a 

  TSS (g)         

1 21.752 13.59 4.098 11 a 

2 20.901 21.36 5.515 15 a 

3 24.103 23.493 7.083 11 a 

  CDOM (440 nm)         

1 0.238 0.101 0.031 11 a 

2 0.187 0.114 0.028 16 a 

3 0.177 0.13 0.035 14 a 

 

 

 

 

 



101 
 

 

 

Table 3.9: Regression analysis of close-range reflectance against Satellite reflectance by band. 

Proces

sor 

Band Central 

Wavele

ngth 

N R² p-

value 

RMS

D 

MAP

D (ψ) 

Slo

pe 

Inter

cept 

L1C Band 

2 

492 28 0.494 <0.001 3.362 1310.

386 

-

6.22 

24.19

7 

  Band 

3 

559 28 0.624 <0.001 2.905 567.6

09 

-

3.82 

23.49 

  Band 

4 

665 28 0.349 <0.001 3.953 413.8

52 

-

2.94 

20.61

8 

  Band 

5 

704 28 0.241 0.008 4.446 443.7

68 

-

2.96 

19.13

2 

  Band 

6 

740 28 0.145 0.046 5.183 1433.

319 

-

6.64 

15.58

7 

Sen2C

or 

Band 

2 

492 28 0.026 0.417 0.7 232.4

7 

0.21

2 

3.77 

  Band 

3 

559 28 0.299 0.003 0.857 116.4

85 

0.57

2 

3.606 

  Band 

4 

665 28 0.192 0.02 0.899 91.05

4 

0.44

6 

3.748 

  Band 

5 

704 28 0.061 <0.001 0.846 99.18

3 

0.25

5 

3.964 

  Band 

6 

740 28 0.1 0.101 0.799 258.9

18 

-

0.83 

3.181 

ACOL

ITE 

Band 

2 

492 28 0.33 0.001 0.717 138.1

67 

0.94

1 

1.801 

  Band 

3 

559 28 0.428 <0.001 0.807 78.09

7 

0.71

3 

2.438 

  Band 

4 

665 28 0.319 0.002 0.888 65.09

2 

0.61

9 

2.647 
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  Band 

5 

704 28 0.215 0.013 0.825 74.88

2 

0.51 2.847 

  Band 

6 

740 28 0.002 0.813 0.782 247.7

44 

-

0.11 

2.638 
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CHAPTER 4 

DISCUSSION 

4.0 Introduction 

This project had two main objectives: to characterize three study sites and individual 

stations along the Georgia coast into optical water types based on bulk water sample analysis of 

Chl-a, TSS, and CDOM and close-range remote sensing hyperspectral data (objective 1) and 

perform an analysis of the accuracy of Sen2Cor and ACOLITE atmospheric correction 

processors compared to in situ data was conducted through statistical analysis (objective 2). To 

accomplish these, the relationship between water quality OACs, close-range hyperspectral data, 

and atmospheric correction methods for satellite remote sensing imagery were examined. Field 

sampling was conducted in three coastal Georgia rivers (Figure 2.2a) where in situ bulk water 

samples (Table 3.4) and close-range hyperspectral reflectance were collected to coincide with 

Sentinel-2 MSI satellite flyover times (Figure 3.6a-c, figure 3.7a-d). Bulk water samples were 

then processed for Chl-a, TSS, and CDOM absorption through laboratory-based techniques for 

statistical analysis. Sentinel-2 MSI imagery was downloaded and atmospherically corrected 

utilizing Sen2Cor and ACOLITE atmospheric correction packages. Statistical analysis 

techniques were implemented for the classification of optical water type for each station and site, 

and atmospheric correction performance was determined (Figure 1). 

The main findings of this project are: bulk water samples were effective at separating 

stations by optical water type, and more studies could use this method to explore the 

performance of retrieval algorithms by hierarchical cluster instead of by site; using close-range 

hyperspectral reflectance to determine optical water type was inconclusive, and more emphasis 



104 
 

 

 

should be placed in retrieval algorithms and band ratios to separate stations by cluster; the 

performance of both ACOLITE and Sen2Cor was comparable along the Georgia coastline. 

Future work could focus on using hyperspectral close-range reflectance, and satellite reflectance 

to predict OACs, and reflectance may have shown more of a correlation to predictive algorithms 

than reflectance itself. 

4.1 Lab Results 

Chl-a ranges for all sites were low, ranging from 0.987 μg/L at ALB4 to 7.217 μg/L at 

ALC10 (Table 3.4, Figure 3.1a). None of these sites typically have high Chl-a content (Schalles, 

2006). Hladik (2004) reported that Chl-a ranged from 0.51 μg/L to 29.65 μg/L and averaged 9.71 

μg/L at Duplin River and Altamaha River stations in August. In January, Hladik (2004) found 

that Chl-a ranged from 0.15 to 8 μg/L and averaged 2.68 μg/L at Duplin River and Altamaha 

River stations. These January results are mostly consistent with my Chl-a measurements for 

these study sites (Table 3.5). In this study, Chl-a had a mean of 2.257 μg/L (SD= ±1.249 μg/L) at 

Altamaha River stations, and a mean of 3.162 μg/L (SD= ±1.605 μg/L) at Duplin River stations 

(Table 3.5). Chl-a content of St. Marys River stations was significantly higher than at Altamaha 

River stations. Hladik (2004), noted an increase in both TSS and Chl-a in the lower region of the 

St. Marys River, where St. Marys River stations were concentrated within this study. St. Marys is 

not usually characterized by Chl-a values greater than the Altamaha River (Schalles 2006), 

however this is most likely a function of seasonality, as St. Marys River was sampled in April, 

while Altamaha River stations were collected in January and April (Table 3.1). 

TSS measurements showed a much greater variation in concentration within stations and 

sites compared to Chl-a and CDOM (Figure 3.1b), ranging from 0.405 mg/L at ALC8 to 68.396 

mg/L at ALA3 (Table 3.4). The greatest TSS concentrations were measured at Duplin River 
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stations (mean=40.555 mg/L, SD= ±23.71 mg/L, Table 3.5). Discharge from the Altamaha 

leading up to sampling TRA was low the day prior to sampling, and the low 30 days leading up 

to sampling, and sampling was conducted on a substantial falling time (Table 3.1). It is important 

to note that TRA stations were sampled on a spring tide, where tidal influence was greatest. 

Discharge the day prior to sampling TRB was also lower, however in the 30 days leading up to 

sampling, significant discharge occurred (Table 3.1). Significant discharge from the Altamaha 

River is known to influence the Duplin River and could explain the TSS values observed in TRB 

(Cai and Wang, 1998). Tidal output may explain high TSS values recorded in TRA stations, 

while high discharge the 30 days prior to sampling may account for the high concentrations of 

TSS recorded at TRB stations. St. Marys River stations sampled in April on a falling tide also 

had a moderate TSS concentration (mean=31.166 mg/L, SD= ±8.335 mg/L, Table 3.5). This TSS 

concentration falls within the range sampled by Hladik (2004) in the St. Marys River for January 

of 2.52-79.10 mg/L, and the range for August of 3.48-39.49 mg/L. The lowest TSS concentration 

was recorded at Altamaha River stations (mean=13.239 mg/L, SD= ±15.04 mg/L, Table 3.5), 

sampled in January and April. TSS in the Altamaha River stations was significantly lower than 

the Duplin and St. Marys Rivers stations (Table 3.5, Figure 3.1b). In Hladik (2004), average TSS 

measurements for the combined Altamaha River and Duplin River stations was 22.28 mg/L in 

August, and 18.12 mg/L in January, both lower than the combined average of the Altamaha and 

Duplin Rivers TSS concentrations measured in this study (mean=35.8605 mg/L). When looking 

at the Altamaha River, Hladik (2004) found that TSS content from stations sampled in January 

ranged from 6.2 mg/L to 9.05 mg/L, but stations in August from the Hladik (2004) study ranged 

from 6.04 mg/L to 14.96 mg/L. The same seasonal trend was also present within Duplin River 
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stations, with January’s TSS content ranging from 5.6 mg/L to 10.42 mg/L, and August’s TSS 

content ranging from 34.18 mg/L to 38.48 mg/L (Hladik, 2004).  

Even though the Altamaha River is known to contribute a large amount of sediment 

discharge to the Atlantic Ocean (Cai and Wang, 1998), seasonality plays a large role in TSS 

concentration within both the Altamaha River and Duplin River sites, as periods of high 

discharge from the Altamaha River are known to influence the both the Altamaha River and 

Duplin River sites in terms of freshwater output into the Atlantic Ocean, as well as TSS and 

nutrient content (Hladik, 2004; Takagi et al., 2017). During sampling of the Altamaha River and 

Duplin River, discharge was at times substantial (Table 3.1). Discharge from the Altamaha River 

averages around 400 m³ sec-1, with maximal discharge in spring, and minimum discharge in late 

summer and fall (Weston et al., 2009). Discharge the day prior to sampling exceeded this 

average the day before in all Altamaha River sampling days (Table 3.2). Another factor to 

consider in these lab results is TSS and Chl-a amounts were only tested once for each station and 

may not have been representative or correctly quantified during lab testing. ALC6 recorded 0.0 

mg/L of TSS and was excluded from results (Table 3.4), as sediment evident on the filter paper. 

The initial recorded weight of this filter paper and others may have been improperly recorded, 

giving some evidence that at times TSS was underestimating (or overestimating). Conducting 

multiple tests for each of these OACs and deriving a mean from multiple tests would have 

resulted in a more accurate measure of their values.  

The absorption of CDOM observed at all three sites was relatively low when compared to 

measurements acquired by Hladik (2004) and Schalles (2006), and little variability was found 

between the CDOM of the sites (Tables 6, Figure 3.1c). For the St. Marys River stations where 

CDOM absorption was expected to be substantial, we measured an average aCDOM at 440 nm 
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of 0.218 m-1, comparable to both the Altamaha and Duplin stations (Table 3.5, Figure 3.1c). The 

lower CDOM values may be a result of stations being located within the Cumberland Sound, and 

near the river mouth (Figure 2.2d), allowing for tidal mixing, and less influence from CDOM-

rich Okefenokee Swamp output. It is highly likely greater CDOM absorption and the resulting 

influence on the reflectance curve would have been greater within stations located further 

upstream for all stations. There was a general trend that CDOM was greatest at up-river stations 

(Figure 2.2b-d, Table 3.4). This CDOM absorption trend is best observed in the ALB stations, 

with ALB1, a station at the mouth of the Altamaha River (Figure 2.2c), recording a CDOM 

absorption of 0.085 m-1 at 440 nm, while the furthest station upstream, ALB8, recorded a CDOM 

absorption of 0.369 m-1 at 440 nm. Hladik (2004) and Schalles (2006) both made note of this 

trend within their research, supporting the notion that aCDOM may have been observed upriver. 

4.2 Intersite OAC Relationships: Pearson Product-moment Correlation Matrix 

 The Pearson product-moment correlation matrix (Table 3.6) provides insight into the 

relationship between the OACs for the sites within the study. It is important to note that the 

correlation analysis was not controlled for seasonal variation and instead utilizes all the bulk 

water samples sampled across all the sites. TSS and Chl-a were positively correlated (r=0.377, 

p=0.016) (Table 3.6), which is most likely connected to the fact that phytoplankton are a part of 

TSS content, and to a lesser extent, the transportation of nutrients is also linked to TSS (Dekker 

and Peters, 1993; He et al., 2017). Secchi and Chl-a were also positively correlated (r=0.449, 

p=0.004) (Table 3.6), which is contrary to existing literature for eutrophic lakes (Budd et al., 

2001). Budd et al. (2001), determined that as a measure of clarity, Secchi indicates a decrease in 

Chl-a. A possible explanation for the inverse relationship here is that due to Chl-a concentration 

in this study being so low (Table 3.4), and the positive relationship between Secchi and Chl-a is 
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more a function of other environmental factors, to explain this is other words, Secchi is more 

influenced by other constituents within the water than the presence of phytoplankton. CDOM 

and TSS were strongly negatively correlated (r=-0.706, p=<0.001). This relationship is not seen 

in Schalles and Hladik (2012) and could be a function of external environmental factors. One 

potential alternative explanation is salinity, which is known to be negatively correlated with 

CDOM. High TSS concentrations in the Duplin River paired with lower CDOM measurements 

because of salinity may have a strong enough effect on these two OACs to create a negative 

correlation. It is also important to mention that within this study, there was limited variability 

within CDOM (overall mean=0.207, SD= ±0.018), and high variability within TSS (overall 

mean=21.605 mg/L, SD= ±19.14) (Table 3.5). More stations with variability in CDOM may 

have influenced this correlation. It is interesting to note that Secchi and TSS were not negatively 

related (p=0.25) (Table 3.6), as TSS is usually assumed to be correlated to turbidity. This 

relationship is evident in Schalles (1998), and while not as significant, still present in Schalles 

and Hladik (2012), where variables in estuaries along the US coast were tested through the same 

approach. One potential explanation for a lack of relationship here could be errors in the lab 

testing underestimating TSS. This explanation is explored more in the limitations section 

(section 4.6) 

With a larger sample size, seasonality could be controlled for, and the correlation 

between constituents could be explored under different environmental conditions. More stations 

would have also allowed for an intrasite comparison of OACs. It would also have been 

interesting to explore the potential relationship between other variables, such as flow, salinity, 

temperature, or even precipitation. 
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4.3 Hierarchical Clusters 

Hierarchical clustering was completed using the bulk water sample lab results (Figure 

3.1), close-range hyperspectral reflectance between 400-750 nm (Figure 3.4a), and Resampled 

close-range reflectance to align with wavelengths used by the MSI on board Sentinel-2 satellite 

systems (Figure 3.4b). It is important to recognize that sites were not evenly sampled, with more 

stations present in the Altamaha River site than in the Duplin River and St. Marys River 

combined (Table 3.1). This sampling bias may explain the dominance of Altamaha River stations 

in the clustering analyses. 

4.3.1 Lab Clusters 

Results from the lab clusters showed some interesting trends, and each cluster can be 

summarized by the lab statistics effectively. Lab cluster 1 contains most of the non-Altamaha 

River stations and is characterized by high TSS and high Chl-a, but also has high OAC 

variability (Table 3.7, Figure 3.3a-c). Lab cluster 2 contains mostly Altamaha River stations and 

is characterized by low TSS and high aCDOM (Table 3.7, Figure 3.3b-c). Lab cluster 3 also 

contained predominantly Altamaha River stations and was characterized by low OACs (Table 

3.7, Figure 3.3a-c). No one site composed most of the stations present in this cluster (Table 3.7, 

Figure 3.3a-c). This variability suggests that it can be difficult to assume that water quality 

within a given system is consistent, and that other variables and environmental conditions need 

to be considered. 

Spyrakos et al. (2017), provides the most comprehensive classification of optical water 

type for inland and coastal waters, with 4,045 hyperspectral water reflectance curves. A k-mean 

approach was deployed, and spectra scaling was another key difference between Spyrakos et al. 
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(2017) and the clustering completed in this study. This spectra scaling was in response to 

variation attributed to amplitude (Schalles, 2006), which was a visible limitation in the clusters 

of this study. Spyrakos et al. (2017) was able to separate spectra into 13 unique optical water 

types (cluster) and define all the characteristics of each cluster. A larger sample size and scaling 

spectra for amplitude would allow for greater performance in hyperspectral clustering. A k-

means approach could also be implemented. 

4.3.2 Hyperspectral Close-range Reflectance Clusters 

The hyperspectral close-range reflectance clusters did not separate the sites well based on 

OACs. In the statistical analysis of the hyperspectral clusters, only absorption of CDOM at 440 

nm was significantly separable between any of the clusters, specifically between hyperspectral 

cluster 1 and hyperspectral cluster 2 (p=0.012, z=2.851). Hyperspectral close-range reflectance 

did not correlate well with OACs and there are a couple suggestions to be made in response. 

First, more sampling might have captured a greater diversity in optical water types, allowing for 

stations to be more readily separated in response to hyperspectral reflectance. Lab error may be 

an explanation for some of the homogenous nature of the clusters. Another approach would be to 

implement band indices to classify stations by optical water type instead of hyperspectral close-

range reflectance This would allow for a relationship between the distance between the 

reflectance peaks and troughs to explain the OACs rather than the reflectance of the curve itself. 

4.3.3 Resampled Close-range Reflectance Clusters 

Like close-range reflectance clusters, the resampled close-range reflectance clusters 

separated sites poorly based on OACs. No OAC was separable based on reflectance resampled 

clusters using the Kruskal-Wallis H test (Figure 3.5a-c). When looking at the group reflectance 
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spectra based on the resampled close-range reflectance clusters (Figure 3.8a-c), curves are 

categorized by a function of overall magnitude, which supports the suggestion of implementing 

band indices to use the relationship of spectral features to explain OACs rather than the entire 

spectral curve. 

4.4 Atmospheric Correction Performance 

 The second major objective of this project was to quantify atmospheric correction 

product performance. To accomplish this, a band-to-band regression analysis between resampled 

close-range reflectance, to L1C, Sen2Cor, and ACOLITE imagery was performed for bands 2 

through 6 of Sentinel-2 MSI (Table 1.1, Table 3.9). The majority of the resampled close-range 

reflectance bands followed the overall shape of the satellite reflectance bands (figure 3.7). 

Atmospherically uncorrected data (L1C) was negatively correlated with resampled close-range 

reflectance in all bands (Table 3.9). The L1C bands have significantly higher RMSD and MAPD 

values than the RMSD and MAPD values of the Sen2Cor and ACOLITE processed images 

(Table 3.9). All the L1C bands also have a negative slope indicating that as resampled close-

range reflectance increased, satellite reflectance decreased (Table 3.9). There is a large intercept 

value for all the bands, meaning that even if close-range reflectance was zero, the uncorrected 

satellite imagery would still have a significant reflectance value across each band (Table 3.9). 

Together, this shows the need for atmospheric correction in the remote sensing of water, with a 

more significant need in shorter wavelengths where the intercept was higher, and the slope was 

more intense. This is supported by the concept that top-of-atmosphere signals in shorter 

wavelengths are more susceptible to atmospheric effects at the sensor level (Frouin et al., 2019; 

Lillesand et al., 2015). 
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 A comparison of Sen2Cor and ACOLITE can be made (Table 3.9). Sen2Cor Bands 3, 4, 

and 5 were weakly correlated with in situ resampled reflectance, while ACOLITE performed 

slightly better than Sen2Cor in these bands and had a significant correlation in band 2 (Table 

3.9). ACOLITE had lower RMSD and MAPD, showing that resampled reflectance values on 

average were closer to ACOLITE corrected reflectance than Sen2Cor corrected reflectance. The 

slope for ACOLITE was closer to one in every band, which demonstrates that an increase in 

resampled reflectance had a proportional increase in ACOLITE reflectance. Intercept values for 

ACOLITE were also closer to zero, meaning the predicted reflectance of ACOLITE when in situ 

reflectance is zero was closer than the reflectance predicted by Sen2Cor. 

Martins et al. (2017) performed a similar statistical analysis between Sen2Cor and 

ACOLITE, finding that the two atmospheric correction models performed similarly in dark 

lakes, and Sen2Cor performed fractionally better over brighter lakes with a higher reflectance 

value. It is important to note that the ACOLITE-SWIR approach used in this study has since 

been made obsolete by the dark spectrum fitting approach, which is more robust in calculating 

aerosol depth (Vanhellemont and Ruddick, 2018). In situ measurements were taken from above 

water, and RMSE values were far smaller than RMSD values in this study, not exceeding 0.025.  

Mograne et al. (2019) performed an evaluation of five atmospheric correction algorithms 

for Sentinel-3 in optically complex waters in France. This comparison did not include Sen2Cor 

or ACOLITE as Sentinel-3 contains more bands and spectral information than Sentinel-2 and 

uses different algorithms for atmospheric correction. Bias, relative error, and RMSE were used to 

determine atmospheric correction performance along with slope and intercept of the regression 

line. Beyond the study here, Mograne et al. (2019), were able to incorporate a robust spectral 

analysis, including a spectral angle mean equation to calculate angular differences between 



113 
 

 

 

hyperspectral close-range above water reflectance, and incorporated a scoring system for each 

statistical variable to then be incorporated into one comprehensive scoring equation. RMSE for 

this study did not exceed 0.02 (Mograne et al., 2019). 

Kuhn et al. (2019) provide another approach to atmospheric correction validation that 

could be used in future work from this study with the use of RMSD and median absolute percent 

difference. In this study, atmospheric correction performance was a function of OACs, 

specifically Chl-a and turbidity sensitivity to a given model. This study also combined Landsat-8 

and Sentinel-2 imagery to increase revisit time and sampling days possible, and above-water 

close-range hyperspectral reflectance was utilized. 

In comparison to this study, all these studies successfully integrated close-range 

reflectance to satellite reflectance with less deviation. This may be a function of utilizing below-

water reflectance instead of above-water reflectance. Lehmann et al. (2023) provide a 

comprehensive overview of 17 different approaches to collecting close-range hyperspectral 

reflectance. Included in this literature review is the approach utilized in this study of below-water 

reflectance from a pole connected to a spectrometer. It is worth mentioning that below water-

reflectance and above-water reflectance are not the same, and below-water reflectance should 

undergo conversion to water-leaving reflectance for an accurate match-up (Lehmann et al., 

2023). This conversion is explained in Chipman et al. (2009) and includes accounting for the 

water-to-air transmittance, the refractive index of water to air, and spectral immersion. This was 

not completed within this study, which may explain some of the differences between 

atmospherically corrected satellite imagery, and the resampled close-range reflectance (figure 

3.7). Future analysis should include the use of this calculation. 
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4.5 Limitations  

There are several limitations within the workflow of this project (Figure 1), most of 

which are related to field sampling. Field sampling days must not only coincide with the 5-day 

revisit time of the Sentinel-2 A/B satellites, but there is also a specific flyover time in which 

water samples and close-range reflectance must be collected (±3-hour) to minimize dispersion 

(Bailey and Werdell, 2006). Next, field sampling can only be conducted on days that are free or 

limited in the amount of cloud cover, which can be unpredictable in coastal systems. Further, a 

crew of at least 3 is needed for stations to be completed within approximately 15 minutes time, 

which limits the number of stations that can be sampled within the satellite flyover window. 

Accounting for all these field sampling logistics was challenging, and an additional day of 

sampling on the St. Marys River was canceled. This left us with only stations through the 

Cumberland Sound and towards the St. Marys River mouth at this site meant stations further 

upstream St. Marys were not collected that potentially would have shown higher CDOM 

absorption like those found in Schalles (2006) and Hladik (2004). For a more complete analysis 

of the southeastern US, more stations would need to be collected. 

There are a lot of variable conditions at play. More samples would also allow for the 

collection of stations on similar tidal flow and recent discharge rates for each site. This would 

have yielded more insights into tidal effects and discharge on the OACs for each site. With only 

6 full days of sampling, in situ conditions play a large role in the characterization of sites that 

were observed. 

For both the validation of atmospheric correction performance and station and cluster 

statistical analysis (objective 1, objective 2) (Figure 1), variability between satellite reflectance 
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and close-range hyperspectral reflectance was also an issue. In the resampled spectral curves 

(figure 3.7), the close-range reflectance curves are all lower in reflectance than what was 

observed by the satellite. This is a common result seen when comparing below-water reflectance 

to satellite reflectance and is potentially a function of adjacency effects, and also the difficulty 

with converting below-water reflectance to water-leaving radiance (Lehmann et al., 2023). 

Future studies should try to best account for this by accurately converting below-water 

reflectance to above-water reflectance. Spectral information is lost when converting in situ close-

range reflectance to match a multispectral satellite instrument, which is evident when comparing 

the resampled spectral curves (figure 3.7), and the close-range reflectance curves for each site 

(Figure 3.6a-c). The difference between atmospheric correction products on a band-to-band 

comparison does not consider the shape of the reflectance curve. It is this shape that holds a lot 

of information about the OACs, and it is this reason band indices are utilized to determine the 

concentration within the upper water column. 
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CHAPTER 5 

CONCLUSION 

The objectives of this project were to first characterize three study sites and individual 

stations along the Georgia coast based on optical water type and bulk water lab sample analysis. 

After doing this, the next objective was to perform an analysis of the accuracy of Sen2Cor and 

ACOLITE atmospheric correction processors by using in situ data as a ground truth through 

statistical analysis. 

The first objective was successful, in that bulk water samples were effective at separating 

stations by optical water type using hierarchical clustering, and more studies could use this 

approach to generally characterize each station, and further, the performance of a retrieval 

algorithm by cluster. Despite success using the bulk water samples, close-range hyperspectral 

reflectance was not effective at defining a station’s optical water type, and results were 

inconclusive. More emphasis should be placed in retrieval algorithms and band ratios to separate 

stations by cluster. 

Based on the results from objective 2, it is difficult to quantitatively say one atmospheric 

correction product is better than the other. According to the band-to-band comparison between 

the atmospheric correction processors, the performance of both ACOLITE and Sen2Cor was 

comparable. RMSD and MAPD results were also rather high. Further exploration into this might 

help with providing a more definitive result. Future work could also focus on using hyperspectral 

close-range reflectance, and satellite reflectance to predict OACs, and reflectance may have 

shown more of a correlation to predictive algorithms than reflectance itself. Through this 

research, 44 estuarine stations were obtained over six days of field sampling with coinciding 
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Sentinel-2 imagery within a narrow time window. Very few stations like this have been collected 

along the Georgia coastline, and further work may provide insights into more advanced remote 

sensing approaches to monitoring southeastern estuaries on the Georgia coastline. 
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