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STOP, THEN GO! RAPID ACCELERATION OFFSETS THE COSTS OF INTERMITTENT 
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by 
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(Under the Direction of Lance McBrayer) 

ABSTRACT 

Intermittent locomotion is a commonly used escape strategy with a wide array of potential benefits. 

Pausing may aid in locating a predator, crypsis, lowering energy costs, and maneuvering around 

obstacles. Navigating a turning may also benefit from intermittent locomotion by allowing an animal time 

to assess its surroundings; therefore, decreasing the chances of stumbling. Florida scrub lizards live in 

environments with a variety of obstacles and typically must turn around an obstacle when pursued. The 

goal of this study is to quantify the locomotor behavior and performance by lizards while navigating a 45° 

or 90° turn. Lizards were run along both a 45° and 90° racetrack. The number of trials with pauses and 

pause placement was collected as well as the mean speed before, in, and after a turn. I predicted that scrub 

lizards would utilize intermittent locomotion over continuous locomotion when turning. The results show 

that the linear speed entering the turn and exiting the turn are not significantly different. This finding 

indicates that acceleration, not speed is crucial in escaping when presented with a turn and therefore 

offsets the cost of intermittent locomotion on speed.  
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CHAPTER I 

INTRODUCTION 

Animals use a mixture of behavioral and morphological characteristics to either avoid an 

interaction with a predator, evade a predator, or escape a predator once captured (Walker et al. 2005; 

Schall and Pianka 1980). They must avoid predation in a variety of habitats ranging from flat terrain with 

little or no vegetation to complex multidimensional habitats filled with vegetation or other structures that 

animals must negotiate. In open habitats or habitats with large areas of bare ground, reaching the 

maximum sprint speed is an effective escape strategy since there are fewer obstacles to maneuver around 

(Wynn et al. 2015). However, in habitats that have higher numbers of obstacles, such as vegetation and 

uneven terrain, sprinting at maximum speed can lead to stumbling, and thus in natural situations, most 

animals rarely reach their maximum speeds (Wynn et al. 2015). Consequently, quantification of high 

speed sprinting alone as a measure of predator evasion may oversimplify the entire predator-prey dynamic 

(Clemente and Wilson 2016). While it is true that many studies have shown that faster running animals 

are more likely to escape predation, the probability of escaping is also dependent on an animal’s ability to 

outmaneuver its predators (Clemente and Wilson 2016).  

The presence of obstacles, such as vegetation, woody debris, or rocks, requires turning, enhanced 

maneuverability, or alternative locomotor behavior (Wynn et al. 2015; Brownsmith 1977). Animals may 

choose to alter their posture (bipedal running), make a series of turns, or use intermittent locomotion 

(McElroy and McBrayer 2021). Intermittent locomotion (also referred to as stop-go running, pause-travel 

locomotion, and saltatory search) is defined as stopping for extended periods of time (usually only a few 

seconds) during bouts of running (Kramer and McLaughlin 2001). This type of locomotion has been 

documented in many animals from various fishes and birds to terrestrial and arboreal mammals and 

reptiles. Several studies have quantified the benefits of intermittent locomotion. For example, Amo et al. 

(2005), McAdam and Kramer (1998), and Stojan-Dolar and Heymann (2010) each showed that 

intermittent locomotion was useful in enhancing vigilance.  
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Vigilance may contribute to the use of intermittent locomotion. Intermittent locomotion aids in 

locating predators by sight and/or sound, avoiding obstacles, identifying refuge, and planning escape 

routes (Kramer and McLaughlin 2001; Trouilloud et al. 2004). While being pursued by a predator, an 

animal may stop briefly to locate the predator’s current location by looking and/or listening. By pausing, 

noise created by movement is reduced, allowing the animal to hear its pursuer (McAdam and Kramer 

1998; Vasquez et al. 2002). Pausing also alleviates motion blur, or the obstruction of sight cause by rapid 

movement (Land 1999; Carpenter 1988; Desimone and Duncan 1995). Pausing allows the animal to 

momentarily stabilize their field of view (Avery 1993; Probst et al. 1986). Brief visual stabilization may 

aid in locating the predator and may also give the prey a moment to identify nearby refuges and/or to 

decide on alternate escape routes (Stojan-Dolar and Heymann 2010; McElroy and McBrayer 2021; 

Zamora-Camacho 2020). Intermittent locomotion may also aid in crypsis and cause the animal to 

“disappear” in plain sight (Martel and Dill 1995; Kramer and McLaughlin 2001). Deciding to become 

cryptic mid pursuit may confuse the predator and cause the predator to lose sight of the prey (Herzog and 

Burghardt 1974). Because many animals use movement to locate potential food items, intermittent 

locomotion may enhance crypsis and thereby increase the chances of a successful escape (Kramer and 

McLaughlin 2001).  

Intermittent locomotion may also be beneficial by reducing energy costs (Weinstein and Full 

1999; Weinstein and Full 1999). Pausing mid pursuit may allow the animal to improve endurance and 

allow the animal to run for longer periods of time (Baker Edwards and Gleeson 2001; Gleeson and 

Hancock 2001). Intermittent locomotion may also allow high-energy phosphates time to replace the 

fatigue-producing products in the body, such as lactic acid, thereby increasing the ability to continue 

running (Kramer and McLaughlin; Kemp et al. 2009; Weinstein and Full 1999). However, the fatigue-

reducing benefits may be dependent on temperature, duration of activity, and pause duration (Weinstein 

and Full 2000).  
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Intermittent locomotion may reduce stumbling in animals that need to turn or maneuver (Wynn et 

al. 2015; Nasir et al. 2017). A mixture of speed and maneuverability may lead to more successful escapes, 

especially in environments with vegetation and/or uneven topography (Wheatley et al. 2015). 

Approaching a turn quickly increases the chances of making a mistake or crashing, so pausing before the 

turn may be beneficial (Wynn et al. 2015; Wheatly et al. 2015) and aid in orientation prior to turning 

(Higham et al. 2001). While there are numerous studies exploring speed and intermittent locomotion on 

straight paths (Vasquez et al. 2020; Weinstein and Full 1999; McAdam and Kramer 1998), the use of 

intermittent locomotion when negotiating a turn is not very well understood. Many studies have 

documented that animals such as lizards will run at near maximal speed straight to a known refuge 

(McElroy and McBrayer 2021; Kramer and Bonenfant 1997), yet very little is known about turning 

locomotion and behavioral tradeoffs when fleeing predators to an unknown, or unseen, refuge. 

Quantifying how turns affect intermittent locomotion could help broaden our understanding of predator 

escape behavior and performance tradeoffs in terrestrial vertebrates.  

The goal of this study is to quantify the locomotor behavior and performance by lizards while 

navigating a 45° or 90° turn. Due to their inability to see around the 45° and 90° turns, I predict lizards 

will choose intermittent locomotion more frequently than continuous locomotion. Therefore, pauses 

before, in, and after the turn will have a higher number of lizards who paused on the 90° turns than on the 

45° turns. I also predict that linear speed just before a turn will be faster than the linear speed just after a 

turn. That is navigating a turn will come at the cost of reduced speed. Intermittent locomotion at any point 

is expected to reduce linear speed on both  45° and 90° turns.  Finally, linear speed after the turn is 

expected to decline as lizards begin to slow down or stop near the end of the track. 
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CHAPTER II 

METHODS AND MATERIALS 

Study Species and Field Site 

Sceloporus woodi is a small, diurnal, short-lived lizard endemic to xeric habitats in Florida, USA 

(Tiebout and Anderson 2001). The species is rare outside of a few protected areas in Florida (Clark et al. 

1999; McCoy et al. 2004).  Ocala National Forest is a recreation and wildlife area located between the 

Ocklawaha and St. Johns Rivers in Marion County, Florida (Parker and McBrayer 2016). This 72,000 ha 

forest cite contains two habitats, longleaf pine sandhills (LLP) which consists of long leaf pines, turkey 

oaks, and wire grass, and Florida scrub pine (FSC), which consists of sand pines, and a mixed substrate of 

open sand, leaf litter and shrubby vegetation (Tiebout and Anderson 2001; Jackson 1972, 1973; Kaunert 

and McBrayer 2015).Within the Ocala National Forest, S. woodi is abundant in both LLP and FSC 

habitats (Parker and McBrayer 2016; Tiebout and Anderson 2001). These habitats have a mixture of 

vegetation that produces a variety of obstacles within each habitat that scrub lizards must negotiate if 

fleeing predators. 

I captured adult lizards (minimum SVL = 40 mm) by hand or with a slipknot lasso. Once 

captured, each lizard was measured (snout-to-vent) and weighed using a ruler and scale. A global 

positioning system was used to document the capture coordinates to return the lizards to the place of 

capture following running trials (typically 5-8 days). They were kept cool and transported to Georgia 

Southern University animal facility. The lizards were housed in individual 38 liter tanks with one hide on 

top of sandy substrate. Lizards were kept on a twelve-hour light/dark cycle with daily misting and cricket 

feedings every 4 days following day two of captivity. Immediately prior to sprint trials, I marked each 

lizard with reflective stickers or non-toxic white paint on the dorsal side of the shoulders, the pelvis, and 

the base of the tail to aid visualization during digitization of the video recordings.  
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Sprint and intermittent locomotion data collection 

Data were collected by encouraging each lizard to run down either a 45° or 90° angled, cork-

bottomed racetrack, made from particle board inside a room kept at 25°C. Each angled racetrack was 1.9-

meters long with 0.4-meter-high particle board walls. The track’s width started at 0.35 m then tapered to 

0.15 m at the turn (0.5 m) to force the lizards to turn. Each track had green foliage at the end of the track 

as a hide for the lizards to run towards (Figure 1A). Lizards were run once on one track type then returned 

to a holding bag (25°C) for 30 minutes then run again for a total of five trials with 30 minute rest periods 

per lizard. The lizards were then allowed to rest over night before being run on the opposite track type. I 

filmed each trial from above with two high-speed cameras (Megaspeed TM) at 300 frames per second 

(Figure 2).  Video from each camera was spliced together using Video Editor then uploaded into 

MATLAB and digitized using DLTdv8.  

To measure the change in speed due to the turn, the lizard’s running speed was calculated before 

the turn (at 0.9m from the start) and after the turn (at 1.1 m). I measured the mean linear speed for all 

trials at 0.9 m, the mean linear speed for all trials at 1.1 m, and the mean speed from 0.9 m to 1.1 m to 

quantify changes in speed. I recorded the number of pauses that occurred in the following sections of the 

racetrack: 1) from the beginning of the track (0 m) to the beginning of the turn (i.e. 0 m – 0.9 m), 2) from 

the beginning of the turn (0.9 m) and the end of the turn (1.1 m), and 3) the end of the turn (1.1 m) to 1.4 

m. The pauses were recorded up to 1.4 m because to most of the lizards began to substantially slow or

stop between 1.4 m  and 1.9 m at the end of the track. I used the fastest trials with the least number of 

pauses to analyze data related to intermittent locomotion. By doing this, I could measure the affect that 

intermittent locomotion has on speed in the most effective way since simply counting the number of 

pauses in total would not produce usable data on the lizard’s overall speed but would still take into count 

the pause. Each variable is described in Figure 1B. The lizards were kept unfed in the animal facility to 

rest for 24 hours before sprint trials and fed following trials. All procedures followed the GA scientific 

collection permit number 1000545737 and IACUC permit numbers I18020 and I21010.  
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Statistical Analysis 

Few lizards ran continuously during trials. Thus, the data was pared down to 42 trials, from 42 

different lizards, in which the lizards paused a maximum of one time. Paired, or repeated measures 

analyses were not possible due to low sample sizes. Thus, no individual is represented twice in any 

statistical test, and sample sizes vary across tests. I used chi square analysis to compare the number of 

trials with no pauses and trials which did contain a pause before, in, and after the turn. The effect of 

pauses on linear speed and speed of the turn were compared using one-way ANOVAs and t-tests. A 

Tukey HSD was used to confirm the effect of pauses on the speed of the turn. All the data were tested for 

normality and distributions met either the Shapiro-Wilkes or Anderson-Darling criteria for normality. 
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CHAPTER III 

RESULTS 

Number of trials and placement of pauses 

Out of these 628 trials, 602 trails, or 95.86%, contained pauses in at least one location throughout 

the track. Out of the 87 lizards run on the track, only 42 met the requirements for the analysis (trial 

contained one or fewer pauses). The presence and/or absence of pause per trial was examined (Figure 3). 

The angle of the turn, whether 45° or 90°, had no effect on whether the lizards paused before (χ2 = 0.94, p 

= 0.33, DF = 1), in (χ2 = 2.83, p = 0.09, DF = 1) or after the turn (χ2 = 0.38, p = 0.54, DF = 1). Sex had no 

effect on pauses on either the 45° (χ2 = 0.85, p = 0.36, DF = 1) or 90° (χ2 = 0.05, p = 0.83, DF = 1) turn. 

The effect of pauses on linear speed at 0.9 m and 1.1 m 

The average linear speed of the lizards entering the turn at 0.9 m (the start of the turn) and exiting 

the turn at 1.1 m (the end of the turn) did not differ between the 45° and 90° tracks at either location (0.9 

m: F(1,17) = 0.002, p = 0.96 and 1.1 m: F(1,17) = 0.002, p = 0.97) (Figure 4). The number of pauses and their 

placement on the track also had no effect on the average linear speed of the lizards entering the turn (at 

0.9 m) and exiting the turn (at 1.1 m) on the 45° track (0.9 m: F(1,35) = 0.85, p = 0.36; 1.1 m: F(2,36) = 1.44, 

p = 0.25) or the 90° track (0.9 m: F(1,16) = 0.32, p = 0.58; 1.1 m: F(2,24) = 0.36, p = 0.70).  

The effect of pauses on the speed of the turn 

Trials that contained a pause in the turn had the lowest speed through the turn (Table 2, Figure 5). 

Trails without a pause before the turn (and no pause in the turn) had a significantly faster speed of the turn 

than trials that contained a pause in the turn (F(2,34) = 5.40, p = 0.01; F(2,27) = 17.76, p = 0.0001). Likewise, 

trials which contained a pause before the turn also had a significantly higher speed of turn than trials with 

a pause only in the turn (F(2,34) = 5.40, p = 0.007; F(2,27) = 17.76, p = 0.0001). Interestingly, the speed of 
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the turn did not significantly differ in trials with no pauses and trials with pauses before the turn (F(2,24) = 

5.40, p = 0.98; F(2,27) = 17.76, p = 0.99). 

The effect of a pause before the turn (0.9) and in the turn (0.9-1.1) on the speed after the turn (1.4) 

The average linear speed at 1.4 m was significantly slower when there was a pause after the turn 

compared to trials with no pauses or pauses located elsewhere on the track (Figure 6). This was true for 

both the 45° (F(3,25)= 4.81; p = 0.009) and 90° (F(3,20) = 4.41; p = 0.02) tracks. There was no difference in 

linear speed entering the turn (at 0.9 m); (45°: F(1,17) = 0.005, p = 0.94; 90°: F(1,16) = 0.32, p = 0.58) or 

exiting the turn on the 90° track (at 1.1 m); (90°: F(2,18) = 0.11, p = 0.90) regardless of pause placement. 

However, the linear speed at 1.1 m was affected when there was a pause in the turn. Intermittent 

locomotion does not appear to be costly (cause a significant loss in speed) on either the 45° or 90° track 

unless there is a pause in the turn. 
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Figure 1: (A) The design of the 45° and 90° tracks. I defined the beginning of the turn as 0.1 m prior to its 

steepest angle (0.9m from the start). I defined the end of the turn as 0.1 m after its steepest angle (1.1m 

from the start). (B) The speed of the turn was measured between 0.1 m before the turn (0.9 m from the 

start) and 0.1 m after the turn (1.1 m from the start). The number of pauses was recorded and compared in 

each track segment (i.e., before = 0 - 0.9 m, in = 0.9 - 1.1 m, and after = 1.1 - 1.4 m).  
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Figure 2: The track was constructed using particle board with a cork bottom to allow for better grip. In 

total, the track measures 2.0 in length with 0.4 m side walls and a width of 0.35 m which tapered to 0.15 

m halfway down the track (0.5 m) to force the lizards to turn. The high speed cameras were positioned 

above the track to capture a dorsal view of the lizards during each trial.  
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Figure 3: The presence or absence of a pause was not affected by whether the turn was 45° or 90°. (A) 

before the turn, (B) in the turn, and (C) after the turn. The number of lizards used in the analysis is shown 

in each bar. 



16 

Figure 4: Mean linear velocities did not differ between the 45° and 90° tracks at 0.9 m and 1.1 m. The 

number trials and the placement of pauses on the track also had no effect on the mean linear speed of the 

lizards at (A) 0.9 m and (B) 1.1 m on the 45° turn or the 90° turn. The number of lizards used in the 

analysis is shown in each bar. 
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Figure 5: A) Mean speed of the turn in the 45° track (F(2,34) = 5.40, p = 0.01; F(2,34) = 5.40, p = 0.01). B) 

Mean speed of the turn on the 90° track (F(2,27) = 17.76, p = 0.0001; F(2,27) = 17.76, p = 0.0001. The speed 

of the turn of lizards with pauses in the turn also differed significantly from the speed of the turn of 

lizards with no pauses before the turn and of those with one pause before the turn. However, the speed of 

the turn did not significantly differ between lizards with no pauses before the turn and those with one 

pause before the turn (A: F(2,34) = 5.40, p = 0.01; B: F(2,27) = 17.76, p = <0.0001). The number of lizards 

used in the analysis is shown in each bar. 
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Figure 6: The mean linear speed at 0.9 m and 1.4 m (45°: F(3,25)= 4.81; p = 0.01; 90°: F(3,20) = 4.41; p = 

0.02) in trials with no pauses, trials with a pause before the turn, trials with a pause in the turn, and trials 

with a pause after the turn when pause after the turn data is included. There is no significant difference 

between the average linear velocities at 0.9 m on either the 45° or 90° track, however, the linear speed at 

1.1 m on the 45° track was slower when there was a pause in the turn. There was also significant 

difference in the velocities at 1.4 m on both tracks 
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CHAPTER IV: DISCUSSION 

The goal of this study is to quantify the use of intermittent locomotion when navigating a turn of 

either 45° or 90°. I predicted that a turn would influence the number of trials with pauses as well as the 

speed at which lizards negotiated the turn. In 95.86% of 687 trials, S. woodi used intermittent locomotion. 

The location on the track where the lizards paused was not influenced by the turn angle (45° or 90°; 

Figure 3). Pauses in the turn caused the speed to decrease significantly but pauses before the turn had no 

effect on the speed either entering the turn (0.9m) or exiting the turn (1.1m; Figure 5). These results 

demonstrate minimum cost to pausing and infer that intermittent locomotion may provide an advantage in 

predator avoidance when traversing a turn. This conclusion is supported by several previous studies of 

predator-related intermittent locomotion in various other types of animals. Amo et al. (2005) showed that 

intermittent locomotion was heavily utilized by lizards to avoid different types of predators, such as 

snakes and birds, and examine refuge. McAdam and Kramer (1998) demonstrated how chipmunks and 

squirrels use intermittent locomotion when moving towards food caches. The use of intermittent 

locomotion was also shown to enhance vigilance in mustached tamarins (Stojan-Dolar and Heymann 

2010), chipmunks (Trouilloud et al. 2004), degus (Vasquez et al. 2002), and toads (Zamora-Camacho 

2020).   

Number of trials and Placement of Pauses 

Of the total trials (95.86%), scrub lizards used intermittent locomotion in lieu of continuous 

locomotion. Several reasons may explain the frequent use of intermittent locomotion when encountering a 

turn. Pausing either before, in, or after the turn, may give the lizard time to locate the predator (in this 

case the human pursuer) while also stabilizing its field of view and alleviating motion blur (Trouillound et 

al. 2004; Kramer and McLaughlin 2001). In addition to offsetting the effects of “motion blur”, 

intermittent locomotion while evading a predator may also aid in finding alternate routes of escape 

(Stojan-Dolar and Heymann 2010; McElroy and McBrayer 2021). The placement of pauses was not 

affected by the turn angle (Figure 3). This finding suggests that lizards will use intermittent locomotion 
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when presented with a turn regardless of the tightness (or angle) of the turn. These pauses may give scrub 

lizards time to evaluate their environment and determine the best way to avoid obstacles and locate refuge 

(McElroy and McBrayer 2021; Zamora-Camacho 2020). The use of intermittent locomotion may help 

scrub lizards identify nearby refuges or re-conceal themselves on the substrate or by the surrounding 

vegetation (Druell et al. 2019; Higham et al. 2010; Vasquez et al. 2002).  

During flight from a predator, turns may generate confusion about where to go and how to get 

there due to the inability to see past it. Pausing is shown to increase in unfamiliar settings (Kramer and 

McLaughlin 2001; Zani et al. 2009), so it would be reasonable for lizards to use caution when 

maneuvering a blind turn. Pausing in this case would also allow the lizards to determine the most reliable 

route and create alternate routes and/or identify closer refuge once they have completed the turn (McElroy 

and McBrayer 2021).  

Movement can increase the likelihood of being detected by a predator, so many animals use 

crypsis as a defense strategy (Kramer and McLaughlin 2001). Scrub lizards rely heavily on crypsis to 

avoid predators (Orton et al. 2018; Orton and McBrayer 2019), so increases in intermittent locomotion 

while running may give the advantage of blending into the surroundings and losing the threat before being 

detected (Martel and Dill 1995). The brief pause that enhances crypsis may allow lizards a brief period 

when the threat is distracted and thus avoid being detected again.  

The effect of pauses on speed of the turn 

Understandably, pausing should affect the average speed during sprint locomotion, especially 

during a more complicated maneuver such as a turn. My study supports the hypothesis that only trials 

with pauses in the turn would significantly decrease the speed of the turn, while pauses before and after 

would have no effect. This suggest that acceleration, not maximum speed, may be more important to 

escaping predators in scrub lizards.  Scrub lizards reach maximum sprint speeds at 0.4 m from a standstill 

(McElroy and McBrayer 2010). Thus, they are able to rapidly accelerate following a pause making 
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acceleration, not top speed, a critical performance variable for predator escape. Since the turn portion of 

the track is only 0.2 m in total, it would be impossible for the lizards to reach high velocities (Huey and 

Hertz 1984) in such a short distance. Combined with the deceleration caused by turning, and the lizard 

pausing, the distance required to speed up is even smaller. Therefore, high velocities are not reached 

within the turn. This was true for both the 90° and 45° turns. Interestingly, because there was no 

significant difference in the linear speed before (0.9 m) or after (1.1 m) the turn, this further suggests that 

acceleration is more critical in escape performance than turning (or agility) and linear speed in some 

situations.  

Conclusion 

Sceloporus woodi utilized intermittent locomotion over continuous locomotion when navigating a 

45° or 90° turn. The presence of pauses on both tracks is consistent with previous findings. We showed 

that intermittent locomotion may be advantageous for lizards navigating turns. The linear speed did not 

differ between 0.9 m and 1.1 m on either track. Yet, the linear speed at 1.4 m was significantly slower 

than the linear speed at 0.9 m and 1.1 m on both the 45 and 90 track. Thus, there is a cost of the turn 

whereby linear speed declines. Because the speed between 0.9 m and 1.1 m were not different, this 

indicates that acceleration is a more critical variable to escape than speed when combined with 

intermittent locomotion. The speed of the turn was significantly slower when there was a pause in the turn 

for trials with no pauses and for pauses before the turn.  This result strongly suggest that scrub lizards 

accelerate fast enough that using intermittent locomotion may enhance  predator escape. 
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