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ABSTRACT 

Additive manufacturing processes allow for a great degree of flexibility in terms of part production. The 

process is autonomous once the part has started printing in that the operator generally does not need to 

intervene until the part is finished. One issue that this introduces, however, is an inability to determine part 

quality during the printing process. Once a part has started printing, the operator must either wait until the 

part is finished or regularly check on the part during the print to determine the part quality. Using data 

gathered from multiple sensors, a quality score can be used to estimate the part quality at any point during 

the printing process. The development of the score also observed several of the largest contributing ambient 

factors to both the surface roughness and the part porosity. The largest contributors to quality were the 

chamber temperature and the oxygen content for the surface roughness and porosity, respectively. Each 

build characteristic was plotted, and the best fit equations created the quality score. The score generated a 

zero to one hundred scale that can be easily viewed without intimate knowledge of the process. 
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CHAPTER 1 

INTRODUCTION 

 

Part quality has been important in every facet of manufacturing since the very inception of the field. 

For many decades experts have tried to find a finite definition of the concept of quality however this proved 

difficult in that each expert would find a definition somewhat like other but one that was more tailored to 

their ideals. Philip Crosby, who was influential in management and quality theory, defined quality as the 

“conformance to requirements set by not only the producer but also the customer” (Johnson 2001).  On the 

other hand, foundational thinker Joseph Juran defined quality as being achieved when “a finished product 

is suitable for use by its intended audience” (Juran 1998).  The parallel that can be drawn from most, if not 

all, definitions of quality are that the customer plays a large role in the determination of the quality 

requirements. The quality of production in a manufacturing facility determines the number of parts that go 

through the entirety of the process chain along with the number of parts that get scrapped. In additive 

manufacturing, quality is an important part of ensuring that each build done generates a usable part. Quality 

also effects the amount of post processing for parts made with additive manufacturing. Parts made with 

Laser based Powder Bed Fusion (L-PBF) can see large internal stresses or voids depending on the laser and 

build characteristics. These defects reduce the effectiveness of the part by introducing issues such as 

cracking or weakness due to not being fully dense. Reducing these defects is what must be done to work 

towards improving the quality of the build.  

1.1 Primary Research Goal 

The goal of this research is to define a part metric-based quality score for Laser-Powder Bed Fusion 

(L-PBF). At the time of this work, a gap in quality information exists for parts that undergo the printing 

process. More specifically, once a print is started, the part quality is mostly unattainable until the part has 

successfully finished and can be examined through non-destructive testing or by sectioning and evaluation. 

Utilizing various sensors to determine a quality score that allows the user to indirectly analyze quality and 

even predict final part quality. This can then be used to enhance decisions related to production parts; for 
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example, terminating a print because the quality is not within the projected range or adjusting print 

parameters to drive the score to a desired value. The scope of this work was entirely centered on the L-PBF 

of 316L stainless steel powder. The quality score was generated using numerical data gathered from a 

custom sensor package including ambient temperature and humidity in the build chamber.  

Quality is the sum of many different parts for a process, and this is no different in metal additive. 

The quality for a metal additive part is determined through many different quality metrics. Some of these 

metrics are unimportant to some industries and vitally important to others. The scope of the score developed 

in this work was confined to the part porosity and the surface roughness. These two separate quality metrics 

are some of the most identifiable for the purposes of part quality. They also provided this work a view of 

the part quality both internally and externally for porosity and roughness, respectively. These metrics also 

could be easily tested using the measurement equipment at hand and thus were Excellent candidates for 

part analysis. With this work looking specifically at two metrics the score was made expandable to include 

both more sensors and more quality metrics in the future. This would increase the usability of the score by 

making it more applicable to part quality in different production facilities or by increasing the number of 

metrics that the quality is shaped by. 

  Previous work for in process part monitoring in metal additive is almost entirely using per layer 

imaging or thermal imaging. These methods do well when looking for specific flaws such as voids or 

incorrect thermal gradients during the print. However, they have not been used to attempt to predict final 

part quality during the print. Other work has been done using multiple sensors in the metal additive field in 

Directed Energy Deposition and Powder Bed Fusion as a whole (He et al. 2019). This work used both 

imaging and non-imaging sources in conjunction to draw a relationship to part quality from thermal 

gradients from thermal imaging and print bed temperatures. Many of these works cited machine learning 

as an area of interest moving forward but the majority of the work did not entertain the idea of a predictive 

monitoring system. While predicted quality has not been worked on in metal additive, CNC machining has 

been using multiple sensors to predict things such as cutter wear and life. The systems that show the wear 
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on the cutters in a CNC process use many different sensors taking data during the process to determine this 

wear value. Stemming from the aforementioned limitations in monitoring and predictive part quality, 

further investigation was defined through the primary research goal.  

Primary Research Goal 

To collect fundamental data from a conglomeration of sensors surrounding L-PBF in order to develop 

an in-situ quality score to gain insight on part quality at any point during a build. 

 

Stemming from the primary goal of the work, several research questions and objectives were created to 

divide the development of this score into sections.  

1.2 Research Question 1: In-situ Monitoring of Build Aspects 

 Just as all other production processes, L-PBF has many aspects that effect the final part quality. 

Aspects including oxygen content or print layer temperature can have a large impact on the part such as 

increased surface roughness or internal stresses. Prior research and tests on individual effects of these build 

characteristics have been performed and thus information is available on how they affect quality (Sekhar). 

The simultaneous monitoring of several characteristics at once has been done comparatively much less in 

this field. By monitoring several aspects an understanding of the relationships to part quality can be drawn 

and a predictive score can be made. The comparatively limited knowledge on simultaneous multi-aspect 

monitoring guided the creation of Research Question 1 (RQ1). 

Research Question 1 

How can multiple build aspects that affect part quality be simultaneously monitored during a print?  

 

 There are several methods of taking data on multiple aspects during a print. Hypothesis 1 assumes 

that an external monitoring system needs to be both developed and integrated onto the additive machine 
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being used. This counterbalances the short comings of the machine being used in that any aspect that the 

machine cannot monitor can be added to this external system through an additional sensor. This also allows 

for a degree of separation between the printing process and the data collection process so that if any glitches 

were to happen with the additive machine’s software, the data can still be collected without interruption.  

Hypothesis 1 

In order to meet the overall goal of the work, a custom monitoring system must be developed, coded, 

and implemented to the machine. 

 

1.3 Research Question 2: Equal Comparison of Aspects 

The addition of the sensor package to the L-PBF process provided the conduit that led to the 

development of the quality score through the collection of the aforementioned fundamental data. However, 

before the quality score can be developed, an experiment must be designed that allows for a direct 

comparison between all aspects after analyzing the part quality. The aspects of interest are, for the most 

part, dissimilar to one another. This dissimilarity causes issues in making an equal comparison between all 

aspects. This issue created the need for Research Question 2 (RQ2) to be asked.  

Research Question 2 

How can each aspect’s effect on each part quality metric be analyzed equally even though the metrics 

will have different scales, ranges, and units? 

 

To determine the part quality, parts must first be printed and then analyzed. This raises the question 

of how to design a part where direct comparisons can be made to different part quality metrics for each 

build aspect. This drives the creation of Hypothesis 2.1. Apart must be designed that provides information 

on the change in both surface roughness and porosity in relation to each build characteristic. The part must 
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also acknowledge that surface roughness and porosity are two dissimilar metrics and thus must be designed 

to account for this while allowing for an equal comparison to be conducted. 

Hypothesis 2.1 

A part must be designed that allows for a look at the change in build aspects versus the change in the part 

quality in order to compare the effects of the build aspects on the final quality of the part. 

 

Part quality in L-PBF is the total sum of many metrics such as surface roughness, porosity, and 

internal stresses. These metrics are directly affected by the aspects that can be changed during the print. By 

adding a sensor package that records in-situ data, the build aspects can be compared to post print part quality 

metrics. The two metrics desired by this work are the surface roughness and the internal porosity. From 

prior research it is know that a large contributor to part quality in terms of surface roughness and porosity 

is the oxygen content in the chamber (Wirth et al. 2021). Hypothesis 2.2 uses this information and assumes 

that out of the four aspects being tested the oxygen content will provide the largest change to part quality. 

Hypothesis 2.2 

The oxygen content will show the largest relative change to part quality when compared with the changes 

from the humidity and the two temperature characteristics. 

 

1.4 Research Question 3: The Introduction of a Quality Score 

The concept of predictive quality has previously been used extensively in traditional 

manufacturing. Mills and lathes have been using this for the determination of tool wear. In the field of metal 

additive however, this concept is just newly being explored with the emergence of work in in-situ 

monitoring (Li et al. 2019). The effects of being able to predict the part quality is innately useful to the 

process. By predicting part quality, processes can be improved in terms of consistency and material usage. 
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The lack of the involvement of predictive quality determination in this field lead to Research Question 3 

(RQ3). 

Research Question 3 

How can a robust quality score be calculated to provide a predictive view of part quality? 

  

With part analysis comes the influx of information about the part and thus the ability to use that 

information to compare each aspect change on part quality. By comparing each aspect with respect to one 

another, the relationships that form between build aspect and part quality can be observed. These 

relationships form the base of Hypothesis 3. Through the observation of each aspects’ relationship to part 

quality, they can be their own score which, when combined, forms the overall quality score. 

Hypothesis 3 

The comparison made during the analysis must be used to weight each aspect’s in-situ value to calculate 

individual scores that combine into the overall score. 
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Table 1.1: Research Question 1 

Research Question 1 

How can multiple build aspects that affect part quality be simultaneously monitored during a print?  

Hypothesis 1 

The use of an external monitoring system that can be integrated onto the additive machine will be 

required. 

Methods 

A multi-sensor data collection package will be developed to record data of interest from the additive 

build: 

● Chamber Temperature 

● Chamber Humidity 

● Oxygen content 

● Print Layer Temperature 

Impact 

Moment-to-moment data will give an understanding to the impact on quality based on post process 

analysis. 
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Table 1.2: Research Question 2 

Research Question 2 

How can each aspect’s effect on each part quality metric be analyzed equally even though the metrics 

will have different scales, ranges, and units? 

Hypothesis 2.1 Hypothesis 2.2 

A part must be designed that allows for a look at the 

change in build aspects versus the change in the part 

quality in order to compare the effects of the build 

aspects on the final quality of the part. 

The oxygen content will show the largest 

relative change to part quality when compared 

with the changes from the humidity and the two 

temperature characteristics. 

Methods Methods 

A tiered part will be designed that allows for the 

variable at hand to be changed to multiple levels thus 

providing a look at the change in part quality across 

multiple levels per print. 

Post print analysis on part quality will be 

conducted to collect information on part quality 

which can be used to draw relationships to 

collected data. 

Impact Impact 

An effective experiment design allows for the later 

analysis of part quality to be streamlined   

A comparison between the part quality and the 

data collected during the experiment is required 

to develop the weighted calculation for the 

quality score. 
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Table 1.3: Research Question 3 

Research Question 3 

How can a robust quality score be calculated to provide a predictive view of part quality? 

Hypothesis 3 

The comparison made during the analysis must be used to weigh each aspect’s in-situ value to calculate 

individual scores that combine into the overall score. 

Methods 

Use the discovered relationships to generate a quality score calculation that uses in-build data to predict 

part quality. 

● Relative change in quality versus build characteristics 

● Plotted data for the use of trendline equations 

Impact 

By using the gathered data and analyzed information the score can be made to predict the final quality 

during the print. 

1.5 Thesis Format 

The structure of the following work follows the previously shown outline with chapter 2 discussing 

the previous work in this area more in depth along with bridging the differences between the current and 

previous research. Chapter 3 details the methodology of the current work including experimental setup, 

experimental procedure, and finally how analysis was conducted. Chapter 4 covers the results and 

discussion. These chapters give insight into what the relationships found mean and go into the final 

development of the quality score along with how the robustness of the score was determined. Finally, 

chapter 5 reflects on the conclusions gathered from the conducted work. Along with these conclusions, 

avenues of research that the work can be taken are also discussed.
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CHAPTER 2 

LITERATURE REVIEW 

A robust production quality is key to the implementation of metal additive manufacturing in 

industry. Currently, metal additive has a gap in the quality monitoring of parts as once a print has begun, 

the part quality must be analyzed after the part is finished. The inability for an engineer or operator to know 

if the part is within desired quality metrics prior to post print analysis makes this field lacking for industry 

use. This gap in application provides a research area for the creation of reliable methods of in-situ data 

monitoring for the use of predictive part quality.  

2.1 Background Research 

The field of data fusion lends itself to many applications. The industries that most commonly 

conduct research in this field include robotics, medical diagnostics, pattern recognition and many others 

(Varshney 2000). Research in data fusion previously covered the methodology of the fusion itself. The first 

methods for conducting the fusion of data were centralized and distributed data systems (Castanedo 2013). 

Centralized systems were optimal in the case that the cost of data transmission was zero and the computer 

resources needed were available. In this system the data is independent and normally distributed to the 

predicted value. The centralized method can introduce false measurements and be very computationally 

intensive when many aspects are tracked. These issues made the centralized method not as useful in a 

practical capacity thus for the most part distributed systems were used. Distributed systems come with other 

drawbacks such as the need for data alignment or the presence of out of sequence data measurements. This 

method however does work more practically in that it does not use the same unrealistic assumptions that 

centralized systems use. The work done by Hackett et al. provides a look at several more fields of data 

fusion and some challenges they face (Hackett 1990). Out of the several fields covered the most closely 

related to the proposed work was sensor modeling. There is one main issue that is often found when having 

multiple sensors collect data on a process. This sensor package often needs something to correct for errors 

or imprecise measurements collected during the process. This correction method can be as simple as using 

a logical sensor system. This system also helps with correctly aligning the data as the sensors may not all 
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collect data at the same interval. These aspects both need to be considered when designing the sensor 

package in the process as the data is both synced in the code and corrected using data analysis to determine 

data that is introduced because of the sensor and not the build itself. The integration of systems such as this 

can previously be seen in CNC machining operation to detect tool wear and other aspects regarding the 

subtractive process (Bray 1997). Integration through subtractive processes proved the usefulness of data 

fusion for use in industry as a method of process monitoring. This previous work provided both a good 

foundation for the field as well as a path forward for other researchers for the development of models for 

data collection in the comparatively more cutting-edge field of additive manufacturing. The potential issues 

one might face when conducting research in the field of additive production were yet to be discovered as 

the conceptual research had only implemented the actual use of either single or multiple sensors in 

subtractive processes. These problems were found when the research moved to using sensors in additive 

which initially involved using imaging sources to get layer-wise scans of the builds or parts. 

2.2 Image Processing 

The introduction of both plastic and metal additive manufacturing into industry allowed production 

to become more flexible in the parts and geometries produced. One of the drawbacks of both techniques is 

that the quality of the part is often a mystery during the actual build process. This is seen in the plastic field 

but is much more apparent in the metal additive field. Thus, there was larger industry interest for in-situ 

process monitoring using data fusion (Schmidt et al. 2017). The research in this field was needed by the 

additive manufacturing industry even just a small time ago in 2016 (Everton et al. 2016). By this time the 

need for a readily available method for implementing in-situ process monitoring was important and thus 

drove research in the field. At the time this was often done using one collection method or sensor type 

during the process. 

The most common research done at the time involved the use of image processing to take layer-

wise pictures or scans of the builds which can then be used to detect anomalies in the parts. The first research 

done involved the use of pictures of individual layers. This was often either done on each layer or only on 
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set sections of the part to attempt to detect process defects or anomalies. New work in this area expanded 

on using image processing by taking the scans instead of pictures of each layer and comparing the layer 

with the same layer in the CAD model to see the defects versus the ideal parameters (Lin et al. 2019; 

Kleszczynski). It can also be used in generating a 3D CAD model of the defect or anomaly which can then 

be used and analyzed on its own. Work has also been conducted using different imaging types such as 

thermal imaging. This is to not only get scans of the layers but also to gain insight through the thermal data 

of the builds (Esfahani ; Zeng ; Chivel and Smurov 2010). Thermal data is important to the additive 

manufacturing process and is especially important to metal additive processes (Raplee et al. 2017). This 

allows for more data to be considered for use in anomaly detection. A large problem in the advent of image 

processing was the method of handling all the images or data taken throughout the build. This issue allows 

a new section of research to be conducted to attempt to solve this problem. 

The issue of data management was a large consideration when attempting to implement data 

collection and control to additive manufacturing. This gap in the understanding of data management   

research was initially resolved through the development of new models for handling the data gathered and 

the refinement of the methods used for data collection to improve anomaly detection (Sheykh Esmaili). The 

first models were centralized, and distributed models which either took data from many areas and joined 

them into a central system or took the data to several distributed servers. These methods were generalized 

methods and thus newer research needed more specific or robust methods of collection and organization. 

The prevalence of image collection drove a need for improvement on the models used to collect this data. 

Esfahani et al. developed a method to improve on the layer-wise image collection which was detailed as an 

auto-regressive image framing network (Esfahani). This network aid in the detection of anomalies by taking 

consecutive sets of thermal images. This set of images can be used to detect anomalies more effectively 

when compared to the previously used methods. This method also alleviated the issue of the previous 

methods which can only collect single images and thus gave local anomaly detection. The work done in the 
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image collection and processing field paved the way for more sophisticated methods which can analyze 

aspects simultaneously that cannot be seen using imaging alone.  

2.3 Multi-Sensor Data Fusion Research 

Recently, research in the field of in-situ quality monitoring of additive manufacturing has evolved 

to using multiple sensors to collect the data. These sets of multiple sensors can be a mix between the 

previous imaging techniques or solely several non-imaging data collection types. Non-imaging data 

collection includes temperature data, oxygen content, humidity data, or any other data that does not use an 

imaging source for collection. The non-imaging field has been a subject for research as it can allow for the 

determination of part qualities that image processes do not allow for. These aspects have been explored to 

gain an understanding of the relationship between the data the sensors can read versus the part parameters 

post-build. Research was done to discover the relationship of how build parameters can directly affect the 

part quality and the relationship of these to the other aspects of the process (Mani et al. 2015; Craeghs et 

al. 2010; Amado). A clear example of this is how the quality of a part in L-PBF or Directed-energy 

Deposition (DED) are dependent on the melt pool dynamics which is in turn related to the laser power; an 

example of this can be seen in Figure 2.1. The importance of determining part aspects such as porosity or 

surface roughness makes the monitoring of the related aspects vitally important to the improvement of the 

process (Zhang, Liu, and Shin 2019).  
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Figure 2.1: DED Melt Pool Dynamics  

(Esfahani) 

 

 

2.4 Machine Learning 

Another aspect that was observed was that by controlling aspects such as build platform 

temperature the residual stresses in the build can be relieved and thus lends itself to being a controllable 

part parameter. Other researchers discussed the use of knowing the effects of melt pool dynamics on the 

part parameters in DED and PBF processes (Chua, Ahn, and Moon 2017; He, et al. 2019). A framework 

was proposed to use the relationship between the part quality and the melt pool dynamics. This framework 

consisted of a single layer, multi-layer, and final inspection. These inspections allow for a look at the part 

during the print. Laser cladding was also looked at for these types of relationships between part parameters 

and the data that can be monitored. For laser cladding, three aspects proved to be important which included 

part geometry, power density, and finally surface oxidation (Bi, Sun, and Gasser 2013). Many of the metal 

additive methods have issues with the same aspects however, L-PBF will not have as much of an issue with 

the oxidation as the chamber is a very low oxygen environment. By using this information on the 

relationship between part parameters and build parameters, researchers found that by controlling build 

parameters the process can be controlled. By combining this information with the in-situ part monitoring 
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this allows for the control of the part quality throughout the process. The research done in this field 

expanded from the previous image processing to systems of heterogeneous sensors to allow for more 

information about the current build. This information can be used in conjunction with each aspect’s 

relationship to different part parameters to directly control part quality. Many researchers sought to improve 

on their data found in this field by improving the degree of process monitoring which was often done using 

machine learning. 

Much of the research done both for imaging and multi-sensor data collection had one aspect in 

common in that many of them included the desire to branch into machine learning. By implementing 

machine learning the systems can be changed based on the previous data and learn to operate more 

effectively in the detection of process anomalies. Some research has already been done in this area both for 

image processing and multi-sensor systems. An expansion of work was seen in image processing by the 

addition of neural networks which can learn to detect processes (Zhang, Liu, and Shin 2019; Snow et al. 

2021; Shevchik et al. 2019). Many of the research avenues of more recent times included putting the process 

monitoring of these systems online (Vandone, Baraldo, and Valente 2018; Rao et al. 2015). The transfer of 

the offline sensor data can be moved online to allow for constant process monitoring. Another way to 

implement the improvement of the process was to incorporate a feedback loop to the system. This loop 

allows the system to change based on the previous data taken. Another technique of machine learning was 

using the information available from the senor package on the system to use data mining to attempt to 

improve the embedded feedback loop (Grasso). Researchers in the field of data fusion and monitoring of 

additive processes are still currently working on machine learning to allow for process improvement based 

on previous data points.  

2.2 Presented Thesis Work 

The goal of this work is to expand upon the past research in the field and integrate a single-novel 

score for quality control. The work is done specifically on the L-PBF process as comparatively few 

researchers have touched on this area when compared to the amount of research on DED or PBF. 

Exploration in the multi-sensor field was conducted and thus the use non-imaging systems to collect data 
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was chosen. The non-imaging collection method includes the development of a heterogeneous sensor 

package to include temperature sensors, oxygen content sensors, and chamber humidity sensors. Non-

imaging was chosen because of the relative ease of acquiring sensors for the collection package as well as 

the gap in work of monitoring several build characteristics at once that is present currently. The sensor 

package includes many data streams to allow for information about the build to be collected and analyzed 

for the purposes of process monitoring. Data from this collection package was used to detect build 

anomalies or the onset of anomalies. The detection of build anomalies will allow the operator or engineer 

to stop a build based on the allowed criteria for the build.  Allowed criteria, in this case, include the amount 

of surface roughness or porosity present in the part. By stopping the build early when the part is not within 

the desired range both time and material will be saved. Looking at multiple part quality characteristics, 

which is currently rarely done in the metal additive field, allows for a move to a holistic look at in-situ part 

quality. Another aspect of great interest is the development of a quality score calculation which allows the 

simplification of monitoring the process. Thus, the score allows operators or observers with less technical 

knowledge insight about the projected part quality. This score also is able to be subdivided to allow the 

engineer a detailed look about build aspects of the course of the print. The development of a score that 

simplifies quality while also allowing for a breakdown into individual data streams has not been done in 

the metal additive field. By allowing the engineer to view data over the course of the entire print, problems 

involved with the build can be diagnosed thus allowing for directed process improvement. The current work 

looks specifically at porosity and surface roughness with an additional goal to make the sensor package and 

quality score easily scalable. This allows the package and score to be changed to suit the needs of the 

process or engineering team. 
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CHAPTER 3 

EXPERIMENTAL METHODS 

Several experiments were conducted for the purpose of gathering quantitative data that were then 

compared to post print part data. This comparison provides the information that is the basis of the quality 

score. A large part of the setup of the experiment was determining how to collect the desired data and 

deciding what data should be collected. 

3.1 Experimental Preparation 

 Prior to performing the experiment, several things needed to be determined with the most important 

of these being what data should be collected. The build aspects selected included chamber temperature, 

chamber humidity, print layer temperature, and finally chamber oxygen content. All these variables were 

changed and gathered during the experiment and thus allows insight into the relationships they have with 

the final part quality. Several of these variables are known to have a great impact on the L-PBF process 

such as oxygen content. (Wirth, et al.) The oxygen content in the chamber is a representation of how much 

argon is filling the chamber and thus how much shielding gas the process has and thus how protected the 

melt pool is from particulates. These main particulates in the L-PBF process are the soot coming off the 

melting process which can cause scattering of the laser. The print layer and chamber temperatures give 

insight into the effectiveness of the melting process at higher and lower temperatures. These temperatures 

effect the thermals of the surrounding area and at the plate which in addition to the thermal gradient of the 

laser change the part quality. A large presence of humidity in the chamber can cause the metal powder to 

clump and thus resulting in poor print quality. These aspects also were changed during the print either by 

the additive machine itself or through other means.  

The first research question motivated the development of a multi-sensor data collection package. 

This multi-sensor data collection package was integrated to the machine and used to monitor all of the 

sensor data streams. This package was developed using an Arduino Uno microcomputer. This allows the 

sensor package to be run separately from the additive machine itself. A pictorial representation of how the 

sensor package, machine, and data collection computer can be seen in Figure 3.1.  
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Figure 3.1: Relationship Schematic 

The Arduino allows the package to be a self-contained item that directly transmits data to an 

external program for later analysis while also reducing the chance for the data stream to be interrupted 

because of any computer or software issues from the data collection computer. This package uses its own 

power supply to reduce the responsibility of the computer to just putting the collected data into an Excel 

file for later analysis and calculation of the quality score. A visual representation of the sensor can be found 

in Figure 3.2. The sensor from this package is integrated to the additive machine to record their specific 

data streams.  
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Figure 3.2: Sensor Package 

 Each sensor had its own data stream and, subsequently, its own code that needed to be written. All 

the codes were written separately and then collected into a singular main code for the sensor package. Each 

sensor was tested individually, such as leaving the humidity sensor for several hours and comparing its data 

with known values from the room, to ensure the validity of their values. The addition of a rolling average 

for each of the data streams was implemented. This decision was made after looking at the data stream 

values and observing that some of the sensors were providing measurements that were required to be more 

stable. Thus, each of the streams were put into a rolling average calculation to improve this stability.  

 The second most important aspect prior to conducting the experiment was how to create a part that 

increases the amount of data while producing useful data for later analysis. This was done using a vertically 

tiered part. A visual representation of a printed part can be seen in Figure 3.3.  
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Figure 3.3: Experiment Part Design 

The part design shown above reduces the overall printing by removing the need to each build aspect 

level to have a separate build. During the print the build aspect was modified to different values depending 

on the stage of the build. The tiered design of the part allows for clear separation of the different build 

aspect levels and thus allow each part to represent all three aspect levels. The vertical dimension was vitally 

important to the time the build takes as the X and Y movement of the machine is incredibly fast, but the Z 

movement is slowed because of the need to recoat more powder on the build volume. The height also was 

limited to no larger than 1.2in as any larger and the parts would not fit within the polishing molds. The 

height was set at 0.6in to allow for 0.1in of sacrificial supports to be added to reduce wasted material when 

the parts were cut from the build plate. The parts took 5.5 hours per print and as such the vertical height of 

the parts remained at a total of 0.6in. 

 Another concern that was addressed prior to the experiment was how to change build aspects during 

printing. Some of the aspects were changed by the additive machine such as the print layer temperature and 

oxygen content. The additive machine allowed for the print layer temperature to be fully automated. The 

L-PBF machine that was used for the experiments allowed the bed temperature to be changed according to 

the height that the build was at. Thus, the bed temperature was set to change at each of the notches between 

tiers. This in turn increases the temperature at the print layer. However, it was not a one-to-one change as 
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the farther along in the build the further the build plate heater was to the print layer and the more metal 

powder present to absorb the heat change. This did not present itself as a major issue as the values that were 

recorded by the sensor package can still be used to gain a comparison between print layer temperature and 

final part quality. The oxygen content was adjusted using the inert gas flow meters on the additive machine. 

By adjusting the inert gas flow valve the amount of argon gas input into the system was metered. The 

pressure inside the chamber remains constant because of the constant flow of gas leaving the machine. By 

adjusting the flow of the inert gas, the oxygen content was lowered during the print. This value was read 

by the additive machine and adjusted to the desired amount of oxygen per part section. The onboard 

software for the additive machine had records of the oxygen sensor values and this was going to be the 

source of the moment-to-moment data for analysis. The motivation behind this choice was that the oxygen 

sensor that the machine itself uses was much more precise and granular and it was thought that the records 

could easily be removed from the machine. This was not the case after the print; however, the oxygen was 

closely monitored and thus the oxygen content remained within ±0.05% of the desired values. 

 The chamber humidity and temperature were both very difficult to adjust as something needed to 

be added to the chamber to adjust these values. For the chamber humidity a dehumidifier was added into 

the chamber which can remove the already present humidity in the chamber, which was partially a product 

of the relatively humidity in the room along with the humidity of the inert gas that was added to the chamber. 

The chamber temperature was adjusted using a heat gun which was set to produce as little airflow as 

possible to prevent any issues with the metal powder. Both appliances were almost impossible to adjust 

during the print without opening the chamber which would remove all the argon that was pumped in to 

remove the oxygen. In turn another Arduino based adjustment package was used to remove this issue. This 

Arduino was coded to take the sensor values from the data collection sensor package and use that 

information to turn a relay on and off which turns the power to the dehumidifier or the heat gun on and off 

according to the setpoint of the part tier. This setpoint was manually adjusted between each section of the 

print and thus this process was not entirely automated. A visual representation of the adjustment package 

setup can be seen in Figure 3.4. 
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Figure 3.4: Adjustment Package 

The code for the adjustment package takes the data from the main sensor package and compare the 

read value to a desired setpoint. This allows for a level to be set for an aspect and in turn determines if the 

current value was more or less than the desired setpoint. The aspect being monitored changes the 

requirement of being below or above the setpoint. In the case of the chamber temperature, the desired value 

is above the setpoint while the chamber humidity can be either above or below depending on the device 

used to change the humidity. This then sends a signal to a relay to turn on which in turn allowed the power 

to flow to the device used to raise or lower the build aspect. The package was used for a single aspect at a 

time and only for either chamber temperature or chamber humidity. While it only changes one aspect at a 

time the code and part of the wiring can be duplicated to allow for both chamber aspects to be read, set, and 

changed during the print.  
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3.2 Experimental Procedure 

 To gain insight to the relationship between the build aspects and the final part quality metrics an 

experiment was done for each build aspect. These experiments used the previously designed parts from 

Figure 3.3. The setup for the experiments included 30 of these parts along the middle of the build plate. A 

visual representation of the build setup can be seen in Figure 3.5. Each of the parts were oriented to one 

another so that no parts are blocking the recoating path of another part. This prevents a ripple effect that 

can often be seen when a part fails in front of another part thus damaging the recoater blade and causing 

subsequent parts in the path to fail. A gap of 0.1in was added between the build plate and the bottom of the 

part to add supports to reduce the amount of lost part material when cutting the parts off the build plate post 

print. The idea to use a total of 30 parts was done to make the statistical analysis more effective once all 

parts were printed.  

 

Figure 3.5: Build Setup 

Once the build packet was designed and uploaded to the machine, the build aspect that was being 

changed during the experiment was adjusted to the point of its determined range that corresponded to the 

bottom section of the part. A table with all build aspect ranges can be seen in Table 3.1. These ranges are 

vital to comparing each characteristic’s overall effect on part quality. Thus, these ranges are also vital to 

the determination of the largest contributors to part quality for both the surface roughness and porosity.  

  

Recoater Movement 
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Table 3.1: Build Characteristic Ranges 

Part Tier Print Layer Temp Chamber Temp Chamber Hum Oxygen Content 

Units °C °C % % 

Top 37.40 46.18 15.96 0.2 

Middle 34.23 37.57 16.28 0.6 

Bottom 29.66 26.89 16.38 1.00 

 

Once the aspect was at the correct value for the first tier of the part, the print began. The amount of 

monitoring was different for each of the build aspects being observed. In the case of the oxygen content 

experiment the build had to be closely monitored to ensure that the tiers stayed close to their respective 

values. Once the oxygen was below 1.0% the amount of variability was greatly reduced and thus needed 

less intervention. This reduction in variability was an effect of the machine used for the experiment as it 

switches to a more precise sensor below 1.0% which increased the steadiness of the reading inside the 

chamber. The more precise oxygen sensor on the machine more finely controls the inlet and outlet valves 

and thus the same variability reduction effect was also seen on the sensor added to the machine by the 

sensor package. 

Once the parts were finished printing, post print procedures were conducted starting with labeling 

the parts according to their position in the build volume and then to remove the parts from the build plate. 

The parts were labeled according to their position on the build plate for safety later during the analysis of 

the parts. Labeling the parts provides an explanation if several parts that had the same label showed skewed 

or outlier data. As an example, if all the parts labeled 3 for the four experiments showed information 

drastically different from the other 29 parts, then perhaps the location on the build plate changed these parts 

and this difference could be noted. 

3.3 Part Analysis 

 Once the parts are separated from the build plate the final part quality was analyzed. The two-part 

quality metrics that were looked at were porosity and surface roughness across each of the part tiers. By 
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looking at these quality metrics across each of the part tiers, a relation between each build aspect and the 

final part quality metrics can be drawn. The importance of surface roughness to part quality is that for some 

applications a low surface roughness is required. Thus, parts that don’t meet that requirement either get 

scrapped or go to post-processing to get to that required roughness. By monitoring the roughness and 

bringing the process to a point at which the roughness can be maintained below a certain level, less parts 

would need post-processing. The porosity of the part important to the determination of the final part quality 

along with the surface roughness. For parts made using metal additive, the porosity greatly affects the final 

determined part quality. Porosity is a measure of the number of voids and pores in a part and can either be 

its best when near zero, such as for the aerospace industry, or when inside a range that is above zero, such 

as for dental implants. Bland et al. stated that the most common way of improving the porosity is to increase 

the laser power to aid in the melting of powder. (Bland and Aboulkhair) However, the work that was 

conducted aimed to use non-imaging data streams on the build characteristics to improve both surface 

roughness and porosity. This allows for the changing of more than just the laser power to improve the 

porosity and thus gives more options to the process improvement. 

The surface roughness of the tiers is found using a Keyence VR-3000 3D Macroscope. This 

measurement device allows for each part’s non-notched surface to be scanned and then digitally post-

processed which included leveling, cropping, and the removal of any anomalies that were not from the print 

itself. The macroscope was then used to acquire the average surface roughness (Sa) of each tier and then 

this data was exported to an Excel file for all 30 parts of each build aspect.  

 Finding the porosity required the middle of the parts to be viewable and thus requires more work 

than the surface roughness. This work was represented by the addition of polishing to gain access to the 

internal structure of the parts. Out of the total of 120 parts, 90 were mounted using MetLab quick set acrylic 

epoxy molding compound. Each part was unmolded after the 10-minute cure time was finished. The design 

of the parts put the total height well within the maximum 1.25in mold size. Once all parts were mounted in 

epoxy they were relabeled, separated, and organized to prevent any mixing of the different aspects. The 

polishing was done on a Pace Technologies NANO 1000T automatic grinder and polisher which can polish 
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up to six parts at a time. All parts went through several polishing steps which included 400 grit, 600 grit, 

1200 grit, and finally 0.3-micron polishing. After polishing was completed each set of parts was analyzed 

using an Olympus BX35M microscope. While under the microscope the parts were recorded, seen in Figure 

3.6, and scanned for porosity percentage across each tier. This was done by taking a line of pictures with 

one picture at each section. Keeping the pictures in the same line was done in an attempt remove any user 

bias as the line of images were as strictly vertical as possible. This line was either relocated in the case of 

heavy anomalies such as many scratches or modified in the case of very few scratches. In the case of a light 

number of anomalies, such as one scratch on one section image, the line was deviated as little as possible 

to avoid said anomalies. These images were then analyzed using the on-board software to give a porosity 

percentage. These values were recorded along with the surface roughness in Excel. 

 

Figure 3.6: Porosity Collection Diagram 

All the data gathered from both the macro and microscopes were used to numerically analyze the 

printed parts. The motivation when conducting the numerical analysis was to have an consistent comparison 

between all parts. This was done by observing the difference between each tier of the part for both build 

aspects and final part quality metrics, which in the case were the porosity and the surface roughness. By 
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looking at the amount of difference between tiers, in this case represented by a percentage change, the 

surface roughness and porosity can be compared even when the two have entirely different units. This also 

allows for a look at the largest contributors to quality given the design of the experiment would not 

investigate inter-characteristic relationships. All the printed parts in an aspect set were first looked at 

individually to determine if any outliers were present and, if present, the label on the outliers were marked 

to determine if any of the build plate positions were generating more outliers. After individually 

determining any relationships between position and outliers, each set of data was transformed for the 

calculation of the quality score. This was done by averaging the values for surface roughness and porosity 

at each section respectively. These values were plotted and a trendline was fit to the curve. This trendline 

gives the equation for each data set for both surface roughness and porosity which then was used in the 

quality score. These equations also were used to find a correlating value for the minimum and maximum 

part quality which were used to normalize the surface roughness and porosity quality scores prior to the 

total quality score. 

3.4 Challenges Encountered 

The largest challenges encountered included machine issues along with trouble developing both 

the sensor package and the adjustment package. The L-PBF machine used for the experiments had issues 

just before the experiments were conducted. This caused a large delay in the conducting of the work 

required for the final goal of the thesis. The main issue that caused the delay was the failure of the scanning 

system that moves the laser in the X and Y axis. This issue was not solved until a new scanner was installed 

which then allowed the thesis work to resume. 

When beginning the work for this thesis it was known that an Arduino was a great route to take for 

creating the sensor package, but I had no experience in coding in any language at the time. This created the 

challenge of learning how to use and code for the Arduino microcomputers. By not have previous 

experience in coding, the development of both Arduino based packages took longer than expected. This, 

however, was resolved over the course of the thesis work as each step taken toward the final goal iterated 

the sensor package until the desired information can be gathered during the experiments. The adjustment 
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package was coded and assembled much more quickly as the development of the sensor package gave much 

needed practice and experience in both areas. 

An issue was encountered during the experiment on the humidity’s influence on part quality. When 

printing the parts, the expected humidity was assumed to be below the ambient humidity in the room but 

near that value. This, however, was not the case because the air in the room was already holding a large 

amount of moisture when compared to the argon gas that comprised the inert flow into the machine. The 

argon gas was dry when being pumped into the machine and thus rather than the expected humidity of 60% 

the actual humidity was 16%. This added an additional problem in that the already extremely low humidity 

of the gas made it very difficult to remove more humidity. This caused the range of the humidity data to be 

very small at just a change of 0.42% from bottom to top. The data for the humidity was still used because 

of the comparison between the change in characteristic and change in part quality. This caused an issue 

with the influence that the humidity had on the individual and overall quality scores. This was solved using 

normalization prior to the summing of all data streams into the individual scores. 

  



36 

 

CHAPTER 4 

RESULTS & DISCUSSION 

 

Post analysis data of the parts provided information about how each of the build characteristics 

affect the final part quality for surface roughness and porosity. This data also produces the equations 

required for the creation of the quality score.  

4.1 Print Layer Temperature 

From prior work the print layer temperature was expected to have a positive result on both aspects 

of the final part quality being observed. (Di Cataldo) The hypothesized result was that the increase in print 

layer temperature reduces the surface roughness and porosity thus improving final part quality. This was 

not the case for the print layer temperature once the printed parts were analyzed. The observed data showed 

two different cases for the surface roughness and the porosity.  

The information collected from the surface roughness measurements showed that the print layer 

temperature saw a direct relationship with the surface roughness rather than the expected inverse 

relationship. As the print layer temperature was reduced from top to bottom the part saw a reduction in the 

overall surface roughness. This relationship can be seen graphically in Figure 4.1. 

 

Figure 4.1: Print Layer Temperature Average Area Surface Roughness (Sa)  

With this information, to get the desired best surface roughness, which for this case was the 

minimum surface roughness, the print layer temperature needed to be set at its lowest temperature of 100°C. 

The potential cause of the difference in the hypothesis and the actual data was that the increase in 
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temperature caused the powder to have less of a temperature differential from the laser. This causes the 

laser to melt the powder more easily, however this can also cause the laser to melt adjacent powder. The 

resulting surface roughness increases because of the laser melting powder outside of its controlled spot size 

which doesn’t follow the same uniform melting pattern of the powder typically being melted.  

The porosity showed a much different relationship to that of the surface roughness. In reference to 

the expected relationship, the print layer temperature followed closely to what was expected from prior 

work. As the print layer temperature was reduced from the bottom to the middle section and then from the 

middle to the top section, the porosity saw a decrease of 20.2% and 5.5% respectively. This relationship 

can be seen visually with Figure 4.2. 

 

Figure 4.2: Print Layer Temperature Average Porosity (%) 

As the increase in print layer temperature was conducted the porosity was expected to reduce which 

follows the results of the work. Parallels can be drawn from previous work done on the melt dynamics 

between the laser and powder. (Di Cataldo) The most important of these is that the less of a temperature 

differential between the laser and the powder the better the porosity can be. The lowered temperature 

differential caused the laser to more easily melt the powder which in the case of the porosity showed an 

improvement in part density and thus part quality. For the surface roughness the decrease in temperature 
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difference reduced the part quality by allowing the laser to melt adjacent powder which would not follow 

the same melt dynamics and thus produce a worse surface finish.  

Both part quality metrics were plotted not only to get a visual representation of their relationship 

to the build characteristics but also to get a trendline for both surface roughness and porosity. The trend 

equations for these trendlines form the first part of the quality score for the print layer temperature. The 

surface roughness had a high R2 value of 0.9841 with a linear trendline. This was different for the case of 

the porosity in that the linear trendline fit well but when an exponential trendline was introduced the fit was 

even better with a R2 value of 0.8923. These trendlines were used to both find the minimum and maximum 

values for the print layer temperature while also allowing for incoming data to be transformed along both 

curves. 

Table 4.1: Print Layer Temperature Averages 

Print Layer Temp Sa Lower Section Change Avg P Lower Section Change 

Units µin % Change % % Change 

Top 267.561 

4.30% 

0.108 

-5.45% 

Middle 256.533 0.114 

2.83% -20.19% 

Bottom 249.483 0.143 

 

4.2 Chamber Temperature 

The expected results from the chamber temperature were that the behavior would be similar to the 

print layer temperature with the increase in heat allowing the laser to melt powder more easily. The chamber 

temperature showed an exceedingly different outcome to the print layer temperature. This however was not 

the case with this experiment. The largest difference between the two temperature readings was that the 

chamber temperature saw its worst and best quality in the middle section of the part. Alternatively, the print 

layer temperature saw the best and worst quality at either the top or bottom sections.  
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The surface roughness graph in Figure 4.3, shows this effect of the worst quality being in the middle 

section. The middle of the part saw a large increase in the surface roughness of 113.8% when moving from 

the bottom. When moving from the middle to the top section a decrease of 2.3% was seen in the surface 

roughness. This made the middle of the part the worst in terms of the surface roughness which when 

compared to the print layer temperature shows much different results. 

 

Figure 4.3: Chamber Temperature Average Area Surface Roughness (Sa)  

More roughness reduction from middle to top might have been observed if not for an anomaly in 

the setup. As the temperature was increased using a heating source, the oxygen spiked momentarily. The 

spike in oxygen is attributed two one of two possible things. The first of these is that the heating source was 

heating the inert gas, in this case argon, and cause the oxygen left in the chamber to mix with the argon thus 

making the value read by the sensor to spike in oxygen because of the increase in oxygen around the sensor. 

The other cause that was theorized was that the heat changed the pressure of the gasses inside the chamber 

which again causes the gas to move contrary to the normal operation and thus tamper with the read value 

of the sensor causing the machine to input less inert gas than needed. This spike in oxygen was quickly 

reduced, but the parts saw a small amount of ridging which can be seen in Figure 4.4. In this figure, the red 

area along the bottom is the major ridging with the orange, yellow, and green areas representing the minor 

ridging. 
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Figure 4.4: Chamber Temperature Sample 30 Top 

This ridging was avoided as much as possible when taking the surface roughness which was easily 

done with the major ridging. The minor ridging was not as easily avoided as to remain consistent across all 

part in the experiment the worst of the minor ridging, which is seen as the primarily yellow region, had to 

be partially within the measured region. This issue might have a had a minor effect on the value found for 

the surface roughness. The middle and bottom sections didn’t have this issue and thus provide consistent 

data. Taking this issue into consideration while looking at Figure 4.3, the chamber temperature had a 

positive effect on the roughness outside of the middle block. The middle being worst of the part shows that 

for some of the build aspects there are sections of the range that produce the best part. This result was 

unexpected, however, when reflecting on this relationship it is logical as the build characteristic can provide 

improvement or deterioration up to a certain point. Once this point is crossed the part experiences a lower 

or higher part quality, respectively. Thus, for surface roughness, there is a worst value for the chamber 

temperature to be at which is near the average value of 37.57 °C.  The chamber temperature was the largest 

contributor to the part quality in terms of the surface roughness. The increase of 113.8% moving from the 

bottom to the middle showed the largest change in the surface roughness across all data sets. This 
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information is strengthened by the fact that the middle and bottom sections were not affected by the ridging. 

The ridging, however, affected the overall surface roughness change from top to bottom and if not present 

the change from middle to top potentially saw a larger reduction in surface roughness. With this taken into 

consideration, the large change seen from middle to bottom allows the chamber temperature to remain as 

the largest contributor to surface roughness. 

As was the case with the print layer temperature, the porosity provided the complete opposite 

results to the surface roughness. While the surface roughness saw its highest value at the middle section, 

the porosity showed its lowest value at the middle section. When the chamber temperature was reduced 

from the top to the middle section a reduction in porosity of 39.9% was seen. When moving from the middle 

to the bottom section the chamber temperature had an inverse effect on the part by raising the porosity by 

75.5%. This drastic shift down and then back up in porosity can be seen in Figure 4.5. 

 

Figure 4.5: Chamber Temperature Average Porosity (%) 

In the case of the surface roughness going below or above the middle range produces a part that is 

comparatively inferior to a part made within that range. For these parts the final part quality for surface 

roughness only saw a small reduction of 2.3% when moving above the observed worst area and when 

moving below the parts saw a large reduction in roughness of 113.8%. The porosity provided the complete 

inverse relationship than that of the surface roughness as the middle section had the best porosity 
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percentage. What this inverse relationship means is that to make the best part for surface roughness the 

chamber temperature must be outside of the best range for the porosity. By having the best surface 

roughness made outside of the range of the best porosity, there must be a decision made as to what factor 

is the most vital to the application. 

The surface roughness showed its best fit with the power trendline. The R2 value of 0.8482 shows 

that this trend is a good fit for the data present for the chamber temperature’s surface roughness. The 

porosity had the trendline of a polynomial with order two. This trendline was more effective with more 

levels of the data set. By adding more sections than the three present, there would be more data points on 

the graph and thus more points to draw a trendline from. As the granularity of the part sections increase this 

trendline would be able to tell the function of the graphed data more accurately. This would also improve 

the robustness of the final quality score. 

Table 4.2: Chamber Temperature Averages 

Chamber Temp Sa Lower Section Change Avg P Lower Section Change 

Units µin % Change % % Change 

Top 850.085 

-2.28% 

0.063 

75.47% 

Middle 

869.899 0.036 

113.83% -39.90% 

Bottom 406.816 0.060 

 

4.3 Chamber Humidity 

The chamber humidity was a very difficult characteristic to change, and this caused the range of 

the humidity to be relatively low. This, however, did not stop the humidity from influencing the final part 

quality. The hypothesized result for this characteristic was that as the humidity increased the degree of 

powder agglomeration and thus increase both the porosity and surface roughness. This primarily was not 

the case as the chamber temperature was changed.  
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The surface roughness saw a varied part quality across the three blocks similarly to the chamber 

temperature but with the best quality coming from the middle section. The graphed data can be seen in 

Figure 4.6. When observing the values for amount of increase and decrease in the part from section to 

section, the actual change was relatively small. From the top to the middle a 7.3% reduction in surface 

roughness was observed, while from the middle to the bottom an increase of 4.7% was present. This was a 

product of the small changes in the recorded humidity.  

 

Figure 4.6: Chamber Humidity Average Area Surface Roughness (Sa)  

The surface roughness saw the same effect that the chamber temperature’s surface roughness 

experienced. This once again points to the concept of best ranges of the build characteristics. For the case 

of the humidity the observed best value for the surface roughness was to keep the humidity close to the 

16.28% value that was present at the middle section of the part.  

With the chamber temperature, the porosity showed an opposing graph that also had a best range. 

This, however, was not the case for the chamber humidity. The effects seen by the porosity were not seen 

in any other sample when observing the data for the humidity change. The main relationships seen from the 

other samples taken were either the presence of best ranges, such as for the chamber temperature, or a 

continued increase or decrease in the part quality such as what was seen in the print layer temperature’s 

surface roughness data. The humidity had a different effect on the porosity which can be seen in Figure 4.7.  
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Figure 4.7: Chamber Humidity Average Porosity (%) 

As the humidity was decreased between the bottom and middle sections of the parts a decrease of 

38.3% in porosity was seen. This result was expected as with the reduction in humidity less agglomeration 

of adjacent powder particles would be present. The difference from all the other samples comes from the 

effect seen moving from the middle to the top sections. On average the middle and top sections had the 

same amount of porosity thus resulting in no percentage change in the two sections. With this information, 

the surface roughness and the porosity have a unique relationship to one another. The porosity having no 

reduction between the middle and top allows the best range for the surface roughness to also be best range 

for the porosity. This allows the build to be set at 16.28% humidity and get the best quality for both metrics 

without having to sacrifice one or the other. This effect wasn’t seen in the previous two characteristics as 

with chamber temperature, both surface roughness and porosity had inversely prime areas for part quality. 

This introduces the choice of what to sacrifice to improve the part quality. The print layer temperature had 

a slightly different relationship between its part quality metrics. For that sample the surface roughness and 

porosity were linear and exponential, respectively, but they were also inverse to each other. Thus, when 

reducing the print layer temperature to reduce the surface roughness, the porosity gets exponentially worse. 

This relationship once again introduces a choice to the operation of the machine. 
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 The trendline curves for both the surface roughness was an order two polynomial. This type of fit 

caters itself to the type of information gathered on the surface roughness and as the number of levels were 

increased the expectation is that this would remain the best fit. The porosity shows its best R2 of 0.8668 

with a power trendline. Logically this is a good fit as by moving bottom to middle a reduction is seen and 

then moving from middle to top a lesser change is seen which in this case was a change of 0%. 

Table 4.3: Chamber Humidity Averages 

Chamber Hum Sa Lower Section Change Avg P Lower Section Change 

Units µin % Change % % Change 

Top 272.467 

4.69% 

0.058 

0.00% 

Middle 

260.253 0.058 

-7.32% -38.30% 

Bottom 280.799 0.094 

 

4.4 Oxygen Content  

Oxygen content was expected to have the largest effect on the part quality. More specifically, this 

effect was hypothesized to be a positive effect as the oxygen decreased. This was not seen in the experiment 

as for both surface roughness and porosity an inverse relationship was seen. The surface roughness saw a 

relatively small change when moving between sections. When moving from bottom to middle an increase 

of 1.9% was seen and a 3.6% increase was observed between the middle and top sections. This can be seen 

graphically in Figure 4.8. This relationship was the inverse of the expected results as instead of directly 

improving the surface roughness the oxygen content increased the surface roughness as it was decreased. 

The small increases in surface roughness as the oxygen increased point to the part being of higher quality 

when closer to the bottom section value of 1.0% oxygen in the chamber. The decrease to 0.2% interacted 

with the part by increasing the roughness along with the porosity.  
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Figure 4.8: Oxygen Content Average Area Surface Roughness (Sa)  

The porosity saw a very similar effect to the surface roughness. The differences in part quality were 

much larger than what was observed in the surface roughness. An increase of 17.1% was seen moving from 

the bottom to the middle block which is a normally sized increase when compared to other parts. The move 

from middle to top saw a sizeable increase of 148.5% which is the largest change seen in the collected data. 

This can be seen in the graphed data in Figure 4.9. Thus, while the expected result for the relationship was 

not seen, the expected largest contributor to part quality was confirmed to be oxygen at least in the case of 

the porosity. The largest contributor to the part quality in terms of surface roughness was the previously 

mentioned chamber temperature which, even with the issues stated about the ridging, beats all other 

samples. 
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Figure 4.9: Oxygen Content Average Porosity (%) 

There are several potential causes for the disparity in the expected and actual results. While the 

flow rate of inert gas was kept within a range of 1-2 liters per minute, the increase in flow rate as the inert 

gas was adjusted to remove the oxygen potentially affected the powder dynamics. The increase in flow rate 

may have introduced turbulence that influenced the powder. Another potential cause is that the parts were 

not perfectly polished. This did not affect the surface roughness as the part underwent no transformation 

when moving to be scanned for surface roughness measurements. A non-perfect polish was suspected and 

several of the part were checked again to verify the quality of parts. The only parts that showed a degree of 

scratching or anomalies were either already marked as outliers or the threshold for the measurement was 

set to not include the scratches.  

The quality metrics saw very similar graph shapes once plotted, they, however, showed different 

types of graphs that fit the best. For the surface roughness the trendline had a R2 values of 0.9718 when an 

exponential fit was used. This provided a logical view of this data as when reducing the oxygen, the data 

had an increase from the bottom to middle and then a larger increase when moving from the middle to top. 

For the case of the porosity, an exponential curve provided the best fit at a R2 value of 0.8581. The trends 

present would be more accurately determined with more granular data. With an increase from the current 

three levels, the trends would have more points to be able to use and thus a more precisely determined trend 

could be seen.  
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Table 4.4: Oxygen Content Averages 

Oxygen Content Sa Lower Section Change Avg P Lower Section Change 

Top 293.351 

3.58% 

0.078 

148.49% 

Middle 283.204 0.031 

1.94% 17.11% 

Bottom 277.828 0.027 

 

4.5 Quality Score 

The analysis of the parts raised several questions of what the best possible part would be for the 

purposes of the experiment. With the porosity there is of course full density as the best possible outcome 

for the part. Thus, the best quality part for porosity was the lowest amount of porosity with full dense or 

0% porous being a perfect part. The surface roughness was more difficult to set a best quality part for. The 

cause of this was the fact that there is no possible part with zero roughness. Moving from the idea that no 

part will be perfectly smooth, a theoretical best part must be set. In the machining world, there are gold 

standards for as machined finishes. These standards have been made and recorded for the last 60 or more 

years. The field of metal additive has not had the same amount of time that the machining field has had to 

record this best surface finish or roughness. With that in mind, the best surface roughness for the 

development of this quality score was set at the lowest surface roughness valve recorded for each data set. 

The lowest and highest surface roughness values were set as the quality markers for 100% and 0% 

respectively. 

When calculating the quality score, the information gained from the plotting of the data and the 

fitting of the trendlines was of the most importance. By plotting the data, a value for the minimum and 

maximum part quality were set per data set. The trendlines provide the transforming equations that take the 

incoming data and change it into the quality score. This transformation is marked as the quality factor for 

a data set, an example of this for the print layer temperature can be seen in equation 4.1. 
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𝑄𝐹(𝑆𝑅)𝑃𝑇 = 9.0391(𝑋𝑃𝑇) + 239.78       (4.1) 

 

The variable of XPT represents the in-situ data that are continually inserted into the equation during 

the print. This process was done for both the surface roughness and porosity for each data set. This equation 

is represented by the QF variable when moving to the surface roughness and porosity quality scores. Prior 

to moving to the part metric quality scores however, these scores were normalized across their minimum 

and maximum values. The justification behind the normalization was that the score needed to be put across 

a 0-100% range for readability. The normalization was introduced at this point in the calculation rather than 

later for several reasons. The first reason was that the design of the experiment did not allow for the inter-

characteristic relationships, such as the effect between the print layer temperature and oxygen content on 

the surface roughness, to be determined. As such, the prior analysis was restricted to the individual level 

on the changes seen in the part. This allowed for the effect of one data set on the part quality to be observed 

but not the interaction between all the data sets. To get information on the largest contributors to quality, 

the part quality change versus the characteristic change was calculated which gave a relative concept of the 

comparative influence on part quality. The score itself then normalized and averaged the characteristics 

together because the determinations on the largest contributors was conducted prior to this point and did 

not need to be done again. The second reason was that when first calculating the score, a normalization was 

done on the final quality score. This allowed for the humidity data to vastly swing the score by a maximum 

of 50% and 75% in surface roughness and porosity respectively. This issue was introduced mainly due to 

the small change in the range of humidity. The change of 0.42% caused the initial calculation of the quality 

factor to be the most influential by far when that was not seen in the analysis of the data. This issue was 

first resolved with moving the normalization earlier in the calculation. When the score was moved from the 

first iteration that used the ratio of percent change in the quality versus the change in the characteristic to 

the current use of trendlines, this issue was eliminated but the point of normalization remained at the same 
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point. The motivation behind this was to improve the quality score by removing any issues, such as large 

changes to the score with little characteristic change, when expanding the score in the future. 

Considering this, equation 4.2 shows the calculation of one of the two quality scores needed for the 

final quality score. This equation shows the collection of all the current four data sets while allowing for 

the expansion of the score by adding more sensors which increases the number of data sets. This equation 

was repeated for the porosity just as was conducted with the quality factor calculation. These individual 

scores allow for the final score to be broken down and observed individually if needed. This increased 

granularity of the score allows for a greater view of the part quality along with the ability to look closely at 

specific aspects that may be of interest.  

 

𝑄𝑆(𝑆𝑅) =
𝑄𝐹(𝑆𝑅)𝑃𝑇+𝑄𝐹(𝑆𝑅)𝐶𝑇+𝑄𝐹(𝑆𝑅)𝐶𝐻+𝑄𝐹(𝑆𝑅)𝑂2+⋯

𝑛
           (4.2) 

 

The final step in the calculation of the quality score was to weight the individual scores and total 

them. Through the introduction of a weighting variable, denoted by W in equation 4.3, the individual scores 

to be joined together. Without weights, the score moves to a multi factor design which is a much more 

complex analysis of the part quality. This increase in complexity is the driving force for why so little 

research has been done on multiple part quality characteristics at once in metal additive. The addition of 

weights to the individual scores allows for the overall score to be made without implementing the multi 

factor design which would require an experimental design that observes the inter-characteristic 

relationships. With the surface roughness and porosity weights implemented into the overall score, the user 

of the score can tailor the desired result to their process. This proves useful in different applications that 

may require a move towards full density without the need for the best surface roughness possible. This 

score is similarly left open to the introduction of new part quality metrics outside of the surface roughness 

and porosity, such as the internal stresses. 

𝑄𝑆(𝑇𝑜𝑡𝑎𝑙) = (𝑊(𝑆𝑅) ∗ 𝑄𝑆(𝑆𝑅)) + (𝑊(𝑃) ∗ 𝑄𝑆(𝑃)) + ⋯                    (4.3) 
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CHAPTER 5 

CONCLUSIONS 

 

In conclusion, the creation of a predictive quality score for the L-PBF process was the desired goal 

of this work. This score introduces a predicative element to the metal additive quality control field. This 

score was produced through the creation of an experiment that allowed for a build characteristic to be 

changed during the print. This provides a look at several characteristics’ relationships to quality and the 

score in allows for several ambient aspects of the print to be considered at once. The current work in this 

field mainly observes the melt dynamics through thermal imaging or one build aspect’s relation to quality 

at a time. Two separate quality metrics provide the basis of the quality score that was calculated using the 

trends found by plotting the data from the prints.  

The key takeaways were that the chamber temperature was the largest contributor to the surface 

roughness. This result was unexpected and resulting from this a look at any issues introduced during the 

print was done. During the last section of the chamber temperature print a small amount of ridging was 

introduced which was thought to be the cause comparatively unusual chamber gas dynamics introduced by 

the increase in temperature. The largest contributor to the quality of the porosity was the oxygen which was 

the expected result. However, the oxygen negatively affected the porosity which was first assumed to be a 

positive characteristic. This difference was investigated and was caused by either the inert flow corrupting 

the powder dynamics or the introduction of scratches to the polished parts. Both issues were avoided as 

much as possible by having a low change in the flow rate in the case of the inert flow deviating the powder 

dynamics and by adjusting the threshold for the scanning to avoid possible scratches. Once the parts were 

analyzed a score for each quality metric was calculated and normalized across a 0-100% scale.  

There are several areas of expansion for this work in the future. The first of these would be a 

reassessment of the design for the experiment. The experiment could be redesigned in two ways, through 

the implementation of statistical methods or through the addition of more data levels. Through the 

implementation of a statistics-based design of experiments, the inter-characteristic relationships can be 

found. This would also allow for the addition of more analysis in the form of multiple regressions. 
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Following a regression analysis, the statistical equations found could be optimized and implemented to 

increase the robustness of the quality score. This would also allow for the implementation of machine 

learning software to the quality score. The other aspect of the experiment that would be changed is the 

addition of more levels of the build characteristics. By increasing the number of levels from the current 

three, the best fit equations would have more data points to draw from and thus more accurate. The increase 

in best fit accuracy would increase the accuracy of the quality score. Moving past the proposed 

improvements to the experiment, another way to expand on this work would be the implementation of 

cloud-based data management. By having the sensor package and quality score connected to an online 

server, the score could be seen anywhere that can access the internet. This would allow for the quality to be 

viewed even when not present at the machine thus increasing the useability of the score. This online aspect 

could also serve as a database of previous data and thus allow for past prints to be viewed and analyzed. 
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APPENDIX A 

PRINT LAYER TEMPERATURE DATA 

 

  

Print Layer Temperature Sa (µin) Avg Porosity (%)

Part Top Middle Bottom Top Middle Bottom

1 264.72 257.77 255.34 0.07 0.04 0.31

2 254.96 241.84 244.54 0.12 0.36 0.53

3 257.36 255.44 260.11 0.52 0.46 0.62

4 268.67 255.75 255.01 0.18 0.18 0.15

5 272.64 259.54 246.89 0.04 0.04 0.09

6 269.37 314.25 253.84 0.06 0.11 0.16

7 274.31 256.97 248.16 0.08 0.06 0.15

8 283.73 257.41 263.30 0.03 0.10 0.05

9 288.70 270.55 279.96 0.25 0.30 0.27

10 258.21 248.53 244.32 0.01 0.08 0.06

11 276.87 256.12 259.25 0.10 0.09 0.02

12 275.37 256.76 254.60 0.01 0.03 0.02

13 265.14 256.97 238.23 0.09 0.02 0.03

14 246.06 250.08 232.20 0.04 0.04 0.16

15 264.63 243.69 233.21 0.11 0.01 0.01

16 287.00 262.17 258.23 0.13 0.08 0.05

17 240.93 229.56 223.64 0.06 0.05 0.02

18 281.09 259.23 261.93 0.12 0.02 0.00

19 300.44 278.28 242.49 0.02 0.10 0.04

20 285.38 277.59 250.54 0.71 0.05 0.02

21 253.91 242.65 238.66

22 278.24 268.50 252.39

23 276.76 264.73 248.66

24 268.46 255.60 258.78

25 294.10 253.50 250.20

26 258.74 259.24 249.50

27 230.66 218.10 231.08

28 262.47 263.50 256.83

29 243.41 228.73 237.14

30 244.49 252.97 255.46
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APPENDIX B 

PRINT LAYER TEMPERATURE STATISTICS 

 

  

Print Layer Temperature

Surface Roughness

Top Middle Bottom

Mean 267.561 Mean 256.533 Mean 249.483

Standard Error 3.052 Standard Error 3.115 Standard Error 2.126

Median 268.568 Median 256.866 Median 250.369

Mode #N/A Mode #N/A Mode #N/A

Standard Deviation 16.719 Standard Deviation 17.062 Standard Deviation 11.643

Sample Variance 279.518 Sample Variance 291.125 Sample Variance 135.549

Kurtosis -0.339 Kurtosis 4.175 Kurtosis 0.685

Skewness -0.203 Skewness 0.824 Skewness -0.011

Range 69.778 Range 96.149 Range 56.318

Minimum 230.662 Minimum 218.100 Minimum 223.641

Maximum 300.440 Maximum 314.249 Maximum 279.960

Sum 8026.830 Sum 7696.004 Sum 7484.482

Count 30 Count 30 Count 30

Confidence Level(95.0%) 6.243 Confidence Level(95.0%) 6.371 Confidence Level(95.0%) 4.347

Porosity

Top Middle Bottom

Mean 0.138 Mean 0.111 Mean 0.137

Standard Error 0.039 Standard Error 0.028 Standard Error 0.038

Median 0.085 Median 0.069 Median 0.055

Mode #N/A Mode #N/A Mode #N/A

Standard Deviation 0.176 Standard Deviation 0.124 Standard Deviation 0.172

Sample Variance 0.031 Sample Variance 0.015 Sample Variance 0.030

Kurtosis 6.195 Kurtosis 3.033 Kurtosis 2.923

Skewness 2.511 Skewness 1.932 Skewness 1.849

Range 0.699 Range 0.454 Range 0.612

Minimum 0.010 Minimum 0.009 Minimum 0.004

Maximum 0.708 Maximum 0.463 Maximum 0.616

Sum 2.753 Sum 2.213 Sum 2.733

Count 20 Count 20 Count 20

Confidence Level(95.0%) 0.082 Confidence Level(95.0%) 0.058 Confidence Level(95.0%) 0.081
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APPENDIX C 

PRINT LAYER TEMPERATURE BOX PLOTS 
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APPENDIX D 

CHAMBER TEMPERATURE DATA 

 

  

Chamber Temperature Sa (µin) Avg Porosity (%)

Part Top Middle Bottom Top Middle Bottom

1 1114.73 1105.19 602.54 0.04 0.06 0.11

2 1073.00 1083.76 559.39 0.16 0.06 0.05

3 1055.32 1079.98 557.39 0.10 0.04 0.04

4 1028.56 1109.60 569.85 0.05 0.03 0.07

5 1040.53 1059.32 532.44 0.02 0.01 0.05

6 990.62 1026.95 499.44 0.11 0.02 0.01

7 985.71 1025.86 520.28 0.04 0.03 0.30

8 1030.59 990.72 514.67 0.08 0.02 0.02

9 956.83 937.31 466.13 0.13 0.07 0.17

10 910.15 953.92 442.55 0.08 0.04 0.04

11 934.81 981.92 453.15 0.02 0.06 0.16

12 900.99 945.23 420.09 1.08 0.06 0.24

13 878.16 910.31 454.79 0.01 0.01 0.04

14 841.14 818.66 400.75 0.02 0.05 0.08

15 876.67 836.16 409.14 0.21 0.18 0.10

16 816.63 864.51 420.19 0.03 0.00 0.05

17 829.46 808.32 361.54 0.04 0.01 0.03

18 736.88 811.73 367.09 0.03 0.01 0.01

19 742.52 833.66 361.91 0.07 0.04 0.00

20 786.05 809.42 355.11 0.10 0.08 0.07

21 748.29 767.88 300.68

22 700.17 782.56 307.18

23 716.91 760.92 313.34

24 663.94 724.26 290.35

25 692.79 698.86 305.11

26 708.06 703.95 281.42

27 682.73 671.93 277.79

28 707.47 655.29 277.22

29 687.81 667.43 309.06

30 665.07 671.35 273.87
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APPENDIX E 

CHAMBER TEMPERATURE STATISTICS 

 

  

Chamber Temperature

Surface Roughness

Top Middle Bottom

Mean 850.085 Mean 869.899 Mean 406.816

Standard Error 26.176 Standard Error 26.763 Standard Error 18.812

Median 835.299 Median 834.915 Median 404.945

Mode #N/A Mode #N/A Mode #N/A

Standard Deviation 143.374 Standard Deviation 146.586 Standard Deviation 103.040

Sample Variance 20556.039 Sample Variance 21487.436 Sample Variance 10617.248

Kurtosis -1.330 Kurtosis -1.253 Kurtosis -1.193

Skewness 0.289 Skewness 0.171 Skewness 0.309

Range 450.791 Range 454.314 Range 328.669

Minimum 663.942 Minimum 655.288 Minimum 273.874

Maximum 1114.733 Maximum 1109.602 Maximum 602.543

Sum 25502.552 Sum 26096.973 Sum 12204.479

Count 30 Count 30 Count 30

Confidence Level(95.0%) 53.537 Confidence Level(95.0%) 54.736 Confidence Level(95.0%) 38.476

Porosity

Top Middle Bottom

Mean 0.120 Mean 0.044 Mean 0.083

Standard Error 0.052 Standard Error 0.009 Standard Error 0.017

Median 0.057 Median 0.037 Median 0.050

Mode #N/A Mode #N/A Mode #N/A

Standard Deviation 0.232 Standard Deviation 0.040 Standard Deviation 0.078

Sample Variance 0.054 Sample Variance 0.002 Sample Variance 0.006

Kurtosis 17.604 Kurtosis 6.237 Kurtosis 1.978

Skewness 4.100 Skewness 2.090 Skewness 1.550

Range 1.069 Range 0.174 Range 0.291

Minimum 0.012 Minimum 0.004 Minimum 0.004

Maximum 1.080 Maximum 0.178 Maximum 0.296

Sum 2.406 Sum 0.883 Sum 1.652

Count 20 Count 20 Count 20

Confidence Level(95.0%) 0.109 Confidence Level(95.0%) 0.019 Confidence Level(95.0%) 0.037



62 

 

APPENDIX F 

PRINT LAYER TEMPERATURE BOX PLOTS 
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APPENDIX G 

CHAMBER HUMIDITY DATA 

 

  

Chamber Humidity Sa (µin) Avg Porosity (%)

Part Top Middle Bottom Top Middle Bottom

1 301.96 275.98 303.48 0.13 0.12 0.10

2 257.97 253.63 291.98 0.18 0.03 0.07

3 287.84 283.21 310.05 0.06 0.06 0.06

4 277.10 262.88 308.01 0.17 0.19 0.10

5 263.02 258.20 289.29 0.04 0.11 0.12

6 253.80 250.87 289.36 0.02 0.07 0.21

7 272.00 266.65 298.89 0.05 0.07 0.20

8 255.37 254.23 293.33 0.10 0.02 0.02

9 253.28 252.11 299.36 0.06 0.17 0.33

10 257.90 267.03 290.25 0.04 0.03 0.07

11 272.95 266.96 286.93 0.06 0.00 0.01

12 273.78 263.95 291.54 0.03 0.12 0.03

13 318.45 280.69 288.31 0.01 0.02 0.06

14 249.17 247.03 267.90 0.07 0.05 0.17

15 287.74 274.62 275.27 0.03 0.02 0.11

16 296.67 275.49 286.98 0.01 0.01 0.08

17 244.59 242.37 257.28 0.04 0.04 0.02

18 286.73 266.59 281.97 0.01 0.02 0.04

19 311.75 288.23 278.52 0.03 0.00 0.02

20 289.72 270.19 283.87 0.02 0.01 0.06

21 279.49 248.62 277.50

22 273.83 262.05 277.92

23 284.34 258.50 278.26

24 265.59 256.34 264.57

25 276.63 266.04 276.35

26 254.31 240.99 252.23

27 273.39 242.60 260.15

28 260.72 251.81 254.61

29 260.64 242.60 266.73

30 233.29 237.12 243.08
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APPENDIX H 

CHAMBER HUMIDITY STATISTICS 

 

  

Chamber Humidity

Surface Roughness

Top Middle Bottom

Mean 272.467 Mean 260.253 Mean 280.799

Standard Error 3.612 Standard Error 2.452 Standard Error 3.065

Median 273.170 Median 260.275 Median 282.920

Mode #N/A Mode 242.600 Mode #N/A

Standard Deviation 19.782 Standard Deviation 13.428 Standard Deviation 16.785

Sample Variance 391.308 Sample Variance 180.316 Sample Variance 281.744

Kurtosis 0.003 Kurtosis -0.687 Kurtosis -0.326

Skewness 0.408 Skewness 0.193 Skewness -0.387

Range 85.160 Range 51.110 Range 66.970

Minimum 233.290 Minimum 237.120 Minimum 243.080

Maximum 318.450 Maximum 288.230 Maximum 310.050

Sum 8174.020 Sum 7807.580 Sum 8423.970

Count 30 Count 30 Count 30

Confidence Level(95.0%) 7.387 Confidence Level(95.0%) 5.014 Confidence Level(95.0%) 6.268

Porosity

Top Middle Bottom

Mean 0.058 Mean 0.058 Mean 0.094

Standard Error 0.011 Standard Error 0.013 Standard Error 0.018

Median 0.040 Median 0.035 Median 0.070

Mode 0.060 Mode 0.020 Mode 0.060

Standard Deviation 0.050 Standard Deviation 0.056 Standard Deviation 0.080

Sample Variance 0.003 Sample Variance 0.003 Sample Variance 0.006

Kurtosis 1.398 Kurtosis 0.415 Kurtosis 2.742

Skewness 1.461 Skewness 1.143 Skewness 1.580

Range 0.170 Range 0.190 Range 0.320

Minimum 0.010 Minimum 0.000 Minimum 0.010

Maximum 0.180 Maximum 0.190 Maximum 0.330

Sum 1.160 Sum 1.160 Sum 1.880

Count 20 Count 20 Count 20

Confidence Level(95.0%) 0.023 Confidence Level(95.0%) 0.026 Confidence Level(95.0%) 0.038
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APPENDIX I 

CHAMBER HUMIDITY BOX PLOTS 
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APPENDIX J 

OXYGEN CONTENT DATA 

 

  

Oxygen Content Sa (µin) Avg Porosity (%)

Part Top Middle Bottom Top Middle Bottom

1 316.86 288.41 276.28 0.12 0.01 0.03

2 279.26 256.51 295.17 0.05 0.02 0.03

3 287.86 285.84 312.12 0.05 0.02 0.01

4 333.35 322.20 323.79 0.09 0.03 0.03

5 303.31 280.20 291.64 0.06 0.02 0.02

6 325.37 312.04 290.05 0.02 0.01 0.03

7 293.20 290.78 291.16 0.04 0.02 0.01

8 462.00 299.37 291.11 0.05 0.02 0.03

9 295.79 302.25 287.46 0.08 0.04 0.01

10 273.86 268.00 258.58 0.02 0.01 0.07

11 289.71 298.58 298.16 0.04 0.05 0.01

12 307.12 293.78 274.98 0.05 0.05 0.02

13 281.03 279.39 278.87 0.22 0.03 0.01

14 283.30 283.12 277.66 0.04 0.05 0.02

15 285.79 299.35 271.92 0.37 0.77 2.25

16 308.53 287.13 307.32 0.03 0.05 0.04

17 259.68 262.67 284.03 0.23 0.04 0.06

18 299.51 303.19 299.33 0.24 0.06 0.01

19 304.44 296.66 271.05 0.05 0.05 0.00

20 305.21 292.15 283.78 0.00 0.03 0.06

21 274.07 258.29 246.91

22 313.98 309.68 266.39

23 295.27 294.45 280.15

24 283.77 261.85 259.98

25 316.13 292.88 288.42

26 291.41 273.45 259.73

27 278.73 252.67 249.16

28 278.69 252.21 248.48

29 280.81 266.27 242.67

30 261.13 248.95 241.77
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APPENDIX K 

OXYGEN CONTENT STATISTICS 

 

  

Oxygen Content

Surface Roughness

Top Middle Bottom

Mean 298.973 Mean 283.743 Mean 278.270

Standard Error 6.486 Standard Error 3.585 Standard Error 3.824

Median 292.303 Median 287.772 Median 279.506

Mode #N/A Mode #N/A Mode #N/A

Standard Deviation 35.527 Standard Deviation 19.634 Standard Deviation 20.945

Sample Variance 1262.178 Sample Variance 385.490 Sample Variance 438.693

Kurtosis 15.689 Kurtosis -0.846 Kurtosis -0.442

Skewness 3.471 Skewness -0.208 Skewness -0.032

Range 202.312 Range 73.257 Range 82.014

Minimum 259.685 Minimum 248.947 Minimum 241.774

Maximum 461.997 Maximum 322.204 Maximum 323.789

Sum 8969.184 Sum 8512.290 Sum 8348.115

Count 30 Count 30 Count 30

Confidence Level(95.0%) 13.266 Confidence Level(95.0%) 7.331 Confidence Level(95.0%) 7.821

Porosity

Top Middle Bottom

Mean 0.093 Mean 0.069 Mean 0.138

Standard Error 0.022 Standard Error 0.037 Standard Error 0.111

Median 0.050 Median 0.029 Median 0.025

Mode #N/A Mode #N/A Mode #N/A

Standard Deviation 0.097 Standard Deviation 0.167 Standard Deviation 0.496

Sample Variance 0.009 Sample Variance 0.028 Sample Variance 0.246

Kurtosis 2.447 Kurtosis 19.621 Kurtosis 19.936

Skewness 1.742 Skewness 4.412 Skewness 4.462

Range 0.371 Range 0.764 Range 2.240

Minimum 0.000 Minimum 0.009 Minimum 0.005

Maximum 0.372 Maximum 0.774 Maximum 2.245

Sum 1.855 Sum 1.371 Sum 2.755

Count 20 Count 20 Count 20

Confidence Level(95.0%) 0.046 Confidence Level(95.0%) 0.078 Confidence Level(95.0%) 0.232
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APPENDIX L 

OXYGEN CONTENT BOX PLOTS 
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