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ABSTRACT

The progression of state trajectories with respect to time, and its stability properties can be

described by a system of nonlinear differential equations. However, since most nonlinear

dynamical systems cannot be solved by hand, one must rely on computer simulations to

observe the behavior of the system. This work focuses on chaotic systems. The Lyapunov

Exponent (LE) is frequently used in the quantitative studies of a chaotic system. Lyapunov

exponents give the average rate of separation of nearby orbits in phase space, which can

be used to determine the state of a system, e.g. stable or unstable. The objective of this

research is to provide control engineers with a convenient toolbox for studying the stability

of a large class of control systems. This toolbox is implemented in MatLab with structured

programming so that it can be easily adapted by users.
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CHAPTER 1

INTRODUCTION

1.1 PRELIMINARIES

In this thesis we discuss the development of a universal toolbox to compute Lyapunov

exponents of nonlinear dynamical systems, using the Gram-Schmidt Reorthonormalizaton

method (GSR). Furthermore, we will discuss how the program will serve as an automatic

observer, mainly to control systems without human interaction or interference via the com-

puted Lyapunov exponents, then applying said toolbox to a state feedback control system

to detect if it is stabilized. Before we get into that, let us first introduce some basic concepts

that will be useful in the next few sections.

Definition 1.1.1. A dynamical system is a system in which a function describes the time

dependence of a point in a geometrical space.

An n dimensional continuous-time (autonomous) smooth dynamical system is defined

by the differential equation

ẋ = F (x), (1.1)

where ẋ = dx
dt

, x(t) ∈ Rn is the state vector at time t and F : U → Rn is a Cr function

(r ≥ 1) on an open set U ⊂ Rn [1].

Definition 1.1.2. In dynamical systems, a trajectory is the set of points in state space that

are the future states resulting from a given initial state.

Here is a formal definition of Lyapunov exponents [2].

Definition 1.1.3. Lyapunov exponents or Lyapunov characteristic exponents of a dynami-

cal system characterize the average rate of separation of nearby state trajectories in phase

space. Quantitatively, two trajectories in phase space with initial separation vector δZ0
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diverge at a rate given by

|δZ(t)| ≈ eλt|δZ0|, (1.2)

where λ is the Lyapunov exponent

Figure 1.1: Lyapunov spherical divergence

A dynamical system of dimension n has n Lyapunov exponents and n principal direc-

tions or eigenvectors, corresponding to a set of nearby trajectories. Or equivalently there

are n state variables used to describe the system. The Lyapunov spectra gives an estimate of

the rate of entropy production and of the fractal dimension of the attractor of the dynamical

system [2].

The state of a dynamical system can be classified by the sign of Lyapunov exponents.
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• A positive Lyapunov exponent (+) is adequate for recognising chaos (the system (1.1)

must be at least third order) and represents instability;

• Negative Lyapunov exponents (-) corresponds to contracting axes;

• While a zero Lyapunov exponent conveys that the axis is slow varying.

The ith Lyapunov exponent is defined in terms of the length of the ith ellipsoidal

principal axis, pi(t):

λi = lim
t→∞

1

t
log
‖pi(t)‖
‖pi(0)‖

. (1.3)

In a three dimensional dynamical system, for example, the possible signs of Lyapunov

spectra are (+, 0, -) for a strange attractor, (0, 0, -) for a two-torus, (0, -, -) for a limit cycle,

and finally (-,-,-) for a fixed point. While in a four dimensional system, the combination of

(+,+,0,-) corresponds to a hyperchaotic system.

The formula (1.3) is not practical for computing Lyapunov exponents. It is hard to

implement and not convenient for finding all Lyapunov exponents. There are numerical

methods for estimating the largest Lyapunov exponent. However, the largest Lyapunov

exponent doesn’t produce enough information for a hyperchaotic system. For instance, in

the Rossler four dimensional system, we have the following Lyapunov exponents (+,+,0,-),

finding just the largest Lyapunov exponent would not tell us if the system is hyperchaotic.

1.2 KNOWN METHODS FOR FINDING LYAPUNOV EXPONENTS

There are different discrete and continuous methods for computing the Lyapunov ex-

ponents. All methods are either based on the QR or Singular Value Decomposition (SVD).

In this section, these methods are compared for their efficiency and accuracy. Let’s first

look at the difference between discreet and continuous methods [3].

Definition 1.2.1. The discrete methods iteratively approximate the Lyapunov exponents in
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a finite number of (discrete) time steps and therefore apply to iterated maps and continuous

dynamical systems where the linearized flow map is evaluated at discrete times.

Definition 1.2.2. A method is called continuous when all relevant quantities are obtained

as solutions of certain ordinary differential equations, i.e., continuous methods can only be

formulated for continuous dynamical systems, not for discrete maps.

A continuous dynamical system is given by an ordinary differential equation [3]

ẏ = f(y), y = y(x; t) ∈M, t ∈ R. (1.4)

where M is a state space of dimension size m. Let an invertible m × m flow matrix be

denoted by Y where Y = Y (x; t). Let J denote the Jacobian matrix. In continuous systems

the fundamental matrix is:

Ẏ = JY, Y (x; 0) = I. (1.5)

There are multiple methods to compute Lyapunov exponents. However, many meth-

ods have one of the following disadvantages:

1. computationally intensive,

2. relatively difficult to implement, or

3. unreliable for small data sets

These disadvantages motivated our search for an algorithm that estimates all Lyapunov ex-

ponents that is not impaired by the above mentioned setbacks. We shall go over three pop-

ular methods, the QR method, the Singular Value Decomposition (SVD) method, and the

Gram-Schmidt Reorthonormalizaton method (GSR), and choose the most efficient method

that is easy to implement numerically.
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1.2.1 QR METHOD

This method is based on the ‘QR’ factorization for the decomposition of the tangent

map (where Q is an orthogonal matrix and R is an upper triangular matrix). It utilizes

orthogonal matrices applied to the tangent map and does not require the GSR procedure.

This algorithm computes Lyapunov exponents and yields the Lyapunov spectra.

If Y in the matrix variational equations (1.5) is replaced by the product QR we obtain

Q̇R +QṘ = JQR. (1.6)

Then multiplying (1.6) with QT on the left where Q−1 = QT and R−1 on the right side

gives us

QT Q̇−QTJQ = −ṘR−1 (1.7)

Now the right side of (1.7) is an upper triangular matrix. The skew symmetric matrix

components

S := QT Q̇ (1.8)

are given by the equation

S :=


(QTJQ)ij i > j

0 i = j

−(QTJQ)ji i < j

(1.9)

The matrix S can be used to define the desired differential equation for Q:

Q̇ = QS. (1.10)

By (1.7) and (1.9) the equations for the diagonal elements of R are given by

Ṙii

Rii

= (QTJQ)ii, (1 ≤ i ≤ m). (1.11)

To determine the Lyapunov exponents λi only the logarithms ρi := ln(Rii) of the diagonal

elements of R are important to find. According to (1.11) they fulfill the equations

ρ̇i = (QTJQ)ii.(1 ≤ i ≤ m). (1.12)
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Thus to compute the spectrum of Lyapunov exponents, we have to simultaneously solve

equations (1.10) and (1.12) with the continuous dynamical system (1.4). The quantities

ρi(t)
t

converge to the Lyapunov exponents λi (1 ≤ i ≤ m) in the limit t → ∞. It is said

to have several advantages over the existing methods, as it involves a minimum number of

equations. The errors of this method decrease over time.

1.2.2 SINGULAR VALUE DECOMPOSITION (SVD)

Similar to the continuous QR method we will formulate differential equations that are

needed to compute the Lyapunov spectrum in terms of the Singular Value Decomposition

(SVD). To avoid computational difficulties with the exponential diagonal elements φi (1 ≤

i ≤ m) of the matrix F , let’s consider the diagonal matrix

E := ln(F ) = diag(ε1, · · · , εm) (1.13)

with elements εi := ln(φi)(1 ≤ i ≤ m). When differentiating with respect to time we get

Ė = F−1Ḟ = F−1U̇TF + F−1UTJUF + V T V̇ , (1.14)

where the derivative of F , Ḟ , is given by substituting the flow matrix Y in the matrix vari-

ational equations in (1.5) by its singular value decomposition Y = UFV T . To eliminate

V in (1.14), the sum Ė + ĖT = 2Ė is computed where the term V T V̇ + V̇ TV is then

eliminated due to the orthogonality of V . With the abbreviations

A := UT U̇ = −U̇TU,

B := −F−1AF,

C := UTJU,

D := F−1CF,

(1.15)

we are able to obtain the following differential equation for E:

2Ė = B +BT +D +DT . (1.16)
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The right side of (1.16) depends on the matrices J , F = exp(E), U , and U̇ . To separate

the time derivatives of E and U , Ė and U̇ respectively, the components of the matrices B

and D have to be considered. They are given by the equations

Bij = −Aij
σj
σi
,

Dij = Cij
σj
σi
.

(1.17)

The orthogonality of U implies that A is skew symmetric and thus Bii = −Aii = 0

(1 ≤ i ≤ m). The diagonal elements ε̇i =
σ̇j
σi

of Ė therefore fulfill the equation

ε̇i = Cii (1.18)

which can be used to compute the quantities ε̇(t)
t

t→∞−−−→ λi(1 ≤ i ≤ m). By means of the

off-diagonal elements in (1.16) the m(m−1)
2

equations

0 = Bij +Bji +Dij +Dji

= −Aij
σj
σi
− Aji

σi
σj

+ Cij
σj
σi

+ Cji
σi
σj

(1.19)

where i > j for the components of A can be derived. To remove exponentially growing

quantities that are causing problems, equation (1.19) is multiplied by σi
σj

and the critical

terms σ2
i

σ2
j

are replaced by

hij := exp(2(εi − εj))(1 ≤ i, j ≤ m, i 6= j) (1.20)

to get

Aij =



Cji+Cijhji
hji−1 i < j

0 i = j

Cij+Cjihij
1−hij i > j

(1.21)

By matrix A, the desired differential equation for U can be formulated as

U̇ = UA. (1.22)
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For non-degenerate Lyapunov spectra {λi} the singular values σi(t) ∼ exp(λit) compose

of a strictly monotonically decreasing sequence σ1 > · · · > σm for t → ∞ and the

quantities hij exp(2t(λi − λj)) quickly converge to zero for i > j. This means that the

skew symmetric matrix A in (1.22) tends to the matrix S of (1.8) in the limit t → ∞.

It should be noted that (1.22) becomes singular for attractors with degenerate Lyapunov

spectra because λi = λj (1 ≤ i, j ≤ m, i 6= j) implies limt→∞hij(t) = 1. For this

reason and the fact that the continuous SVD method needs even more operations than the

continuous QR method we have not investigated them×k case although the Singular Value

Decomposition is well defined for rectangular matrices.

1.2.3 GRAM–SCHMIDT REORTHONORMALIZATON (GSR)

It seems that using the Gram–Schmidt Reorthonormalizaton (GSR) of tangent vectors

is the most feasible method to compute the Lyapunov spectrum of a dynamical system. A

differential version has been devised which corresponds to a continuous GSR of the tangent

vectors. With the introduction of a stability parameter and a modification the method makes

it reliable for numerical computations, applicable to systems with degenerate spectra, and

dynamically stable.

To carry out this method, we must have some knowledge of the trajectory of a dynam-

ical system integrating the equations using, for instance, the Runge-Kutta method. This

will provide us with the state samples. The state samples are then plugged into the Ja-

cobian system with the solutions being orthogonalized using the Gram-Schmidt method.

This then provides some intermediate results of the Lyapunov exponents that are stored

and normalized. These steps are repeated for how many runs the user stated. After taking

the average of all successive approximations of the Lyapunov exponents over time, we find

the final approximation of the Lyapunov exponents. We will give more details of the GSR

method in chapter 2.
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1.3 CHAOTIC AND HYPER-CHAOTIC SYSTEMS

Lyapunov exponents (LEs) can be used to identify a control system’s stability at its

equilibrium and distinguish between chaotic and hyperchaotic systems. When an attractor

is chaotic, the trajectories diverge at an exponential rate represented by the largest Lya-

punov exponent. If there is one positive Lyapunov exponent produced, the system is said

to be chaotic. While if there are two or more positive Lyapunov exponents, the system is

said to be hyperchaotic. Let’s look at an example of both.

Figure 1.2: Lorenz strange attractor

The Lorenz system was first studied by Edward Lorenz and Ellen Fetter. This is a

system of ordinary differential equations known for having chaotic solutions for certain

parameter values. Specifically, the Lorenz attractor is the set of chaotic solutions. The

equations describe the rate of change of three quantities with respect to time: x is pro-

portional to the rate of convection, y to the horizontal temperature variation, and z to the

vertical temperature variation [4]. The shape of the Lorenz attractor, when plotted graphi-

cally, resembles a butterfly (Figure 1.2). The model is a system of three ordinary differential
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equations known as the Lorenz equations:
ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

where the constants σ, ρ, and β are system parameters proportional to the Prandtl number,

Rayleigh number, and certain physical dimensions of the layer itself. The Lorenz system is

nonlinear, non-periodic, three-dimensional, and deterministic [4]. The Lorenz attractor is a

typical landmark for a chaotic system. It corresponds to one positive Lyapunov exponents,

one zero exponent, and one negative exponent.

Definition 1.3.1. A deterministic system is a system in which no randomness is involved

in the development of future states of the system. A deterministic model will thus always

produce the same output from a given starting condition or initial state.

Figure 1.3: Rossler strange attractor

This hyper-chaotic system has a minimum of four dimensions. It is typically defined as

a hyperchaotic system because it has at least two positive Lyapunov exponents. Combined
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with one null exponent along the flow and one negative exponent to ensure the boundness

of the solution [5]. The model is a system of four ordinary differential equations:

ẋ = −y − z

ẏ = x+ ay + w

ż = b+ xz

ẇ = −cz + dw

The Rossler attractor (Figure 1.3) was intended to behave similarly to the Lorenz attrac-

tor, but also be easier to analyze qualitatively. An orbit within the attractor follows an

outward spiral close to the x, y plane around an unstable fixed point. Once the graph spi-

rals out enough, a second fixed point influences the graph, causing a rise and twist in the

z-dimension.

The main difference between chaotic and hyperchaotic systems, is the dynamics of

the hyperchaotic system expands in more than one direction and generate a much more

complex attractor compared with the chaotic system with only one positive Lyapunov ex-

ponent. It means that hyperchaotic systems yields more complicated dynamical behaviors

compared with chaotic systems.

1.4 CONTROL SYSTEMS

Chaos control has received more attention due to its potential applications in physics,

chemical reactor, biological networks, artificial neural networks, telecommunications and

secure communication [11]. Many methods have been used to control dynamical systems.

In this thesis we will discuss the Bass-Gura method in state feedback control. There are

several methods used to suppress hyper-chaos to unstable equilibrium: speed feedback con-

trol, nonlinear doubly-periodic function feedback control, and nonlinear hyperbolic func-

tion feedback control. However, the one that will be discussed in this thesis will be linear



20

state feedback control.

A control system regulates the behavior of dynamical systems using closed control

loops. It can range from a heating controller using a thermostat to control a boiler to large

industrial control systems which are used for controlling machines. For continuously mod-

ulated control, a feedback controller is used to automatically control a process or operation.

The control system compares the value of the process variable (PV) being controlled with

the desired value or set-point (SP), and applies the difference as a control signal to bring

the process variable output of the plant to the same value as the set-point [6].

Definition 1.4.1. A process variable is the current measured value of a particular part of a

process which is being monitored or controlled. An example of this would be the tempera-

ture of a furnace.

Definition 1.4.2. A set-point is the desired or target value for an essential variable or pro-

cess variable of a system.

There are two common classes of control action: open loop and closed loop. In an

open-loop control system, the action from the controller is independent of the process vari-

able. For instance, think of a central heating boiler being controlled by a timer. The control

action is the switching on or off of the boiler. The process variable is the building’s tem-

perature. The controller operates the heating system for a constant time regardless of the

building’s temperature.

In a closed-loop control system, the controller action is dependent on the process

variable. In the boiler analogy, a closed-loop control system would utilise a thermostat to

monitor the building’s temperature, and feedback a signal to ensure the controller output

maintains the building’s temperature close to the set thermostat temperature. A closed loop

controller has a feedback loop which ensures the controller initiates a control action to

control a process variable at the same value as the set-point. For this reason, closed-loop

controllers are also called feedback controllers.
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In a linear feedback system, a control loop including sensors, control algorithms, and

actuators are arranged in an attempt to regulate a variable at a set-point (SP). An everyday

example would be the cruise control in vehicles, where outside influences, like hills, cause

speed changes, and that the driver has the ability to change the desired set speed.

Definition 1.4.3. Feedback occurs when outputs of a system are routed back as inputs as

part of a chain of cause-and-effect that forms a circuit or loop.

By using feedback properties, the behavior of a system can be modified to meet the

needs of an application. One of these applications is stabilizing a systems. Dynamical

systems with a feedback experience a modification of its chaos. If we are given a dynamical

system

ẋ = Ax+Bu

ẏ = Cx

where x ∈ Rn, u ∈ Rn, A is an n× n matrix , and B is an n× 1 matrix. The system poles

are given by eigenvalues of A. We want to use the controller u to move the system poles.

Assuming the form of linear state feedback with a gain vector K,

u = r −Kx,K ∈ Rn

linear control systems use negative feedback to produce a control signal to maintain the

controlled process variable at the desired set-point [6]. There are several types of linear

control systems with different capabilities. We will only discuss proportional control.

Definition 1.4.4. Negative state feedback occurs when some function of the output of a

system, process, or mechanism is fed back in a manner that tends to reduce the fluctuations

in the output, whether caused by changes in the input or by other disturbances.
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Proportional control happens when a correction is applied to the controlled variable

and it is proportional to the difference between the desired value (set-point) and the mea-

sured value (process variable). The proportional control system is more complex than an

on–off control system, but simpler than a proportional-integral-derivative (PID) control

system used in cruise control. An on–off control is not effective for quick corrections

and responses. Proportional control overcomes this by modifying the manipulated variable

(MV) at a gain level which avoids instability, as well as applying corrections as fast as

possible by applying the optimal quantity of proportional correction. A drawback of pro-

portional control is that it cannot eliminate the residual SP–PV error, as it requires an error

to generate a proportional output.

1.5 ORGANIZATION OF THESIS

In Chapter 2, we present the theoretical results that are necessary for the numerical

computation of Lyapunov exponents. Also, in this chapter, we will go into further detail

about why Lyapunov exponents are important and its applications. We will then formulate

and implement the Gram–Schmidt Reorthonormalizaton method for building a Lyapunov

exponent toolbox. In Chapter 3, we will discuss controllability and techniques used to

stabilize a chaotic or hyper-chaotic system. We will discuss how to determine the con-

trollability of a dynamical system and then implementing the Bass-Gura method to design

feedback control to stabilize the system. In the case studies, we apply the implemented Lya-

punov exponent toolbox to monitor the stabilization process of a chaotic system (Lorenz)

and a hyperchaotic system (Coupled Lorenz). In Chapter 4, I will make a few concluding

remarks.
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CHAPTER 2

GSR ALGORITHM FOR COMPUTING LYAPUNOV EXPONENTS

Lyapunov exponents are a quantitative measure of the state of a dynamical system

from a fixed point, periodic orbits, chaos to hyperchaos. These exponents are important

because they allow us to define chaos in a definitive way. If we were to only base chaotic

behavior on a picture, there is no telling exactly where a system is chaotic. Hence everyone

would have their own opinion about chaos. So introducing a measure of chaos allows

us to strictly define chaos. Having this measure allows us to compare different systems,

determining if one system is more chaotic than the other.

As mentioned previously, Lyapunov exponents characterize the average rate of sepa-

ration of nearby state trajectories in phase space. It is calculated for each dimension and it

is dependent on the length of the principal axis of the ellipsoid.

λ = lim
t→∞

1

t
log

pi(t)

pi(0)

There are three applications of Lyapunov exponents that I will discuss. These exponents

can:

• automatically identify control system’s stability;

• estimate the dimension of a strange attractor associated with a chaotic system; and

• distinguish between chaotic and hyperchotic systems.

Lyapunov exponents measure the level of chaos in a system, as well as the sensitivity

of the system to its initial conditions. These exponents give us an idea of whether a specific

direction in the phase space is contracting or expanding. Figure 2.1 illustrates the three

behaviors that trajectories may demonstrate.
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Figure 2.1: Neighboring trajectories with a) stable, b) unstable, and c) marginally stable

behavior.

Trajectories that converge, moving closer together, have negative Lyapunov expo-

nents. Having all exponents be negative means that the system is stable. They may also

diverge, separating from each other over time, which means there is at least one positive

Lyapunov exponent indicating chaotic behavior (the system is unstable). However, if they

neither converge nor diverge, but maintain steady distance between each other in a stable

cycle, they usually have a Lyapunov exponent close to zero.

Lyapunov exponents also have the ability to distinguish between chaotic and hyper-

chaotic systems. If the system produces one positive Lyapunov exponent, then the system

is chaotic. However, if two or more are positive, the system is hyperchaotic.

In a three dimensional dynamical system, the Lyapunov spectra are (+,0,-), (0,0,-),

(0,-,-), and (-,-,-). While in a four dimensional system, there are three types of chaotic

attractors. Their Lyapunov spectra are (+,+,0,-), (+,0,0,-), and (+,0,-,-). An example of the

first four dimensional attractor would be Rossler’s hyperchaotic system.

Lyapunov exponents can also estimate the dimension of a strange attractor associated

with a chaotic system. The Lyapunov dimension, df , is related to the Lyapunov spectrum

by the equation:

df = j +

∑j
i=1 λi
|λj+1|

(2.1)
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The concept of finite-time Lyapunov dimension and related definition of the Lyapunov

dimension is convenient for the numerical experiments where only finite time can be ob-

served.

2.1 MATHEMATICS BEHIND ALGORITHM

The algorithm for computing Lyapunov exponents from differential equations is in-

spired by the techniques of A. Wolf [7]. If we recall, Lyapunov exponents are mathematical

attributes of a chaotic orbit that determine the exponential rate at which nearby trajectories

diverge. Let’s describe these calculations in some detail. The procedure for finding Lya-

punov exponents could be implemented by defining the principal axes with initial condi-

tions whose separations are extremely small and transforming these with nonlinear equa-

tions.

Definition 2.1.1. The principal axes defined by the linear system are always infinitesimal

relative to the attractor.

Definition 2.1.2. The fiducial trajectory (center of the sphere) is defined by nonlinear equa-

tions with an initial condition. Trajectories of these points are defined by linearized equa-

tions on points separated from the fiducial trajectory.

The principal axes are defined by the evolution made by the linearized equations of an

orthonormal vector. Even in the linear system, principal axis vectors diverge in magnitude,

but this is a problem only because computers have a limited dynamic range for storing

numbers [7]. This divergence is easily avoided.

To implement this procedure the fiducial trajectory is created by integrating the non-

linear equations of motion for some post-transient initial condition. Simultaneously, the

linearized equations are integrated for n different initial conditions defining an arbitrarily

oriented frame of n orthonormal vectors. It has already been pointed out that each vector
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will diverge in magnitude. This can be avoided by the repeated use of the Gram Schmidt

reorthonormalization procedure on the vector. If we recall, the Gram Schmidt reorthonor-

malization:

Definition 2.1.3. Gram-Schmidt orthogonalization, also called the Gram-Schmidt process,

is a procedure which takes a nonorthogonal set of linearly independent functions and con-

structs an orthogonal basis over an arbitrary interval with respect to an arbitrary interval.

Recall the linearized equations that act on the initial frame of orthonormal vectors

is a set of vectors, {v1, · · · , vn}, then Gram Schmidt reorthonormalization provides the

orthonormal set, {v′1, · · · , v′n}, where

v′1 =
v1
‖v1‖

v′2 =
v2 − 〈v2, v′1〉v′1
‖v2 − 〈v2, v′1〉v′1‖

...

v′n =
vn − 〈vn, v′n−1〉v′n−1 − · · · − 〈vn, v′1〉v′1
‖vn − 〈vn, v′n−1〉v′n−1 − · · · − 〈vn, v′1〉v′1‖

where 〈vi, vj〉 denotes the Euclidean inner product of vi and vj .

During this process, we see that Gram Schmidt reorthonormalization never affects

the direction of the first vector in a system. This vector tends to seek out the direction in

tangent space which is most rapidly growing. The second vector has its component along

the direction of the first vector removed, and then it’s normalized. Since we are changing

its direction, vector v2 is not able to find the most rapidly growing direction. Because of

the way it is being changed, it is also not able to seek out the second most rapidly growing

direction. However, the vectors v′1 and v′2 span the same two-dimensional subspace as the

vectors v1 and v2.

The area defined by these vectors is proportional to 2(λ1+λ2)t. The length of vector v1

is proportional to 2λ1t.The monitoring of the length and area growth allows us to determine
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both exponents. In practice, as v′1 and v′2 are orthogonal, we may determine λ2 directly

from the mean rate of growth of the projection of vector v2 on vector v′2.

In general, the subspace spanned by the first k vectors is not affected by the Gram

Schmidt reorthonormalization. So the long-term evolution of the k-volume defined by

these vectors is proportional to 2µ, where µ =
∑k

i=1 λit. The projection of the developed

vectors onto the new orthonormal frame updates the rates of growth of each of the first

k-principal axes in turn providing estimates of the k largest Lyapunov exponents. Thus

Gram Schmidt reorthonormalization allows the integration of the vector frame for as long

as is required for spectral convergence [7].

The definition of the Lyapunov exponent in equation (1.3) states that each Lyapunov

exponent gives an asymptotic measure of the variation of the corresponding principal axis.

This measure is the result of a cumulative effect on the stretching and compressing of

the axes by the velocity field over time. For the purpose of approximating an Lyapunov

exponent, consider the interval (t0, t0 +k∆t), t0 ≥ 0), 0 < ∆t < 1, and k ∈ Z+. Using the

following formula we can approximate the Lyapunov exponents:

λi ≈
1

N∆t

N∑
k=1

log ‖pi(tk)‖ (2.2)

where tk = t0+k∆t and pi(tk) is the vector for the ith principal axis. This is the solution of

a linearized system associated with the original dynamical system which will be explained

in the following discussion. Given the following autonomous system,

ẋ = f(x, u) (2.3)

where f : Rn+1 → Rn and u is a control input, let xk = x(tk) that satisfies equation (2.3).

The associated Jacobian system of equation (2.3) obtained from the linearization at xk is

given by

δẋ
(i)
k = ∆f(xk, u), δx

(i)
k (0) = vi, (2.4)
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where vi, i = 1, 2, . . . , n, are orthonormal vectors from the Gram-Schmidt orthonormal-

ization process. As such, the principal axis vector is as follows, pi(tk) = δx
(i)
k . Also, we

let pi(to) = ei be the standard unit vector. The diagram shown in figure 2.2, illustrates

the general flow of the Gram Schmidt Reorthonormalization technique given by equations

(2.2) ∼ (2.4).

Figure 2.2: Flow chart for computing Lyapunov exponents
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2.2 CASE STUDIES AND NUMERICAL RESULTS

Let’s consider the Lorenz system.
ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

To set up the corresponding linearized system for the above equations, we must first

find the Jacobian matrix. Which is given by

J =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z


where fi is the right-hand side of the ith differential equation. For a n-dimensional system

we would have an n× n matrix. For the Lorenz system

J =


−σ σ 0

ρ− zn −1 −xn

yn xn −β


Now to set up the variational equations we need to describe the variations.

[δ] =


δx1 δy1 δz1

δx2 δy2 δz2

δx3 δy3 δz3


where δxi is the component of the x variation that came from the ith equation.

The column sums are the lengths of the x, y, and z coordinates of the evolved variation.

The rows are the vector coordinates into which the original x, y, and z components of the

variation have evolved.
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Thus the linearized equations are:
δ̇x1 δ̇y1 δ̇z1

δ̇x2 δ̇y2 δ̇z2

δ̇x3 δ̇y3 δ̇z3

 =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z



δx1 δy1 δz1

δx2 δy2 δz2

δx3 δy3 δz3

 .
In terms of the Lorenz example:

δ̇x1 δ̇y1 δ̇z1

δ̇x2 δ̇y2 δ̇z2

δ̇x3 δ̇y3 δ̇z3

 =


−σ σ 0

ρ− zn −1 −xn

yn xn −β



δx1 δy1 δz1

δx2 δy2 δz2

δx3 δy3 δz3


To implement this procedure we solve the new system of differential equations with

any numerical differential equation algorithm. In this case, Runge-Kutta 4 for some initial

conditions and a time range [t, t+h] where t denotes the initial time and h denotes the time

step.

In a chaotic system, each vector tends to fall along the local direction of most rapid

growth. In addition, the finite precision arithmetic of computing, the collapse towards a

common direction causes the tangent space orientation of all axis vectors to become indis-

tinguishable. To overcome this, Wolf et.al.[7] use repeated Gram-Schmidt reorthonormal-

ization procedure on the vector frame.

Let the linearized equations act on the initial frame of orthonormal vectors to give a set

of vectors. After we solve the system of equations, consider the components corresponding

to the variational equations. Then the Gram-Schmidt reorthonormalization provides an

orthonormal set. The orthonormal set obtained serves as the new initial conditions for our

linearized system. We then solve the system again now with these new initial conditions

and a new time-range [t, t+ h] where t has been changed to t+ h. Then this is repeated n

times.

Below are the results produced by the program for each system.
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1. Lorenz
ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

λ1 = 1.258

λ2 = 0

λ3 = −20.966

Table 2.1: Dynamical system and Lyapunov exponents for the Lorenz system

As mentioned previously, the Lorenz system was first studied by Edward Lorenz and

Ellen Fetter. It is a system of ordinary differential equations known for having chaotic

solutions for certain parameter values. And looking at Figure 2.3, we can see that chaotic

behavior. The model is a system of three ordinary differential equations known as the

Lorenz equations (See Table 2.1). The equations relate the properties of a two-dimensional

fluid layer uniformly heated from below and cooled from above. This figure shows the

graphical output of Lyapunov exponents against time in seconds.
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Figure 2.3: Solutions for the Lorenz system

2: Rossler-chaos
ẋ = −y − z

ẏ = x+ ay

ż = b+ xz − cz

λ1 = .12

λ2 = 0

λ3 = −14.14

Table 2.2: Dynamical system and Lyapunov exponents for the Rossler Chaotic system

The Rossler chaos system is a system of three non-linear ordinary differential equa-

tions. This system was originally studied by Otto Rossler in the 1970’s. These differential

equations define a continuous-time dynamical system that exhibits chaotic dynamics asso-
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ciated with the fractal properties of the attractor. This figure shows the graphical output of

Lyapunov exponents against time in seconds.

Figure 2.4: Solutions for the Rossler Chaotic system

3: Rossler-hyperchaos

ẋ = −y − z

ẏ = x+ ay + w

ż = b+ xz

ẇ = −cz + dw

λ1 = .17

λ2 = .02

λ3 = 0

λ4 = −33.93

Table 2.3: Dynamical system and Lyapunov exponents for the Rossler Hyperchaotic system
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This four dimensional system was proposed in 1979 by Rossler. We can see that

there are two positive Lyapunov exponents. Therefore, the four dimensional system is a

hyperchaotic system. The Lyapunov exponent spectrum is shown in Figure 2.5 against

time in seconds.

Figure 2.5: Solutions for the Rossler Hyperchaotic system
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4: Coupled Lorenz

ẋ1 = ρ(y1 − x1)− γ(x1 − x2)

ẏ1 = R1x1 − y1 − x1z1

ż1 = x1y1 − z1 − η(z1 − z2)

ẋ2 = ρ(y2 − x2)− γ(x2 − x1)

ẏ2 = R2x2 − y2 − x2z2

ż2 = x2y2 − z2 − η(z2 − z1)

λ1 = 1.1062

λ2 = .84536

λ3 = −.013101

λ4 = −.012153

λ5 = −18.366

λ6 = −19.051

Table 2.4: Dynamical system and Lyapunov exponents for the Coupled Lorenz system

These equations are coupled via a term common to lasers with injected fields. The

coupling constant β controls the degree to which these systems interact and may be experi-

mentally varied by reflection losses. The general problem of coupled lasers does not require

that there be a single coupling constant for one systems’ injection into the other[14]. This

figure shows the graphical output of Lyapunov exponents against time in seconds.

Figure 2.6: Solutions for the Coupled Lorenz system
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5: Hyperchaotic Chen

ẋ = a(y − x)

ẏ = 4x− 10xz + cy + 4w

ż = y2 − bz

ẇ = −dx

λ1 = 1.9

λ2 = .24

λ3 = −.01

λ4 = −26.70

Table 2.5: Dynamical system and Lyapunov exponents for the Hyperchaotic Chen system

Figure 2.7: Solutions for the Hyperchaotic Chen system

6: Modified Hyperchaotic Chen system

ẋ = a(y − x) + w

ẏ = dx− xz + cy

ż = xy − bz

ẇ = yz + rw

λ1 = .66

λ2 = .22

λ3 = 0

λ4 = −37.82

Table 2.6: Dynamical system and Lyapunov exponents for the Modified Chen System
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The Chen system was found in 1999, based on Lorenz system. It was designed as

a hyperchaos through adding a state-feedback controller to the first control input to drive

a unified chaotic system to generate hyperchaos, and it was demonstrated by bifurcation

analysis and an electronic circuit implementation. This figure shows the graphical output

of Lyapunov exponents against time in seconds.

Figure 2.8: Solutions for the Modified Chen system
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CHAPTER 3

APPLICATION IN CONTROL SYSTEMS

3.1 BACKGROUND ON STATE FEEDBACK CONTROL

The concepts of controllability and state feedback control were built around a linear

time invariant system (LTI) with single input single output (SISO)

ẋ = Ax+Bu

y = Cx+Du

(3.1)

where A is an n× n matrix, B is an n× 1 column vector, C is a 1× n row vector, and D

is 1× 1.

Definition 3.1.1. A single-input and single-output (SISO) system is a simple single variable

control system with one input and one output.

We know that the system dynamics is largely determined by eigenvalues of matrix A.

Our goal is to design a control input, u, so that the system is stabilized. A proportional

controller for a linear state feedback is given by

u = r −Kx (3.2)

where K ∈ R1×n is the feedback gain matrix and r is a reference signal (For simplicity, let

r = 0). Since x is known, we have the following closed loop system. See Figure 3.1 We

can now substitute.

ẋ = Ax+B(−Kx)

= (A−BK)x

= Ãx

y = Cx+Du
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where Ã = A−BK, known as the closed loop state matrix

Figure 3.1: System with state feedback (closed loop)

Our objective is to find K such that Ã has the desired properties. For example, if A is

unstable then we must design Ã to be stable, i.e: all the eigenvalues of Ã are in the left half

of the complex plane. Note that there are n parameters in K and n eigenvalues in A. Let’s

look at an example. Consider the system:

ẋ =

0 2

0 3

x+

0

1

u

then the determinant of matrix A is

det(sI − A) = s(s− 3)

so our eigenvalues are s1 = 0 and s2 = 3. Because we have a positive eigenvalue, the
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system is unstable. Let

u = −Kx =

[
k1 k2

]
x

and

Ã = A−BK =

0 2

0 3

−
0

1

[k1 k2

]

=

0 2

0 3

−
 0 0

k1 k2


=

 0 2

−k1 3− k2


then the characteristic polynomial of Ã,

det(sI − Ã) = s(s− 3 + k2) + k1 = s2 + (k2 − 3)s+ 2k1

Thus, by choosing k1 and k2, we can place the eigenvalues or poles of Ã anywhere in the

complex plane. For instance, if we want to place our closed loop poles at s1 = −2 and

s2 = −1, then the desired characteristic polynomial is

(s+ 1)(s+ 2) = s2 + 3s+ 2

with the closed loop characteristic polynomial

det(sI − Ã) = s2 + (k2 − 3)s+ 2k1

By matching up the coefficients,

s2 + 3s+ 2 = s2 + (k2 − 3)s+ 2k1

we conclude that

k2 − 3 = 3→ k2 = 6

2k1 = 2→ k1 = 1
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so the feedback gain matrix is K =

[
1 , 6

]
. Of course, it is not always this easy, as lack

of controllability might be an issue.

Definition 3.1.2. If for some initial state, x0, and some final state, xf , there exists an input

sequence to transfer the system state from x0 to xf in a finite time interval, then the system

modeled by the state-space representation is controllable.

Theorem 3.1. The n× n controllability matrix is given by

Ωc =

[
B AB A2B · · · An−1B

]
.

The system is controllable if the controllability matrix has full row rank (i.e.rank(Ωc) = n).

3.2 BASS GURA METHOD

If the system {A,B} is controllable, then we can arbitrarily assign the eigenvalues of

Ã. Given any polynomial,

sn + α1s
n−1 + · · ·+ αn,

there exists a unique gain matrix, K ∈ R1×n, for a SISO system such that

det(sI − Ã) = sn + α1s
n−1 + · · ·+ αn,

where Ã = A−BK.

We can prove this by solving for the state feedback gain matrix, K, in relation to the

closed loop poles. This is where the Bass-Gura method comes into play. This method

only works if the system {A,B} is controllable. We can then transform {A,B,C} into the
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controller canonical form. That is

R−1Ω−1c AΩcR = Ac =



−a1 −a2 · · · −an

1 0 · · · 0

. . . ...

0 · · · 1 0



R−1Ω−1c B = Bc =



1

0

...

0


where

R =



1 a1 a2 · · · an−1

0 1 a1 · · · an−2

. . .

0 · · · 1


,

︸ ︷︷ ︸
Toeplitz Matrix

Ωc =

[
B AB A2B · · · An−1B

]
det(sI − Ac) = sn + a1s

n−1 + · · ·+ an

Note, Kc =

[
k1 · · · kn

]
so,

BcKc =



k1 k2 · · · kn

0 · · · 0

...
...

0 · · · 0
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So the controlled matrix in canonical form:

Ã = Ac −BcKc =



−(a1 + k1) −(a2 + k2) · · · −(an + kn)

1 0 · · · 0

. . . ...

0 · · · 1 0


to which the characteristic polynomial is

det(sI − Ã) = sn + (a1 + k1)s
n−1 + · · ·+ (an + kn)

Figure 3.2: Three dimensional transfer function

The desired characteristic polynomial is

p̃(s) = sn + α1s
n−1 + · · ·+ αn
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Setting both the original and desired characteristic polynomials equal to each other,

α1 = a1 + k1c → k1 = α1 − a1

α2 = a2 + k2c → k2 = α2 − a2
...

αn = ac + knc → kn = αn − an

we can conclude that, k = α−a, where α =

[
α1 α2 · · · αn

]
and a =

[
a1 a2 · · · an

]
.

p̃(s) = det(sI − Ã) = det(sI − A+BK)

= det((sI − A) +BK) = det((sI − A)[I + (sI − A)−1BK])

= det(sI − A)det(I + (sI − A)−1BK)

= p(s)det(I + (sI − A)−1BK)

If we were to move the vector K in front of (sI − A)−1, K(sI − A)−1B would become

a scalar. Also due to the identity det(Im + PQ) = det(In + QP ) where P ∈ Rm×n and

Q ∈ Rn×m, we have

p̃(s) = p(s)det(1 +K(sI − A)−1B)

= p(s)[1 +K(sI − A)−1B]

= p(s) +Kp(s)(sI − A)−1B

= p(s) +Kdet(sI − A)(sI − A)−1B

= p(s) +Kadj(sI − A)B

where adj(·) denotes the adjugate of a matrix. Note that

adj(sI − A) = sn−1I + sn−2(A+ a1I) + sn−3(A2 + a1A+ a2I) + · · ·
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then,

p̃(s)− p(s) = K[sn−1I + sn−2(A+ a1I) + sn−3(A2 + a1A+ a2I) + · · · ]B

where

ã1 − a1 = KB

ã2 − a2 = K(A+ a1I)B = KAB + a1KB

ã3 − a3 = K(A2 + a1A+ a2I)B = KA2B + a1KAB + a2KB

...

Let ã =

[
α1 α2 · · · αn

]
and a =

[
a1 a2 · · · an

]
.

So,

ã− a =

[
α1 α2 · · · αn

]
−
[
a1 a2 · · · an

]

=

[
KB KAB KA2B · · · KAn−1B

]


1 a1 a2 · · · an−1

0 1 a1 · · · an−2

. . .

0 · · · 1


Let

R =



1 a1 a2 · · · an−1

0 1 a1 · · · an−2

. . .

0 · · · 1


︸ ︷︷ ︸

Toeplitz Matrix

,Ωc =

[
B AB A2B · · · An−1B

]
.

Then, ã− a = KΩcR. So, K = (ã− a)R−1Ω−1c . This is called the Bass-Gura formula for

gain matrix K.
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3.3 SIMULATION RESULTS

Let’s perform the Bass-Gura Method on the Lorenz system. Recall its system of equa-

tions: 
ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

(3.3)

Recall that the Jacobian matrix for this system is

J =


−σ σ 0

ρ− z∗ −1 −x∗

y∗ x∗ −β

 , (3.4)

where E∗ = (x∗, y∗, z∗) is the equilibrium of the system. For the Lorenz system, we

will use the nonzero equilibrium at E∗ = (−
√

(208/3),−
√

(208/3), 26) based on the

following parameter values: σ = 10, ρ = 27, β = 8
3

and the control input matrix

B =


0

1

0


So if we go ahead and plug the equilibrium in equation 3.4, we have the following

Jacobian matrix:

JE∗ =


−10 10 0

1 −1
√

(208/3)

−
√

(208/3) −
√

(208/3) −8
3


First we must determine if the system is controllable. If we recall Theorem 3.1, we

must examine the controllability matrix and see if it is full rank.
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The controllability matrix associated with the Lorenz system (3.3)

Ωc =

[
B JB J2B

]
=


0 10 −110

1 −1 −58.333

0 −8.3267 −52.736


and

rank(Ωc) = 3.

Since rank(Ωc) has a full rank, the system {J,B} is controllable. Now we can use the

Bass-Gura method to find the feedback gain matrix, which will be the controller used to

stabilize the Lorenz system.

The original characteristic polynomial is

p(s) = s3 + a1s
2 + a2s+ a3,

where

a1 = 13.667

a2 = 98.667

a3 = 1386.7

and let

a =

[
13.667 98.667 1386.7

]
.

Let the closed-loop eigenvalues be {-7,-3,-4}. Then the desired characteristic polynomial:

p̃(s) = (s+ 7)(s+ 3)(s+ 4) = s3 + 14s2 + 61s+ 84

where

ã1 = 14

ã2 = 61

ã3 = 84
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so ã =

[
14 61 84

]
.

Now to find the R matrix

R =


1 a1 a2

0 1 a1

0 0 1

 =


1 13.667 98.667

0 1 13.667

0 0 1



Ωc =


0 10 −110

1 −1 −58.333

0 8.3267 −52.736


Finally, we compute the feedback gain matrix.

K = (ã− a)R−1Ω−1c

=

[
2.73333 .33 8.3133

]
If we recall from Chapter 2, the Lyapunov exponents for the Lorenz system were

λ1 = 1.258

λ2 = 0

λ3 = −20.966

After controlling the system, we now have the following Lyapunov exponents:

λ1 = −.29504

λ2 = −.91674

λ3 = −24.276
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which indicates that the chaotic system is stabilized to its equilibrium. Figure 3.3 is the

graphical representation of the system being controlled to its equilibrium.

Figure 3.3: Lorenz system controlled after 12,500 runs

If we recall, for this system, we had only one positive exponents before we controlled

the system. Which is the reason that it is classified as a chaotic system. In Figure 3.4,

you will see the graduate Lyapunov exponent curve for the positive exponents against time

in seconds. By the 12, 500th run, this positive Lyapunov exponent starts to take a dive to

become negative. Notice that the curve ends a little below the zero mark, this is what we

wanted. With the program after controlling the system, λ1 became roughly −.3 and this

lines up with Figure 3.4 nicely.
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Figure 3.4: Intermediate values for the positive LE

Let’s run the simulation again with a system of a higher degree. The sixth order

hyperchaotic Coupled Lorenz system. Recall its system of equations:

ẋ1 = ρ(y1 − x1)− γ(x1 − x2)

ẏ1 = R1x1 − y1 − x1z1

ż1 = x1y1 − z1 − η(z1 − z2)

ẋ2 = ρ(y2 − x2)− γ(x2 − x1)

ẏ2 = R2x2 − y2 − x2z2

ż2 = x2y2 − z2 − η(z2 − z1)
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and the Jacobian matrix,

J =



−ρ− γ ρ 0 γ 0 0

R1 − z1 −1 −x1 0 0 0

y∗1 x∗1 −1− η 0 0 η

ρ 0 0 −ρ− γ ρ 0

0 0 0 R2 − z∗2 −1 −x∗2

0 0 η y∗2 x∗2 −1− η


,

where E∗ = (x∗1, y
∗
1, z
∗
1 , x

∗
2, y
∗
2, z
∗
2) is the equilibrium of the system. For the Lorenz system,

we will use the zero equilibrium, E∗ = (0, 0, 0, 0, 0, 0). We have the following parameters:

ρ = 10, γ = .2, R1 = 38, η = .1, R2 = 45 and the control matrix

B =



0

1

0

0

0

1


.

So if we go ahead and plug in our equilibrium, we have the following Jacobian:

JE∗ =



−10.2 10 0 0.2 0 0

38 −1 0 0 0 0

0 0 −1.1 0 0 0.1

0.2 0 0 −10.2 10 0

0 0 0 45 −1 0

0 0 0.1 0 0 −1.1


First we must determine if the system is controllable. If we recall Theorem 3.1, we

must examine the controllability matrix and see if it will produce a full rank.
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Let

Ωc =

[
B JB J2B J3B J4B J5B

]

=



0 10 −112 4952.8 −96897 297300

1 −1 381 −4637 192840 −3874900

0 0.1 −.22 .364 −.5368 0.74416

0 0 2 −42.8 2327.1 −63276

0 0 0 90 −2016 106740

1 −1.1 1.22 −1.364 1.5368 −1.7442


then to determine the rank of matrix Ωc.

rank(Ωc) = 6

Since rank(Ωc) has a full rank, the system {J,B} is controllable. Now we can use the

Bass-Gura method to find the feedback gain matrix, which will be the controller used to

stabilize the Coupled Lorenz system.

The original characteristic polynomial is

p(s) = s6 + a1s
5 + a2s

4 + a3s
3 + a4s

2 + a5s+ a6,

where

a1 = 24.6

a2 = −633.72

a3 = −10546

a4 = 141870

a5 = 346920

a6 = 195170
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then

a =

[
24.6 −633.72 −10546 141870 346920 195170

]
.

Let the closed-loop eigenvalues be {-7,-3,-4,-2,-1,-6}. Then the desired characteristic poly-

nomial:

p̃(s) = (s+7)(s+3)(s+4)(s+2)(s+1)(s+6) = s6+23s5+207s4+925s3+2144s2+2412s+1008,

where

ã1 = 23

ã2 = 207

ã3 = 925

ã4 = 2144

ã5 = 2412

ã6 = 1008

then ã =

[
23 207 925 2144 2412 1008

]
.

Now to find the R matrix

R =



1 a1 a2 a3 a4 a5

0 1 a1 a2 a3 a4

0 0 1 a1 a2 a3

0 0 0 1 a1 a2

0 0 0 0 1 a1

0 0 0 0 0 1


=



1 23 207 925 2144 2412

0 1 23 207 925 2144

0 0 1 23 207 925

0 0 0 1 23 207

0 0 0 0 1 23

0 0 0 0 0 1
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Ωc =



0 10 −112 4952.8 −96897 297300

1 −1 381 −4637 192840 −3874900

0 0.1 −.22 .364 −.5368 0.74416

0 0 2 −42.8 2327.1 −63276

0 0 0 90 −2016 106740

1 −1.1 1.22 −1.364 1.5368 −1.7442


.

Finally, we compute the feedback gain matrix.

K = (ã− a)R−1Ω−1c

=

[
87.848 −1.6007 −.00065074 −372.07 2422.6 .00065074

]
If we recall from Chapter 2, the Lyapunov exponents for the Coupled Lorenz system

were

λ1 = 1.1062

λ2 = .84536

λ3 = −.013101

λ4 = −.012153

λ5 = −18.366

λ6 = −19.051
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After controlling the system, we now have the following Lyapunov exponents:

λ1 = −.12591

λ2 = −3.1460

λ3 = −19.202

λ4 = −22.275

λ5 = −31.469

λ6 = −62.587

which indicates that the chaotic system is stabilized to its equilibrium. Figure 3.5 is the

graphical representation of the system being controlled to its equilibrium.

Figure 3.5: Coupled Lorenz system controlled after 12,500 runs

If we recall, for this system, we had two positive exponents before we controlled the

system. Which is the reason it is classified as a hyperchaotic system. In Figures 3.6 and 3.7,

you will see both graduate Lyapunov exponent curves for the positive exponents againg
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time in seconds. By the 12, 500th run, the positive Lyapunov exponents start to fall and

negative. Notice that the first curve, which is associated with the first positive Lyapunov

exponent (λ1) ends a little below the zero mark, this is what we wanted. After controlling

the system, λ1 became roughly −.1 and this lines up with Figure 3.6 nicely. As for the

second positive Lyapunov exponent, λ2, the curve ends a little under the −3 mark which

coincides with λ2 being roughly −3.1.

Figure 3.6: Intermediate values for the first positive LE
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Figure 3.7: Intermediate values for the second positive LE
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CHAPTER 4

CONCLUSION

The objective of this thesis was to development a universal toolbox to compute Lya-

punov exponents of arbitrary nonlinear dynamical systems, using the dynamical equation

method. We wanted to remove the need of human interaction or interference during the

process of stabilizing a dynamical system. We believe that this toolbox is beneficial to

control engineers.

Since the Lyapunov exponents are effective indicators for determining if a system is

stable, we incorporated the Lyapunov exponent toolbox with different control systems to

test its instant feedback on stability. The results are consistent enough that the computed

Lyapunov exponents can be used to monitor the behavior of a control system effectively.
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APPENDIX A

COMPLETE MATLAB CODE FOR FINDING LYAPUNOV EXPONENTS

The algorithm for computing Lyapunov exponents from differential equations are in-

spired by the techniques of A. Wolf [7]. This program is used for computing the Lya-

punov exponents of nonlinear dynamical systems from experimental data done from a set

of differential equations. The toolbox consists of four different programs: three subrou-

tines and a main program. The first subroutine is a code for Runge-Kutta 4 used to solve

dy
dt

= f(t, y) along with a linearized system. The second lists the parameters and functions

for each dynamical system. The end result will be in the form of a column vector, which

will be processed in the main program. The third is on the Gram Schmidt orthogonalization

method. The main program ties everything together. It’s where we set our initial condi-

tions. Parts of this program requires user-input. The user is able to decide which of the

six pre-selected systems they would like to compute Lyapunov exponents for. The user can

add new systems of differential equations to the program.

RUNGE-KUTTA 4 METHOD

1 % RK method i s used t o s o l v e dy / d t = f ( t , y ) a l o n g wi th a

l i n e a r i z e d sys tem . In t h i s program , t h e s y s n f c o r r e s p o n d s

t o t h e f ( t , y ) and t h e l i n e a r i z e d sys tem

2

3 f u n c t i o n [ nx , ndv ]= rk4n ( t , x , dv , u , h )

4

5 xx =[ x ; dv ] ;

6 k1=h∗ s y s n f ( t , xx , u ) ;

7 k2=h∗ s y s n f ( t +h / 2 , xx+k1 / 2 , u ) ;
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8 k3=h∗ s y s n f ( t +h / 2 , xx+k2 / 2 , u ) ;

9 k4=h∗ s y s n f ( t +h , xx+k3 , u ) ;

10 xx=xx +( k1+2∗k2+2∗k3+k4 ) / 6 ;

11 nx=xx ( 1 : l e n g t h ( x ) ) ;

12 ndv=xx ( l e n g t h ( x ) +1:2∗ l e n g t h ( x ) ) ;

SYSTEM DIFFERENTIAL EQUATIONS FUNCTIONS

1 %This i s t h e f−f u n c t i o n i n t h e DE dy / d t = f ( t , y ) . Th i s i s

where you l i s t a l l o f your p a r a m e t e r s . You would l i s t a l l

o f your f u n c t i o n s as w e l l . Your end r e s u l t w i l l be i n

t h e form of a column v e c t o r .

2

3 f u n c t i o n dx= s y s n f ( t , x , u )

4 g l o b a l p i c k s y s a b c d r K1 K2 acu

5

6 i f p i c k s y s ==1

7 p =10; R=27; b = 8 / 3 ; % sys tem p a r a m e t e r s f o r t h e

Lorenz sys tem

8 x1=x ( 1 ) ; x2=x ( 2 ) ; x3=x ( 3 ) ;

9

10 dx1=p ∗ ( x2−x1 ) ;

11 dx2=R∗x1−x2−x1∗x3+u∗x2 ;

12 dx3=x1∗x2−b∗x3 ;

13 dx =[ dx1 ; dx2 ; dx3 ] ; %column v e c t o r

14

15 JM=[−p p 0 ; R−x3 −1+u −x1 ; x2 x1 −b ] ; % J a c o b i a n
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m a t r i x f o r l i n e a r s y s t

16 d e l x =x ( 4 : 6 ) ;

17 ddx=JM∗ d e l x ;

18

19 dx =[ dx ; ddx ] ;

20 end

21

22 i f p i c k s y s ==2

23 a = . 1 ; b = . 1 ; c =9; % sys tem p a r a m e t e r s f o r

t h e R o s s l e r Chaos sys tem

24 x1=x ( 1 ) ; x2=x ( 2 ) ; x3=x ( 3 ) ;

25

26 dx1= −(x2+x3 ) ;

27 dx2= x1 + a∗x2 ;

28 dx3= b + x3 ∗ ( x1−c ) ;

29 dx =[ dx1 ; dx2 ; dx3 ] ; %column v e c t o r

30

31 JM=[0 −1 −1; 1 a 0 ; x3 0 x1−c ] ;

32 d e l x =x ( 4 : 6 ) ;

33 ddx=JM∗ d e l x ;

34

35 dx =[ dx ; ddx ] ;

36 end

37

38 i f p i c k s y s ==3

39 a = . 2 5 ; b =3; c = 0 . 0 5 ; d = 0 . 5 ; % sys tem
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p a r a m e t e r s f o r t h e R o s s l e r Hyper−Chaos sys tem

40 x1=x ( 1 ) ; x2=x ( 2 ) ; x3=x ( 3 ) ; x4=x ( 4 ) ;

41

42 dx1= −(x2+x3 ) ;

43 dx2= x1 + a∗x2 + x4 ;

44 dx3= b + x3∗x1 ;

45 dx4= c∗x4 − d∗x3 ;

46 dx =[ dx1 ; dx2 ; dx3 ; dx4 ] ; %column v e c t o r

47

48 JM=[0 −1 −1 0 ; 1 a 0 1 ; x3 0 x1 0 ; 0 0 −d c ] ;

49 d e l x =x ( 5 : 8 ) ;

50 ddx=JM∗ d e l x ;

51

52 dx =[ dx ; ddx ] ;

53 end

54

55 i f p i c k s y s ==4

56 p =10; y = . 2 ; R1=38; n = . 1 ; R2=45; % sys tem

p a r a m e t e r s f o r t h e Lorenz Coupled sys tem

57 x1=x ( 1 ) ; x2=x ( 2 ) ; x3=x ( 3 ) ; x4=x ( 4 ) ; x5=x ( 5 ) ; x6=x

( 6 ) ;

58

59 dx1=p ∗ ( x2−x1 )−y ∗ ( x1−x4 ) ;

60 dx2= R1∗x1−x2−x1∗x3−acu ∗K1∗x2 ;

61 dx3= x1∗x2−x3−n ∗ ( x3−x6 ) ;

62 dx4= p ∗ ( x5−x4 )−y ∗ ( x4−x1 ) ;
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63 dx5= R2∗x4 − x5−x4∗x6 ;

64 dx6= x4∗x5−x6−n ∗ ( x6−x3 )−acu ∗K2∗x6 ;

65 dx =[ dx1 ; dx2 ; dx3 ; dx4 ; dx5 ; dx6 ] ; %column v e c t o r

66

67 JM=[−p−y p 0 y 0 0 ; R1−x3 −1−acu ∗K1 −x1 0 0 0 ; x2 x1

−1−n 0 0 n ; y 0 0 −p−y p 0 ; 0 0 0 R2−x6 −1 −x4 ; 0

0 n x5 x4 −1−n−acu ∗K2 ] ;

68 d e l x =x ( 7 : 1 2 ) ;

69 ddx=JM∗ d e l x ;

70

71 dx =[ dx ; ddx ] ;

72 end

73

74 i f p i c k s y s ==5 % sys tem

p a r a m e t e r s f o r t h e Chen sys tem

75 a =35; b =3; c =21; d =2;

76 x1=x ( 1 ) ; x2=x ( 2 ) ; x3=x ( 3 ) ; x4=x ( 4 ) ;

77

78 dx1=a ∗ ( x2−x1 ) ;

79 dx2 =4∗x1−10∗x1∗x3+c∗x2+4∗x4 ;

80 dx3=x2ˆ2−b∗x3 ;

81 dx4= −d∗x1 ;

82 dx =[ dx1 ; dx2 ; dx3 ; dx4 ] ; %column v e c t o r

83

84 JM=[−a a 0 0 ; 4−10∗x3 c −10∗x1 4 ; 0 2∗x2 −b 0 ; −d 0

0 0 ] ;
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85 d e l x =x ( 5 : 8 ) ;

86 ddx=JM∗ d e l x ;

87

88 dx =[ dx ; ddx ] ;

89 end

90

91 i f p i c k s y s ==6 % sys tem

p a r a m e t e r s f o r t h e Chen sys tem

92 % a= 3 5 ; b = 3 ; c = 1 2 ; d = 7 ; r = 0 . 4 ;

93 x1=x ( 1 ) ; x2=x ( 2 ) ; x3=x ( 3 ) ; x4=x ( 4 ) ;

94

95 dx1= a ∗ ( x2−x1 ) + x4 ;

96 dx2= d∗x1 − x1∗x3 + c∗x2 ;

97 dx3= x1∗x2 − b∗x3+u ;

98 dx4= x2∗x3 + r ∗x4+u ;

99 dx =[ dx1 ; dx2 ; dx3 ; dx4 ] ; %column v e c t o r

100

101 JM=[−a a 0 1 ; d−x3 c −x1 0 ; x2 x1 −b 0 ; 0 x3 x2 r ] ;

102 d e l x =x ( 5 : 8 ) ;

103 ddx=JM∗ d e l x ;

104

105 dx =[ dx ; ddx ] ;

106 end
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GRAM SCHMIDT ORTHOGONALIZATION

1 % This f u n c t i o n i s t o pe r fo rm Gram schmidt

o r t h o g o n a l i z a t i o n p r o c e s s

2

3 f u n c t i o n Q= n g r s c h (A)

4 [M,N]= s i z e (A) ;

5 rkn = rank (A) ;

6 i f rkn ˜=N

7 d i s p ( ’ The v e c t o r s a r e n o t l i n e a r l y i n d e p e n d e n t . Abor t ! ’ )

8 Q= [ ] ;

9 r e t u r n

10 end

11 v1=A ( : , 1 ) ;

12 %v1=v1 / norm ( v1 ) ;

13 Q=v1 ;

14 f o r k =2:N

15 w=A ( : , k ) ;

16 vsum =0;

17 f o r j =1 : k−1

18 vsum=vsum+w’∗Q ( : , j ) ∗Q ( : , j ) / norm (Q ( : , j ) ) ˆ 2 ;

19 end

20 P=w−vsum ;

21 % P=P / norm ( P ) ;

22 Q=[Q, P ] ;

23 end
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MAIN PROGRAM

1 c l e a r a l l

2 c l o s e a l l

3 f o r m a t s h o r t e

4 g l o b a l p i c k s y s a b c d r K1 K2 acu

5 a = 3 5 ; b = 3 ; c = 1 2 ; d = 7 ; r = . 4 ;

6 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

7 % I n i t i a l s e t up

8 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

9 p i c k s y s =1; % Which n o n l i n e a r sys tem t o use :

10 % 1 : Lorenz , 2 : R o s s l e r−chaos , 3 : R o s s l e r−

hyperchaos ,

11 % 4 : Lorenz Coupled , 5 : Chen , 6 : Modi f i ed Chen

12

13

14 % i n i t i a l v e c t o r f o r t h e n o n l i e a r sys tem t i e d up wi th

p i c k s y s

15 i f p i c k s y s ==1 % Lorenz sys tem

16 x=[−1 , 5 , 1 0 ] ’ ;

17 end

18 i f p i c k s y s ==2 % R o s s l e r 3D

19 x = [1 , 2 , 3 ] ’ ;

20 end

21 i f p i c k s y s ==3 % R o s s l e r 4D

22 x=[−10 , −6, 0 , 1 0 ] ’ ;
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23 end

24 i f p i c k s y s ==4 % Lorenz c o u p l e d

25 x=[−10 , −6, 0 , 10 , 6 , 7 ] ’ ;

26 end

27 i f p i c k s y s ==5 %Chen

28 x = [ 3 ; 7 ; 4 ; 1 0 ] ;

29 end

30 i f p i c k s y s ==6 % Modi f i ed Chen

31 x = [−0.1 0 . 2 −0.6 0 . 4 ] ’ ;

32 end

33

34 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

35 % P a r a m e t e r s / I n i t i a l C o n d i t i o n s

36 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

37

38 t =0 ; % i n i t i a l c o n d i t i o n

39 h = 0 . 0 1 ; %s t e p s i z e

40 t t = t ;

41 xx=x ’ ;

42 t o t a l =25000; %t o t a l number o f r u n s

43

44 dimN= l e n g t h ( x ) ;

45 i n i t i a l m =eye ( dimN ) ;

46 i n i t m = [ ] ;

47

48 f o r k =1: dimN
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49 dx= i n i t i a l m ( : , k ) ;

50 i n i t m =[ i n i t m , dx ] ;

51 end

52 s i = z e r o s ( 1 , dimN ) ;

53 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

54 %A c t i v a t e c o n t r o l l e r f o r Lorenz

55 s t c =12500;

56 u =0; CK=8;

57 p l e = [ ] ; % r e c o r d t h e i n t e r m e d i a t e v a l u e s f o r t h e p o s i t i v e

LE

58

59 %A c t i v a t e c o n t r o l l e r f o r Coupled Lorenz

60 STC=12500;

61 acu =0;

62 K1=68;

63 K2=76;

64 p l e 1 = [ ] ; p l e 2 = [ ] ;% r e c o r d t h e i n t e r m e d i a t e v a l u e s f o r t h e

p o s i t i v e LEs

65

66 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

67 % S i m u l a t i o n b l o c k

68 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

69

70 f o r n =1: t o t a l

71 i f n>s t c

72 u=−CK;
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73 end

74 i f n>STC

75 acu =1;

76 end

77 f o r k =1: dimN

78 dv= i n i t m ( : , k ) ;

79 [ nx , dv ]= rk4n ( t , x , dv , u , h ) ; % n u m e r i c a l l y i n t e g r a t e t h e

augmented sys tem

80 i n i t m ( : , k ) =dv ;

81 end

82

83 % a p p l y t h e g ram schmid t s u b r o u t i n e t o o r t h o n o r m a l i z e i n i t m

84 V= n g r s c h ( i n i t m ) ; % n o t n o r m a l i z e d

85

86 f o r i =1 : dimN

87 i f p i c k s y s ==1

88 i f i ==1

89 p l e =[ p l e ; l o g ( norm (V ( : , i ) ) ) / l o g ( 2 ) ] ;

90 end

91 end

92 i f p i c k s y s ==4

93 i f i ==1

94 p l e 1 =[ p l e 1 ; l o g ( norm (V ( : , i ) ) ) / l o g ( 2 ) ] ;

95 end

96 i f i ==2

97 p l e 2 =[ p l e 2 ; l o g ( norm (V ( : , i ) ) ) / l o g ( 2 ) ] ;
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98 end

99 end

100 s i ( i ) = s i ( i ) + l o g ( norm (V ( : , i ) ) ) / l o g ( 2 ) ;

101 V ( : , i ) =V ( : , i ) / norm (V ( : , i ) ) ;

102 end

103 i n i t m =V;

104 x=nx ;

105 t = t +h ;

106 t t =[ t t ; t ] ;

107 xx =[ xx ; x ’ ] ;

108 end

109 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

110

111 lamv = [ ] ;

112 f o r k =1: dimN

113 lambda = s i ( k ) / t ;

114 lamv =[ lamv , lambda ] ;

115 end

116

117 i f p i c k s y s ==1

118 p l e v = [ ] ;

119 l e n p l e = l e n g t h ( p l e ) ;

120 f o r k =1: l e n p l e

121 i n t a v e =sum ( p l e ( 1 : k ) ) / ( k∗h ) ;

122 p l e v =[ p l e v ; i n t a v e ] ;

123 end
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124 end

125

126 i f p i c k s y s ==4

127 p l e v 1 = [ ] ; p l e v 2 = [ ] ;

128 l e n p l e = l e n g t h ( p l e 1 ) ;

129 f o r k =1: l e n p l e

130 i n t a v e 1 =sum ( p l e 1 ( 1 : k ) ) / ( k∗h ) ;

131 i n t a v e 2 =sum ( p l e 2 ( 1 : k ) ) / ( k∗h ) ;

132 p l e v 1 =[ p l e v 1 ; i n t a v e 1 ] ;

133 p l e v 2 =[ p l e v 2 ; i n t a v e 2 ] ;

134 end

135 end

136

137 d i s p ( ’ Here a r e t h e computed Lyapunov e x p o n e n t s : ’ )

138

139 lamv

140 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

141

142

143 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

144 % P l o t t h e s t a t e t r a j e c t o r i e s

145 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

146 p l o t s t a t e = [ 1 : dimN ] ; % u s e r d e f i n e d s t a t e s t o p l o t

147 Np= l e n g t h ( p l o t s t a t e ) ;

148

149 f o r k =1:Np %p l o t s on same
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150 f i g u r e ( 1 )

151 s u b p l o t ( Np , 1 , k )

152 p l o t ( t t , xx ( : , p l o t s t a t e ( k ) ) )

153 x l a b e l ( ’ t ime ’ )

154 y l a b e l ( [ ’ x ’ , num2s t r ( p l o t s t a t e ( k ) ) ] )

155 end

156

157

158 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

159 % P l o t t h e i n t e r m e d i a t e v a l u e s f o r t h e p o s i t i v e LE ( s )

160 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

161

162 i f p i c k s y s ==1

163 f i g u r e ( 2 )

164 a x i s ( [ 1 0 , 2 5 0 , −2 , 2 ] )

165 p l o t ( t t ( 2 : 2 5 0 0 1 ) , p l e v )

166 x l a b e l ( ’ t ime ’ )

167 y l a b e l ( ’ x1 ’ )

168

169 end

170 i f p i c k s y s ==4

171 f i g u r e ( 2 )

172 a x i s ( [ 0 , 2 0 0 , −1 , 1 . 5 ] )

173 p l o t ( t t ( 5 0 0 : 2 0 0 0 0 ) , p l e v 1 ( 5 0 0 : 2 0 0 0 0 ) )

174 x l a b e l ( ’ t ime ’ )

175 y l a b e l ( ’ x1 ’ )
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176

177 f i g u r e ( 3 )

178 a x i s ( [ 0 , 2 0 0 , −1 , 1 . 5 ] )

179 p l o t ( t t ( 5 0 0 : 2 5 0 0 0 ) , p l e v 2 ( 5 0 0 : 2 5 0 0 0 ) )

180 x l a b e l ( ’ t ime ’ )

181 y l a b e l ( ’ x2 ’ )

182 end
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