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ABSTRACT

As machine learning models become more sophisticated, and biometric data becomes more

readily available through new non-invasive technologies, it becomes increasingly possible

to gain access to interesting biometric data that could revolutionize Human Computer Inter-

action. In this research, we propose a framework to assess and quantify human preference

(like or dislike) on presenting various external visual stimuli. Our framework relies on an

Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) based model and

on electroencephalogram (EEG) signals analysis to predict Like or Dislike preference of

human subjects when presented with various marketing images.
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CHAPTER 1

INTRODUCTION

A lot of money are used on marketing campaigns, especially when introducing new

products in the market. Many of these campaigns fail to seize the consumer’s attention

or stick in their memory. Some old marketing techniques like surveys, focus groups, or

face-to-face interviews may not be effective because:

• They do not take into consideration the subconscious side of decision making.

• Other factors like time or peer pressure can influence how consumers feel about a

particular product.

• The wording of questions can encourage the consumers towards the answer the mar-

keters would like to hear.

A new revolutionary marketing form that overcomes the above-listed issues is neu-

romarketing. It is considered revolutionary because it combines marketing with neuro-

science. What makes neuromarketing valuable is that it can assess information beyond the

consciousness level to understand and analyze consumer behavior through neural activity.

Some of the different methodologies used in the neuromarketing field are:

• Magnetoencephalography (MEG), is a brain imaging methodology that explores and

registers the brain’s magnetic activity.

• Functional magnetic resonancen imaging (fMRI), is a technique used to show what

part of the brain gets activated during a specific mental activity by noticing the

changes in blood oxygenation.

• Electroencephalogram (EEG), is a method that records the electrical activity of brain

cell groups.
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• Eye-tracking (ET), is a method that captures eye position and eye movement during

a particular activity.

During the last decade, neuromarketing has been grabbing the attention of many re-

searchers. Montague conducted the first neuromarketing experiment in 2003 [24]. Some

individuals were asked to drink Coca-Cola or Pepsi while an fMRI was used to scan their

brains. This study could not reveal how the human brain deals with brand choice, but

it showed that if the individuals knew or did not know the brand they were consuming,

different parts of their brain lit up. Later, Ambler [3] showed that there is a correlation be-

tween shopping decisions and brain imaging. This experiment had 18 subjects that looked

at three product images of different brands at a time and were asked what brand they pre-

ferred. Baldo in 2015 [4] proposed an approach based on EEG signals to forecast product

performance in the footwear industry. The EEG signals of 40 participants were recorded

while looking at different shoe images on a screen. The participants were asked whether

they would buy the shoes or not and fill a report on how much they liked a product on a scale

of 1-5. This study revealed that the prediction accuracy using brain data was 20% higher

than using self-report-based methods. Murugappan [27], in 2014 proposed a neuromarket-

ing system for predicting the most preferred automobile brand out of four brands Toyota,

Audi, Proton, and Suzuki, in Malaysia. The EEG signals of 12 individuals were captured

while they looked at videos of four products of each brand, and later, they were asked if

they liked or disliked the product and what emotions they felt watching a video of each

product. The results suggested that the Toyota brand was highly preferred. Farashi [12],

in 2019 has used the power of the EEG data to find the most critical brain regions for dif-

ferentiating preferences and predicting decision-making for different mobile phone brands.

The experiment results gave 87% accuracy for predicting consumer’s decision-making and

63% accuracy for distinguishing between “Like” and “Dislike.”
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1.1 OVERVIEW

In this work, data from the EEG signals of 25 individuals while they looked at dif-

ferent product images was analyzed in order to build a flexible classification model able to

distinguish a consumer preference in terms of “Like” and “Dislike” based on their brain

waves. The data was captured using a Brain-Computer Interface (BCI) device that has 14

channels located in AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4. The in-

dividuals wore the BCI device while looking at various product images for 4 seconds each,

and then they gave their preference regarding the images [38]. In [32], Fast Fourier Trans-

form was used to get the five frequency bands (Alpha, Beta, Gamma, Theta, Delta) from

EEG signals. We have scaled and normalized the data in our work and have used an LSTM

based model for classifying brainwaves in a binary classification “Like” or “Dislike.” Our

model intends to overcome the shortcomings of the two analyses mentioned above. Even

though the model in [32] reached a high accuracy, it can be considered impractical because

the brainwaves of all individuals are used for the model training. We aimed to overcome

this limitation by creating a classification model that groups the brain waves per human

subject. The model takes brain waves from 24 subjects for the training part and tests to

predict the preference of the 25th subject that was previously unknown to the model. In

[38] analyses, all brain wave components are considered on various models; however, our

experiment showed that combining all five brain wave components does not necessarily

give higher results for classification.

A similar experiment was conducted with different data in [3]. The method used was

fMRI and showed that the first part of a brain signal is related to problem-recognition and

the other part is related to decision-making. Considering that brain waves are expected

to “encode” more information than “Like” and “Dislike,” our model can analyze only a

fraction of the brainwave signal. From our experiment, this method produces better classi-

fication results.
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CHAPTER 2

NEURAL NETWORKS

2.1 INTRODUCTION TO NEURAL NETWORKS

There are billions of neurons in the human brain. The neuron is a nerve cell, and it is

the most crucial component of the nervous system. Neurons are responsible for capturing

information and signals and transmitting this information from one neuron to another until

it arrives at a specific part of the brain. Before transmitting the information, the neuron’s

role is to process it and decide if it should pass beyond this point. In 1943, Warren S.

McCulloch and Walter Pitts presented for the first time the idea of an artificial neuron [25].

It took years for their work to be recognized; however, their development inspired other

researchers to develop the primitive version of neural networks. Warren S. McCulloch and

Walter Pitts paved the way for the sophisticated and complex neural network models of

today’s world. In 1958, Frank Rosenblatt proposed a binary classification algorithm called

Perception, a mimic of the biological neuron [33].

Figure 2.1: A biological neuron and an artificial neuron [37]

The neurons in Figure 2.1 function in a similar way. In the biological neuron, the

information flows through the dendrites; it is processed in the nucleus, flows out by the

axon, and is transmitted to the other neurons by synapses. Just like in the biological neu-

ron, in its mathematical representation, inputs represent the dendrites. Inputs can be what

we feel, see, touch. Weights can be considered like synapses. The application of the ac-
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tivation function to the weighted sum is the step where the information gets processed.

Then it flows out as an output signal. This output can be binary, categorical, or continuous.

Multiple perceptrons stacked in several layers are called multilayer perceptrons [2]. Mul-

tilayer perceptions that only have one hidden layer are called “vanilla” neural networks. A

vanilla neural network is a feed-forward neural network. In feed-forward neural networks,

the inputs X1,..,Xn are independent, meaning that they do not share any knowledge. Each

input moves only in one direction, and it associates to a single output. This type of neural

network is used when the output does not need to know any particular information from

the preceding inputs. Feed-forward neural networks are used in different science fields,

for example, in pattern recognition, and pattern classification, signal processing, image

processing etc [15].

2.2 A SIMPLE NEURAL NETWORK

Figure 2.2: A simple neural network [6]

The first layer in the simple neural network in Figure 2.2 represents the input layer

that consists of two inputs, the second one represents the hidden layer, and the last layer
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represents the possible outcomes that in the above figure consists of two outputs. Each input

layer connects to a hidden layer, and each hidden layer connects to the output layer. The NN

in Figure 2.2 has only a hidden layer for demonstration, but usually, NN are more complex

and have multiple hidden layers. In this case, the first hidden layer’s output is considered

an input for the second one and so on. The connections of the layers are associated with

weights. Weights reflect the amount of input that should be considered. High weight values

show the high significance of the corresponding input in the result. Each hidden node

connects to a bias B1, and each output is connected to another bias B2. These connections

also associate with weights. Biases B1 and B2 are vectors that are different for each layer,

which add a change to the value of the output O [4]. A bias can be considered as an intercept

term. If the activation function in the hidden neuron were linear, the bias would be the

intercept [6]. The hidden layer takes in the sum of the weighted inputs and produces an

output after applying an activation function to that sum. The role of Activation functions is

to make neural networks non-linear. The reason why we need to use non-lineariy is because

the real-world problems are very complex to be solved by linear regression. If we did not

use non-linearity in Neural Network, despite the number of hidden layers that the Neural

Network would have, it would behave like a single-layer perceptron. This means that we

would get another linear function as the summation of all the hidden layers [7].

Activation functions are used to map the output values to a wanted range. Some of the most

used activation functions are sigmoid functions, tanh functions, and softmax functions.

• Sigmoid activation function

The Sigmoid function is a S-shaped graph that transforms values in the range (0,1)

Figure 2.3. The Sigmoid function can be used for binary classification.

sigmoid(x) =
1

1 + e−x
(2.1)

• Tanh activation function
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Figure 2.3: The graph of Sigmoid activation function [28]

Figure 2.4: The graph of Tanh activation function [28]

Tanh is an S-shaped graph symmetric about the origin, which maps the values into

the range (-1,1) as seen in Figure 2.4. Since the model is zero-centered, the outputs

will be close to zero. Therefore, during optimization, their weight swings will be

slight, and the model will learn faster. Tanh is a performant activation function that

can be applied to the hidden state. The tanh formula is given in Equation 2.2.

tanh(x) =
ex − e−x

ex + e−x
(2.2)

where e is the Euler’s number (e=2.718281828) and x is any real number.
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• Rectified Linear Unit (ReLU) activation function.

ReLu activation function is often applied to the hidden layers. It is faster learning,

and it offers better performance than sigmoid and tanh activation functions [9].ReLU

only activates the neuron if the value of the input is positive; this makes the function

assure faster computations. ReLU can be one of the vanishing gradient problem

solutions since it rectifies values close to zero to be zero.

f(x) = max(0, x) =

 x, if x ≥ 0

0, if x < 0

• Softmax activation function

The Softmax activation function is applied to the output. It maps the values into

the range (0,1). It is usually used for classification problems, and it provides the

outputs as probabilities. An advantage of this activation function is that it can manage

multiple classes. Suppose the likelihood of one class increases, the likelihood of the

other class will decrease by the same amount since the probabilities have to sum up

to one. The class that gives the best prediction is going to be the class that yields the

highest probability. The mathematical formula for the Softmax activation function is

given in Equation 2.3.

softmax(xi) =
exi∑K
k=1 e

xk
where i =1,...,k (2.3)

2.3 BACKPROPAGATION

One of the most popular questions, when introduced to NN, is adjusting the weights

to have the model that we need. An answer to this question is by using Backpropagation.

Definition 1. [Backpropagation] A common method of training a neural network in which

the initial system output is compared to the desired output, and the system is adjusted until

the difference between the two is minimized.
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As stated by Sathyanarayana [35]: “The goal of the backpropagation in neural net-

works is to find weights such that for every input vector in the training set, the neural

network yields an output vector closely matching the targeted vector.”

Initially, the weights are set as random. Then, it is checked how good the resulting neural

network is by using a loss function. The Mean Squared Error (MSE) function is a com-

monly used loss function. It takes the average of the squared difference between the actual

outputs and the target outputs. It would be ideal if the actual outputs would be equal to the

target ones and the loss would be zero, but since this case is not that common, we aim to

find an optimal solution by minimizing the loss function by improving the weights and the

biases. If the output is linear, the optimal solution will be given by Equation 2.4.

Loss = min
1

L

L∑
i=1

(yi − oi)2 (2.4)

Where yi is the actual output, oi is the target output, and L is the number of samples in the

training data.

If the output is binary, yi ∈ {0, 1}, the optimal solution will be given by Equation (2.5). In

this case, the objective is to minimize entropy, which is a measure for the disorder.

Loss = min
∑

((yi − 1) ∗ log(1− oi)− yi ∗ log(oi)) (2.5)

A weight/bias will be changed by an amount proportional to the partial derivative of

the loss function with respect to that weight/ bias using the gradient descend concept given

by Equation 2.6 and demonstrated in Figure 2.5.

wt+1 = wt − η ∗ ∂ Loss
∂ wt

(2.6)

where wt+1 is the updated weight and η is the learning rate.

The same process repeats multiple times until we arrive at a desired level of accuracy. The

partial derivatives, called Gradients, measure how the accuracy changes for small changes

in weights and biases [35].
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Figure 2.5: Gradient Descent [26]

In the graph in Figure 2.5, the horizontal axis represents the weights and the vertical

axis the value of the loss or, said differently, the cost function. We start with an initial

weight and find the corresponding point of this weight on the loss function. Since the goal

is to adjust the weights to minimize the loss, we have to get closer to the local minimum in

the function by taking the partial derivative of the loss function with respect to the weight.

If the derivative is positive, the point in the loss function has to move towards the left, closer

to the minimum. If it is negative, it has to move in the opposite direction.

2.4 RECURRENT NEURAL NETWORKS

In the simple feed-forward NN, the predictions only depend on the current input. What

if we are using sequential data where the current inputs are dependent on the previous

input? In this case, to understand the data and make predictions, we need information from

the current input and the previous ones. This matter was solved in 1997 when Hochreiter

and Schmidhuber presented the idea of recurrent neural networks (RNN)[5]. Contrary to

the standard feed-forward neural networks, RNN has a cyclical hidden state referred to as

the RNN’s memory. This feature of RNN remembers information from the previous steps,

and it gets modified every time RNN reads a new input. In Figure 2.6 an input is fed in
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Figure 2.6: A diagram of a simple RNN [14]

the RNN, the hidden state is updated, and an output is produced. To better understand

how RNN works, the simple RNN is unfolded in Figure 2.7. The unfolded RNN consists

of copies of the same diagram. Each of them contains an input that can be a sequence,

a hidden state, and an output that can classify or apply regression to the inputs. These

diagrams represent the batches. The data used for training is separated into batches, and

RNN trains one batch at a time. X(t) and O(t) stand for the input and output in time t or,

said differently, the current input and output. The hidden state in time t is represented by

h(t). The matrices U, W, and V, represent the weights of the RNN. As illustrated in Figure

2.7, matrix U represents the weights that transform the input to the hidden state. Matrix

W represents the weights that transform the hidden state at time t-1 to the hidden state at

time t, and matrix V represents the weights that transform the hidden state to the output.

At each cycle or time step happens the following: A vector x(t) is taken in as an input, and

the weighted input is sent to the hidden state. In the hidden state at time t a memory state

h(t) is produced that is an output of both the current input X(t) and the previous memory

state h(t−1). The activation function that is mainly applied in the hidden state in RNN is the

tanh function. The formula for calculating h(t) is given in Equation 2.7. The output O(t)

is produced by applying the softmax activation function to the weighted h(t) like shown in

Equation 2.8. The same function and the same set of parameters are used on the inputs and
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Figure 2.7: An unfolded RNN

hidden layers at every time step of the calculations to produce the output; hence RNN is

less complex in terms of parameters than the other NN. The following formulas are used

for calculating h(t) and O(t):

h(t) = tanh(W ∗ h(t−1) + U ∗X(t) + b(h)) (2.7)

o(t) = softmax(V ∗ h(t) + b(o)) (2.8)

2.4.1 BACKPROPAGATION THROUGH TIME

In RNN, the process of backpropagation gets more complicated. Unlike in simple

neural networks, in RNN, the error is calculated at each time step, and the total error is the

sum of all these errors.

L =
n∑
t=1

Lt (2.9)

Therefore, the backpropagation process happens at each of the individual time steps and

across all of them until the start of the sequence. This is the reason why the backpropagation

process in RNN is called backpropagation through time (BPTT).
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Let us take into consideration the Equations 2.7 and 2.8 and the Unfolded RNN in

Figure 2.7. As mentioned above, the weight matrices do not change for different time steps.

This makes the BPTT more difficult than the backpropagation in Simple NN because every

h(i) and O(i), where i represents the different time steps, is dependent on the same weight

matrix. To update the weights, we have to find the partial derivatives of the loss function

with respect to the weights.

∂ L

∂W
=

n∑
i=1

∂ L(i)

∂ W
(2.10)

Let’s find the partial derivative of the loss function at a time t:

∂ L(t)

∂ W
=
∂ L(t)

∂ O(t)
∗ ∂ O

(t)

∂ h(t)
∗ ∂ h

(t)

∂ W
(2.11)

For simplicity reasons, let us consider the output of the hidden state before applying

the tanh activation function in Equation 2.7: (W ∗ h(t−1) + U ∗X(t)) = z.

∂ h(t)

∂ W
= tanh′(z) ∗

(
h(t−1) +W ∗ ∂ h

(t−1)

∂ W

)
(2.12)

As can be seen in the above equation (2.12) both h(t) and h(t−1) depend on the same W.

Hence:

∂ h(t)

∂ W
= tanh′(z) ∗

[
h(t−1) +W ∗ tanh′(z) ∗

(
h(t−2) +W ∗ ∂ h

(t−2)

∂ W

)]
(2.13)

This pattern will be used to expand the partial derivatives until we arrive at time : t=1.

∂ h(t)

∂ W
= tanh′(z)∗

{
h(t−1) +W ∗ tanh′(z) ∗

[
h(t−2) +W ∗ tanh′(z)

(
h(t−3) + ...+W ∗ ∂ h

(1)

∂ W

)]}
To find the partial derivative (Equation 2.11), we have to plug in the Equation 2.4.1 in

the place of the partial derivative of the hidden state at time t with respect to W.
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2.4.2 VANISHING AND EXPLODING GRADIENT PROBLEMS

Two of the most significant issues when using BPTT across many time steps are the

vanishing and the exploding gradient problems.

• Vanishing gradient problem

Due to the usage of the Chain Rule in calculations, the gradients that come from

the initial layers have to go through continuous multiplications. If they have small

values (<1), these long-term components will exponentially fast to norm 0. During

backpropagation, the weights get updated by an amount proportional to the gradient.

If this amount is closer to 0, the updated weight will be very close to the previous

one and far from the optimal weight. This issue weakens the model’s ability to learn.

Figure 2.8 is a visualization of the vanishing gradient problem. If the weight along

the recurrent edge is less than one, the contribution of the input at the first time step

to the output at the final time step will decrease exponentially fast as a function of

the length of the time interval in between.

Figure 2.8: A visualization of the vanishing gradient problem [20] .

• Exploding gradient problem

The exploding gradient problem is the opposite of the vanishing gradient problem. In
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this case, the gradients have high values (>1); hence, there will be a large increase in

the norm of the gradients during the training. The long term components will grow

exponentially more than the short term components till they explode and crush the

model [29].

2.5 LONG SHORT-TERM MEMORY (LSTM)

A solution that helps overcome the vanishing gradient issue was introduced by Hochre-

iter and Schmidhuber in 1997 [17]. Hochreiter and Schmidhuber proposed a new type of

RNN called Long Short-Term Memory (LSTM), the architecture of which makes sure that

the gradient problems will not occur in networks with many layers. LSTM is capable of

learning long-distance dependencies and deals better than RNN in the prediction of com-

plex tasks. Due to this ability, LSTM is now used widely in speech recognition [13],

language modeling [39], translating [22], audio analyses [23] etc. Over the years, different

improvements are made to the architectures of LSTM in different studies.

The main idea behind LSTM architecture is the concept of a gated cell. The architecture of

this cell makes it possible for LSTM to deal with long-term dependencies by regulating the

information that flows in and out of the cell, similar to the human brain. As it can be seen

in Figure 2.9, there is a cell state and three gates inside of an LSTM cell. Each of the gates

contains a sigmoid function, and its purpose is to add or remove information from the cell

state. The LSTM cell’s gates are the following:

• Forget gate (ft). The forget gate is called this because it decides what information

and how much information is irrelevant and must not be kept. The sigmoid function

takes in information from the previous hidden layer (ht−1) and information from the

current input (xt) and gives (ft) as an output. The value of (ft) ranges between 0 and

1. If ft is 0, it means that the past information is all forgotten; if (ft) is 1, it means

that all the information from the past is relevant, and so it needs to be kept. The
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Figure 2.9: The gates of a LSTM cell [30]

Figure 2.10: LSTM block [21]

mathematical representation of the forget gate is given in Equation 2.14:

ft = σ(WxfXt +Whfht−1 + bf ) (2.14)

where, Wxf and Whf represent the weights and bf the bias.

• Input gate (it). The input gate determines what new information is relevant in the

current time step and needs to be passed through. It decides the updates that should

be stored in the cell state. Firstly, the sigmoid function determines the values that

will be updated by taking in the previous hidden state (ht−1) and the current input
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(Xt) and by giving the output (it) between 0 and 1.

it = σ(WxiXt +Whiht−1 + bi) (2.15)

Then, the candidate gate (C̃t) is calculated using tanh as the activation function. (C̃t)

represents the vector created with the new candidate values to add to the cell state.

C̃t = tanh(WxcXt +Whcht−1 + bc) (2.16)

The forget gate and the input gate are used to update the cell state (Ct). By multiply-

ing component-wise, the forget gate and the previous cell state, the information that

will be forgotten from the previous cell state is decided. By multiplying component-

wise the input gate and the candidate gate, it is decided what new information needs

to be considered from the current time step.

Ct = ft � Ct−1 + it � C̃t (2.17)

• Output gate (ot). The output gate decides what output to generate from the current

cell state. By doing so, it determines the next hidden state. The values of the pre-

vious hidden state (ht−1) and the current input (Xt) are passed through a sigmoid

function. In the meantime, the current cell state is passed through a tanh function.

The new hidden state at time t is produced by multiplying component-wise the output

generated in Equation 2.18 and the tanh output of the cell state.

ot = σ(WxoXt +Whoht−1 + bo) (2.18)

ht = ot � tanh(Ct) (2.19)
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CHAPTER 3

DATA DESCRIPTION

3.1 NEUROMARKETING

Neuromarketing as a field of study is defined as the application of neuroscientific

methods to analyze and understand human behavior in relation to markets and marketing

exchanges [19]. It is formed by a group of techniques that seek to identify the brain areas

activated during a marketing stimulus and the cognitive processes that occur in those areas,

as well as the various related biological markers [11]. Neuromarketing is considered a rev-

olutionary form of marketing because of its ability to access and assess information beyond

the level of human consciousness. It is also a useful tool to help marketers understand how

consumers make choices during the purchase process.

3.2 ELECTROENCEPHALOGRAM (EEG)

Electroencephalogram (EEG) is the recording of the spontaneous electrical activity

of brain cell groups in the cerebral cortex, or the scalp surface [34]. The brain controls

all physical and mental processes; hence the brain waves contain much physical, psycho-

logical, and pathological information. Studying and analyzing EEG signals has played an

essential role in diagnosing epilepsy, seizure disorders, and sleep disorders. Nowadays,

the fields where EEG signal analyses are being used are getting wider. A promising field

that has attracted many researchers’ attention is the use of EEG signals in neuromarketing.

Researchers are using brain waves in order to study aspects of marketing by analyzing the

consumer behavior, and advertisement phenomenon [38].

The EEG signals are captured in the time domain by placing EEG electrodes at various

positions on the scalp. These signals are random in nature, and it is difficult to obtain

information by looking at them in the time domain; therefore, signal processing techniques
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are used to extract the features needed to analyze them. For feature extraction, EEG signals

are usually decomposed into five distinct frequency bands that indicate different conditions:

• Delta (1 Hz - 4 Hz). Delta waves are the slowest waves in the human brain. They

are associated with sleep and deep levels of relaxation and are most often found in

infants. Delta waves are very noticeable in brain injuries and inability to think cases

[1].

• Theta (4 Hz - 7 Hz). Theta waves are associated with the working memory [31].

These waves also occur during movement [16], and during cognitive tasks [18].

• Alpha (8 Hz - 13 Hz). Alpha waves refer to activities that are associated with relax-

ation [5]. High levels of Alpha mean deep-relaxation or problems in concentration,

while low levels of Alpha connect to stress or anxiety symptoms.

• Beta (13 Hz - 22 Hz). Beta waves are associated with active and logical thinking.

Beta’s normal levels relate to problem-solving, focus, and memory, while higher

levels of Beta relate to the inability to relax and depression [2].

• Gamma (32 Hz - 100 Hz). Gamma waves are frequently analysed in cognitive activ-

ities related to perception, attention, and memory [36] [10].

3.3 FOURIER TRANSFORMATION

Fourier Transformation is a famous mathematics function. In the 1800s, Joseph Fourier

discovered that every function could be expressed as a sum of simple sine and cosine func-

tions. Later, his discovery inspired other scientists who used Fourier’s findings in differ-

ent mathematics and engineering areas. In 1965, the mathematicians J. W. Cooley and J.

W. Tukey invented the Fast Fourier Transform, an algorithm for Fourier Transform that

diminished the computational time [9]. Nowadays, Fourier Transform is widely used in
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telecommunication, hearing devices systems, medicine, optics, voice recognition, image

processing.

The idea behind Fourier Transform that makes it so useful in the fields mentioned

above is that it can transform a signal f(t) in the time domain to a signal in the frequency

domain F(s). The Fourier Transform of a function of time is defined by:

F (s) =

∫ ∞
−∞

f(t)e−2iπstdt (3.1)

The outcome is F(s), a function of the frequency s. F(s) gives how much power f(t)

contains at the frequency s. Also, by using the Inverse Fourier Transform, f(t) can be

obtained from F(s):

f(t) =

∫ ∞
−∞

F (s)e2iπstds (3.2)

Fourier Transform is a signal processing method that can be used to analyze EEG

signals. In order to use Fourier Transform in EEG signals, the signal is assumed to be

stationary, meaning that the mean and the variance of the signal do not depend on the

time component. By applying Fourier transform to a brain wave, we can extract the EEG

frequency components. Analyzing a signal in the frequency domain is useful when it is

distinguished by its frequency, not the time or space.

A new complex wave can be obtained by adding simple sine waves that can have

different amplitudes and frequencies. The new complex wave will be decomposed to the

previous simple waves if a Fourier Transformation is applied to it. The wave decomposi-

tion allows us to distinguish the amplitude and frequency components that were not obvious

before in the complex wave. Figure 3.1 shows that it is easier to discern how many compo-

nents and what components are used to create the complex wave by looking at the wave in

the frequency domain rather than looking at the wave in the time domain.
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Figure 3.1: The sum of two simple waves with different frequencies in time domain and in

frequency domain

3.4 THE EXPERIMENT

The experiment conducted has its focus on neuromarketing [38]. Twenty-five indi-

viduals whose ages variate from 18 to 38 years old have participated. A neuro-signal data

acquisition wireless device called Emotive EPOC+ has been placed on the participant’s

head like in Figure 3.3.

Figure 3.2: Left: Sensor layout. Right: EPOC+ sensor and its accessories [38]
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Figure 3.3: A participant in the experiment looking at a product image while wearing

EPOC+ [38].

The device has 14 channels located in AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8,

FC6, F4, F8, AF4. EPOC+ is used to capture the participant’s EEG signals while looking

at a variety of product images. Then, the participants have given their preferences in terms

of likes and dislikes for each image shown on the screen. As it can be seen in Figure 3.4,

the images shown in this experiment are those of 14 products with three variations each, in

total 42 images. Each of these 42 different images has been shown to the participants for 4

seconds.
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Figure 3.4: Images introduced to the participants [38]
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CHAPTER 4

THE RNN-BASED MODEL FOR THE BINARY CLASSIFICATION OF THE BRAIN

WAVE SIGNALS

This work’s main goal is to create a flexible classification model capable of decid-

ing human subjects’ preferences (like or dislike) on visualizing advertisement images of

various products. Our model relies on analyzing one or more brain wave components

(’Delta,’ ’Theta,’ ’Alpha,’ ’Beta,’ and ’Gamma’) collected through a Brain-Computer In-

terface (BCI) device while 25 human subjects are exposed to the above mentioned visual

stimuli [38].

The model we propose aims to overcome some of the shortcomings of the same

dataset’s previous analysis. The work in [32] shows that the data can be classified us-

ing Artificial Neural Networks (ANN) models with high accuracy. However, it considers

the collection of brain wave data as a whole, without grouping it per human subjects. In the

current work, we overcome this disadvantage and propose a classification model that corre-

sponds to a practical situation where the model is created based on the data collected from

volunteers and used to predict preferences for other subjects previously unknown to the

model. The work in [38] performs the analysis of the same dataset (using various models)

by considering all brain wave components. However, as our experimental results in Chap-

ter 5 show, considering all components does not necessarily produce the best classification

results. In our work, we overcome this disadvantage by proposing a flexible model capa-

ble of using one or more brain wave components. Moreover, as brain waves are expected

to “encode” more than like/dislike information, it is expected that analyzing a fragment

of the whole signal will produce better results than processing the whole sequence. Our

model can accommodate partial signal analysis and the experimental results confirm that

analyzing only a fraction of the signal does produce better classification accuracy.

This chapter is organized as follows. In Section 4.1 we describe the dataset used for
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defining our classification model and for testing. The Recurrent Neural Network (RNN)

model we construct in this work is introduced in Section 4.2.

4.1 DATA AGGREGATION AND BRAIN WAVE COMPONENTS EXTRACTION

4.1.1 DATA PREPROCESSING AND NOTATIONS

The brain wave signals were collected [38] from 25 human subjects, visualizing 42

advertising images, using 14 BCI sensors. However, from some of the subjects, some

captures (while visualizing some images) were affected by errors. Consequently, out of

14,700 possible signals (from all subjects, images, and sensors), only 14,630 signals were

collected. Figure 4.1 shows two sample signals, for ’Like’ and ’Dislike’ preferences, re-

spectively. Each signal collected by a sensor was stored as 512 samples (that is, each signal

was represented by a sequence of 512 numbers).

Figure 4.1: Brain wave sample signals captured by the BCI sensors
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The dataset D of signals for this work was obtained from the above-described data as

follows:

• Each sensor signal was filtered using the Fast Fourier Transform (FFT). Subsequently,

5 components were created for each signal, boosting the size of the database to

73,150 entries (each entry being a sequence of 512 numbers).

• The data was subsequently aggregated by image ID and wave component. That is,

out of 14 components of the same type (’delta’, ’theta’, etc.) produced by 14 sensors

while a subject was exposed to one image, a single component of the respective type

was created. Consequently, the dataset size was reduced to 5,225 entries (each entry

being a sequence of 512 numbers, representing one brain wave component collected

from all sensors while a subject was exposed to one image).

• Each entry of the dataset was subsequently normalized to the range (0, 1). Figure 4.2

shows samples of the ’Delta’ component for ’Like’ and ’Dislike’ preferences, respec-

tively.

• The set of 5,225 signals obtained as described above represents the dataset D of

signals for performing the analysis described in this work.
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Figure 4.2: Sample normalized brain wave component ’Delta’

The whole data-preprocessing process is illustrated in Figure 4.3.

Figure 4.3: Brain wave signals pre-processing

For the rest of this thesis we will use the following notations:

• Each entry x = x[k], k = 1, ..., 512 in the dataset D is a sequence of 512 numbers in

the range (0, 1).

• We use indices s and i to identify the subject and the image, respectively, of each
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sequence in D. That is, xsi is an entry (sequence) in D corresponding to subject s

and image i, with s = 1, ..., 25 and i = 1, ..., 42. (Note that an image is missing from

a number of subject, making i = 1, ..., 41.)

• Each entry x has a type, type(x) ∈ {δ, θ, α, β, γ}, corresponding to the brain wave

component it represents. We will be using the notations δsi, θsi, etc. to denote the

respective component for subject s and image i.

• Each entry x has a label and a class: label(x) ∈ {Like,Dislike}, class(x) ∈ {1, 0},

corresponding to the subject preference for the image corresponding to the given

entry (signal).

By using these notations, we can therefore write that

D = {xsi[k] | x ∈ {δ, θ, α, β, γ}, s = 1, ..., 25, i = 1, ..., 42, k = 1, ..., 512}

The FFT filtering of the original brain wave signals is described in the subsequent

section.

4.1.2 FILTERING THE BRAIN WAVE COMPONENTS

We extract the brain wave components (δ, θ, α, β, γ) using the Fast Fourier Transform

(FFT) and Inverse Fourier Transform (IFT) as follows:

• The FFT is applied to each signal in the dataset xsi ∈ D (which is a sequence of 512

samples) to obtain the FFT coefficients of the signal:

Xsi[n] =
511∑
k=0

xsi[k]e
−j 2π

512
nk, n = 0, 1, ...

Figure 4.4 shows the plotting of these coefficients (called the “signal spectrum”) for

a ’Like’ brain wave signal like one in Figure 4.1. Each coefficient corresponds to a

signal component of frequency 2π
512
n.
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• The sequences of FFT coefficients corresponding to brain wave components fre-

quency ranges are subsequently produced:

X
(δ)
si [j] = Xsi[j], for 1 ≤ 2π

512
j < 4; else X(δ)[j] = 0, j = 0, 1, ...

X
(θ)
si [j] = Xsi[j], for 4 ≤ 2π

512
j < 8; else X(θ)[j] = 0, j = 0, 1, ...

X
(α)
si [j] = Xsi[j], for 8 ≤ 2π

512
j < 13; else X(α)[j] = 0, j = 0, 1, ...

X
(β)
si [j] = Xsi[j], for 13 ≤ 2π

512
j < 32; else X(β)[j] = 0, j = 0, 1, ...

X
(γ)
si [j] = Xsi[j], for 32 ≤ 2π

512
j < 100; else X(γ)[j] = 0, j = 0, 1, ...

These coefficients are the FFT coefficients corresponding to the brain wave compo-

nents δ, θ, α, β, γ, respectively.

• The Inverse Fourier Transform (IFT) is then applied to each sequence of Fourier

coefficients to create each brain wave component:

wsi[k] = Re

(
1

512

511∑
n=0

X(w)[n]ej
2π
512

nk

)
where w ∈ {δ, θ, α, β, γ}

Figure 4.4: A sample ’Like’ signal FFT spectrum
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Sample signals of the extracted brain wave components using the steps described

above are presented in Figure 4.5.

Figure 4.5: Brain wave components from a ’Like’ signal

The Python code for the data pre-processing is given in Appendix C.

4.2 THE RNN-BASED CLASSIFICATION MODEL

Definition 2. A training set TS ⊂ D for some S ∈ {1, ..., 25}, is the set

TS = {xsi | x ∈ P ({δ, θ, α, β, γ}), s 6= S}

A test set SS ⊂ D for some S ∈ {1, ..., 25}, is the set

SS = {xSi | x ∈ P ({δ, θ, α, β, γ})}

When the subject S is not important, we will simply use the notations T and S, respectively.
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Definition 3. [Classification Model] The brain wave binary classification modelM on a

dataset D = T ∪ S is a mapping

M : Rp×512 → {Like,Dislike}

whereM is subject of

min
∑

x∈T ,y=class(x)

(−y logM(x)− (1− y) log(1−M(x)))

Definition 4. [Accuracy of Model] The classification accuracy of a modelM on a dataset

D = T ∪ S is:

acc(M) =

∑
x∈S |class(x)−M(x)|

|S|

Figure 4.6: The LSTM block [21]

The model in Definition 3 is implemented using an LSTM variant (Figure 4.6) of a

RNN (as described in Chapter 2, Figure 2.10).

TheM(xsi) function for an input xsi ∈ D computes the Like/Dislike decision recur-
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sively as follows:

time step 1 :

h1 = ReLU(W1xsi[1] + b1)

time step 2 :

h2 = ReLU(W1xsi[2] + Zh1 + b1)

...

time step 512 :

h512 = ReLU(W1xsi[512] + Zh511 + b1)

M(xsi) = softmax(W2 · h512 + b2)

where the hidden layer function h for the LSTM cell is computed as given by the equations

(2.14)-(2.19) in Chapter 2.

After 512 time steps, the model computes a pair of probabilities, for Like and Dislike,

respectively. The highest probability indicates the input signal classification decision.

The parameters of the LSTM models (number of hidden layers and nodes) are selected

experimentally, and they are presented in Chapter 5 for each experimental result.
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CHAPTER 5

EXPERIMENTAL RESULTS

We performed extensive experimental results using the model we introduced in Chap-

ter 4 on the dataset described in Chapter 3, which was pre-processed as described in Chap-

ter 4.

All our experimental results presented in this chapter were performed on a PC equipped

with an Intel Core i7-4770 CPU @3.40GH. The complete Python code listings for pre-

processing data and the experimental results are provided in the Appendix. Throughout

this chapter we use the notations introduced in Section 4.1.

The rest of the chapter is organized as follows. We present some dataset statistics in

Section 5.1. Then we present the brain waves binary classification results in Sections 5.2

and 5.3, for the single and multiple brain wave components, respectively.

5.1 DATA STATISTICS

We have performed some basic statistics (means and standard deviations) for each

brain wave component. As indicated in [32], these statics may serve as indicators of the

components that are likely to provide good classification information. We plotted the dis-

tributions of these statistics separately (each can be considered as a single data feature),

and together (two data features). The results are presented below. However, we could not

find any indicators that these data features can be used for components selection in our

classification model.

The Python code for the results presented in this section is given in Appendix B.
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5.1.1 DISTRIBUTIONS OF MEANS AND STANDARD DEVIATIONS FOR EACH BRAIN

WAVE COMPONENT

The distributions of means and standard deviations for each brain wave component

(Delta, Theta, Alpha, Beta, and Gamma) are presented in Figures 5.1 – 5.5, respectively.

All these figures show consistent overlapping between distributions of means and standard

deviations for both Like and Dislike signals, for each brain wave. Therefore, based on a

single signal feature (mean or standard deviation), we cannot determine which of the brain

waves are good candidates for performing classification.
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Figure 5.1: Means and standard deviation distributions for the ’Delta’ brain wave compo-

nent
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Figure 5.2: Means and standard deviation distributions for the ’Theta’ brain wave compo-

nent



45

Figure 5.3: Means and standard deviation distributions for the ’Alpha’ brain wave compo-

nent
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Figure 5.4: Means and standard deviation distributions for the ’Beta’ brain wave compo-

nent
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Figure 5.5: Means and standard deviation distributions for the ’Gamma’ brain wave com-

ponent
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5.1.2 TWO DATA FEATURES: MEANS AND STANDARD DEVIATIONS

For this set of experiments we combined the mean and standard deviation of each

brain wave signal. Figures 5.6 – 5.10 show the plottings of these two features, for each

brain wave. While some of the plottings exhibit interesting distributions (apparently along

parabolas), there is no indication, again, that the combination of mean and standard devia-

tion would offer any indication of good signal candidates for classification.

Figure 5.6: Means vs standard deviations for the ’Delta’ brain wave component
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Figure 5.7: Means vs standard deviations for the ’Theta’ brain wave component

Figure 5.8: Means vs standard deviations for the ’Alpha’ brain wave component
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Figure 5.9: Means vs standard deviations for the ’Beta’ brain wave component

Figure 5.10: Means vs standard deviations for the ’Gamma’ brain wave component
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5.2 SINGLE BRAIN WAVE SIGNAL COMPONENTS CLASSIFICATION

The model’s accuracies for analysing each brain wave component (one at the time) are

presented in Figures 5.11 - 5.15. For each figure, the accuracy of the model for a subject

sk represents the accuracy of the model when the respective subject sk data is the test data,

whereas all other subjects’ data represent the model’s training data. For each brain wave

component, a model was created for each subject sk, k = 1, ..., 25, and each model’s

accuracy was recorded (for a total of 25 model accuracies per each brain wave component).

Each figure also shows the mean accuracy of all 25 models when the respective brain wave

components are being used for the analysis. More formally, for each brain wave component

x ∈ {δ, θ, α, β, γ} and each subject s, the dataset D = Ts ∪ Ss is composed of the training

set

Ts = {xki ∈ D | k = 1, ..., 25, k 6= s; i = 1, ..., 42}

and the test set

Ss = {xki ∈ D | k = 1, ..., 25, k = s; i = 1, ..., 42}

(where indices k, i represent the subject and image, respectively).

The main purpose of this experiment was producing a quantitative comparison be-

tween using each individual brain wave component for analysis. Due to relative long

amounts of time needed for running these experiments (typically 10-14 hours), we did

not aim for obtaining the highes possible accuracies, which would require many neural

network hidden nodes and/or multiple layers (and hence very time consuming). We used

an LSTM model with one hidden layer and 256 nodes, trained in 150 epochs.
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Figure 5.11: Classification accuracies using the ’Delta’ brain wave component

Figure 5.12: Classification accuracies using the ’Theta’ brain wave component
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Figure 5.13: Classification accuracies using the ’Alpha’ brain wave component

Figure 5.14: Classification accuracies using the ’Beta’ brain wave component
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Figure 5.15: Classification accuracies using the ’Gamma’ brain wave component

The mean accuracies when each brain wave components is being used for analysis are

summarized in Table 5.1.

Component Mean accuracy [%]

Delta 54.95

Theta 49.31

Alpha 50.16

Beta 50.23

Gamma 50.30

Table 5.1: Mean accuracies for each brain wave component used for analysis

The results in Figures 5.11-5.15 and Table 5.1 show the brain wave component ’Delta’

as the most significant in performing the preference classification, with the other compo-

nents performing about the same. Clearly, ’Delta’ component is a first candidate in any
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mix of components to be analyzed. However, some other components, in combination

with ’Delta’ may help raise the accuracies for the subjects who perform not so well for the

’Delta’ component. For instance, ’Gamma’ may contribute to raising accuracies for s18

or s21, which are lower for the ’Delta’ component. We present experimental results for

analyzing multiple components in the subsequent section.

The Python code for the results presented in this section is given in Appendix C.

5.3 BINARY CLASSIFICATION USING MULTIPLE BRAIN WAVE SIGNAL COMPONENTS

For this set of experiments we used various combination of brain waves to perform the

binary classification. As before, due to the fact that each experiment was very time con-

suming (10-14 hours), we used a rather small LSTM model (one hidden layer, 256 nodes,

150 epochs for training) and we tried to experimentally determine which combination(s) of

brain waves would produce the best classification results. In addition, given the well-known

Neural Networks “appetite” for training data and their very non-convex cost function (see,

for instance, [8]), we must remark that our relatively small training dataset is unlikely to

produce the best model parameters even for such small LSTM model. Figure 5.16 illus-

trates the training process for one of the experiments in this section. While the accuracy

shows asymptotic convergence to maximum, the evolution is not monotonic, as during the

process multiple local minima are likely found.
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Figure 5.16: The training process of an LSTM model

The experiments were organized as follows:

• Find how many brain waves combined would produce best classification results.

• Find which bran waves combination is best.

• Find which part of the signals are best to be analyzed for the binary classification

purpose.
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Figure 5.17: Classification accuracies using all brain wave components

Figure 5.18: Classification accuracies using four brain wave components
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Figure 5.19: Classification accuracies using three brain wave components

Figure 5.20: Classification accuracies using three brain wave components and the first part

of the signal [1,255]
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Figure 5.21: Classification accuracies using three brain wave components and the middle

part of the signal [125,425]

Figure 5.22: Classification accuracies using three brain wave components and the last part

of the signal [255,512]
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As the results in Figures 5.17 (all five brain waves), 5.18 (four brain waves), and 5.19

show, combining all brain waves does not necessarily yield the best accuracy. The results

allow us to conjecture that four or even three brain waves can produce significantly better

results. Unfortunately, determining which combination is best appears to be difficult to

determine by means other than experimental.

For the rest of the experiments, we selected three brain waves (Delta, Beta, and

Gamma) and analyzed different parts of them to determine which part would produce the

best accuracy. By comparing the results shown in Figures 5.19 (the whole signal), 5.20

(the first part of the signal), 5.21 (the middle part of the signal), and 5.22 (the last part of

the signal) we can clearly conclude that analyzing only a fragment of the whole signal (the

middle part, in our experiments) produces the best results. This conclusion is consistent

with the intuition that one brain takes a little bit of time to establish a preference, then the

intensity of the brain signals fades out after the decision was established.

The Python code for the results presented in this section is given in Appendix C.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this work, we performed an analysis of EEG signals collected from 25 human

volunteers who observed 42 commercial advertising images and recorded their preference

like or dislike for each image observed. The original brain wave signals were collected by

means of 14 sensors through a Brain-Computer Interface (BCI). We proposed an Artificial

Neural Network (ANN) based model for automatically classifying a subject’s preference

for an advertising image. First, we decomposed each recorded brain wave signal into its

five components, then aggregated all 14 components from each sensor signal. Our model

has the flexibility of selecting one or more brain wave components for performing the

classification.

The model we propose relies on analyzing brain wave components (’Delta,’ ’Theta,’

’Alpha,’ ’Beta,’ and ’Gamma’) collected through a Brain-Computer Interface (BCI) de-

vice while 25 human subjects are exposed to advertising images of various products [38].

Previous work [32] shows that the data can be classified using Artificial Neural Networks

(ANN) models with high accuracy. However, the work in [32] considers the collection of

brain wave data as a whole, without grouping it per human subjects. While the analysis

produces good insights on performing such data classification, it would be impractical for

detecting new human subjects’ preferences. In this work, we overcome this disadvantage

and propose a classification model trained on data collected from 24 (out of 25) human

subjects, while the accuracy of the model is verified on the data collected from the 25th

subject. This corresponds to a practical situation where the model is created based on the

data collected from volunteers and used to predict preferences for other subjects, previously

unknown to the model.

The extensive experimental results show clearly that the model’s classification is more

accurate if only a few components are selected for the analysis, rather than analyzing all
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components as in previous work [38] using the same dataset.

The main contribution of this work is a flexible classification model capable of produc-

ing brain wave binary classification based on one or more brain wave components, while

previous work [38] uses all brain wave components for such classification. As our ex-

perimental results show, using fewer brain wave components produces classification with

higher accuracy. A non-experimental method for finding an optimal mix of brain wave

components that produce the highest classification accuracy is not subject to this work and

is left for future research. Moreover, our model can analyze only a fraction of the brain

wave signal, and the experimental results show that this approach produces better classifi-

cation results.

In our study we have learned that each brain wave signal contains significantly more

information than the binary like/dislike we were looking for. Intuitively, when a human

subject visualizes an image, the brain must “encode” much more information. One direc-

tion to explore in future work would be finding connections between the brain waves being

recorded and the specific image presented to the human subject. That is, we leave as an

open question whether image detection (multiclass classification) can be performed on the

dataset we analyzed.
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P Read Montague, Neural correlates of behavioral preference for culturally familiar
drinks, Neuron 44 (2004), no. 2, 379–387.

[25] Warren S McCulloch and Walter Pitts, A logical calculus of the ideas immanent in
nervous activity, The bulletin of mathematical biophysics 5 (1943), no. 4, 115–133.

[26] Rekha Molala, The Ascent of Gradient Descent, https://blog.clairvoyantsoft.com/,
September 2019.

[27] M Murugappan, Subbulakshmi Murugappan, Celestin Gerard, et al., Wireless eeg
signals based neuromarketing system using fast fourier transform (fft), 2014 IEEE
10th international colloquium on signal processing and its applications, IEEE, 2014,
pp. 25–30.

[28] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall, Ac-
tivation functions: Comparison of trends in practice and research for deep learning,
arXiv preprint arXiv:1811.03378 (2018).

[29] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio, On the difficulty of train-
ing recurrent neural networks, International conference on machine learning, 2013,
pp. 1310–1318.

[30] Michael Phi, Illustrated Guide to LSTM’s and GRU’s: A step by step explana-
tion, https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-
step-explanation-44e9eb85bf21, 2018.

[31] Sridhar Raghavachari, Michael J Kahana, Daniel S Rizzuto, Jeremy B Caplan,
Matthew P Kirschen, Blaise Bourgeois, Joseph R Madsen, and John E Lisman, Gat-
ing of human theta oscillations by a working memory task, Journal of Neuroscience
21 (2001), no. 9, 3175–3183.

[32] Lateef Rasheed, Decision pattern detection from brain response to marketing stimuli,
https://digitalcommons.georgiasouthern.edu/etd/2185, 2020.



66

[33] Frank Rosenblatt, The perceptron: a probabilistic model for information storage and
organization in the brain., Psychological review 65 (1958), no. 6, 386.

[34] Neelam Rout, Classifications & Misclassifications of EEG Signals using Linear and
AdaBoost Support Vector Machines, International Journal Of Advanced Research,
Ideas And Innovations in Technology 1 (2014), no. 2, 1–6.

[35] Shashi Sathyanarayana, A gentle introduction to backpropagation, Numeric Insight 7
(2014), 1–15.

[36] Wolf Singer, Synchronization of cortical activity and its putative role in information
processing and learning, Annual review of physiology 55 (1993), no. 1, 349–374.

[37] WWW, Perceptrons and multi-layer
perceptrons, https://missinglink.ai/guides/neural-network-concepts/perceptrons-and-
multi-layer-perceptrons-the-artificial-neuron-at-the-core-of-deep-learning/, Novem-
ber 2020.

[38] Mahendra Yadava, Pradeep Kumar, Rajkumar Saini, Partha Pratim Roy, and
Debi Prosad Dogra, Analysis of EEG signals and its application to neuromarketing,
Multimedia Tools and Applications 76 (2017), no. 18, 19087–19111.

[39] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals, Recurrent neural network reg-
ularization, arXiv preprint arXiv:1409.2329 (2014).



67

APPENDIX A

FILTERING AND SCALING

# −*− c od i ng : u t f −8 −*−

”””

L i s t i n g 1 : S c a l e s and s a v e s as a c s v f i l e

@author : L o r e l a Bano

”””

#%% i m p o r t s

import numpy as np

import pandas as pd

from sklearn.preprocessing import MinMaxScaler

#%%−−−−−−−−−−−−−− read da ta −−−−−−−−−−−−−−−−−

df = pd.read csv(’../data/AllNeuroMarketingEEGsFiltered.csv’

, index col = 0)

# remove t h e s e n s o r s and name columns

del df[’Sensor’]

del df[’Name’]

subjects = df.Id.unique()

# keep o n l y t h e ones used f o r c l a s s i f i c a t i o n

freqBand = [’Delta’, ’Theta’, ’Alpha’, ’Beta’, ’Gamma’]

freqBandAbbr = [’D’, ’T’, ’A’, ’B’, ’G’]
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# f reqBand = [ ’ D e l t a ’ , ’ Be ta ’ ]

# f reqBandAbbr = [ ’D ’ , ’B ’ ]

# n o r m a l i z e t h e d a t a s e t

scaler = MinMaxScaler(feature range=(0, 1))

#%%−−−−−− c o l l e c t and p r e p a r e da ta −−−−−−−−−−−−

dataset = pd.DataFrame()

datasetY = []

for i in range(len(freqBand)):

wn = freqBand[i]

wna = freqBandAbbr[i]

dataL = df.loc[(df[’Wave’] == wna) & (df[’Like’] == True

)].groupby([’Id’,’Wave’], as index=False).agg(’sum’)#

. l o c [ : , ’ X1 ’ : ’ X512 ’]

dataD = df.loc[(df[’Wave’] == wna) & (df[’Like’] ==

False)].groupby([’Id’,’Wave’], as index=False).agg(’

sum’)# . l o c [ : , ’ X1 ’ : ’ X512 ’]

datasetY = np.concatenate([datasetY, np.concatenate((np.

repeat(True, dataL.shape[0]),np.repeat(False, dataD.

shape[0])))])

# n o r m a l i z e

# dataL = s c a l e r . f i t t r a n s f o r m ( dataL )

# dataD = s c a l e r . f i t t r a n s f o r m ( dataD )

if (len(dataset) == 0):

# d a t a s e t = np . v s t a c k ( [ dataL , dataD ] )
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dataset = pd.concat([dataL, dataD], axis=0)

#np . r e s h a p e ( d a t a s e t , ( d a t a s e t . shape [ 0 ] , 1 , d a t a s e t .

shape [ 1 ] ) )

else:

vstack = pd.concat([dataL, dataD], axis=0)

# d a t a s e t = np . s t a c k ( [ d a t a s e t , np . v s t a c k ( [ dataL ,

dataD ] ) ] , a x i s = 1)

dataset = pd.concat([dataset, vstack], axis=0)

dataset.loc[dataset[’Like’] > 0,’Like’] = True

dataset.loc[dataset[’Like’] == 0,’Like’] = False

datasetX = scaler.fit transform(dataset.loc[:,’X1’:’X512’].

transpose()).transpose()

# d a t a s e t X = d a t a s e t . l o c [ : , ’ X1 ’ : ’ X512 ’]

subjectsX = [sid.rpartition(" ")[0] for sid in dataset.Id]

#%%−−−−−−−c o n s t r u c t t h e new da ta frame −−−−−−−−−−

# F i e l d s : s u b j e c t s X , d a t a s e t . Id , d a t a s e t . Wave , d a t a s e t . L ike ,

d a t a s e t X

newDF = pd.DataFrame(list(zip(subjectsX , dataset.Id, dataset

.Wave, dataset.Like)))

newDF = pd.DataFrame(np.concatenate([newDF, datasetX], axis

= 1),

columns = np.hstack((np.array(["Name",

"Id", "Wave", "Like"]), np.array(

dataset.columns[3:]))))
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#%%−−−−−−−− save i n a c s v f i l e −−−−−−−−−−−−−−−−−−−

newDF.to csv(’../data/

AllNeuroMarketingEEGsFilteredScaledNames2.csv’)
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APPENDIX B

DATA STATS

# −*− c od i ng : u t f −8 −*−

”””

L i s t i n g 2 : Bra in s i g n a l t y p e s compar i sons

@author : L o r e l a Bano

”””

#%% i m p o r t s

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.preprocessing import MinMaxScaler

from matplotlib import colors

plt.style.use("ggplot")

#%%−−−−−−−−−−−−−− read da ta −−−−−−−−−−−−−−−−−

alldf = pd.read csv(’../data/

AllNeuroMarketingEEGsFilteredScaledNames2.csv’, index col

= 0)

# remove t h e s e n s o r s and name columns

del alldf[’Id’]

freqBand = [’Delta’, ’Theta’, ’Alpha’, ’Beta’, ’Gamma’]
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freqBandAbbr = [’D’, ’T’, ’A’, ’B’, ’G’]

# n o r m a l i z e r ( o p t i o n a l use a f t e r a g g r e g a t i o n )

scaler = MinMaxScaler(feature range=(0, 1))

#%%−−−−−−−−− some sample p l o t s −−−−−−−−−−−−−−−−−−−−

plt.figure()

# Get ( some ) l i k e and d i s l i k e s i g n a l s

yl = alldf.loc[(alldf[’Wave’]==’D’) & (alldf[’Like’]==True),

’X1’:’X512’].values[0]

yd = alldf.loc[(alldf[’Wave’]==’D’) & (alldf[’Like’]==False)

,’X1’:’X512’].values[0]

plt.plot(yl, ’g’, label = ’Like’)

plt.plot(yd, ’r’, label = ’Dislike’)

plt.title("Samples of normalized ’Delta’ signals")

plt.xlabel(’t’)

plt.ylabel(’x’)

plt.legend(loc="upper right")

plt.show()

#%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

subjects = alldf.Name.unique()

#%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for cs in subjects:

# cs = s u b j e c t s [ 0 ]

df = alldf[alldf[’Name’] == cs]
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del df[’Name’]

for i in range(len(freqBand)):

# f o r i i n [ 0 , 3 ] :

# f o r i i n [ 0 ] :

wn = freqBand[i]

wna = freqBandAbbr[i]

# dataL = d f . l o c [ ( d f [ ’ Wave ’ ] == wna ) & ( d f [ ’ L i k e ’ ] ==

True ) ] . groupby ( [ ’ Wave ’ ] ) . agg ( ’ sum ’ ) . l o c [ : , ’ X1 ’ : ’

X512 ’]

dataL = df.loc[(df[’Wave’] == wna) & (df[’Like’] ==

True)].loc[:,’X1’:’X512’]

# n o r m a l i z e

# dataL = s c a l e r . f i t t r a n s f o r m ( dataL )

# dataD = d f . l o c [ ( d f [ ’ Wave ’ ] == wna ) & ( d f [ ’ L i k e ’ ] ==

F a l s e ) ] . groupby ( [ ’ Wave ’ ] ) . agg ( ’ sum ’ ) . l o c [ : , ’ X1

’ : ’ X512 ’]

dataD = df.loc[(df[’Wave’] == wna) & (df[’Like’] ==

False)].loc[:,’X1’:’X512’]

# n o r m a l i z e

# dataD = s c a l e r . f i t t r a n s f o r m ( dataD )

# compute means

meansL = dataL.mean(axis = 1)

meansD = dataD.mean(axis = 1)
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# compute s t d s

stdL = dataL.std(axis = 1)

stdD = dataD.std(axis = 1)

# p l o t means d i s t r i b u t i o n

plt.figure()

plt.hist(meansL, color = ’g’, label = ’Like’)

plt.hist(meansD, color = ’r’, label = ’Dislike’)

plt.title(wn + ’ wave: Like/Dislike mean

distribution’)

plt.suptitle(’[’ + cs + ’]’)

plt.xlabel(’mean’)

plt.ylabel(’count’)

plt.legend(loc="upper right")

plt.show()

# p l o t s t d s d i s t r i b u t i o n

plt.figure()

plt.hist(stdL, color = ’g’, label = ’Like’)

plt.hist(stdD, color = ’r’, label = ’Dislike’)

plt.title(wn + ’ wave: Like/Dislike STD distribution

’)

plt.suptitle(’[’ + cs + ’]’)

plt.xlabel(’mean’)

plt.ylabel(’count’)

plt.legend(loc="upper right")
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plt.show()

#%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for i in range(len(freqBand)):

# f o r i i n [ 0 , 3 ] :

# f o r i i n [ 0 ] :

allmeansL = np.array([])

allstdsL = np.array([])

allmeansD = np.array([])

allstdsD = np.array([])

for cs in subjects:

# cs = s u b j e c t s [ 0 ]

df = alldf[alldf[’Name’] == cs]

del df[’Name’]

wn = freqBand[i]

wna = freqBandAbbr[i]

# dataL = d f . l o c [ ( d f [ ’ Wave ’ ] == wna ) & ( d f [ ’ L i k e ’ ] ==

True ) ] . groupby ( [ ’ Wave ’ ] ) . agg ( ’ sum ’ ) . l o c [ : , ’ X1 ’ : ’

X512 ’]

dataL = df.loc[(df[’Wave’] == wna) & (df[’Like’] ==

True)].loc[:,’X1’:’X512’]

# n o r m a l i z e

# dataL = s c a l e r . f i t t r a n s f o r m ( dataL )
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# dataD = d f . l o c [ ( d f [ ’ Wave ’ ] == wna ) & ( d f [ ’ L i k e ’ ] ==

F a l s e ) ] . groupby ( [ ’ Wave ’ ] ) . agg ( ’ sum ’ ) . l o c [ : , ’ X1

’ : ’ X512 ’]

dataD = df.loc[(df[’Wave’] == wna) & (df[’Like’] ==

False)].loc[:,’X1’:’X512’]

# n o r m a l i z e

# dataD = s c a l e r . f i t t r a n s f o r m ( dataD )

# compute means

meansL = dataL.mean(axis = 1)

meansD = dataD.mean(axis = 1)

allmeansL = np.concatenate([allmeansL , meansL])

allmeansD = np.concatenate([allmeansD , meansD])

# compute s t d s

stdL = dataL.std(axis = 1)

stdD = dataD.std(axis = 1)

allstdsL = np.concatenate([allstdsL , stdL])

allstdsD = np.concatenate([allstdsD , stdD])

# p l o t means d i s t r i b u t i o n

plt.figure()

plt.hist(allmeansL , color = ’g’, label = ’Like’)

plt.hist(allmeansD , color = ’r’, label = ’Dislike’)

plt.title(wn + ’ wave: Like/Dislike mean distribution’)

plt.xlabel(’mean’)
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plt.ylabel(’count’)

plt.legend(loc="upper right")

plt.show()

# p l o t s t d s d i s t r i b u t i o n

plt.figure()

plt.hist(allstdsL, color = ’g’, label = ’Like’)

plt.hist(allstdsD, color = ’r’, label = ’Dislike’)

plt.title(wn + ’ wave: Like/Dislike STD distribution’)

plt.xlabel(’mean’)

plt.ylabel(’count’)

plt.legend(loc="upper right")

plt.show()

#%%−−−−−−−−−−−− non f i l l e d h i s t o g r a m s −−−−−−−−−−−−−

for i in range(len(freqBand)):

# f o r i i n [ 0 , 3 ] :

# f o r i i n [ 0 ] :

allmeansL = np.array([])

allstdsL = np.array([])

allmeansD = np.array([])

allstdsD = np.array([])

for cs in subjects:

# cs = s u b j e c t s [ 0 ]

df = alldf[alldf[’Name’] == cs]
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del df[’Name’]

wn = freqBand[i]

wna = freqBandAbbr[i]

# dataL = d f . l o c [ ( d f [ ’ Wave ’ ] == wna ) & ( d f [ ’ L i k e ’ ] ==

True ) ] . groupby ( [ ’ Wave ’ ] ) . agg ( ’ sum ’ ) . l o c [ : , ’ X1 ’ : ’

X512 ’]

dataL = df.loc[(df[’Wave’] == wna) & (df[’Like’] ==

True)].loc[:,’X1’:’X512’]

# n o r m a l i z e

# dataL = s c a l e r . f i t t r a n s f o r m ( dataL )

# dataD = d f . l o c [ ( d f [ ’ Wave ’ ] == wna ) & ( d f [ ’ L i k e ’ ] ==

F a l s e ) ] . groupby ( [ ’ Wave ’ ] ) . agg ( ’ sum ’ ) . l o c [ : , ’ X1

’ : ’ X512 ’]

dataD = df.loc[(df[’Wave’] == wna) & (df[’Like’] ==

False)].loc[:,’X1’:’X512’]

# n o r m a l i z e

# dataD = s c a l e r . f i t t r a n s f o r m ( dataD )

# compute means

meansL = dataL.mean(axis = 1)

meansD = dataD.mean(axis = 1)

allmeansL = np.concatenate([allmeansL , meansL])

allmeansD = np.concatenate([allmeansD , meansD])

# compute s t d s
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stdL = dataL.std(axis = 1)

stdD = dataD.std(axis = 1)

allstdsL = np.concatenate([allstdsL , stdL])

allstdsD = np.concatenate([allstdsD , stdD])

# p l o t means d i s t r i b u t i o n

plt.figure()

plt.hist(allmeansL , color = ’g’, label = ’Like’,

histtype=’step’, stacked=True, fill=False)

plt.hist(allmeansD , color = ’r’, label = ’Dislike’,

histtype=’step’, stacked=True, fill=False)

plt.title(wn + ’ wave: Like/Dislike mean distribution’)

plt.xlabel(’mean’)

plt.ylabel(’count’)

plt.legend(loc="upper right")

plt.show()

# p l o t s t d s d i s t r i b u t i o n

plt.figure()

plt.hist(allstdsL, color = ’g’, label = ’Like’, histtype

=’step’, stacked=True, fill=False)

plt.hist(allstdsD, color = ’r’, label = ’Dislike’,

histtype=’step’, stacked=True, fill=False)

plt.title(wn + ’ wave: Like/Dislike STD distribution’)

plt.xlabel(’mean’)

plt.ylabel(’count’)
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plt.legend(loc="upper right")

plt.show()

#%%−−c o l l e c t and compute means and s d v s ; p l o t t h e r e s u l t s −−

for i in range(len(freqBand)):

# f o r i i n [ 0 , 3 ] :

# f o r i i n [ 0 ] :

allmeansL = np.array([])

allstdsL = np.array([])

allmeansD = np.array([])

allstdsD = np.array([])

for cs in subjects:

# cs = s u b j e c t s [ 0 ]

df = alldf[alldf[’Name’] == cs]

del df[’Name’]

wn = freqBand[i]

wna = freqBandAbbr[i]

# dataL = d f . l o c [ ( d f [ ’ Wave ’ ] == wna ) & ( d f [ ’ L i k e ’ ] ==

True ) ] . groupby ( [ ’ Wave ’ ] ) . agg ( ’ sum ’ ) . l o c [ : , ’ X1 ’ : ’

X512 ’]

dataL = df.loc[(df[’Wave’] == wna) & (df[’Like’] ==

True)].loc[:,’X1’:’X512’]

# n o r m a l i z e

# dataL = s c a l e r . f i t t r a n s f o r m ( dataL )
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# dataD = d f . l o c [ ( d f [ ’ Wave ’ ] == wna ) & ( d f [ ’ L i k e ’ ] ==

F a l s e ) ] . groupby ( [ ’ Wave ’ ] ) . agg ( ’ sum ’ ) . l o c [ : , ’ X1

’ : ’ X512 ’]

dataD = df.loc[(df[’Wave’] == wna) & (df[’Like’] ==

False)].loc[:,’X1’:’X512’]

# n o r m a l i z e

# dataD = s c a l e r . f i t t r a n s f o r m ( dataD )

# compute means

meansL = np.array(dataL.mean(axis = 1))

meansD = np.array(dataD.mean(axis = 1))

allmeansL = np.concatenate([allmeansL , meansL])

allmeansD = np.concatenate([allmeansD , meansD])

# compute s t d s

stdL = np.array(dataL.std(axis = 1))

stdD = np.array(dataD.std(axis = 1))

allstdsL = np.concatenate([allstdsL , stdL])

allstdsD = np.concatenate([allstdsD , stdD])

# p l o t t h e r e s u l t s

plt.figure()

plt.scatter(allmeansL , allstdsL, color = ’g’, label = ’

Like’)
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plt.scatter(allmeansD , allstdsD, color = ’r’, label = ’

Dislike’)

plt.title(wn + ’ wave: Like/Dislike (mean, STD) plots’)

plt.xlabel(’mean’)

plt.ylabel(’std’)

plt.legend(loc="upper right")

plt.show()
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APPENDIX C

RNN MODEL

# −*− c od i ng : u t f −8 −*−

”””

L i s t i n g 3 : R e c u r r e n t Neura l Network (LSTM) Model

@author : L o r e l a Bano

”””

#%% i m p o r t s

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

#−−−−−−−−−−−−−−−−−−−−− NN −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import SimpleRNN

from tensorflow.keras.layers import LSTM

import seaborn as sns

#%%−−−−−−−−−−−−−− read da ta −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

df = pd.read csv(’../data/

AllNeuroMarketingEEGsFilteredScaledNames2.csv’, index col

= 0)

# remove t h e name column

# d e l d f [ ’ Name ’]
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subjects = df.Name.unique()

sabbrs = [’s’ + str(i+1) for i in range(len(subjects))]

#%%−−−−−−−−−−−−−− c o l l e c t and p r e p a r e da ta −−−−−−−−−−−−−−−−−−

# keep o n l y t h e ones used f o r c l a s s i f i c a t i o n

# f reqBand = [ ’ D e l t a ’ , ’ The ta ’ , ’ Alpha ’ , ’ Be ta ’ , ’Gamma ’]

# freqBandAbbr = [ ’D ’ , ’T ’ , ’A ’ , ’B ’ , ’G ’]

freqBand = [’Delta’, ’Theta’, ’Beta’]

freqBandAbbr = [’D’, ’T’, ’A’, ’B’, ’G’]

origdata = df.sort values(by=[’Name’, ’Id’, ’Wave’])

origdata = origdata[origdata[’Wave’].isin(freqBandAbbr)]

#%%−−−−−−−−− run t h i s i f want t o c l a s s i f y d e r i v a t i v e

−−−−−−−−

for i in range(4,4+510):

origdata.iloc[:,i] = origdata.iloc[:,i+1] − origdata.

iloc[:,i]

#%%−−−−−−−− RNN params −−−−−−−−−−

hidden layers = 512

input dim = len(freqBandAbbr)

np.random.seed(2020)

# method = ” S im p l e RNN”
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method = "LSTM"

NoEpochs = 300

dataWindow = [1,512]

dataWindowSize = dataWindow[1]−dataWindow[0] + 1

dataWindowRange = slice(’X’+str(dataWindow[0]), ’X’+str(

dataWindow[1]))

#%%−−−−−− per form c l a s s i f i c a t i o n −−−−−−

accs = []

# t h e t e s t s u b j e c t

si = 0

for si in range(len(subjects)):

# f o r s i i n range ( 1 ) :

ts = subjects[si]

df test = origdata[origdata[’Name’] == ts]

df train = origdata[origdata[’Name’] != ts]

# d f t r a i n = pd . c o n c a t ( [ # d f t r a i n , d f t r a i n ,

# d f t r a i n , d f t r a i n ,

# d f t r a i n , d f t r a i n ] , a x i s =0)

testY = df test[df test[’Wave’] == freqBandAbbr[0]].Like
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testX = np.reshape(df test.loc[:,dataWindowRange].

to numpy(), (int(df test.shape[0]/len(freqBandAbbr)),

len(freqBandAbbr), dataWindowSize))

trainY = df train[df train[’Wave’] == freqBandAbbr[0]].

Like

trainX = np.reshape(df train.loc[:,dataWindowRange].

to numpy(), (int(df train.shape[0]/len(freqBandAbbr))

, len(freqBandAbbr), dataWindowSize))

seq len = trainX.shape[2]

modelRNN = Sequential([

#SimpleRNN ( u n i t s =h i d d e n l a y e r s , i n p u t s h a p e =(

i n p u t d i m , s e q l e n ) ,

# a c t i v a t i o n =” r e l u ”) ,

#LSTM( u n i t s =512 , i n p u t s h a p e =( i n p u t d i m , s e q l e n )

,

# a c t i v a t i o n =” r e l u ” , r e t u r n s e q u e n c e s=

True ) ,

LSTM(units=hidden layers , input shape=(input dim

,seq len),

activation="relu"),

# Dense ( 1 , a c t i v a t i o n =’ s i g m o i d ’ )

Dense(2, activation=’softmax’)

])
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modelRNN.compile(loss=’sparse categorical crossentropy’,

optimizer=’adam’, metrics=[’accuracy’])

modelRNN.summary()

history = modelRNN.fit(trainX, trainY, epochs=NoEpochs,

verbose=1)

testres = modelRNN.evaluate(testX, testY)

accs.append(testres[1])

classification = modelRNN.predict(testX)

res = classification.argmax(axis=1)

# P l o t h i s t o r y

# f i g u r e = p l t . f i g u r e ( )

# p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ l o s s ’ ] , l a b e l =’ l o s s ’ )

# p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ acc ’ ] , l a b e l =’ acc ’ )

# p l t . t i t l e ( ’ Model T r a i n i n g ’ )

# p l t . y l a b e l ( ’ Value ’ )

# p l t . x l a b e l ( ’ No . epoch ’ )

# p l t . l e g e n d ( l o c =”upper r i g h t ”)

# p l t . show ( )

##%%−−−−−− a l l a c c u r a c i e s −−−−−−−−

m = np.mean(accs)
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figure = plt.figure()

plt.bar(sabbrs, accs, align=’center’, width=0.8)

plt.xticks(range(len(sabbrs)+1), sabbrs, size=’x−small’)

xs = np.array([i for i in range(len(sabbrs)+1)])

hl = np.array([m for i in range(len(sabbrs)+1)])

plt.plot(xs, hl, ’r−−’)

plt.text(0,m+0.01, ’mean: ’+str(m))

plt.title(’Individual accuracies (’ + ",".join(freqBandAbbr)

+ ’)’)

#%%−−−−−t h e c o n f u s i o n m a t r i x −−−−−−

con mat = tf.math.confusion matrix(testY, res).eval(session=

tf.compat.v1.Session())

#To n o r m a l i z e t h e r e s u l t as from 0 t o 1 . Rep lace ’ c o n m a t d f

= pd . DataFrame ( con mat norm , . . . ) ’

con mat norm = np.around(con mat.astype(’float’) / con mat.

sum(axis=1)[:, np.newaxis], decimals=2)

con mat df = pd.DataFrame(con mat norm ,

index = classes,

columns = classes)

figure = plt.figure()

sns.heatmap(con mat df , annot=True,cmap=plt.cm.Blues )# , f m t

=’d ’ )
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plt.tight layout()

plt.ylabel(’True label’)

plt.xlabel(’Predicted label’)

plt.show()

# as c o u n t s

con mat df = pd.DataFrame(con mat ,

index = classes,

columns = classes)

figure = plt.figure()

sns.heatmap(con mat df , annot=True,cmap=plt.cm.Blues )# , f m t

=’d ’ )

plt.tight layout()

plt.ylabel(’True label’)

plt.xlabel(’Predicted label’)

plt.show()
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