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ABSTRACT

Many nations and organizations are committing to achieving the goal of ‘Vision Zero’ and elimi-

nate road traffic related deaths around the world. Industry continues to develop integrated safety

systems to make vehicles safer, smarter and more capable in safety critical scenarios. Passive safety

systems are now focusing on pre-crash deployment of restraint systems to better protect vehicle

passengers. Current commonly used bounding box methods for shape estimation of crash partners

lack the fidelity required for edge case collision detection and advanced crash modeling. This re-

search presents a novel algorithm for robust and accurate contour estimation of opposing vehicles.

The presented method is evaluated via a developed framework for key performance metrics and

compared to alternative algorithms found in literature.
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′
i Point cloud containing LiDAR measurements (P1, P2, . . . , Pn).

PCartesian Data point of point cloud in Cartesian coordinates.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

As commercial vehicle technology advances, safety is among the most important driving

forces and motivations of innovative development of new and more capable vehicle systems. There

has been a notable trend in the direction of intelligent automation of specific tasks, lane keeping

and Adaptive Cruise Control (ACC) for example, in pursuit of safer, more effective and more

convenient travel as summarized by Li (Li et al. 2005). Based on the 2018 report from the World

Health Organization (WHO), 1.35 million deaths occurred in vehicle related accidents world-wide

in 2016, with 50 million non-fatal injuries reported in 2018 (World Health Organization 2018).

This is an increase in total vehicle related fatalities from the reported 1.25 million in 2013. While

the rate of deaths per 100,000 people is continuing to plateau at roughly 18 since the year 2000 (see

Fig. 1.1), more must be done or future years will only continue to see rising numbers of fatalities.

Figure 1.1: Total No. & rate of road related fatality per 100,000 global population (World Health Organization 2018).

It should be noted that, as seen in Fig. 1.2, there has been over a 50% reduction in death

rates per 100,000 vehicles on the road indicating that progress has been made to mitigate the

vulnerability posed by the proliferation of motorized transportation throughout the world.
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Figure 1.2: No. of vehicles & rate of road related fatality per 100,000 vehicles (World Health Organization 2018).

Unfortunately, the new high of total road related deaths in 2016 is not the only sign of insuf-

ficient progress towards the global goal of ‘Vision Zero’. As noted in the info-graphic in Fig. 1.3,

road traffic incidents are now the 8th leading cause of death for people of all age groups and the

1st leading cause of death for persons aged 5 – 29 (World Health Organization 2018).

Figure 1.3: Global road traffic injury summary info-graphic for 2016 (World Health Organization 2018).
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Figure 1.4: Summary of SAE J3016 levels of driving automation standard (SAE 2018).

It is clear that now more-so than ever, that drastic change must occur to begin to make a

positive impact on global road-related fatalities with human driver error being responsible for

94% of vehicle accidents (Mueller, Cicchino, and Zuby 2020). This issue requires novel concepts

and technologies across multiple professional disciplines. One of the most promising and rapidly

developing solutions is the increase in automated functionality of road vehicles with all major

automotive manufacturers beginning to introduce intelligent safety systems to consumer market

vehicles. Level 4 – 5 Intelligent Vehicles (IVs), as classified by SAE (SAE 2018), with their

end to end self-driving capability, offer the potential to reduce the number of deaths from vehicle

accidents to zero. Current production vehicles are limited to at best levels 2 and 3 as the systems

and technologies required for levels 4 and 5 are not fully matured. A summary of the varying levels
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Ego-Vehicle

Ego-Vehicle Oriented B.B.

PathEgo

Target-Vehicle Oriented B.B.

Target-Vehicle

B.B. Overlap Error

PathTarget

Figure 1.5: False crash detection due to bounding box simplification.

of driving automation defined by SAE J3016 standard is shown in Fig. 1.4.

Passive safety technology will be a key component not only for the current development

period, but also for when self-driving technology has fully matured. It is likely infeasible for

new technology to achieve a world with zero vehicle accidents due to the dynamic and often un-

predictable nature of road environments, meaning passive safety systems will remain critical to

keeping passengers and pedestrians safe.

With this in consideration, this work seeks to evaluate the performance of six algorithms

(simple bounding box, oriented bounding box, L-shape fit bounding box, polynomial fit estimation,

complemented convex hull, and three-arc fit) that leverage LiDAR data to estimate the shape of

vehicles at various angles and distances. As passive safety technology develops towards pre-crash

prediction of collision and preemptive activation of restraint systems, this contour information

will be a necessary development for avoiding false-positive activation of irreversible passive safety

systems. Schneider et al. (Schneider, Lugner, and Brandmeier 2019) discussed the danger of

inaccurate contour estimation regarding the industry standard of bounding box assumptions that

could lead to false triggering of safety systems in near-miss scenarios, as illustrated in Fig. 1.5.

Activation of airbags in such a scenario would directly endanger vehicle passengers as well as
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pedestrian bystanders, likely leading to causing an accident from the driver losing control of the

vehicle. Krämer et al. (Krämer, Stiller, and Bouzouraa 2018) note an additional shortcoming of

bounding boxes in the case of non-traditional vehicles, e.g., articulated busses.

The contour information can be easily incorporated into other capabilities of high-level IVs

such as object classification and tracking making it non-intrusive in the vision of self-driving de-

velopment and reducing the relative computational cost increase compared to the simple bounding

box method.

1.2 HYPOTHESIS

If a multitude of metrics for measuring accuracy of estimated vehicle contours are used to

provide insight on algorithm performance under dynamic conditions, then the most accurate al-

gorithm, relative to a ground truth, can be determined based on relative distance and angle of the

measured target-vehicle.

1.3 METRIC FOR SUCCESS

Based upon initial assessment of variations in the quality and quantity of vehicle LiDAR

reflections that could result from different relative distance and relative angle, it is expected for

the performance of the tested algorithms to be lowest at higher distances due to the low number

of reflections, best at short to medium distances due to an increasing number of reflections, and

somewhere in between for very short ranges due to possible self-occlusion of the target vehicle.

Additionally, it is expected that the performance of the different algorithms will be reduced at

increasing relative angles as the target-vehicle begins to self-occlude portions of itself.
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Figure B.7: Simplified contour lined up for data collection with angle reference markings shown.

Figure B.8: Simplified contour with extended side, front view.

Figure B.9: Simplified contour with extended side, rear view.


