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ABSTRACT

In a graph, the generalized distance between multiple vertices is the minimum number

of edges in a connected subgraph that contains these vertices. When we consider such

distances between all subsets of k vertices and take the sum, it is called the Steiner k-

Wiener index and has important applications in Chemical Graph Theory. In this thesis we

consider the inverse problems related to the Steiner Wiener index, i.e. for what positive

integers is there a graph with Steiner Wiener index of that value?
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CHAPTER 1

INTRODUCTION

1.1 BASIC GRAPH THEORY

Graph Theory is the study of graphs. In this context, graphs are mathematical struc-

tures that are used to model pairwise relations between objects.

Graph Theory has a long and interesting history and is one of the branches of math-

ematics that is understood to have a precise date of origination. In 1736, Leonhard Euler

solved a celebrated problem known as the Seven Bridges of Königsberg problem. The

question was posed as whether it was possible to walk over all of the seven bridges span-

ning the river Pregel in the town of Königsberg only once and without retracing one’s steps.

Euler was able to approach this problem from a graph theoretical perspective and found an

ingenious solution. Euler’s approach to this problem was not only instrumental to the in-

troduction of the discipline of graph theory, but it also serves as the first application of the

discipline to a specific problem. Since its inception, graph theory has been utilized for the

studying numerous practical problems.

Figure 1.1: Euler’s graph to illustrate the Seven Bridges of Königsberg

Formally speaking, a graph G is a collection that consists of an ordered pair G =

(V,E), where V represents the set of vertices and E represents the set of edges.

Definition 1.1. A graph is a mathematical structure consisting of a set of vertices and a

set of edges which form connections between pairs of vertices. Typically, we do not allow
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loops (edges connecting a vertex to itself), nor multiple edges joining the same two vertices.

If the graph is directed, its edges are ordered pairs of vertices.

Before introducing Chemical Graph Theory we first list some basic definitions that

will be used.

Definition 1.2. Two vertices v, v′ of a graph are said to be adjacent if v, v′ are connected

by an edge of the graph.

Definition 1.3. For any graph G, the compliment of G is the graph with the same vertices

as the vertices of G but with all of the edges not in G. For example, if G is a pentagon, then

the compliment of G is a pentagram.

Definition 1.4. A graph in which every pair of vertices is adjacent is a complete graph.

Such a graph is usually denoted by Kn, where n is the number of vertices. For example, a

triangle is a complete graph, but no other polygon is.

Definition 1.5. A graph is connected if between every pair of vertices x, y ∈ G there exists

at least one path from x to y.

Definition 1.6. The degree of a vertex of a graph G is the number of other vertices that it

is adjacent to. For example, the vertices in a polygon have degree 2. The vertices of the

Peterson graph have degree 3. The vertices in the complete graph Kn have degree n− 1.

Definition 1.7. The diameter of a graph is the maximal distance between any two points

on the graph. If the graph is not connected, then its diameter is infinity.

Definition 1.8. A graph is said to be regular if all of its vertices have the same degree.

Definition 1.9. A graph is called simple if it has no loops or multiple edges.

Definition 1.10. A connected graph that has no cycles is defined as a tree.
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Definition 1.11. Vertices of degree 1 are called terminal vertices or leaves and edges that

are incident with terminal vertices are called terminal or pendant edges.

Definition 1.12. Two mathematical objects, A and B are isomorphic if they have the same

structure, that is, if there exists a bijective map from A to B that preserves all of the struc-

ture relevant to these objects. Such maps are defined as isomorphisms.

1.2 CHEMICAL GRAPH THEORY

Chemical graph theory is a branch of mathematical chemistry that uses nontrivial

applications of graph theory to examine molecular structures. In Chemical graph theory,

we approach the problem by using a graph to represent a molecule by representing the

atoms as the vertices and the molecular bonds as the edges. The components of graphs that

represent chemical compounds are observed differently than typical graphs. In a graph that

represents a chemical compound, the vertices represent the atoms and the edges represent

the chemical bonds that link the atoms (See, for instance, Figure 1.2). The primary focus

of chemical graph theory is to use algebraic invariants to study the topological structure of

a molecule as a whole or its orbitals, its molecular branching, structural fragments, and its

electronic structures.
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Figure 1.2: Structural formula for 2,2,4,6-tetramethylheptane (on the left) and its corresponding

molecular graph (on the right) [17].
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Examples of the studies of molecular structures include Cayley’s attempts to enumer-

ate chemical isomers and Kirchhoff’s study of electrical circuits [5, 6]. Our work mainly

concerns the so-called chemical indices defined as the following.

Definition 1.13. A graph-based molecular descriptor, also known as a chemical index, is

a graph-theoretic invariant that numerically characterizes the topological structure of a

molecule.

Among numerous different chemical indices, the Wiener index was introduced by

Harry Wiener in 1947 [22, 23]. The Wiener index W (G) of a connected graph G is defined

as

W (G) =
∑

u,v∈V (G)

dG(u, v)

where dG(u, v) is the distance between the vertices u and v in G (the number of edges on

the shortest path connecting them).

Example 1.14. For example, in Figure 3.2, the distance d(u, v) is 2.

u v

Figure 1.3: The vertices u and v in a graph.

The notion of distance between a pair of vertices can be generalized to the following.

Definition 1.15 ([2]). The Steiner distance d(S) for S ⊂ V (G) is the minimum size (num-

ber of edges) of a connected subgraph of G whose vertex set contains S.

Remark 1.16. When |S| = 2, the Steiner distance is equal to the usual distance.

Using the Steiner distance the following generalization of the Wiener index was intro-

duced.
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Definition 1.17. The k-th Steiner Wiener index, or Steiner k-Wiener index, SWk(G) is

defined as as

SWk(G) =
∑

S⊆V (G),|S|=k

d(S).

Next figure shows an example the Steiner distances.

a

b

c

d

e

f

Figure 1.4: An example with labelled vertices.

Recall that the Steiner distance is the minimum size of a set of vertices S ⊂ G that

contains every vertex in S. If we let S be the subset of vertices {a, b, c} in G in Figure 1.4,

we can observe that the Steiner distance is 3. Something important to note is that when we

are computing the Steiner distance in a graph, the resulting subgraph will be a tree because

the minimum number of edges to connect the subset of vertices S will eliminate any cycles

and unnecessary edges to connect the vertices in S.

1.3 THE REGULAR AND STEINER WIENER INDICES

We now provide examples of how to compute the Wiener index and the Steiner Wiener

index of a given graph. This process will shed some light on the main idea of our proofs

later.

Recall that the Wiener index is defined as W (G) =
∑

u,v∈V (G) dG(u, v), the sum of

all distances of a graph G. For example, if we look at the graph of n-Butane (Figure 1.5)

we notice that the molecule is composed of three pairs of vertices at a distance of one from
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j k

l

mu

v

w

s

Figure 1.5: The molecular structure of n-Butane on the left and the molecular structure of Isobutane

on the right.

each other, two pairs of vertices at distance two, and one pair of vertices at a distance of

three. More specifically, we have:

• d(u, s) = 3.

• d(u,w) = d(s, v) = 2.

• d(u, v) = d(v, w) = d(s, w) = 1.

Thus the Wiener index of n-Butane is

3 · 1 + 2 · 2 + 1 · 3 = 10.

As another example, consider the molecule of Isobutane (Figure 1.5). This molecule

is composed of three pairs of vertices at a distance of one and three pairs of vertices

at a distance of two. The pairs of vertices (l, k), (j, k), (m, k) yield distance one and

(l, j), (l,m), (j,m) yield distance two. Hence The Wiener index of Isobutane is

3 · 1 + 3 · 2 = 9.

Note that the pairs of vertices that are composed of a leaf vertex and the center vertex

will have a distance of one because it only takes one edge to connect the two chosen vertices

and the pairs consisting of the leaves have a distance of two because it takes two edges to

connect the two chosen vertices.
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e a

d c b

Figure 1.6: An example with labelled vertices.

Let us now use Figure 1.6 to illurstrate the Steiner 3-Wiener index. Recall that the

Steiner k-Wiener index of a graph G is defined as

SWk(G) =
∑

S⊆V (G),|S|=k

d(S),

incorporating both concepts of the Steiner distance and the Wiener index. The Steiner

k-Wiener index calculates the sum of the distances from all sets of vertices S ∈ G with

|S| = k. In figure 1.6, the Steiner Wiener index of G when k = 3 is

SW3(G) =
∑

S⊆V (G), |S|=3

d(S)

= d(a, b, c) + d(a, b, d) + d(a, b, e) + d(a, c, d) + d(a, c, e)

+ d(b, c, d) + d(b, c, e) + d(b, d, e) + d(c, d, e) + d(a, d, e)

Computing the distances of the subsets gives

2 + 3 + 2 + 2 + 2 + 2 + 2 + 3 + 2 + 2 = 22

Notice that we can observe that the number of k-sets will be
(
n
k

)
with n = |V (G)|

1.4 THE INVERSE STEINER K-WIENER PROBLEM

The Inverse Wiener problem asks that if we are given n ∈ N, is there a graph G or a

tree T that exists where W (G) = n. The Inverse Wiener problem for general graphs G is

much easier than it is for trees. For trees the following conjecture has been proposed.
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Conjecture 1.18. For all but a finite set of positive integers n, we can find a tree with a

Wiener index of n.

For “small” positive integers, with the help of computers it has been found that for all

but 49 positive numbers, there exists some tree with a Wiener index of that value. The 49

exceptions are [10]: 2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 30, 33,

34, 37, 38, 39, 41, 43, 45, 47, 51, 53, 55, 60, 61, 69, 73, 77, 78, 83, 85, 87, 89, 91, 99, 101,

106, 113, 147, 159. Based on these observations a stronger version of Conjecture 1.18 was

proposed as follows.

Conjecture 1.19. There are exactly 49 integers (listed above) that are not Wiener indices

of any trees.

The above conjecture was proved in [16] and [20]. The independent results were

shown through entirely different approaches. In [16] it was proved that all but 49 integers

are Wiener indices of trees with a diameter at most 4. The approach used in [20] showed

that for every n > 108 there exists a caterpillar tree such that W (G) = n. Throughout these

studies it was noted that the most interesting molecular graphs possess natural restrictions

on their degrees or they have cycles with hexagonal or pentagonal structures. With this

discovery of these characteristics, it has inspired the study of the inverse Wiener index

problem for certain types of structures. The structures that are focused on are trees with a

vertex degree ≤ 3 and types of graphs that possess hexagonal chains [18].

The inverse Steiner Wiener problem is of exactly the same nature, but apparently more

complicated as it deals with Steiner distances. This was first proposed in [13] where some

very useful observations were made.
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1.5 OUTLINE OF OUR WORK

In Chapter 2 we will provide a solution for the inverse Wiener problem for general

graphs. Although the result is already well-known, the presented proof will also shed some

light on our approach to solve inverse Steiner k-Wiener problems.

In Chapter 3 we show our main result, stated as the following.

Theorem 1.20. All but a finite number of positive integers are Steiner 3-Wiener indices of

connected simple graphs.

In Chapter 4 we provide some insights towards solving the inverse Steiner Wiener

problem for general k. This includes some data from elementary analysis.
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CHAPTER 2

THE INVERSE PROBLEM FOR THE WIENER INDEX

In this chapter we provide a solution to the inverse Wiener problem (or, equivalently,

the Steiner 2-Wiener index) in general graphs. That is, we show a proof for the following

previously established statement.

Theorem 2.1. Every positive integer except for 2 and 5 is the Wiener index of some con-

nected simple graph G.

2.1 A KEY LEMMA

First we show that all integers between the Wiener index of a star and a complete graph

on n vertices can be represented as the Wiener index of some graph of the same order.

Lemma 2.1.1. All positive integers between
(
n
2

)
and (n− 1)+

(
n−1
2

)
· 2 are Wiener indices

of graphs of order n.

e

a

d

cb

Figure 2.1: The complete graph K5.

Proof. The Wiener index of the complete graph Kn is W (Kn) =
(
n
2

)
. The idea for our

proof begins with taking a complete graph and removing edges from the graph until we

transform the graph into a star.
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In figure 1.6, we start with the complete graph of K5 and we begin removing edges.

Let c be our chosen vertex and then start removing edges from G that are not connected to

the vertex c.

e

a

d

cb

Figure 2.2: The graph G1.

As shown in figure 1.7, we have removed the edge connecting vertices b and e and

we get the graph G1. The Wiener index of G1 is W (G1) =
(
n
2

)
+ 1. Now, we continue

removing edges from the remaining vertices of G.

e

a

d

cb

Figure 2.3: The graph G2 with W (G2) =
(
n
2

)
+ 2.
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e

a

d

cb

Figure 2.4: The graph G3 with W (G3) =
(
n
2

)
+ 3.

e

a

d

cb

Figure 2.5: The graph G4 with W (G4) =
(
n
2

)
+ 4.

e

a

d

cb

Figure 2.6: The graph G5 with W (G5) =
(
n
2

)
+ 5.
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e

a

d

cb

Figure 2.7: The star graph S5 with W (Sn) = (n− 1) +
(
n−1
2

)
· 2.

2.2 PROOF OF THEOREM 2.1

First note that from Lemma 2.1.1 we know that all integers in

In :=

[(
n

2

)
, (n− 1) +

(
n− 1

2

)
· 2
]

are Wiener indices of some graph. We will now show that the union of such intervals

contain all but two positive integers.

Lemma 2.2.1. For any positive integer x 6= 2, 5,

x ∈ ∪∞n=1In.

Notice that we can simplify the upper bound of In

(n− 1) +

(
n− 1

2

)
· 2 = (n− 1) +

(n− 1)(n− 2)

2
· 2

= (n− 1) + (n− 1)(n− 2)

= (n− 1)2

We now only need to show that the intervals In−1 and In overlap, which follows from

the following observation.

Claim 2.2. When n ≥ 5

(n− 1)2 ≥
(
n+ 1

2

)
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Proof. Note that

(n− 1)2 ≥ 1

2
n(n+ 1)

is equivalent to

2(n− 1)2 ≥ n(n+ 1)

and then simplified to

n2 + n ≤ 2(n2 − n− n+ 1)

= 2(n2 − 2n+ 1)

= 2n2 − 4n+ 2

This is true if and only if

n2 − 5n+ 2 ≥ 0,

which obviously holds when n ≥ 5.

Now, together with Lemma 2.1.1, we have that every positive integer other than 2 and

5 is the Wiener index of some graph.
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CHAPTER 3

THE INVERSE PROBLEM OF THE STEINER 3-WIENER INDEX

In this chapter we provide a solution to the inverse Steiner 3-Wiener problem. The

main idea is similar to the regular case but the argument is much more technical.

3.1 SOME PRELIMINARIES

Let Kn be the complete graph on n vertices. There are
(
n
3

)
choices for 3 vertices from

Kn and the distance between the subset of vertices is 2. Hence

SW3(Kn) = 2

(
n

3

)

e

a

d

cb

Figure 3.1: The complete graph K5 with SW3(K5) = 2
(
5
3

)
Let Sn represent the star graph on n vertices. To compute the Steiner 3-Wiener index

of Sn, we have to consider two cases.

Case I Assume that our subset S of vertices contains the center vertex, then the distance of

S is 2. It is easy to see that there are
(
n−1
2

)
such sets of three vertices and so we have

2
(
n−1
2

)
.

Case II Suppose that our subset S does not contain the center vertex of the star. Since S

cannot contain the center vertex, then S consists of the vertices that represent the

leafs of Sn. The distance of S is 3 and so we have 3
(
n−1
3

)
.
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Combining the two cases, we have

SW3(Sn) = 2

(
n− 1

2

)
+ 3

(
n− 1

3

)
We can simplify this equation further. Observe that

2

(
n− 1

2

)
=

(n− 1)(n− 2)

2
· 2 = (n− 1) · (n− 2)

and

3

(
n− 1

3

)
=

(n− 1)(n− 2)(n− 3)

6
· 3 =

(n− 1)(n− 2)(n− 3)

2
=

(
n− 1

2

)
· (n− 3),

combining these two equations, we get the simplified expression

SW3(Sn) = 2

(
n− 1

2

)
+ 3

(
n− 1

3

)
= (n− 1) ·

(
n− 1

2

)

e

a

d

cb

Figure 3.2: The star graph S5.

Similar to before, we now claim the following.

Theorem 3.1. There exist a connected graph G of order n such that

SW3(G) = x,∀x ∈
[
2

(
n

3

)
, (n− 1)

(
n− 1

2

)]
In the rest of this chapter we first prove this statement by induction on n, which leads

to the solution to the inverse Steiner 3-Wiener problem and a proof to Theorem 1.20.
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3.2 THE INITIAL CASE

Consider the complete graph K6 and the star graph S6. The Steiner 3-Wiener value

for Kn is

SW3(Kn) = 2

(
n

3

)
and for Sn is

SW3(Sn) = (n− 1)

(
n− 1

2

)
When n = 6, we are interested in x ∈ [40, 50] for the SW3(K6) to SW3(S6). For the

complete graph K6, the SW3(K6) = 40.

From Figure 3.3, we show that we can take the complete graph K6 and transform K6

into the star S6 by removing some edges. In the process of removing edges, we obtain

the graphs Gi for i = 1, 2, ..., 11 with exactly the desired values as their Steiner 3-Wiener

indices.
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Gi SW3(Gi)

1 40

2 41

3 42

4 43

5 44

6 45

7 46

8 47

9 48

10 49

11 50

Table 3.1: The graphs Gi and their Steiner 3-Wiener indices.
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(a) G1 (b) G2

(c) G3 (d) G4

(e) G5 (f) G6

(g) G7 (h) G8

(i) G9 (j) G10

(k) G11

Figure 3.3: Step 1: n = 6, and the values of SW3(G) are from 40 to 50.
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3.3 PROOF OF THEOREM 3.1

Recall that SW3(Kn) = 2
(
n
3

)
because no matter which set of three vertices we select

from the complete graph Kn, the distance between them is two. We now move on to the

proof of Theorem 3.1.

Proof of Theorem 3.1. The initial case for n = 6 follows from the previous section. More

specifically, we can observe that: Not only does there exist a connected graph Gi where

SW3(Gi) = x for any x ∈ [40, 50], this graph G can be obtained by adding edges to the

star S6 or by removing edges from the complete graph K6.

Induction hypothesis: Let n = m, then

∀x ∈
[
2

(
m

3

)
, (m− 1)

(
m− 1

2

)]
we have that SW3(G) = x for some G of order m. Since

x ∈
[
2

(
m

3

)
, (m− 1)

(
m− 1

2

)]
we can get x by removing edges from Km or adding edges to Sm, so we may represent x

as

x = 2

(
m

3

)
+ k1 = (m− 1)

(
m− 1

2

)
− k2

to indicate the removed or added edges.

Inductive step: Let n = m+ 1, then we are interested in the values

x ∈
[
2

(
m+ 1

3

)
,m

(
m

2

)]
For the inductive step, we will split the interval[

2

(
m+ 1

3

)
,m

(
m

2

)]
into two cases.
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Case I Let x ∈ [2
(
m+1
3

)
, 2
(
m+1
3

)
+
(
m−1
3

)
]

Suppose that x = 2
(
m+1
3

)
+ x1. Let

x′ = 2

(
m

3

)
+ x1

with 0 ≤ x1 ≤
(
m−1
3

)
. By our induction hypothesis, we have a graph G′ on m

vertices where the SW3(G
′) = x′. Suppose that we select a vertex w from the graph

Km+1. Suppose that we add w to the graph G′ and note that w is adjacent to all of

the vertices in G′. Once we add w to G′, we get a graph G on m + 1 vertices. See

Figure 3.4.

w
G′

Figure 3.4: The graph G and G′ in Case I.

Notice now, that

SW3(G) = SW3(G
′) + 2

(
m

2

)
where

SW3(G
′) = 2

(
m

3

)
+ x1

by the definition of G′. Then 2
(
m
2

)
is the contribution from choosing w and two other

vertices in G′ to be in the subset. Since w is adjacent to all vertices in G′, each of

the
(
n
2

)
subsets will contribute 2 to SW3(G). When we combine these two parts, we
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have

SW3(G) = (2

(
m

3

)
+ x1) + 2

(
m

2

)
= 2

(
m+ 1

3

)
+ x1 = x

from the claim below.

Claim 3.2.

2

(
n

3

)
+ 2

(
n

2

)
= 2

(
n+ 1

3

)
Proof of the Claim. The above statement is true by the identity(

n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
,

the proof of which we present below for completeness.

(
n

k

)
+

(
n

k − 1

)
=

n!

(n− k)!k!
+

n!

(n− (k − 1))!(k − 1)!

=
n!

(n− k)!k!
+

n!

(n− k + 1)!(k − 1)!

=
(n− k + 1)n!

(n− k + 1)(n− k)!k!
+

n!k

(n− k + 1)!(k − 1)!k

=
(n− k + 1)n! + n!k

(n− k + 1)!k!

=
nn!− kn! + n! + n!k

(n− k + 1)!k!

=
nn! + n!

(n− k + 1)!k!

=
n!(n− 1)

(n− k + 1)!k!

=
(n+ 1)!

((n+ 1)− k)!k!

=

(
n+ 1

k

)

Case II Let x ∈ [m
(
m
2

)
−
(
m−1
3

)
,m
(
m
2

)
].
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Suppose that

x = m

(
m

2

)
− x2

with 0 ≤ x2 ≤
(
m−1
3

)
. Now consider

x′ = (m−1)
(
m− 1

2

)
−x2 ∈

[
(m− 1)

(
m− 1

2

)
−
(
m− 1

3

)
, (m− 1)

(
m− 1

2

)]
By our inductive hypothesis, we know that there exists a graph G′ on m vertices

where the SW3(G
′) = x′. We further know that G′ may be taken to be a star graph

plus some extra edges.

SW3(G
′) = (m− 1)

(
m− 1

2

)
− x2

Suppose that we have a vertex w that is adjacent to the center vertex of G′, so G′ with

w gives the graph G on m + 1 vertices. Then G′ ∪ w is still a star graph with extra

edges of order m+ 1. See Figure 3.5.

w

G′

Figure 3.5: The graphs G and G′ in Case II.

If we require w and the center vertex of G′ for our selection of three vertices, then

we get

2

(
m− 1

1

)
= 2(m− 1)
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If we exclude the center vertex of G′, then we get 3
(
m−1
2

)
. Combining these steps,

we have

SW3(G) = (m− 1)

(
m− 1

2

)
− x2 + 2(m− 1) + 3

(
m− 1

2

)
= m

(
m

2

)
− x2 = x

by simple algebra as shown below.

Claim 3.3. m
(
m
2

)
= (m− 1)

(
m−1
2

)
+ 2(m− 1) + 3

(
m−1
2

)
Proof of the claim.

(m− 1)

(
m− 1

2

)
+ 2(m− 1) + 3

(
m− 1

2

)
= (m− 1)

(m− 1)(m− 2)

2
+ 2m− 2 + 3 · (m− 1)(m− 2)

2

=
(m− 2)(m− 1)2

2
+ 2m− 2 +

3(m− 1)(m− 2)

2

=
(m− 2)(m− 1)2 + 3(m− 1)(m− 2)

2
+ 2m− 2

=
m3 − 4m2 + 5m− 2 + 3m2 − 9m+ 6

2
+ 2m− 2

=
m3 −m2 − 4m+ 4

2
+ 2m− 2 =

m3 −m2 − 4m+ 4

2
+

2(2m− 2)

2

=
m3 −m2 − 4m+ 4 + 4m− 4

2
=

m3 −m2

2
=

m(m2 −m)

2
=

1

2
m2(m− 1)

= m

(
m

2

)

From case I, we have the interval

x ∈
[
2

(
m+ 1

3

)
, 2

(
m+ 1

3

)
+

(
m− 1

3

)]
and from case II, we have the interval

x ∈
[
m

(
m

2

)
−
(
m− 1

3

)
,m

(
m

2

)]
We now claim that the two above mentioned intervals indeed overlap when m is large

enough.
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Claim 3.4. When m ≥ 6

m

(
m

2

)
−
(
m− 1

3

)
≤ 2

(
m+ 1

3

)
+

(
m− 1

3

)
Proof. First note that each of the involved binomial coefficients can be expanded as follows

m

(
m

2

)
=

1

2
m2(m− 1)(

m− 1

3

)
=

(m− 1)(m− 2)(m− 3)

6

2

(
m+ 1

3

)
=

(m+ 1)(m)(m− 1)

3

We need to show

1

2
m2(m−1)−(m− 1)(m− 2)(m− 3)

6
≤ (m+ 1)(m)(m− 1)

3
+
(m− 1)(m− 2)(m− 3)

6
,

which is equivalent to

1

2
m2(m− 1)− (m− 1)(m− 2)(m− 3)

3
− (m+ 1)(m)(m− 1)

3
≤ 0

The left side is

m3 −m2

2
− −(m− 1)(m− 2)(m− 3)−m(m+ 1)(m− 1)

3

=
m3 −m2

2
+
−2m3 + 6m2 − 10m+ 6

3

=
(m3 −m2) · 3

6
+

(−2m3 + 6m2 − 10m+ 6) · 2
6

=
−m3 + 9m2 − 20m+ 12

6

=
−m3

6
+

3m2

2
− 10m

3
+ 2

This is obviously no more than zero when m ≥ 6.

Since we have shown that

m

(
m

2

)
−
(
m− 1

3

)
≤ 2

(
m+ 1

3

)
+

(
m− 1

3

)
,
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the union of the intervals [
2

(
m+ 1

3

)
, 2

(
m+ 1

3

)
+

(
m− 1

3

)]
and [

m

(
m

2

)
−
(
m− 1

3

)
,m

(
m

2

)]
contain all of the values for x under consideration. Therefore,

∀x ∈
[
2

(
n

3

)
, (n− 1)

(
n− 1

2

)]
there exists a connected graph G where x = SW3(G).

3.4 PROOF OF THEOREM 1.20

With Theorem 3.1, we only need to show that the collection of the intervals[
2

(
n

3

)
, (n− 1)

(
n− 1

2

)]
contain all but finitely many positive integers. This is true by noting that the upper bound

of the n-th interval,

(n− 1)

(
n− 1

2

)
is larger than the lower bound of the (n+ 1)-th interval,

2

(
n+ 1

3

)
,

when n is sufficiently large.

Claim 3.5. When n ≥ 11

(n− 1)

(
n− 1

2

)
≥ 2

(
n+ 1

3

)
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Proof. Observe that

(n− 1)

(
n− 1

2

)
≥ 2

(
n+ 1

3

)
can be simplified to

(n− 1)2(n− 2)

2
≥ 2

(n+ 1)n(n− 1)

6

3(n− 1)(n− 2) ≥ 2n(n+ 1)

3(n2 − 3n+ 2) ≥ 2(n2 + n)

n2 − 11n+ 6 ≥ 0

This is true when n > 10

We have a number of possible exceptions and they are:

2 ≤ n ≤ 8

9 ≤ n ≤ 20

24 ≤ n ≤ 40

50 ≤ n ≤ 70

90 ≤ n ≤ 112

147 ≤ n ≤ 168

224 ≤ n ≤ 240

324 ≤ n ≤ 330
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CHAPTER 4

GENERAL INVERSE PROBLEMS AND CONCLUDING REMARKS

To deal with the inverse Steiner k-Wiener problem for general k, we first note that the

argument in our inductive step for the k = 3 case is still valid.

However, to show a general initial case appears to be very difficult. Through the help

of computer analysis the k = 4 and k = 5 cases can be verified. To deal with higher values

of k one needs to consider some “initial set” of graphs that can potentially generate as many

values for the Steiner Wiener index as possible, through as simple operations as possible.

As an example, starting from all graphs on five vertices, the first table below shows

the Steiner 4-Wiener indices of them.

Now by adding a pendant edge at different vertices in the graphs, we have a variety of

values for the Steiner 4-Wiener indices of some graphs on six vertices. We conclude this

thesis with a table of this data.
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Gi SW4(Gi) G

1 18

2 17

3 16

4 15

5 16

6 17

7 15

8 16

9 16

10 15

11 16

12 15

13 15

Table 4.1: Steiner 4-Wiener indices of graphs on five vertices.
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Gi,j SW4(Gi) G Gi,j SW4(Gi) G

1,1 58 1,2 59

1,3 63 2,1 58

2,2 59 2,3 56

3,1 54 3,2 50

4,1 53 4,2 52

4,3 52 5,1 55

5,2 51 6,1 58

6,2 57 6,3 54

7,1 49 7,2 52

8,1 56 8,2 53

9,1 54 9,2 52

10,1 50 10,2 49

11,1 54 12,1 49

12,2 49 13,1 49

14,1 49 15,1 59

Table 4.2: Steiner 4-Wiener indices of “some” graphs on six vertices.
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