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ABSTRACT

Given a graph G, we consider the problem of finding the minimum number n such that any 

k edge colored complete graph on n vertices contains either a rainbow colored triangle or 

a monochromatic copy of the graph G, denoted grk(K3 : G). More precisely we consider 

G = Bm,` where Bm,` is a broom graph with m representing the number of vertices on the 

handle and ` representing the number of bristle vertices. We develop a technique to reduce 

the difficulty of finding gr k(K3 : Bm,`), and use the technique to prove a few cases with a 

fixed handle length, but arbitrarily many bristles. Further, we find upper and lower bounds 

for any broom.
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CHAPTER 1

INTRODUCTION

1.1 BASIC GRAPH THEORY

Figure 1.1: A Map of

the Town of Königsberg in

the 1800s with Bridges and

River Highlighted.

Graph Theory is a field whose foundations were birthed

from the curiosity of Carl Leonhard Gottlieb Ehler, mayor

of Danzig, in 1736. The famous inquiry was named

the Königsberg Bridge problem or the Seven Bridges of

Königsberg. To understand the problem we must understand

the layout of the city of Königsberg, Prussia. A river flowed

through the town where it split into two branches. In the town,

there were four land masses separated by the river which were

connected by seven bridges as shown in Figure 1.1. Ehler

wondered if it was possible for a traveler to traverse each

bridge exactly once. To solve this problem he enlisted the

aide of the great mathematician Leonhard Euler; Euler agreed to study the problem and

find a solution.

Figure 1.2: A Reimagining

of the City of Königsberg

as a Graph.

He began his invesitgation by recognizing that the start-

ing land mass had no affect on the solution; only the sequence 

with which you cross the bridges must be considered. Next, 

he observed that the choice of route within the landmasses to 

move from bridge to bridge is irrelevant, so the problem may 

be condensed to imagining that the traveler instantly moves 

from bridge to bridge; similarly the route across the bridges 

is also irrelevant. Thus, we can imagine each land mass as a 

single point and each bridge as a single line as shown in 
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Figure 1.2. Euler also observed that each time you enter a land mass by a bridge you 

must also leave by a bridge; thus it follows that every land mass must have an even 

number of bridges attached in order to cross each bridge without repetition. This lead to 

the conclusion that it is not possible to traverse all bridges without crossing at least one 

bridge more than once. We now move on to provide some basic definitions. Any terms 

not defined here can be found in any introductory graph theory textbook such as [4] and 

[1].

De inition 1.1 ([4]). A simple graph G with n vertices and m edges consists of a vertex set 

V (G) = {v1, v2, . . . , vn} and an edge set E(G) = {e1, e2, . . . , em} where each edge is a 

distinct unordered pair of vertices. We write uv for the edge {u, v}. If uv ∈ E(G), then

u and v are called adjacent. The vertices contained in an edge are its endpoints; and the

vertices which are endpoints of an edge are said to be incident with that edge. The degree 

of a vertex v is the number of edges incident with v.

Traversing the bridges and landmasses would require walking about the town and over 

the bridges, so we can name this type of wandering about a “walk.” There are special types 

of walks that we can also define rigorously for use later in the chapter.

Definition 1.2 ( [4]). A  walk of length k  is a  sequence v0, e1, v1, e2, . . . , ek, v k of vertices 

and edges such that ei = vi−1vi for all i. A path is a walk with no repeated vertex; a path 

of length k is denoted by Pk. A u, v−path is a path with end vertices u and v. A cycle is a 

closed walk of length at least 2 with no repeated edges and whose “endpoint” is the only 

repeated vertex; a cycle of length k is denoted by Ck.

It is often interesting to consider the effects of removing certain edges or vertices from 

a graph. For instance, if any vertex from the graph in Figure 1.2 is removed along with all 

edges incident with it, the resulting graph - called a subgraph - yields a graph where it is 

possible to find a walk where each edge is used exactly once. More precisely we can define
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subgraphs as below.

Definition 1.3 ([4]). A subgraph of a graph G is a graph H such that V (H) ⊆ V (G)

and E(H) ⊆ E(G); we write this as H ⊆ G and say that “G contains H”. An induced

subgraph of G is a subgraph H such that every edge of G containing vertices in V (H)

must belong to E(H). If H is an induced subgraph of G with vertex set S, then we write

H = G[S] and say that H is the subgraph of G “induced by S”. A spanning subgraph of

G is a subgraph with vertex set V (G).

If we consider going in the reverse direction, we can ask the question “Is there a largest

graph?” There does exist a largest simple graph on a fixed set of vertices. However, if we

do not set a particular number of vertices, another vertex may always be added along with

a few edges. This clearly shows that there is no such graph if the number of vertices is left

ambiguous. The definition for the largest graph on a set of vertices is defined below.

Definition 1.4 ([4]). A complete graph is a simple graph in which every pair of vertices

forms an edge. A complete graph with n vertices is denoted by Kn. The K3 is referred to

as a triangle.

If a graph is not complete, there must exist vertices which are not adjacent to one

another. A set of vertices with this property is called an independent set.

Definition 1.5 ([4]). An independent set in a graph G is a vertex subset S ⊆ V (G) such

that the induced subgraph G[S] has no edges. A maximal independent set is an independent

set that is not a subset of any other independent set.

Often, we would like to consider if there are multiple independent subsets which have

an empty intersection, or even if there are several maximally independent subsets with

empty intersection. These types of graphs form special classes which have nice properties

that will be helpful later on. A rigorous definition of this class of graphs follows.
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Definition 1.6 ([4]). A graph is bipartite if its vertex set can be partitioned into two inde-

pendent sets where the intersection of the two sets is empty. A complete bipartite graph is

a bipartite graph in which the edge set consists of all pairs having a vertex from each of

the two independent sets in the vertex partition. We denote a complete bipartite graph as

Km,n where m and n are the sizes of the two independent sets. A K1,n is called a star for

any value of n.

Notice that, for a complete bipartite graph, it is possible to begin at one vertex and

reach any other vertex by some path. In fact, for complete bipartite graphs, it is not neces-

sary to use a path of length more than 2. This is a very useful and interesting property; we

can use it to describe a particularly nice class of graphs that have other nice properties.

Definition 1.7 ([4]). A graph G is connected if it has a u, v-path for each pair u.v ∈ V (G).

Otherwise, G is disconnected.

Some connected graphs have a property where it is possible to find a cycle for each

vertex instead of simply a path. Sometimes it is interesting to consider when it is not

possible to find such a cycle for any vertex. In this consideration, we can define yet another

class of graphs.

Definition 1.8 ([4]). A graph having no cycle is acyclic. A forest is an acyclic graph; a tree

is a connected acyclic graph. A leaf is a vertex of degree 1. A spanning tree is a spanning

subgraph that is a tree.

In this thesis, we are particularly interested in a special type of tree called a broom.

Definition 1.9 ([4]). A broom Bk,` is a path of length ` with a star with k leaves joined at

one of the path’s leaf vertices and the root vertex of the star. It is said to have k bristles,

denoted by b(B) = k, and a handle of length `, denoted by h(B) = `.
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Figure 1.3: Examples of Brooms.

(a) B2,5. (b) Bm,6.

1.2 GRAPH COLORINGS

Throughout this thesis, we concern ourselves with coloring the edges of graphs 

and looking for certain colored subgraphs. To find these subgraphs we must first discuss 

color-ing these graphs, and why it is useful.

Definition 1.10 ( [4]). An assignment of colors to the edges of a  nonempty graph G  is an 

edge coloring of G. A coloring that uses k colors is a k-coloring. A graph G that is edge 

colored is called a rainbow G if its edges all have distinct colors.

Imagine you and five others are at a  p arty. You would like to determine if there is a 

group of three of you that are either all mutual acquaintances or mutual strangers. We can 

imagine that each person is a vertex, and each relationship is an edge. We will color an edge 

red if the adjacent vertices (the relationship between two particular people) are strangers, 

and blue otherwise. Notice, all we have to do now is find either a  red t riangle or a  blue 

triangle. This is a famous problem called the party problem, and serves as one of the first 

interesting cases of Ramsey Theory.

Definition 1.11 ( [4]). For graphs G1, . . . , G k, we write n  →  (G1, . . . , Gk) to mean that 

every k-coloring of E(Kn) contains a copy of Gi in color i for some i. The (graph) Ramsey 

number R(G1, . . . , Gk) is the smallest integer n such that n → (G1, . . . , Gk). When Gi = 

G for all i, we write Rk(G) = R(G1, . . . , Gk).
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It becomes quite complicated to find monochromatic copies of several graphs as the

number of colors increases. The simplest non-trivial case of Ramsey numbers is with

only 2 colors, but these problems are already very difficult to solve once we start trying to

find graphs such as K5. It would be easier to find these numbers if we had more colors,

but restricted the number of graphs for which we are searching. This can be realized by

extending the theory to search for a rainbow graph.

Definition 1.12 ([3]). For nonempty graphs G and H , the Gallai-Ramsey number grk(G :

H) is the smallest integer N such that for all n ≥ N , every edge coloring of Kn, using at

most k colors, contains either a rainbow colored copy of G or a monochromatic copy of

H .

The usual proof technique for Gallai-Ramsey numbers is to first assume that there is

no rainbow triangle in the edge coloring of Kn.

Definition 1.13 ([3]). A Gallai coloring of a complete graph G is an edge coloring of G

such that G does not contain a rainbow triangle as a subgraph.

This assumption yields a nice structure in the edge coloring.

Theorem 1.14 ([3]). Every Gallai coloring of a complete graph Kn has a non-trivial par-

tition of the vertices such that between the parts, there are a total of at most two colors on

the edges, and in between each pair of parts, there is only one color on the edges.

Since the usual proof technique is to assume the absence of rainbow triangles, we will

have this kind of partition in most studies of Gallai-Ramsey numbers.

Definition 1.15 ([3]). A partition as described in Theorem 1.14 is called a Gallai Partition.

1.3 PRELIMINARIES AND MAIN RESULTS

Before we examine the main results of this thesis, we must first observe some pre-

liminary results used in the proof of the main results. First, we cover some prerequisite
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knowledge to assist in the proof of the first theorem.

Definition 1.16 ([2]). For nonempty graphs G1 and G2 the Ramsey bipartite number pair

B(G1, G2) is the minimum ordered pair (N,M) (with N ≥ M ) such that for all ordered

pairs (n,m) where n ≥ N and m ≥ M , every 2-coloring of Kn,m contains either a G1 in

color 1 or a G2 in color 2.

Next, a result that is useful in finding a portion of the graph in question.

Theorem 1.17 ([2]). For n,m ∈ Z+,

(i) B(P2n, P2m) = (n+m− 1, n+m− 1),

(ii) B(P2n−1, P2m) = (n+m,n+m− 1) for n ≥ m− 1,

(iii) B(P2n+1, P2m) = (n+m− 1, n+m− 1) for n < m− 1,

(iv) B(P2n+1, P2m+1) = (n+m,n+m− 1) for n 6= m,

(v) B(P2n+1, P2n+1) = (2n+ 1, 2n− 1).

The next result is also useful in finding the same portion of the graph in question.

Theorem 1.18 ([2]). If |E(G)| ≥ `−1
2
· |V (G)|, then G contains a path of length `.

The following result gives an immediate lower bound for the main theorems. This

bound is, in fact, sharp for small cases.

Proposition 1.19 ([3]). For any connected bipartite graph H , and for any integer k with

k ≥ 2, we have

grk(K3 : H) ≥ R2(H,H) + (k − 2)(sH − 1)

where sH denotes the size of the smaller part in the partition.

In order to utilize the above result, we require the knowledge provided below.
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Theorem 1.20 ([6]). Let m and ` be integers with m ≥ 2 and n = m+ `. Then

R2(Bm,`, Bm,`) =


n+

⌈
`
2

⌉
− 1 if ` ≥ 2m− 1;

2n− 2
⌈
`
2

⌉
− 1 if 4 ≤ ` ≤ 2m− 2.

Theorem 1.21 ([3]). In every Gallai-coloring of a complete graph, there exists a spanning

monochromatic broom.

Theorem 1.22 ([3]). Every Gallai-coloring of a complete graph Kn contains a non-trivial

partition (with at least two parts) of the vertices such that between the parts there is a total

of at most two colors on the edges, and between each pair of parts there is only one color

on the edges.

Theorem 1.23 ([5]). Given a bipartite graph H and a positive integer R with

R ≥ max{R2(H,H), 3|b(H)| − 2},

where bH denotes the size of the larger part in the partition, if every Gallai-coloring of KR

using 3 colors, in which all parts of a Gallai-partition have order at most |sH |−1, contains

a monochromatic copy of H , then

grk(K3 : H) ≤ R + (|sH | − 1)(k − 2).

We would like to determine when Theorem 1.23 is applicable for brooms. That is,

when is R2(Bm,`, Bm,`) ≥ 3|b(Bm,`)| − 2?

Lemma 1.3.1. Given a broom Bm,`, we have

R2(Bm,`, Bm,`) < 3|bBm,`
| − 2,

where bBm,`
denotes the size of the larger part in the partition

Proof. First, we will compute the number of vertices in bBm,`
. We must set up the parts

of the partition in order to determine their respective sizes. Let v1 be the vertex of highest
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degree, vi be the handle vertex that is i − 1 edges away from v1 for all i ∈ {2, 3, . . . , `},

and uj for j ∈ {1, 2, . . . ,m} be the star vertices. Now, let A1 and A2 be the two parts, and

let v1 be in A1. This results in all uj being contained in A2. Notice that this decision results

in vi ∈ A1 for all odd i and vi ∈ A2 for all even i. Notice that the part containing the star is

inherently larger. This part also contains exactly half of the handle vertices for even length

handles. However, if the handle is odd length, then the other part contains one more handle

vertex than the large part. Hence, |bBm,`
| = |A2| = m+

⌊
`
2

⌋
. Notice, we also have that

|sBm,`
| = |V (Bm,`)| − |bBm,`

|

= (m+ `)−
(
m+

⌊
`

2

⌋)
=

⌈
`

2

⌉
By Theorem 1.20 we must consider 2 cases; ` ≥ 2m− 1 and 4 ≤ ` ≤ 2m− 2.

R2(Bm,`, Bm,`) = n+

⌈
`

2

⌉
− 1 R2(Bm,`, Bm,`) = 2n− 2

⌈
`

2

⌉
− 1

= m+ `+

⌈
`

2

⌉
− 1 < 2m+ 3

⌊
`

2

⌋
− 1

< 3m+ 3

⌊
`

2

⌋
− 2 < 3m+ 3

⌊
`

2

⌋
− 2

= 3

(
m+

⌊
`

2

⌋)
− 2 = 3

(
m+

⌊
`

2

⌋)
− 2

= 3|bBm,`
| − 2 = 3|bBm,`

| − 2

Notice that neither case can ever occur for any possible combination of m and `.

Lemma 1.3.1 that Theorem 1.23 cannot be used to obtain sharp results for Gallai-

Ramsey numbers of brooms. However, upper bounds can still be obtained using Theo-

rem 1.23 by choosing N ∈ Z with grk(K3 : Bm,`) ≤ N such that N ≥ 3
(
m+

⌈
`
2

⌉)
. See

Theorem 1.25 for example. Our first result is a specific one, for the broom B2,5.
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Theorem 1.24. For all k ≥ 1 we have

grk(K3 : B2,5) = 5 + 2k.

Our main result contains a general lower and upper bound.

Theorem 1.25. If m ≥ 7`
2
+ 3, then

2m+ `− 2 + (k − 2)

⌈
`

2

⌉
≤ grk(K3 : Bm,`) ≤ 3m−

⌈
3`

2

⌉
+ (k − 2)

⌈
`

2

⌉
Finally, we list sharp results for two classes of brooms.

Theorem 1.26. For m ≥ 2 and k ≥ 2 we have

grk(K3 : Bm,5) =


m+ 2k + 3 if 2 ≤ m ≤ 3,

2m+ 2k − 1 if m ≥ 4.

Theorem 1.27. For m ≥ 2 and k ≥ 2 we have

grk(K3 : Bm,6) =


m+ 2k + 4 if 2 ≤ m ≤ 3,

2m+ 2k + 1 if m ≥ 4.

For the remainder of this thesis, we will prove Theorems 1.24– 1.27. In Chapter 2, we

explore an example of a Gallai-Ramsey number of a triangle and a specific broom in order

to understand in greater detail the type of problems explored in Gallai-Ramsey Theory,

and to attain an intuition of the problem at hand. In Chapter 3, we find loose bounds for

grk(K3 : Bm,`) for any m, ` ∈ N+ which is the most general case we explore. Finally, in

Chapter 4, we find sharp results for two classes of brooms where we fix the handle length

and allow any number of bristles.

Conjecture 1.28. For any broom Bm,` with m, ` ∈ Z and n = m + `, and for any integer

k with k ≥ 2, we have

grk(K3 : Bm,`) =


n+ (k − 1)

(⌈
`
2

⌉
− 1
)

if ` ≥ 2m− 1;

2n− 3 + (k − 4)
(⌈

`
2

⌉
− 1
)

if 4 ≤ ` ≤ 2m− 2.
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CHAPTER 2

GALLAI-RAMSEY NUMBER OF A TRIANGLE AND THE BROOM B2,5.

Before we can prove Theorem 1.24 we need a lemma. This Lemma is analogous to

Theorem 1.23, but is applicable to the broom we are interested in for this chapter’s result.

Lemma 2.0.1. If every Gallai-coloring of KR2(B2,5,B2,5) using 3 colors, in which all parts

of a Gallai-partition have order at most |s(B2,5)| − 1, contains a monochromatic copy of

B2,5, then

grk(K3 : B2,5) ≤ R2(B2,5, B2,5) + (|s(B2,5)| − 1)(k − 2).

The proof follows by easy case analysis for B2,5.

Proof of Theorem 1.24. For the lower bound, the case k = 1 follows from considering

a 1-colored K6 which clearly does not contain a monochromatic B2,5. For k ≥ 2, by

Proposition 1.19 and Theorem 1.20, we have grk(K3 : B2,5) ≥ 2k + 5.

For the upper bound, suppose G is a k-colored copy of Kn with n = 2k + 5. Assume

there is no rainbow triangle in G and no monochromatic copy of B2,5. By Theorem 1.22,

there is a Gallai-partition of G. By Theorem 1.21, there is a spanning monochromatic

broom, say a spanning blue broom B. If k = 1, the result is trivial and if k = 2, the

result follows from Theorem 1.21, so suppose k ≥ 3. If h(B) ≥ 5 and b(B) ≥ 2, then

this contains the desired B2,5, so suppose this is not the case. Thus, either h(B) ≤ 4 or

b(B) = 1. Since k ≥ 3, we have n ≥ 11, so these two cases cannot occur at the same time.

We break the remainder of the proof into these two cases.

Case 1. b(B) = 1.

This means that B is a spanning monochromatic path P = v1v2 . . . vn. We claim that

there are no extra blue edges except possibly for the edge v1vn. Indeed, any extra edge

would result in a monochromatic copy of B2,5, as seen in the following claim.
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Claim 1. Other than the edges of P and possibly the edge v1vn, G contains no blue edges.

Proof of Claim 1. Suppose there is an extra non-path blue edge e between two vertices on

the path other than the edge v1vn. Let u and v be the ends of e, say with u = vi and

v = vj where i < j where i 6= 1 or j 6= n. If i ≥ 5, then the path vi−4vi−3vi−2vi−1vi is

the handle of a blue B2,5 with bristle edges vivi+1 and vivj , so we may assume i ≤ 4 and

symmetrically, j ≥ n−3. If i = 4 and j = n−3, then the path v1v2v3v4vj is the handle of a

blue B2,5 with bristle edges vjvj−1 and vjvj+1, so we may assume either i < 4 or j < n−3.

Without loss of generality, say i < 4. Since n ≥ 11, the path vj−4vj−3vj−2vj−1vj is the

handle of a blue B2,5 with bristle edges vjvj+1 and vjvi, completing the proof of Claim

1.

Next a claim that provides even more structure.

Claim 2. Each part of the Gallai-partition of G has order 1.

Proof of Claim 2. By Lemma 2.0.1 each part has order at most 2. Suppose there is a part

A = {u, v} of order 2. Since P is spanning, it must contain both u and v. Without loss of

generality, suppose u = vi and v = vj where i < j. If i ≥ 3, then since A is a part of the

Gallai-partition, vi−1u and vi−1v must both be blue, contradicting Claim 1, so i ≤ 2 and

symmetrically, j ≥ n− 1. With n ≥ 11, there are at least 7 vertices on P in between u and

v. As above, vi+1u and vi+1v must both be blue, a contradiction to Claim 1, completing the

proof of Claim 2.

By Claim 2, each part of the Gallai-partition has order 1, meaning that G is a 2-

coloring. Since n ≥ 11 > R(B2,5, B2,5), this graph contains a monochromatic copy of

B2,5.

Case 2. h(B) ≤ 4.
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Choose the spanning broom B so that h(B) is as large as possible. Let u be the center

vertex of the star part and let v be the vertex at the other end of the handle of B. Let

A = G\{u, v}. Since Lemma 2.0.1 says all parts of the Gallai-partition have order at most

2 and we may assume that red and blue are the colors appearing in the partition, this means

{u, v} is a part of the Gallai-partition.

Claim 3. The vertex v has at least |A| − 2 red edges to A.

Proof of Claim 3. If v has any blue edges to A in the star part of B, then we could find

a blue broom with a longer handle, a contradiction. This means that v has at most 3 blue

edges to A.

Suppose v has an edge of another color, say green, to a vertex w ∈ A. Now v must

have red edges to the rest of A, at least n − 2 − 2 − 1 ≥ 6 vertices. Since {v, w} is a

part of the partition, w must also have red edges to all of these vertices. To avoid a red

copy of B2,5, there can be no red edges within those vertices, but all edges between those

vertices form a matching so there is a blue P4 in A, providing a blue copy of B2,5 for a

contradiction.

Since |A| ≥ n− 2 ≥ 9, there are at least 5 parts of the Gallai-partition within A. With

R(P4, P4) = 5, we know there is either a red P4 or a blue P4 appearing between the parts.

If it is blue, we are done as above, so it must be red. If an end is adjacent to v in red, we’re

done again so both ends must have blue edges to v.

Letting x, y be the vertices on the handle in this order from u to v, we see that y must

have an additional red edge to an interior vertex of the red path to avoid a blue B2,5. this

red edge allows us to reroute the P4 so v is adjacent to an end in red. making a red B2,5 and

completing the proof.
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CHAPTER 3

GALLAI-RAMSEY NUMBER BOUNDS FOR A TRIANGLE AND ANY BROOM.

Next, we prove the general bound for of Gallai-Ramsey numbers for any broom.

Proof of Theorem 1.25. For the lower bound, we simply apply Proposition 1.19. This

yields

grk(K3 : Bm,`) ≥ R2(Bm,`) + (k − 2)(sBm,`
− 1)

= 2n− 2

⌈
`

2

⌉
− 1 + (k − 2)

(⌈
`

2

⌉
− 1

)
= 2m+ 2`− 2

⌈
`

2

⌉
− 1 + (k − 2)

(⌈
`

2

⌉
− 1

)
≥ 2m+ `− 2 + (k − 2)

(⌈
`

2

⌉
− 1

)
.

For the upper bound, we begin by supposing G is a colored complete graph of order n =

3m− d3`
2
e+ (k − 2)d `

2
e with no rainbow triangle and no monochromatic Bm,`.

Claim 1. Every vertex has at least m+ ` incident edges in one color.

Proof of Claim 1. By assumption, v is adjacent to `
2
− 1 vertices in its partition. Therefore,

there are at most `
2
− 1 edges incident with v in its partition’s color, say green. Since there

are only two remaining colors, at least half of the edges incident with v must be in one

color. Recall that m ≥ 7`
2
+ 3. Using this fact, we will show that the number of edges to

each vertex in the graph from a vertex, say v, is at least 2m+ 5`
2
+ 2. Then

3m− ` ≥ 2m+

(
7`

2
+ 3

)
− `

= 2m+
5`

2
+ 3.

Notice, we have
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(
2m+ 5`

2
+ 3
)
−
(
`
2
− 1
)

2
= m+ `+ 2

> m+ `.

Hence, there are at least m+ ` edges incident with v in one color.

Suppose the colors used in the coloring of G are red, blue, and green where green is

the color used within the parts. Partition V (G) into the red vertices and blue vertices; if

any are both blue and red, the vertex is assigned arbitrarily to either the red or blue set. If

two vertices belong to the same part of the Gallai-partition, they must both go into the same

set. If both sets have at least ` vertices, then by Theorem 1.17 there exists a monochromatic

path using the edges in between. This results in either a red or blue broom depending on

the color of the path. Therefore, one of the sets must have less than ` vertices and so the

other part has at least 3m − 2` − 2. Suppose the larger set is the red set. We will find the

largest path that is guaranteed to be in the red set. Let q ≤ 3m− 2`− 4. Then

q − 1

2
· |V (G)| = (3m− 2`− 2)

(
q − 1

2

)
≤ (3m− 2`− 2)

(
3m− 2`− 4− 1

2

)
= (3m− 2`− 2)

(
3m− 2`− 3

2
− 1

)
=

(3m− 2`− 2)(3m− 2`− 3)

2
− (3m− 2`− 2)

=
(3m− 2`− 2)!

2! · (3m− 2`− 4)!
− (3m− 2`− 2)

=

(
3m− 2`− 2

2

)
− (3m− 2`− 2)

= |E(G)|.

By Theorem 1.18, we know that there exists a red path of length 3m − 2` − 4 in the

red set. Notice 3m−2`−4 ≥ m+7`−2`−4 = m+5`−4� m+ `. Hence, any section
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of path with length ` − 1 combined with an edge to the blue set and a star with degree m

back to the red set gives the desired broom.
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CHAPTER 4

GALLAI-RAMSEY NUMBERS OF A TRIANGLE AND CLASSES OF BROOMS.

Again, before we can prove Theorem 1.26 or Theorem 1.27 we need a lemma. This

Lemma is again analogous to Theorem 1.23,and is simply an extension of Lemma 2.0.1.

Lemma 4.0.1. Given a broom B = Bm,` with ` = 5 or 6, if every Gallai-coloring of

KR2(B,B) using 3 colors, in which all parts of a Gallai-partition have order at most |s(B)|−

1, contains a monochromatic copy of B, then

grk(K3 : B) ≤ R2(B,B) + (|s(B)| − 1)(k − 2).

The proof follows by easy case analysis for the specific graphs in question, and is

simply a restatement of Lemma 1.23 in [5] for these graphs.

4.1 GALLAI-RAMSEY NUMBER OF A TRIANGLE AND THE CLASS OF BROOMS Bm,5.

Now, we move on to prove the first sharp Gallai-Ramsey number.

Proof of Theorem 1.26. For the lower bound, by Proposition 1.19 and Theorem 1.20, we

have

grk(K3 : Bm,5) ≥


m+ 2k + 3 if 2 ≤ m ≤ 3,

2m+ 2k − 1 if m ≥ 4.

For the upper bound, suppose G is a k-colored Kn with

n =


m+ 2k + 3 if 2 ≤ m ≤ 3,

2m+ 2k − 1 if m ≥ 4.

If k = 2, then |G| = R2(Bm,5, Bm,5) so G clearly contains a monochromatic copy of Bm,5,

so assume k ≥ 3.

Assume there is no monochromatic copy of Bm,5 and no rainbow triangle in G. By

Theorem 1.22, there is a Gallai-partition. If all parts have order 1, then k ≤ 2, so we may
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assume that there is a part of order 2. Let H1, H2, . . . , Ht be the parts of this Gallai-partition

with |Hi| ≥ |Hj| whenever i ≤ j, so |H1| = 2. By Lemma 4.0.1, we may assume k = 3.

Let A (and B) be the vertices in G \H1 with all red (respectively blue) edges to H1,

say with |A| ≥ |B|. Note that this means |A| ≥ n−2
2

.

First assume 2 ≤ m ≤ 3, so n = m + 9. In this case, |A| ≥ 5 and we first suppose

|A| ≤ n − 5, so |B| ≥ 3. If there is a red edge uv from A to B, then a red path of the

form vu − H1 − A − H1 along with all remaining red edges from the last vertex on the

path to A produces a red Bm,5 so this means that all edges between A and B must be blue.

Then since |B| ≥ 3, a blue path of the form B − H1 − B − H1 − B along with m blue

edges from the last vertex on the path to A, produces a blue Bm,5, a contradiction. Next

suppose |A| ≥ n − 4 = m + 5. If there is a red edge uv within A, then a red path of the

form uv − H1 − A − H1 along with all remaining red edges from the last vertex on the

path to A produces a red Bm,5, so there can be no red edge within A. Since the parts of the

Gallai-partition have order at most 2, this means that A is a blue complete graph minus a

matching on at least m+ 5 vertices, so there is clearly a blue copy of Bm,5 within A, again

a contradiction.

Thus, we may assume m ≥ 4 so n = 2m+5 and |A| ≥ m+2. First suppose |A| ≤ 2m.

If there is a red edge uv from A to B, then a red path of the form vu−H1−A−H1 along

with all remaining red edges from the last vertex on the path to A produces a red Bm,5 so

this means that all edges between A and B must be blue. Then since |B| = n−|A|−2 ≥ 3,

a blue path of the form B−H1−B−H1−B along with m blue edges from the last vertex

on the path to A, produces a blue Bm,5, a contradiction.

Next suppose |A| ≥ 2m+ 1 so |B| ≤ 2. If there is a red edge uv within A, then a red

path of the form uv−H1−A−H1 along with all remaining red edges from the last vertex

on the path to A produces a red Bm,5, so there can be no red edge within A. Since the parts

of the Gallai-partition have order at most 2, this means that A is a blue complete graph
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minus a matching on at least 2m+1 vertices. Since m ≥ 4, we know that 2m+1 ≥ m+5

so there is clearly a blue copy of Bm,5 within A, again a contradiction.

4.2 GALLAI-RAMSEY NUMBER OF A TRIANGLE AND THE CLASS OF BROOMS Bm,6.

Finally, we prove the final result which is another sharp Gallai-Ramsey number.

Proof of Theorem 1.27. The proof of this result is very similar to the proof of Theo-

rem 1.26. For the lower bound, by Proposition 1.19 and Theorem 1.20, we have

grk(K3 : Bm,6) ≥


m+ 2k + 4 if 2 ≤ m ≤ 3,

2m+ 2k + 1 if m ≥ 4.

For the upper bound, suppose G is a k-colored copy of Kn with

n =


m+ 2k + 4 if 2 ≤ m ≤ 3,

2m+ 2k + 1 if m ≥ 4.

If k = 2, then |G| = R(Bm,6, Bm,6) so G clearly contains a monochromatic copy of Bm,6.

Assume there is no monochromatic copy of Bm,6 and no rainbow triangle in G. By

Theorem 1.22, there is a Gallai-partition. If all parts have order 1, then k ≤ 2, so we may

assume that there is a part of order 2. Let H1, H2, . . . , Ht be the parts of this Gallai-partition

with |Hi| ≥ |Hj| whenever i ≤ j, so |H1| = 2. By Lemma4.0.1, we may assume k = 3.

Let A (and B) be the vertices in G\H1 with all red (respectively blue) edges to H1,

say with |A| ≥ |B|. Note that this means |A| ≥ n−2
2

.

First assume 2 ≤ m ≤ 3, so n = m + 10. In this case, |A| ≥ 5 and we first suppose

|A| ≤ n − 5, so |B| ≥ 3. If there is a red edge uv from A to B with an adjacent blue

edge either within A or within B, then a red path of the form B − vu −H1 − A −H1 or

vu−A−H1−A−H1 along with all remaining red edges from the last vertex on the path

to all of the remaining vertices in A produces a red Bm,6 so this means that any red edge
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between A and B must be adjacent with only blue edges within A and within B. Suppose

there is at least 1 red edge between A and B. If there is a blue edge of the form v−A, then

a blue path of the form H1 − B − H1 − v − A − u along with all remaining blue edges

from u to A produces a blue Bm,6. Therefore, all edges from v to A are red. Then a red

path of the form A−H1 − uv − A−H1 along with all remaining red edges from the last

vertex on the path to A gives a red Bm,6. Now suppose there is no red edge between A and

B. Then a blue path of the form A−B −H1 −B −H1 −B along with all remaining red

edges from the last vertex on the path to A gives a red Bm,6.

Thus, we may assume m ≥ 4 so n = 2m+7. First suppose |A| = m+5, so |B| = m.

If there is a red path uvw in A, then uvw−H1−A−H1 along with all remaining red edges

from the last vertex on the path to A produces a red Bm,6 so this means that there is no red

P3 in A. Therefore, A is blue minus a matching and there is a blue P4 in A. Furthermore,

every edge between A and B is red. If this was not the case, then there exists some vertex v

in A with a blue edge to B, and P4−B−H1 along with all remaining blue edges from the

last vertex on the path to B gives a blue Bm,6. Now we have that A−B−A−H1−A−H1

along with all remaining red edges to A results in a red Bm,6.

Now suppose |A| = m + 4, so |B| = m + 1. If there is a red path uvw in A, then

uvw−H1−A−H1 along with all remaining red edges from the last vertex on the path to

A produces a red Bm,6 so this means that there is no red P3 in A. Therefore, A has a blue

P4. Furthermore, every vertex in A has a blue edge to B. If this was not the case, then there

exists some vertex v in A with all red edges to B, and B − A − H1 − A − H1 − v along

with all remaining red edges from the last vertex on the path to B gives a red Bm,6. Hence,

P4 −B −H1 along with all remaining blue edges to B gives a blue Bm,6.

Next suppose |A| = m + 3, so |B| = m + 2. Suppose there exists some vertex v

in A with all red edges to B, and B − A − H1 − A − H1 − v along with all remaining

red edges from the last vertex on the path to B gives a red Bm,6. Therefore, every vertex
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in A has a blue edge to B. If there is a blue path uv in A, then uv − B − H1 − B − H1

along with all remaining blue edges to B results in a blue Bm,6. So we may assume A is

completely red minus a matching. Suppose u and v are vertices in A with red edges to B.

Then B − u − H1 − A − H1 − v along with all remaining red edges from the last vertex

to A and B form a red Bm,6. Hence, only one vertex in A can have any red edges to B, but

since every vertex in B has a red edge to A they must all go to that vertex v. Let uw be a

red path in A. Notice uw −H1 −A−H1 − v along with all remaining edges to B gives a

red Bm,6.

Finally suppose |A| ≥ m + 6, so |B| ≤ m − 1. If there is a red path uvw in A, then

uvw−H1−A−H1 along with all remaining red edges from the last vertex on the path to

A produces a red Bm,6 so this means that there is no red P3 in A. Hence, A is complete in

blue minus a matching on m+ 6 vertices.
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CHAPTER 5

CONCLUSION.

We considered the problem of finding grk(K3 : Bm,`) for a sharp result, but we dis-

covered that we do not yet have the tools to tackle this problem. Instead, we found loose

upper and lower bounds for grk(K3 : Bm,`) in Theorem 1.25. We developed a technique

to reduce the difficulty of finding grk(K3 : Bm,`) for classes of short handled brooms. We

used the technique to prove a few cases with a fixed handle length, but arbitrarily many

bristles in Theorem 1.26 and Theorem 1.27. We also conjectured that the lower bound

found in Theorem 1.25 is, in fact, a sharp result in Conjecture 1.28.
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