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ABSTRACT

Self-care activities classification poses significant challenges in identifying childrens unique

functional abilities and needs within the exceptional children healthcare system. The ac-

curacy of diagnosing a child’s self-care problem, such as toileting or dressing, is highly

influenced by an occupational therapists experience and time constraints. Thus, there is a

need for objective means to detect and predict in advance the self-care problems of children

with physical and motor disabilities. We use clustering to discover interesting informa-

tion from self-care problems, perform automatic classification of binary data, and discover

outliers. The advantages are twofold: the advancement of knowledge on identifying self-

care problems in children and comprehensive experimental results on clustering binary

healthcare data. By using various distances and linkage methods, resampling techniques

of imbalanced data, and feature selection preprocessing in a clustering framework, we find

associations among patients and an Adjusted Rand Index (ARI) of 76.26%
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CHAPTER 1

INTRODUCTION TO CLUSTERING

1.1 MOTIVATION

Due to recent technological advances, large masses of medical data are being ob-

tained. This data contains valuable information for diagnosing conditions and diseases

and data mining techniques can be useful in extracting hidden patterns from this medical

data. One major field where data mining medical data can be significant is the exceptional

children health care systems where the self-care problems diagnosis and classification is

an important challenge. Since, self-care problems classification is a time-consuming pro-

cess and requires expert occupational therapists, using an expert system in classifying these

problems can decrease cost and time, efficiently. Expert healthcare systems refer to the sys-

tems that are based on machine learning and artificial intelligence methods, which have the

ability to learn, infer, and develop an automated tool that is capable of identifying relevant

medical information. In this thesis, we use hierarchical clustering to discover interesting

information from self-care problems of children with physical and motor disability We

rely on unsupervised machine learning techniques to perform automatic classification of

binary data and discover outliers and rare occurrences. With our proposed system, we seek

insights among patients.

The advantages of using such a model are twofold. The first contribution is the ad-

vancement of knowledge about how to identify self care problems in children. The second

contribution of this thesis is the presentation of comprehensive experiments to evaluate

clustering binary healthcare data. By explicitly, exploring binary distances in hierarchi-

cal clustering, resampling techniques in clustering imbalanced data and feature selection

preprocessing in a clustering framework, we find insights among patients and significant

results.
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1.2 WHAT ARE SELF CARE PROBLEMS?

The inability to look after and take care of one’s self in a healthy way is referred to

as self-care problems. These problems usually stem from physical and motor disabilities

and disorders that restrict individual activities [8]. Disability diagnosis and classification is

complex processes that require expert occupational therapists. Thus, the accuracy of iden-

tifying a child’s self care problem is highly influenced by the expert’s skills and experience.

Moreover, given the fact that the data being analyzed is high dimensional, that same expert

is inherently affected by inconsistencies in interpreting the data.

Therefore, in 2001, the World Health Organization (WHO) designed an approach that

aims to identify and understand each child and family’s unique functional abilities and

needs. It is called the International Classification of Functioning, Disability and Health

[28], or “the ICF” for short.

From the ICF, a branch called the International Classification of Functioning, Disabil-

ity and Health-Children and Youth (ICF-CY) was created in 2007, which is a multipurpose

classification conceptual framework. ICF and ICF-CY are used frequently as conceptual

frameworks in disability evaluation, assessment, and classification [23].

The ICF-CY divides a health condition into 3 interconnected parts. These parts are

connected in such a way that, if you influence one part, all the other parts change to adjust.

First, the body structure and function, which explains how body parts work. Second, the

activity and participation, which explain what people do, and how they engage with the

world and third, the contextual factors, which include environmental and personal factors

that help people function [5].

Thus, using the ICF approach to view health and help people to:

• Understand strengths and challenges, and see a broader picture of development.

• Communicate and advocate better about a child's functional needs to the health care
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professionals and community

• Make informed decisions and engage actively in a child's health care.

1.3 WHY CLUSTERING ANALYSIS?

Clustering is an unsupervised data mining technique used for grouping the data points

without advance knowledge of the class labels. The objective of clustering is to find the

intrinsic similar grouping in a set of unlabeled data. As shown in Figure 1.1, you can see

a total of three clusters through the coloring of the data points. Formally, clustering can be

defined as followed:

Definition 1. [Clustering] Clustering is a mathematical procedure for multi-dimensional

analysis. Given the characteristics of a set of objects this procedure groups similar objects

into clusters the resulting individual groups contain the objects that are most similar to each

other when compared to those outside of their group.

Figure 1.1: Three clusters

Unlike classification, which is a branch of supervised learning that approximates the

relationship between input and output to predict the target class of given data points, clus-
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tering algorithms learn from the multiple variables supplied in the data, it then groups the

data points without being told the logic by which to do it. Thus, clustering is often used for

discovering hidden patterns and outliers in data.

Most importantly to this thesis, clustering has been proven to be an effective method

for discovering structure in medical datasets [17]. As researched in many medical domains

such as breast cancer [3], heart disease and heart attacks [2], and leukamia [29]. In particu-

lar to hierarchical clustering, Chen et al. [6] proposed an integrated approach for analyzing

gene expression data, while Liu et al. [9] used hierarchical clustering and K-means to pre-

dict the severity of disease in patients using gene expression profile having Rheumatoid

Arthritis.

The main objective of this work is to create a mathematical clustering system to pre-

dict the self care problems based on experimental data and contribute to the study of unla-

beled binary healthcare data, as 80% of the world’s data is unstructured and unlabeled. [25].

Also, our contribution to clustering self care problems may serve as the first step in creating

a semi-supervised learning expert system, which would be able to use our proposed cluster-

ing analysis to learn reliable classification model from small number of labeled instances

and large quantities of unlabeled data.

1.4 EXPERIMENTAL DATA

Using a standard dataset is a critical factor in designing and creating an effective expert

system. Thus, in this research we use a relatively new standard dataset called SCADI

(Self-Care Activities Dataset based on ICF-CY), which was introduced in 2018 [20]. The

SCADI dataset is the first and only dataset that has been created for the purpose of data

mining self care problems based on ICF-CY to this date. Our model is created based on

binary measurements performed on 70 children with physical and motor disabilities based

on ICF-CY. Thus, our work additionally studies the problem of clustering binary data.
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Figure 1.2: Experimental data excerpt

The SCADI dataset contains 203 binary features (one feature per each activity defi-

ciency). If the particular patient has an activity deficiency, the value of the activity’s re-

spective feature is set to 1 otherwise set to 0. Given the relatively large number of features,

we also tackle the curse of dimensionality.

In addition to the 203 measurements, the last column is the target class, which refers to

self-care problems classification that were determined by experts. Each child is classified

to one of the 7 categories based on their self-care features by examinations of occupational

therapists [30]. Also, the first two columns consist of patient gender and age, respectively.

Consequently, the data set contains 70 samples and 205 features. A data excerpt is shown

in Figure 1.2.

We give an in-depth description for the experimental data in Chapter 3.

1.5 SUMMARY OF OUR WORK

In this thesis, we first present some popular clustering algorithms. We then discuss the

SCADI dataset in depth. Followed by a discussion of hierarchical clustering. More specifi-

cally, we point out the fundamental concepts of linkage methods and distance/ dissimilarity

metrics in hierarchical clustering and how to apply them to our findings. Lastly, we present

our results and conclusion.
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CHAPTER 2

CLUSTERING ALGORITHMS

Clustering data is useful in many disciplines and has a wide range of applications.

Because the use cases are plentiful, clustering is often subjective and the means that can be

used for achieving a clustering solution are vast. In fact, there are more than 100 clustering

algorithms [15]. However, in general, the differences in each clustering algorithms and the

performance of the clustering can be traced back to these four basic components [19]:

1. the dataset used for clustering

2. the distance/dissimilarity measures between data points

3. the criterion/objective function which the clustering solutions should aim to optimize

4. the optimization procedure

In this chapter, we will go over a few most popular clustering algorithms to contrast

the method we chose for our research: agglomerative hierarchical clustering.

2.1 TYPES OF CLUSTERING

In terms of how datapoints items are grouped into clusters, we distinguish the differ-

ence between hard and soft clustering [10].

Definition 2. [Hard clustering] In hard clustering, each data point either belongs to a cluster

completely or not.

Definition 3. [Soft clustering] In soft clustering, instead of putting each data point into a

separate cluster, a data points assignment a distribution over all clusters. In other words, a

data point has fractional membership in several clusters.

In summary, hard clustering produces disjoint groups of dataset items, whereas soft

clustering produces non-disjoint groups.
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2.2 CLUSTERING METHODS

The algorithms for clustering can be organized as described in the following.

2.2.1 CENTROID-BASED CLUSTERING

In centroid-based clustering, the goal is to locate the center points of each cluster.

The most common example of centroid based clustering is K-means. K-means starts with

an initial partition with K clusters and assign patterns to clusters to reduce the squared

error. Given the number of clusters thought to be in the dataset, it finds a local optimum,

and is commonly run multiple times with different random initializations. Variations of k-

means include: (k-medoids), choosing medians (k-medians clustering), choosing the initial

centers less randomly (k-means++) or allowing a fuzzy cluster assignment (fuzzy c-means).

As an example of centroid based algorithm, the main steps of K-means algorithm are as

follows:

1. Chose the number K of clusters

2. Select at random K points, the centroids

3. Assign each data point to the closet centroid which forms K clusters

4. Compute and place the new centroid of each cluster

5. Reassign each data point to the new closest centroid. If any reassignment took place,

go to step 4 until DONE

Also, another common algorithm called the mean shift clustering, which attempts to find

dense areas of data points, fall in this category as well. In general, an advantage of centroid

based clustering is that the algorithm can be fast, with the linear complexity of O(n). A

disadvantage is that the optimization functions for centriod based clustering are known to

be NP-hard; thus the common approach is to search only for approximate solutions.
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2.2.2 DISTRIBUTION-BASED CLUSTERING

The clustering model most closely related to probability theory is based on distribution

models. It identifies the probability that a point belongs to a cluster, around each possible

centroid. Clusters can easily be defined as the data points most likely belonging to the

same distribution. One prominent method is known as Gaussian mixture models which

uses the expectation-maximization (EM) algorithm to cluster data points. One can think

of Gaussian mixture models as generalizing k-means clustering to incorporate information

about the covariance structure of the data as well as the centers of the latent Gaussian. [22]

The main steps are:

1. Randomly assign K cluster centers (K Gaussian)

2. Refine the clusters based on two steps for each data point: Expectation step and

Maximization step

• for each point, estimate the probability that each (Gaussian) cluster generates it

• modify the parameters to maximize the likelihood of the data

Other distribution based clustering algorithm is Beta-binomial mixture model clustering.

Often mixture models are used for soft clustering as they deal with probability; in order

to obtain a hard clustering, objects are often then assigned to the distribution they most

likely belong to. The disadvantages of distribution based clustering are that the clustering

often suffers from over-fitting, which leads to poor generalization of data and centroid

based clustering, mixture models converge to a local optimum. Lastly, assuming a certain

distribution for data is a rather strong assumption, thus these type of algorithms can be hard

to implement and interpret with much certainty.
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2.2.3 DENSITY-BASED CLUSTERING

Density clustering clusters data points by how densely populated the clusters are.

Therefore, data points in these sparse areas are usually considered to be noise. Similar

to hierarchical based clustering, it is based on connecting points within certain distance

thresholds. However, it only clusters points that satisfy a pre-defined density criterion. The

most popular density based clustering method is DBSCAN. Also, OPTICS is a general-

ization of DBSCAN that falls within density based clustering. An example procedure for

density based clustering as followed:

1. The algorithm begins with an arbitrary starting data point. The neighborhood of this

point is extracted using a distance criterion

2. If there are a sufficient number of points according to the distance criterion within

this neighborhood then the algorithm clusters the neighborhood. Otherwise, the point

will be labeled as noise. In both cases that data point is marked as visited.

3. This process of steps 2 is repeated until all points in the cluster are determined i.e all

points have been visited and labelled to a cluster or determined to be random noise.

Density based clustering is fairly low on time complexity and often, there is no need to run it

multiple times. However, the key intuitive drawback of DBSCAN is that they expect some

kind of density drop to detect cluster borders. For example: on datasets with overlapping

clusters, the DBSCAN are impractical.

2.2.4 HIERARCHICAL CLUSTERING

Lastly, hierarchical clustering, also known as connectivity-based clustering, is based

on the core idea that data points closely more related are nearby. These algorithms cluster

data points together based on their distances. Thus, hierarchical clustering does not require
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a pre-specified number of clustering. The hierarchical methods can be divided into two

approaches: the first approach is called the agglomerative or bottom-up approach and it is

most popular. It starts the process with each data point in its own cluster and with each

step, it will merge the two most similar clusters. The hierarchical process stops when all

of the data points are aggregated into a single cluster. The second hierarchical approach is

the divisive or top-down approach. It starts the process with all of the objects in a single

cluster and then removes the outsiders from the least cohesive cluster. This process stops

when each data point is in its own cluster. In the general case, the time complexity of

agglomerative clustering is O(n3) and O(2n−1) for divisive clustering, which makes them

too slow for large data sets.

Hierarchical classifications produced by either the agglomerative or divisive clustering

may be represented by a two-dimensional diagram known as a dendrogram, which illus-

trates the fusions or divisions made at each stage of the analysis.Dendrograms may be used

in interpreting the results of hierarchical clustering techniques [10]. Given the dataset in

Table 2.1 and the distance matrix in Table 2.2 constructed using agglomerative clustering,

the example of a dendrogram is given in Figure 2.1.

2.3 HIERARCHICAL CLUSTERING FOR SCADI DATASET

For the purpose of our work we have chosen the agglomerative hierarchical clustering

method. Our particular choice was based on two significant advantages. The first one is that

our data set is relatively small, hence easy to process on a regular computer. The second

one is that the hierarchical clustering results can be visualized in many meaningful ways,

relative to the significance of the data.

Hierarchical clustering will be covered in more depth in Chapter 4.
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A B C D E F G

Alex 5 0 0 0 2 1 2

Bruce 2 1 2 0 0 0 0

Chris 0 0 1 4 0 0 1

Don 0 0 2 0 1 1 2

Emil 6 2 2 0 1 1 2

Fred 4 0 0 2 0 0 2

Table 2.1: Sample dataset

Alex Bruce Chris Don Emil

Bruce .83333

Chris .83333 .8

Don .4 .83333 .6 0

Emil .33333 .5 .71428 .33333

Fred .6 .8 .5 .83333 .71428

Table 2.2: Sample distance matrix given the sample dataset
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Figure 2.1: Dendrogram example
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CHAPTER 3

SCADI DATASET

We have informally introduced self-care problems diagnosis and classification and

briefly described our dataset in Chapter 1. However, in this chapter, we will formally

explore the data, describe the existing literature works, and analyze two problems within

the SCADI dataset.

3.1 DATA COLLECTION

Our SCADI dataset was collected by Zarchi et. al. in collaboration with two expert

occupational therapists, who both had over 15 years in the field. To collect the records, 70

students (children) who studied in the three educational and health centers in Yazd, Iran

from the period of from 2016 to 2017 were investigated [18]. The 70 children in this study

were categorized into seven classes based on their self-care activities by the therapists as

shown in Table 3.1, which is used as the target class in the dataset.

Since this data follows the ICF-CY framework for identifying the severity of each

self care problem, Table 3.2 shows that each child can have one of the seven statues of

impairment in the 29 self activities [31]. Also, a table of the 29 self care activities is found

in the appendix.

The age of these children were from 6 to 18 years old. Figure 3.1 shows the ages,

gender and disorder associated with each child. As inferred by this figure, genetic disorders,

serious injuries are among the main causes of physical disabilities. Also, Cerebral Palsy,

spinal cord injuries, and certain types of brain injuries worth mentioning [14]. However,

each child and family’ s unique functional abilities and needs are distinct regardless of

diagnosed disorder.
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Figure 3.1: Disorders included in this dataset
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Target classes

No. Description

0 Caring for body parts problem

1 Toileting problem

2 Dressing problem

3 Washing oneself and Caring for body parts and Dressing problem

4 Washing oneself, Caring for body parts, Toileting, and Dressing problem

5
Eating, Drinking, Washing oneself, Caring for body parts, toileting, Dressing,

Looking after one’s health and Looking after one’s safety problem

6 No Problem

Table 3.1: Classes of activities

3.2 SCADI LITERATURE REVIEW

To this point, all of existing works on the SCADI dataset have employed as a super-

vised classifier to predict self-care problems. The original researchers [31] classified the

self-care problems with 83.1% accuracy with an ANN and extracted self-care classification

rules using C4.5, a popular decision tree algorithm.

While B. Islam et.al. (2018) proposed combining a PCA based approach with a

host of different types of classification techniques, they suggested a final combined PCA

and k-nearest neighbors algorithm (KNN) approach resulting in 84.29% accuracy [14].

Care2Vec [23] is a supervised learning algorithm approach where the researchers used au-

toencoders and deep neural networks as a two step modeling process to achieve an accuracy

of 84.29%. Focusing on feature selection, Choudhury suggested Random Forest with the

help of a feature reduction technique called Boruta algorithm, which minimizes the data

dimensionality to advocate the minimal-optimal set of predictors. Their algorithm gives

the classification accuracy of 84.75% [8].
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Code Value Description

xxx.0 0-4% NO impairment

xxx.1 5-24% Mild impairment

xxx.2 25-49% Moderate impairment

xxx.3 50-95% Severe impairment

xxx.4 96-100% Complete impairment

xxx.8 not specified

xxx.9 not applicable

Table 3.2: SCADI extent impairment codes

Attempting to take the target class imbalance into account, [14] proposes a robust

framework using an over-sampling technique called Synthetic Minority Over-sampling

Technique (SMOTE) and the extreme gradient boosting algorithm to improve the predic-

tion performance for the SCADI dataset. The overall accuracy of the proposed framework

reaches 85.4%. Lastly, M. K. Kele and . Kl used seven of 205 features selected by the ar-

tificial bee colony feature selection (ABC-FS) algorithm to achieved a 88.5714% accuracy

rate.

3.3 DIMENSIONALITY REDUCTION AND PREPROCESSING

Dimensionality reduction is one of the most critical areas of machine learning as

it is used to reduce the redundancy of features and exploit hidden information in high-

dimensional data and generally improve model performance. Dimensionality reduction can

be categorized mainly into feature extraction and feature selection. In the feature extraction

approach, features are projected into a new space with lower dimensionality. Examples of

these techniques includes Principal Component Analysis (PCA) and Linear Discriminant
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Analysis (LDA). On the other hand, the supervised feature selection approach aims to se-

lect a small subset of features that minimize redundancy and maximize relevance to the

target class [1]. Feature selection is characterized into four categories: filter model, wrap-

per model, embedded model and hybrid model. The first category of approaches is the

filter-based approaches, such as Mutual Information. This type of method assigns weight

to each feature. The second category is a wrapper method, such as recursive feature elim-

ination (RFS), which treats the selection of subsets as a search optimization problem that

generates different combinations of features until the algorithm finds the best subset. The

third method is the embedded method, such as regularization and random forests. Lastly,

the hybrid is the combination of the filter and wrapper methods and attempts to take advan-

tage of both the filter and wrapper methods to achieve the optimal performance.

Both dimensionality reduction approaches can improve learning performance in clus-

tering. However, feature extraction is often criticized for its lack of interpretability since

it maintains the original feature values in the reduced space. In addition, since supervised

feature reduction selects features discriminate samples that belong to different classes, re-

searchers often need labeled samples as training samples in order to select these features.

In supervised learning, it is easy to define what relevant feature means. However, in unsu-

pervised machine learning data like clustering, defining relevancy becomes unclear.

Studies have proven that dimensionality reduction may help improve unsupervised

learning in a way similar to improving the supervised learning.[ [27], [1]] Furthermore,

different relevant features may produce different clustering, which could greatly help dis-

covering different hidden patterns in the data. Motivated by these facts, different clustering

techniques were proposed to utilize feature selection methods to improve clustering effi-

ciency and quality. These methods are called unsupervised feature selection [1].

In this work, we will compare several dimensionality reduction techniques. Exam-

ples will be from feature extraction, supervised feature reduction and unsupervised feature
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selection for clustering.

3.4 CLASS IMBALANCE PROBLEM

Figure 3.2: Distribution of target classes

While analyzing the SCADI dataset, one of our first things we noticed was the class

imbalanced problem. As in many datasets, the class imbalance problem is the problem in

machine learning where the total number of a class of data is far less than the total number

of another class of data. In other words, the data has an uneven distribution between classes.

For example: in the SCADI dataset, class 6 has 29 instances while class 2 has 1 instance as

shown in Figure 3.2.

This problem is extremely common in practice and can be observed in various dis-

ciplines from fraud detection to facial recognition. In particular, identifying rare and sig-

nificant conditions and diseases in imbalanced healthcare datasets is especially difficult

( [24, 32]).
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Although the effect of imbalanced classes is well researched in supervised learn-

ing techniques, very little is known about how imbalance affects clustering. Li Xuan et.

al. studied this issue in 2013 [11]. Their experimental results indicated that the class-

imbalance of the dataset can seriously influence the final performance and efficiency of the

clustering algorithm. They also concluded that the higher the uneven ratio between classes,

the higher the adverse effects of the clustering performance.

Among the few approaches for handling the class imbalance problem, resampling

techniques are the most popular. Its goal is to get a better balance between the classes of

the samples. These techniques can be categorized as oversampling techniques or under-

sampling techniques [18]. In oversampling, algorithms generally generate more synthetic

examples of the minority class while in undersampling, the amount of examples of the

majority class is reduced through various algorithms.

To deal with the class imbalanced problem occurring in the SCADI dataset, we will

use a fitting algorithm from both undersampling and oversampling to view the effect of

each on our clustering results.
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CHAPTER 4

AGGLOMERATIVE HIERARCHICAL CLUSTERING OF SCADI

In this chapter, we will formally describe how we used hierarchical clustering to cre-

ate models for clustering self care data. The chapter is organized as follows. Section 4.1

presents the concepts of distance and similarity measures on dataset items. In Section 4.2

we present a few methods for computing similarity/dissimilarity between subsets of a

dataset. We then give an overview of the agglomerative hierarchical clustering algorithm

in Section 4.3. Some measures for the quality of clusters are described in Section 4.4.

4.1 DISTANCES AND SIMILARITIES

Most efforts to produce a simple group structure from a complex data set require a

measure of “closeness,” or “similarity.” There is often a great deal of subjectivity involved

in the choice of a distance measure. Important considerations include the nature of the

variables (discrete, continuous, binary). scales or measurement (nominal, ordinal, interval,

ratio), and subject matter knowledge. The SCADI dataset we use in our work falls in the

category of binary data. Hence, our main focus will be on measuring similarity/dissimilar-

ity of binary data.

Quantitatively, the proximity of two elements of a set can be measured by a distance

function, which computes the distance between every pair of elements in the set.

Definition 4. Let S be a dataset. A distance function on set S is a function

dS : S × S → [0,∞)

satisfying the following properties:

1. dS(x, y) ≥ 0, ∀x, y ∈ S

2. dS(x, y) = 0 ⇔ x = y
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3. dS(x, y) = dS(y, x)

4. dS(x, y) ≤ dS(x, z) + dS(z, y)

The last property in Definition 4 (the triangle inequality) may be difficult to be satis-

fied in some practical situations, especially when dealing with noncontinuous dataset. A

similarity function is used instead. Similarity functions are often defined as the negative of

a distance function. However, in many practical situations similarity functions do not have

a distance function correspondent, as the triangle inequality is not satisfied.

In the following section, we will give definitions for a few popular distance measures

for binary data. A good survey of similarity/dissimilarity measures is given in [7].

4.1.1 BINARY DATA SIMILARITY AND DISSIMILARITY MEASURES

Unlike numerical distances, such as Euclidean and Manhattan, binary distances cannot

be represented by meaningful p-dimensional measure because some pairs of items are often

compared on the basis of the presence of absences of certain characteristics as represented

in the SCADI dataset. The presence and absences of a characteristic can be described math-

ematically by introducing a binary variable, which assumes the value 1 if the characteristic

is present and the value of 0 if characteristics is absent.

The binary similarity and dissimilarity (distance) measures play a critical role in pat-

tern analysis problems such as classification, clustering, etc. Since the performance re-

lies on the choice of an appropriate measure, many researchers have taken elaborate ef-

forts to find the most meaningful binary similarity and distance measures over a hundred

years. [19]. Numerous binary similarity measures and distance measures have been pro-

posed in various fields. For example, the Jaccard similarity measure was used for clustering

ecological species. Recently, they have been actively used to solve the identification prob-

lems in biometrics such as fingerprint, iris images, and handwritten character recognition.
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Our goal is to test the performance of traditional hierarchial clustering methods for treating

binary data and evaluate their characteristics.

To allow for differential treatment of the 1-1 matches and the 0-0 matches, several

schemes for defining similarity coefficients are used. To introduce these schemes, we ar-

range the frequencies of matches and mismatches for items i and k in the form of a contin-

gency table (Table 4.1).

Item k

1 0 Totals

Item i 1 a b a+b

0 c d c+d

Totals a+c b+d a+b+c+d

Table 4.1: Contingency table for binary data

Distances / Dissimilarity metrics

Jaccard
a

a+ b+ c

No 0-0 matches

(The 0-0 matches are treated as irrelevant)

Dice
2a

2a+ b+ c
Revised Jaccard

Hamming b+ c the Manhattan distance for binary data

Sokal-Michener
a+ d

a+ b+ c+ d
Equal weights for 1-1 and 0-0 matches

Russell-Rao
a

a+ b+ c+ d
No 0-0 matches in numerator

Sokal-Sneath
a+ d

b+ c
Ratio of matches to mismatches

Kulsinski
a

b+ c

Ratio of matches to mismatches

with 0-0 matches excluded

Table 4.2: Some similarity/dissimilarity metrics
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4.2 LINKAGE METHODS

In this section, we concentrate on agglomerative hierarchical procedures and in par-

ticular linkage methods. Linkage is the process that merges the two most similar clusters

based on a similarity measure for any pair of two subsets of the dataset. The approaches

we discuss are single linkage, complete linkage, average linkage, and Ward’s linkage.

Definition 5. Let S = {x1, x2, . . . , xn} be a data set and let Ci, Cj ∈ 2S be non-empty

disjoint sets. Let dS : S × S → R≥0 be a dissimilarity measure on S. Then d : 2S × 2S →

R≥0 is defined as follows:

1. Single linkage clustering:

d(Ci, Cj) = min
x∈Ci,y∈Cj

ds(x, y) (4.1)

2. Complete linkage clustering:

d(Ci, Cj) = max
x∈Ci,y∈Cj

ds(x, y) (4.2)

3. Average linkage clustering:

d(Ci, Cj) =
1

|Ci| · |Cj|
∑
x∈Ci

∑
y∈Cj

ds(x, y) (4.3)

4. Ward clustering:

d(Ci, Cj) =
∑

x,y∈Ci∪Cj

[dS(x, y)]
2 −

 ∑
x,y∈Ci

[dS(x, y)]
2 +

∑
x,y∈Cj

[dS(x, y)]
2

 (4.4)
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Figure 4.1: Comparing different hierarchical linkage methods

4.2.1 SINGLE LINKAGE

The inputs to a single linkage algorithm are the distances or similarities between pairs

of objects. Single linkage measures the distance between the closest pair of points. Since

single linkage (Figure 4.1, the first column) joins clusters by the shortest link between

them, the techniques cannot discern poorly separated clustering. On the other hand, single

linkage is one of the few clustering methods that can delineate non-ellipsoidal clusters. The

tendency of single linkage to pick out long stringlike clusters is know as chaining, which

can be misleading if items at opposite ends of the chain are quite dissimilar.

4.2.2 COMPLETE LINKAGE

Complete linkage (Figure 4.1, the second column) measures the distance between the

farthest pair of points in the clusters at each stage. Thus, complete linkage ensured that all

items in a cluster are within some maximum distances (minimum similarity) of each other.
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4.2.3 AVERAGE LINKAGE

Average linkage (Figure 4.1, the third column) measures the average distance between

all of the points. In other words, average linkage treats the distances between two clusters

as the average distance between all pairs of items where one member of a pair belongs

to each cluster. For average linkage clustering, changes in the assignment of distances

(similarities) can affect the arrangement of final configuration of clusters even though the

changes preserve relative orderings. Also, average linkage is less affected by outliers.

4.2.4 WARD’S METHOD LINKAGE

Ward’s minimum variance criterion minimizes the total within-cluster variance. Thus,

this method does not directly define a measure of distance between two points or clusters. It

is an ANOVA based approach. At each stage, two clusters merge that provide the smallest

increase in the combined error sum of squares. An example of clusters produced using

Ward’s method is given in Figure 4.1, the last column.

4.3 AGGLOMERATIVE HIERARCHICAL CLUSTERING

Informally, the agglomerative hierarchical clustering method creates groups of data

items starting with individual data points and proceeding iteratively by joining pairs of data

items/groups that are closest at each iteration step. The process of clustering a data set

S = {x1, x2, . . . , xn} produces a sequence C(k) of disjoint coverings of S, where:

C(k) = {C(k)
i }, k = 1...n, i = 1, . . . , n− k − 1

S =
n−k−1⋃
i=0

C
(k)
i

∅ =
n−k−1⋂
i=0

C
(k)
i

Formally, the process is described by Algorithm 1. The algorithm takes as input a dataset
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Algorithm 1 Hierarchical clustering
1: procedure HIERARCHICALCLUST(S, d) . agglomerative hierarchical clustering

2: Input: data set S = {x1, x2, . . . , xn}, d : 2S × 2S → R≥0

3: Output: sequence of partitions C(k) = {C(k)
i } and distances {dk}, k = 1, . . . , n,

i = 1, . . . , n− k − 1

4: C(0) = {C(0)
i }, C

(0)
i = {xi}

5: D(0) =
[
d
(0)
ij

]
, d(0)ij = d(C

(0)
i , C

(0)
j )

6: for k = 1, . . . , n do

7: p, q = argmin
i,j
{d(k−1)ij }, p < q

8: dk = d
(k−1)
p,q

9: C(k) = {C(k)
i }, C

(k)
i = C

(k−1)
i if i 6= p, q

10: C
(k)
p = C

(k−1)
p ∪ C

(k−1)
q

11: D(k) =
[
d
(k)
ij

]
, d(k)ij = d

(k−1)
ij , if i, j 6= p, q

12: d
(k)
pj = d(C

(k)
p , C

(k)
j ), d(k)jp = d

(k)
mj

13: end for

14: return C(k), {dk} . Returns the clusters, distances

15: end procedure
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S (line 1) and produces a sequence of partitions C(k) (line 3), where each partition is a

complete cover of dataset S. Also, a sequence of distances {dk} is produced, where each

di in the sequence represents a distance between the two partitions that merge in step i.

The algorithm completes in n steps (lines 6 – 13): at each step i, the two closest partitions

from the current sequence of partitions C(i) are merged into one larger partition. After n

steps, all partitions are merged, hence C(n) = S. A dendrogram (as in Figure 2.1) presents

visually the process described in Algorithm 1: a bottom-up scanning of the dendrogram

reveals which partitions merge and at what distance (represented on the “Height” scale on

the left hand side, which records the sequence of distances {dk}). Clearly, only a mono-

tonically increasing sequence of distances {dk} would produce an un-tangled dendrogram.

Surprisingly, we have determined that the monotonicity of the sequence does not depend

on the distance/similarity choice for the elements in the dataset S. It rather depends on the

linkage method, that is, the distance/similarity between clusters. The following results will

establish when such a monotonic sequence of distances (hence an un-tangled dendrogram)

would be produced by Algorithm 1.

Lemma 4.3.1. The sequence {dk} produced by the Algorithm 1 is monotonic if and only if

d
(k)
pj ≥ dk.

Proof. We prove by induction. Clearly, dk ≤ d
(k−1)
ij (lines 7, 8). Hence d1 ≤ d

(0)
ij , d2 ≤

d
(1)
ij .

From line 9: d(0)ij = d
(1)
ij , i, j 6= m,n.

From lines 7 and 9:

d2 = min

({
d
(1)
ij

}
i,j 6=m,n

,
{
d
(1)
mj

})
= min

({
d
(0)
ij

}
i,j 6=m,n

,
{
d
(1)
mj

})
≥ min

({
d
(0)
ij

}
i,j 6=m,n

, d1

)
= d1
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Which proves the base case.

For the induction step, assume that dk−1 ≤ dk.

Similar as before:

d2 = min

({
d
(k)
ij

}
i,j 6=m,n

,
{
d
(k)
mj

})
= min

({
d
(k−1)
ij

}
i,j 6=m,n

,
{
d
(k)
mj

})
≥ min

({
d
(k−1)
ij

}
i,j 6=m,n

, dk

)
= dk

These results allow us to conclude that the hierarchical dendrogram (as the example

in Figure 2.1) can be produced using any similarity or dissimilarity measure and without

necessarily having the triangle identity satisfied. The hierarchical dendrogram is only in-

fluenced by the choice of linkage (similarity measure between clusters).

The following result can be established for the linkage methods discussed in Sec-

tion 4.2.

Theorem 4.1. The single, complete, average, and Ward linkages used with Algorithm 1

produce monotonically increasing sequences {dk}.

Proof. Using the result of Lemma 4.3.1, all we need to show is that each linkage method

computes a distance between clusters (as defined in Definition 5) no less than distances

between all pairs of elements within each cluster. We will treat each linkage method one at

the time.

1. Single linkage clustering (4.1):

d(Ci, Cj) = min
x∈Ci,y∈Cj

ds(x, y) ≥ max

(
max
x,y∈Ci

ds(x, y), max
x,y∈Cj

ds(x, y)

)
since clusters Ci, Cj were previously created with smaller distances.
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2. Complete linkage clustering:

d(Ci, Cj) = max
x∈Ci,y∈Cj

ds(x, y) ≥ min
x∈Ci,y∈Cj

ds(x, y)

the the results for single linkage applies.

3. Average linkage clustering:

d(Ci, Cj) =
1

|Ci| · |Cj|
∑
x∈Ci

∑
y∈Cj

ds(x, y) ≥ min
x∈Ci,y∈Cj

ds(x, y)

then the result from single linkage applies.

4. Ward clustering:

d(Ci, Cj) =
∑

x,y∈Ci∪Cj

[dS(x, y)]
2−

 ∑
x,y∈Ci

[dS(x, y)]
2 +

∑
x,y∈Cj

[dS(x, y)]
2

 ≥ min
x∈Ci,y∈Cj

ds(x, y)

then the result from single linkage applies.

A different linkage method, called k-link, is presented as a tool for statistical disclo-

sure limitation. The k-link algorithm uses hierarchical clustering, however, it produces a

non-monotonic sequence {dk}, which is not appropriate for producing meaningful dendro-

gram representations.

4.4 CLUSTERING EVALUATION AND METRICS

Unlike classification algorithms’ evaluation, evaluating the performance of a cluster-

ing algorithm is not as trivial as counting the number of errors (accuracy) or precision and

recall [22]. In general, there are two types of performance assessments used for clustering

techniques:

• Supervised (external), which uses the target class ground truth for each sample’s

evaluation.
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• Unsupervised (internal), which measures the quality of the model itself.

In clustering literature, it is common to measure the performance of a clustering solution

based on how well it recovers the class labels. Thus, we will use Adjusted Rand Index for

external evaluation. Additionally, we will use the Silhouette Coefficient score for internal

evaluation. The larger the values of these metrics are, the better the clustering effect is.

4.4.1 ADJUSTED RAND INDEX(SUPERVISED)

Given the knowledge of the target class assignments and the clustering algorithm as-

signments of the same samples, the adjusted Rand index is a function that measures the

similarity of the two assignments, penalizes both false positive and false negative decisions

during clustering.

If C is a ground truth class assignment and K the clustering, we define a and b as:

• a, the number of pairs of elements that are in the same set in C and in the same set

in K

• b, the number of pairs of elements that are in different sets in C and in different sets

in K

The raw (unadjusted) Rand index is then given by:

RI =
a+ b

C
nsamples

2

where C
nsamples

2 is the total number of possible pairs in the dataset.

However, the RI score does not guarantee that random label assignments will get a value

close to zero. To counter this effect we can discount the expected RI of random labelings

by defining the adjusted Rand index as follows:

ARI =
RI− E[RI]

max(RI)− E[RI]
(4.5)
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Formally defined as:

Adjusted Index︷︸︸︷
ARI =

Index︷ ︸︸ ︷∑
ij

(
nij

2

)
−

Expected Index︷ ︸︸ ︷
[
∑
i

(
ai
2

)∑
j

(
bj
2

)
]/

(
n

2

)
1

2
[
∑
i

(
ai
2

)
+
∑
j

(
bj
2

)
]︸ ︷︷ ︸

Max Index

− [
∑
i

(
ai
2

)∑
j

(
bj
2

)
]/

(
n

2

)
︸ ︷︷ ︸

Expected Index

(4.6)

where nij, ai, bj are values from the contingency table.

4.4.2 SILHOUETTE COEFFICIENT(UNSUPERVISED)

The Silhouette Coefficient is defined for each sample and is composed of two scores:

• a: The mean distance between a data point and all other points in the same cluster.

• b: The mean distance between a data point and all other points in the next nearest

cluster.

The Silhouette Coefficient s for a single sample is then given as:

s =
b− a

max(a, b)

Moreover, the Silhouette Coefficient for a set of samples is given as the mean of the Sil-

houette Coefficient for each sample. Scores around zero indicate overlapping clusters. The

score is higher when clusters are dense and well separated, which relates to a standard

concept of a cluster.
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CHAPTER 5

EXPERIMENTS AND RESULTS

The following experiments were all implemented in Python v3.7.1, running on Win-

dows 10, 64-bit Intel Core i5 CPU @3.40GHz, 16GB RAM.

5.1 EXPERIMENT METHODS

We use the Python package, Scipy, to perform the hierarchical clustering on our data

while using Scikit-learn for metrics and supervised feature selection, Scikit-feature for un-

supervised feature reduction, and Imblearn for resampling techniques.

5.2 RESULTS

Our experiments were organized in three major categories:

1. Baseline and interpretation of clustering of results

2. Dimensionality Reduction

3. Oversampling

These experimental results are reported in the subsequent subsections.

5.3 BASELINE

Initially, all 203 self care activities features are selected and considered as a baseline

for experimentation. We tried several different binary distance experiments including the

most prominent distance metrics : Hamming, Jaccard, Russell-Rao, Sokal-Michener and

Rogers-Tanimoto, and Dice. Although, these distances yielded distinctly different matrices,

the hierarchical clustering resulted in the same clusters, ARI, and Silhouette index score for
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ARI Silhouette

single 0.548375614 0.216576493

complete 0.734546335 0.214894955

average 0.695697749 0.272727374

ward 0.606364312 0.21899189

Table 5.1: Baseline results for all distances

all linkage methods (single, complete, average) with only slight variations using the Ward’s

method linkage.

As seen in 5.1, the complete linkage has the best clustering performance in terms of

Adjusted Rand index while average linkage performs best when looking at the Silhouette

index.

5.4 ASSOCIATION

Using the different linkages, we used visualization to explore the association between

classes. Looking from the perspectives of how clusters are contained in each class and how

children of a given class are assigned to a cluster, we are able to make some interesting

observations.

As shown in Figure 5.4, single linkage does the worst job at clustering. Since sin-

gle linkage joins clusters by the shortest link between them, the techniques cannot discern

poorly separated clustering. With this method, at any step, two clusters are merged if their

closest edges are close enough and no proximity between other parts of the two clusters

are taken into consideration, producing the chaining pattern described in Chapter 4. Nev-

ertheless, by grouping children from class 0, 1, 2, 3, 4 in cluster 2 and representing cluster
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1 in class 5, single linkage shows that it is can identify the children with self care problems

quite easily, but it cannot distinguish between the classes. Moreover, single linkage seems

to group the children with no self care problem (class 6) as clusters 0, 2, 3, 4, and 5 are

indicating the clustering may recognize the children with no problem as outliers. Also,

Figure 5.2 shows that although single linkage does a bad job at classifying classes overall,

single linkage clustering can still identify class 5 very well.

Figure 5.1: Single Linkage Dendrogram
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Figure 5.2: Single Classes

Figure 5.3: Single Clusters
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Average linkage certainly does a better job at clustering than single linkage, often be-

ing seen as the middle ground between single and complete. As
28

29
data points represented

by cluster 1 is contained in class 5, this shows that hierarchical clustering does a very good

job at identifying children that have problems with the most severe self care problems. Fur-

thermore, it can be seen that cluster 4 is well represented in children who have problems

with washing themselves, caring for body parts, and dressing themselves. These observa-

tions can be seen very well in Figure 5.2. However, as noted in Chapter 4, average linkage

is less affected by outliers, thus resulting in a slightly lower ARI than complete linkage but

performs best when looking at the Silhouette index.
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Figure 5.4: Average Linkage Dendrogram
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Figure 5.5: Average Classes

Figure 5.6: Average Clusters
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According to ARI, complete linkage performs the best and outperforms average link-

age by a small margin. Figure 5.2 shows that class 6 (the children with no problem) appears

in less of the clusters in complete linkage than in average, which may explain the small

difference. Also, this figure shows that cluster 2 contains children from several different

classes except for class 1 which contain children with a toileting problem, which may indi-

cate children in this class have distinctly different need than those of another classes. This

can also be seen in average linkage clustering.

Figure 5.7: Complete Linkage Dendrogram
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Figure 5.8: Complete Classes

Figure 5.9: Compete Clusters
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5.5 DIMENSIONALITY REDUCTION

Comparing several dimensionality reduction techniques, the following examples will

be from feature extraction, supervised feature reduction and unsupervised feature selection

algorithms.

5.5.1 FEATURE EXTRACTION

As an example for feature extraction, we experimented with Principal Component

Analysis (PCA) [14] to reduce the dimension from 203 features to k principal components.

The steps of PCA are as follows:

• Normalizing the data

• Calculating the covariance matrix

• Calculating the eigenvectors, eigenvalues of the covariance matrix

• Choosing principal components and translating the data in terms of the components

Using Euclidean distance, we observed that the number of principal components greatly

effect the performance of the clustering algorithm. The performance depends on distribu-

tion of data and correlation among various dimensions. In fact, after 10 principal compo-

nents, which explain 76% of the data, the performance of the clustering worsens monoton-

ically in the best performance linkage. This may indicate that at least 24% of the data acts

as random noise. Also, we see an interesting decreasing pattern in the silhouette coefficient

score. As this metric does not use the labeled data in its evaluation, we get a natural look

at how the similarity of the data points in respect to the cluster decrease as the number of

principal components increase.

Number of PCs 2 5 10 15 20 25

Explained Variance 0.417891897 0.604567818 0.761573849 0.84656986 0.901212466 0.93656631
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Number of PCs 2 5 10 15 20 25

Linkage Average Average Complete Complete Complete Average

ARI 0.569244 0.627822 0.748332 0.672945 0.672945 0.627822

Silhouette Coefficient 0.500275 0.452096 0.405408 0.271755 0.248918 0.256006
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Figure 5.10: ARI for K principal components

Figure 5.11: Silhouette Coefficient for K principal components
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5.6 FEATURE SELECTION METHODS

In this section, we compare the following supervised and unsupervised feature reduc-

tion techniques.

• Supervised

– Decision tree based feature selection, which calculates feature importance based

on the best performing features as close to the root of the decision tree.

– Boruta algorithm, which is a wrapper algorithm that advocates the minimal-

optimal set of predictors using the random forest classification algorithm.

• Unsupervised

– Laplacian Score feature selection, which selects the features most consistent

with the Gaussian Laplacian matrix

– Multi-Cluster Feature Selection (MCFS), which selects features using spectral

regression with `1 norm regularization

Since the tree based feature selection and Boruta algorithm selection only selects a

subset of features that pass a certain criteria threshold, the number of features in their

subsets are fixed at 7 and 55, respectively. To fairly compare different unsupervised feature

selection algorithms, we set the number of selected features as {10, 50, 100, 150} and

report the best results of all the algorithms using those parameters. In our experiments, each

feature selection algorithm is first performed on the selected features. Then agglomerative

hierarchical clustering is performed based on the selected features. Because the results

of hierarchical clustering depend on both binary distance and linkage, we report the best

results corresponding distance and linkage as well.

Comparing the performance of different feature selection algorithms, the experiment

results are shown in Table 5.6. We can see from the table that the clustering results of our
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Decision tree Laplacian Score MCFS Boruta algorithm

Number of features 7 50 50 55

Linkage Average Ward Ward Complete

Distance metric Dice

Dice,

Sokalsneath,

Jaccard

Dice ,

Sokal-Michener,

Sokal-Sneath

Dice

ARI .742981 0.728500 0.727157 .755235

Silhouette Coefficient .454532 0.274813 0.259167 .364461

baseline clustering are better than the best results of both unsupervised methods. However,

because the feature number is significantly reduced by performing unsupervised feature

selection methods, clustering is more efficient and if we were clustering binary data points,

which were truly unlabelled, the unsupervised method would perform fairly well. On the

other hand, the results from the supervised feature selection algorithms are generally better

than baseline and also more efficient. We can also see that the tree-based feature selection

gains the second best performance with the least amount of features. Decision trees keep

the most important features based on most impactful features (entropy), thus this feature

selection captures such a high dimensional dataset with a small amount of features. Also,

this method has the best silhouette coefficient score, which indicates that each data point is

well matched to its own cluster and poorly matched to neighboring clusters.

Finally, we observed that the Boruta algorithm identifies 55 variables as significant

variables. This technique reduced the dataset by approximately 74% while improving pre-

diction accuracy. The Boruta algorithm decides whether a variable is relatively important

and statistically significant, which is the main reason for its improved performance on ARI.
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5.7 RESAMPLING

In our last experiments, we looked at the imbalance in the SCADI dataset. Given

that we performed the feature selection experiments first, we were able to use the Boruta

algorithm results (best clustering results) to build our imbalanced data experiments. As

mentioned in Chapter 3, we experimented with both an oversampling and undersampling

resampling technique to view the effect of each on our clustering results.

5.7.1 OVERSAMPLING

Because the SCADI dataset is relatively small, we used the naive approach to over-

sampling called the Random Oversampler Technique. It is the simplest method of oversam-

pling that picks sample data points of the underrepresented classes at random with replace-

ment. Unlike other oversampling methods such as the Synthetic Minority Oversampling

Technique (SMOTE) and its variants and the Adaptive Synthetic Sampling (ADASYN),

Random Oversampler does not create new samples of data. Therefore, our experiments in-

volving oversampling perform worse than expected. The Random Oversampler technique,

sampled each underrepresented class until each of the 7 classes had 29 samples, increased

the sample size from 70 to 203. Table 5.2 shows the poor results. All binary distances have

very similar results.

ARI Silhouette

single 0.18921105 0.273848863

complete 0.347668253 0.258072703

average 0.285687288 0.361976726

ward 0.553352354 0.448533275

Table 5.2: Oversampling results
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5.8 UNDERSAMPLING

When performing undersampling, we reduced the amount of examples of the major-

ity class through algorithms. To experiment with undersampling, we choose the popular

technique of Tomeks links, which is a technique that removes data points from the majority

classes where its nearest neighbor in distance is a prominent data point from an underrepre-

sented class. In our experiment, the algorithm only removes two data points: one data point

from class 6 which represents the children with no self care problems and one data point

from class 5 which represents the children with problems of eating, drinking, washing one-

self, caring for body parts, toileting, dressing, looking after themselves, health, and safety.

This resulted in the sample size decreasing from 70 to 68. Table 5.3 shows the results from

this experiment with the Dice binary distance metric.

ARI Silhouette

single 0.693048 0.315539

complete 0.762579 0.379568

average 0.762579 0.379568

ward 0.698158 0.383298

Table 5.3: Undersampling results

These results indicate that our hierarchical clustering results would be slightly better

with a more balanced SCADI dataset.
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CHAPTER 6

CONCLUSION

In this thesis, we perform hierarchical clustering on binary data, using a few similar-

ity measures to discover interesting information from self-care problems of children with

physical and motor disability data. We showed how using different similarity measures and

linkage methods affect one’s ability to perform automatic classification of binary data, and,

in general, discover outliers and rare occurrences in data. Moreover, we proved that hier-

archical clustering using single, complete, average, and Ward linkages produce monotonic

sequences of cluster distances when a general distance measure is being used.

Additionally, we proposed experimental models using dimensionality reduction meth-

ods and resampling techniques that improved accuracy and computational effectiveness.

Our experimental results showed that the final model we proposed produces satisfac-

tory results and better prediction accuracy than baseline hierarchical clustering. The best

results of experiments are obtained from hierarchical clustering using the Boruta algorithm

for feature selection and Tomek’s links undersampling for resampling. Experimental re-

sults revealed that the proposed expert system model can classify self-care problems with

76.25% ARI (accuracy).
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APPENDIX A

APPENDIX: DATA DESCRIPTION

A.1 EXPERIMENTAL DATA SET SOURCE:

https://archive.ics.uci.edu/ml/datasets/SCADI

A.2 DATA SET INFORMATION:

• This dataset contains 206 attributes of 70 children with physical and motor disability

based on ICF-CY.

• The ’Class’ field refers to the presence of the self-care problems of the children with

physical and motor disabilities.The classes are determined by occupational thera-

pists.

• The names and social security numbers of the children were recently removed from

the dataset.

A.3 EXPERIMENTAL BINARY FEATURE INFORMATION:

In SCADI, 29 activities are considered for self-care based on ICF-CY. The table below

shows SCADI self-care activitiy features. The 29 activities multiplied by the 7 possible

gives the SCADI dataset 203 binary features.
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Category No. Self-care category Activity No. Description Codes

I. Washing oneself 1 Washing body parts d 5100

2 Washing whole body d 5101

3 Drying oneself d 5102

II. Caring for body parts 4 Caring for skin d 5200

5 Caring for teeth d 5201

6 Caring for hair d 5202

7 Caring for fingernails d 5203

8 Caring for toenails d 5204

9 Caring for nose d 5205

III. Toileting 10 Indicating need for urination d 53000

11 Carrying out urination appropriately d 53001

12 Indicating need for defecation d 530010

13 Carrying out defecation appropriately d 530011

14 Menstrual care d302

IV. Dressing 15 Putting on clothes d 5400

16 Taking off clothes d 5401

17 Putting on footwear d 5402

18 Taking off footwear d 5403

19 Choosing appropriate clothing d 5404

V. Eating 20 Indicating need for eating d 5500

21 Carrying out eating appropriately d 5501

VI. Drinking 22 Indicating need for drinking d 5600

23 Indicating need for drinking d 5600

VII. Looking after one’s health 24 Ensuring one’s physical comfort d 5700

25 Managing diet and fitness d 5701

26 Managing medications and following health advice d 57020

27 Seeking advice or assistance from caregivers or professionals d 57021

28 Avoiding risks of abuse of drugs or alcohol d 57022

29 Looking after one’s safety d 571

Table A.1: The self care activities
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APPENDIX B

APPENDIX: PYTHON CODE

B.1 BASELINE EXPERIMENTS

import warnings

warnings.filterwarnings(’ignore’)

from sklearn import metrics

import pandas as pd

from sklearn.cluster import AgglomerativeClustering

import numpy as np

from scipy.spatial.distance import squareform

from scipy.spatial.distance import pdist

from scipy.cluster.hierarchy import dendrogram, single, complete, average,fcluster

from scipy.cluster.hierarchy import weighted, centroid, median, ward

import matplotlib.pyplot as plt

from scipy.cluster.hierarchy import cophenet

data = pd.read_csv(’SCADI.csv’)

print(data.shape)

X= data.loc[:,’d 5100-0’:’d 571-9’]

X=X.values

y=data.loc[:, ’Classes’]

y = y.str.extract(’(\d+)’).astype(int) #remove class from front

#Remove strings from a float number in a column

#y=y-1
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y =y.values

print(y.shape)

y=y.flatten()

print(y.shape)

distances=["dice", "hamming", "jaccard", "kulsinski", "rogerstanimoto",

"russellrao", "sokalmichener", "sokalmichener", ’sokalsneath’,’euclidean’]

a=[]

for dist in distances:

a.append(pdist(X, dist))

linkage = [single, complete, average, weighted, centroid, median, ward]

data = []

for l in linkage:

######NOTE THAT TO GET THE RESULTS FOR EACH distaces in distances. you must

change #a[0], in the nextline to corresponding list item for distance#######

clusters=(fcluster(l(a[0]), t=7, criterion=’maxclust’))

#print(clusters)

#print(clusters[0])

#print(len(clusters))

data.append(({

’ARI’: metrics.adjusted_rand_score(y, clusters),

’AMI’: metrics.adjusted_mutual_info_score(y, clusters),

’Homogenity’: metrics.homogeneity_score(y, clusters),

’Completeness’: metrics.completeness_score(y, clusters),

’V-measure’: metrics.v_measure_score(y, clusters),

’Silhouette’: metrics.silhouette_score(X, clusters)}))
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results = pd.DataFrame(data=data, columns=[’ARI’, ’AMI’, ’Homogenity’,

’Completeness’, ’V-measure’,

’Silhouette’],

index=[’single’, ’complete’, ’average’, ’weighted’, ’centroid’, ’median’, ’ward’])

print(results)

results.to_csv(’original.csv’)

B.2 FEATURE EXTRACTION-PCA

import warnings

warnings.filterwarnings(’ignore’)

from sklearn import metrics

import pandas as pd

from sklearn.cluster import AgglomerativeClustering

import numpy as np

from scipy.spatial.distance import squareform

from scipy.spatial.distance import pdist

from scipy.cluster.hierarchy import dendrogram, single, complete, average,fcluster

from scipy.cluster.hierarchy import weighted, centroid, median, ward

import matplotlib.pyplot as plt

from scipy.cluster.hierarchy import cophenet

data = pd.read_csv(’SCADI.csv’)

print(data.shape)

X= data.loc[:,’d 5100-4’:’d 571-1’]

X=X.values
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y=data.loc[:, ’Classes’]

y = y.str.extract(’(\d+)’).astype(int) #remove class from front

#Remove strings from a float number in a column

y=y-1

y =y.values

print(y.shape)

y=y.flatten()

print(y.shape)

#############################################################################

# Applying PCA

from sklearn.decomposition import PCA

pca = PCA(n_components = 10)# CHANGE NUMBER OF PRINCIPAL COMPONENTS TO 2, 10, 15, 20, 25 ACCORDING

X_pca = pca.fit_transform(X)

explained_variance = pca.explained_variance_ratio_

print(explained_variance)

print(sum(explained_variance))

print(X_pca)

##############################################################################

a=pdist(X_res, euclidean ))

linkage = [single, complete, average, weighted, centroid, median, ward] #DICE

data = []

for l in linkage:

#T=l(a[0])

clusters=(fcluster(l(a), t=7, criterion=’maxclust’))

#print(clusters)

#print(clusters[0])
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#print(len(clusters))

data.append(({

’ARI’: metrics.adjusted_rand_score(y_res, clusters),

’AMI’: metrics.adjusted_mutual_info_score(y_res, clusters),

’Homogenity’: metrics.homogeneity_score(y_res, clusters),

’Completeness’: metrics.completeness_score(y_res, clusters),

’V-measure’: metrics.v_measure_score(y_res, clusters),

’Silhouette’: metrics.silhouette_score(X_res, clusters)}))

results = pd.DataFrame(data=data, columns=[’ARI’, ’AMI’, ’Homogenity’,

’Completeness’, ’V-measure’,

’Silhouette’],

index=[’single’, ’complete’, ’average’, ’weighted’, ’centroid’, ’median’, ’ward’])

print(results)

B.3 SUPERVISED FEATURE SELECTION EXPERIMENTS

For Decision Tree and Boruta Algorithm experiements, the similar code to the baseline

experiments with the exception of the corresponding .csv file bring changed.

B.4 UNSUPERVISED FEATURE SELECTION EXPERIMENTS

B.4.1 MCFS FEATURE SELECTION

# construct affinity matrix

kwargs = {"metric": "euclidean", "neighborMode": "knn", "weightMode": "heatKernel", "k": 5, ’t’: 1}

W = construct_W.construct_W(X, **kwargs)

num_fea = 100 # specify the number of selected features

# CHANGE NUMBER OF FEATURE TO 10, 50, 100, 150 ACCORDING

num_cluster = 7 # specify the number of clusters, it is usually set as the number of classes in the ground truth
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# obtain the feature weight matrix

Weight = MCFS.mcfs(X, n_selected_features=num_fea, W=W, n_clusters=20)

# sort the feature scores in an ascending order according to the feature scores

idx = MCFS.feature_ranking(Weight)

# obtain the dataset on the selected features

selected_features = X[:, idx[0:num_fea]]

B.4.2 LAPLACIAN FEATURE SELECTION

# construct affinity matrix

kwargs_W = {"metric": "euclidean", "neighbor_mode": "knn", "weight_mode": "heat_kernel", "k": 5, ’t’: 1}

W = construct_W.construct_W(X, **kwargs_W)

# obtain the scores of features

score = lap_score.lap_score(X, W=W)

# sort the feature scores in an ascending order according to the feature scores

idx = lap_score.feature_ranking(score)

# perform evaluation on clustering task

num_fea = 100 # number of selected features

# CHANGE NUMBER OF FEATURE TO 10, 50, 100, 150 ACCORDING

num_cluster = 7 # number of clusters, it is usually set as the number of classes in the ground truth

# obtain the dataset on the selected features

selected_features = X[:, idx[0:num_fea]]

B.5 RESAMPLING EXPERIMENTS

B.5.1 OVERSAMPLING
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from imblearn.over_sampling import RandomOverSampler

ros = RandomOverSampler(random_state=0)

X_res, y_res = ros.fit_resample(X, y)

from collections import Counter

print(sorted(Counter(y_res).items()))

B.5.2 UNDERSAMPLING

B.6 VISUALIZATIONS EXAMPLE

%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import cm

from sklearn.datasets import make_blobs

n_samples = 70

n_bins = 3 # use 3 bins for calibration_curve as we have 3 clusters here

# Generate 3 blobs with 2 classes where the second blob contains

# half positive samples and half negative samples. Probability in this

# blob is therefore 0.5.

centers = [(0, 5), (0, 3), (0, 1), (2,5), (2,3), (2, 1), (4, 5)]

X, y = make_blobs(n_samples=[2,7,1, 12, 3,29, 16], n_features=2, cluster_std=0.3,

centers=centers, shuffle=False, random_state=42)

#X, y = make_blobs(n_samples=[3, 3, 4], centers=None, n_features=2,

# random_state=0)

#centers=None

#y[:n_samples // 2] = 0
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#y[n_samples // 2:] = 1

#sample_weight = np.random.RandomState(42).rand(y.shape[0])

np.savetxt("make_graphs_random.csv", X, delimiter=",")

# #############################################################################

df = pd.read_csv(’make_graphs_random(1).csv’)

# Plot the data

import seaborn as sns

sns.set()

plt.figure()

#plt.scatter(X[:, 0], X[:, 1], c=’red’, # all rows first columns

#alpha=0.5, edgecolor=’k’)#,

#label="Class %s" % this_y)

sns.lmplot(x=’x’, y=’y’, data=df, fit_reg=False, hue=’avg’, legend=False)

plt.axhline(2, color=’black’, lw=2)

plt.axhline(4, color=’black’, lw=2)

plt.axvline(1, color=’black’, lw=2)

plt.axvline(3, color=’black’, lw=2)

#plt.fig.text(0.2, 0.2,’Class 0’, fontsize=9)

#plt.fig.text(0.2, 0.2,’Class 0’, fontsize=9)

plt.text(0.2, 0.2, "Class 2")

plt.text(0.2, 2.2, "Class 1")

plt.text(0.2, 4.2, "Class 0")

plt.text(2.2, 0.2, "Class 5")

plt.text(2.2, 2.2, "Class 4")

plt.text(2.2, 4.2, "Class 3")

plt.text(4, 4.2, "Class 6")

L=plt.legend()

L.get_texts()[0].set_text(’Cluster 0’)
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L.get_texts()[1].set_text(’Cluster 1’)

L.get_texts()[2].set_text(’Cluster 2’)

L.get_texts()[3].set_text(’Cluster 3’)

L.get_texts()[4].set_text(’Cluster 4’)

L.get_texts()[5].set_text(’Cluster 5’)

L.get_texts()[6].set_text(’Cluster 6’)

#L(loc="best")

plt.title("Average Linkage")

plt.savefig(’Average_Linkage.png’)
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