
Georgia Southern University 

Georgia Southern Commons 

Electronic Theses and Dissertations Jack N. Averitt College of Graduate Studies 

Spring 2019 

Inferring Food Web Structure to Identify Seasonal and 
Longitudinal Patterns in Ogeechee River Invertebrate 
Communities 
Julien Marc Buchbinder 

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd 

 Part of the Biodiversity Commons, Biology Commons, Entomology Commons, and the 
Terrestrial and Aquatic Ecology Commons 

Recommended Citation 
Buchbinder, Julien Marc, "Inferring Food Web Structure to Identify Seasonal and 
Longitudinal Patterns in Ogeechee River Invertebrate Communities" (2019). Electronic 
Theses and Dissertations. 1870. 
https://digitalcommons.georgiasouthern.edu/etd/1870 

This thesis (open access) is brought to you for free and open access by the Jack N. Averitt College 
of Graduate Studies at Georgia Southern Commons. It has been accepted for inclusion in Electronic 
Theses and Dissertations by an authorized administrator of Georgia Southern Commons. For more 
information, please contact digitalcommons@georgiasouthern.edu. 

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1127?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/83?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/20?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1870?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1870&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


   

INFERRING FOOD WEB STRUCTURE TO IDENTIFY SEASONAL AND LONGITUDINAL 

PATTERNS IN OGEECHEE RIVER INVERTEBRATE COMMUNITIES 

by 

JULIEN BUCHBINDER 

Under the Direction of J. Checo Colón-Gaud 

ABSTRACT 

 

Understanding how the structure and function of aquatic communities vary across space and time is 

essential for proper management of freshwater ecosystems. Current management relies on rapid 

biomonitoring using metrics of community structure, but metrics that incorporate ecosystem processes 

and functions are only just beginning to see use in assessment and management. Food webs inferred from 

known species interactions have been proposed as a method of incorporating function into bioassessment 

without expending extra effort or sacrificing the cost-effectiveness of current monitoring schemes. To 

apply food webs in biomonitoring, it is first necessary to understand how communities and food webs 

vary across temporal and longitudinal gradients so that changes can be interpreted correctly. I conducted a 

study to establish such a baseline for the Ogeechee River, a large coastal plain blackwater river in the 

southeastern United States. Samples of invertebrate assemblages were taken quarterly for three years from 

6 sites along the main course of the Ogeechee River. I then investigated the spatial and seasonal structure 

of communities and food webs. Food webs were inferred using a database of invertebrate diets compiled 

from the literature. Communities varied across sites and seasons, with lower diversity and more lentic and 

estuarine taxa at downstream sites, and lower diversity during the flood pulse in the winter and spring due 

to high numbers of certain dominant taxa. Food web structure changed little over time and space, with 

some diversity dependent increases in links, linkage density and connectance at upstream sites, and some 

diversity independent decreases in prey to predator ratios during the winter. Results suggest that 

community structure was both more informative and reliable than food web structure for detecting 

changes in river communities. Better documentation of species interactions in the literature could improve 



 

 
 
 

inferred food webs so that they could work as a supplemental tool for interpreting the results of 

biomonitoring and for making management decisions. 

 

INDEX WORDS: Large river ecosystems, Macroinvertebrates, Food webs, Biomonitoring, Freshwater 

communities, Seasonal patterns. 
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CHAPTER 1 

INTRODUCTION 

Large rivers are ecologically, economically and recreationally important landscape features, 

providing habitat and connectivity to a diversity of invertebrate and fish species. The importance of 

biodiversity to ecosystems and their function (Hooper et al. 2005) and the importance of food web 

connectivity to preserving diversity (Dunne et al. 2002b), means that understanding how community and 

food web structure varies in rivers is invaluable for effective water resource management. Benthic 

invertebrates are of special interest, as they form a large portion of the diet of many fish and other high 

trophic level consumers and are particularly vulnerable to changes in water quality. In the Southeastern 

Coastal Plain of the United States, rivers vary temporally due to temperature and discharge (Benke et al. 

2000), with unregulated rivers undergoing seasonal floods during the winter and spring. While the 

seasonality of macroinvertebrate community and food web structure is well studied in low order streams, 

less work has been done on the impact of seasonal cycles on the variation of benthic community structure 

and food webs in large, lowland rivers. Understanding how these trophic networks respond to predictable 

seasonal variation in coastal rivers will provide insights into the stability and vulnerability of these 

systems to anthropogenic or environmental impacts. 

Over the past 40 years, ecologists have proposed multiple models for understanding the ecology of 

rivers, including the river continuum concept (Vannote et al. 1980), the flood pulse concept (Junk et al. 

1989), the riverine productivity model (Thorp and Delong 1994) and the riverine ecosystem synthesis 

(Thorp et al. 2006). All these models make predictions of how communities and food webs are structured 

based on longitudinal and landscape patterns. The river continuum concept predicts that large rivers are 

dominated by fine particulate organic matter (FPOM) and low-quality dissolved organic carbon (DOC) 

and that invertebrate primary consumers are mostly collectors eating detritus. This has been confirmed in 

coastal plain rivers such as the Ogeechee River (Benke and Wallace 2015). It also suggests that gradients 
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may result in longitudinal changes in community structure as the river gets larger, including a shift toward 

invertebrate collectors consuming FPOM. The flood pulse concept asserts that in large rivers with 

predictable periodic flooding, much of the particulate organic matter (POM) and DOC is produced in the 

floodplain and that the main channel is low in invertebrate density and diversity, except on substrate like 

snags or cobble. The low densities and diversity of sandy-bottomed portions of floodplain rivers and the 

importance of stable substrate for macroinvertebrates has been confirmed in coastal plain rivers (Benke et 

al. 1984, Benke and Wallace 2015). However, the extent to which floodplain resources and assemblages 

might contribute to the main channel is unclear. The riverine productivity model suggests that 

autochthonous production and riparian allochthonous inputs drive production in rivers, and suggests that 

outside of stable substrates, most benthic invertebrates are living on river margins. While autochthonous 

production doesn’t contribute much to Southeastern Coastal Plain food supplies (Benke and Wallace 

2015) riparian inputs may contribute to food supplies and substrate to support marginal benthic 

invertebrate communities. The riverine ecosystem synthesis suggests that local assemblages are the result 

of hierarchical hydrogeomorphic filters of a regional species pool resulting in patchy distributions of 

members of the benthic community. Within the main channel of Southeastern Coastal Plain rivers, this is 

unlikely to have a large effect, because there is little hydrogeomorphic variability in the mostly sandy-

bottomed floodplain swamps. While the implications of these models have explained some of the 

phenomena observed in coastal plain rivers, it is still unclear how communities in these rivers vary 

spatially within their lower reaches. 

Longitudinal differences have been observed in many streams and rivers, often during tests of the 

river continuum concept or riverine ecosystem synthesis. I am not aware of any longitudinal studies of 

Southeastern Coastal Plain river invertebrates, although Reese and Batzer (2007) did a longitudinal study 

of floodplain wetland invertebrates that found transitions from terrestrial invertebrates and temporary pool 

specialists in the upper reaches of the Altamaha to riverine taxa in mid-reaches and then finally wetland 

taxa in the lower coastal plain. In other ecosystems, studies have observed longitudinal changes following 
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the predictions of the river continuum concept in response to changes in hydrogeomorphic characteristics 

and food supply (Hawkins and Sedell 1981, Grubaugh et al. 1996, Jiang et al. 2011).  These studies tend 

to confirm the predominance of collectors in large river habitats but do not indicate gradients of species 

composition within the large river portions of watersheds, except with respect to local 

hydrogeomorphology. Longitudinal gradients may also respond to anthropogenic impacts on water 

quality (Álvarez-Cabria et al. 2010). The impacts of gradients within the lowland portion of Southeastern 

Coastal Plain rivers would be a valuable addition to this body of knowledge and a useful reference for 

further biomonitoring. 

Seasons may also impact the structure of river communities. Seasonal hydrological and 

physicochemical variation in conditions can impact the species that can inhabit a particular system 

(Dolédec 1989, Robinson and Uehlinger 2008, Boehme et al. 2016). Different taxonomic groups may 

occur in a stream or river at different times of year, depending on their life history (Dolédec 1989, Leunda 

et al. 2009). These fluctuations are often reflected in biomonitoring metrics, such as proportions of 

sensitive species, and may impact multi-metric indices used in decision making (Linke et al. 1999, 

Leunda et al. 2009, Boehme et al. 2016). However, these changes are often secondary to spatial 

considerations in community assembly (Principe and Corigliano 2006). Understanding how seasons 

impact local assemblages and how they interact with spatial and physicochemical considerations is 

necessary to conduct proper monitoring and management of southeastern rivers. 

It is also important for river managers to understand the food webs of communities within rivers. 

River food webs can also change independently of community structure, and changes in structure may or 

may not have large impacts on food webs. Most food web research in running waters is limited in time 

and space, particularly in large rivers. There have been calls to expand the focus of food web research 

beyond summary webs of individual sites to include more temporal resolution (McMeans et al. 2015), but 

these studies are a relatively small portion of food web literature to date. Food web studies that employ 

stable isotopes often attempt to add some crude spatial discrimination of food sources (Herwig et al. 2007, 
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Pingram et al. 2014) and some studies have attempted to look at patterns in stable isotopes across 

different sites (Pingram et al. 2014, Blanchette et al. 2014). However, results are not always consistent 

and inferring patterns of food web structure from stable isotopes is unreliable. More methods 

incorporating traditional gut content analysis have been used to observed spatial and temporal trends. 

Much of this work in lotic environments is from streams, but a few studies have been performed in large 

rivers (Cross et al. 2013). Temporal patterns in food web structure are often driven by species richness 

(Thompson and Townsend 1999) and ontogenetic diet shifts (Tavares-Cromar and Williams 1996) or 

migrations (Akin and Winemiller 2006). Spatial variability has been due to several habitat related factors, 

often involving changes in resource availability (Thompson and Townsend 1999, 2005b, Cross et al. 

2013) and predation (Cross et al. 2013). Since the Southeastern Coastal Plain is under fairly different 

conditions than the streams and constricted rivers where this research has been done, it would be 

interesting to see how food webs in coastal plain rivers vary longitudinally, and whether seasonal patterns 

hold. 

Recently, there have been calls for improvements in biomonitoring in order to keep their basis 

ecologically sound and to identify and predict ecosystem processes and alterations (Friberg et al. 2011). 

Scientists have proposed incorporating ecological networks into monitoring programs to provide insights 

into ecosystem function and dynamics (Gray et al. 2014). While food webs and ecological networks have 

been employed to detect ecological changes in the field for monitoring purposes, these have been largely 

limited to intensive research projects. Food web analyses using stable isotopes have been applied in 

bioassessment to track energy flow (France 2015) and organic pollution (Xu and Zhang 2012). Network 

analysis has been used to identify anthropogenic impacts such as the impact of habitat modification on 

species interactions (Tylianakis et al. 2007) and the impacts of predator reintroductions (Layer et al. 

2011). Despite their use in research, food webs have not been incorporated into routine monitoring. 

Biomonitoring of the Ogeechee River, a coastal plain river in Georgia, provides an opportunity to add 

food web analysis to more traditional monitoring of community composition. 
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Ogeechee River Study System 

The Ogeechee River’s headwaters rise in the Georgia Piedmont and the river flows for most of its 

394 km length through the Southeastern Coastal Plain. By the time it reaches Ossabaw Sound, the 

Ogeechee is a 6th order river (Benke et al. 2000). The river floods during the winter months in response to 

increases in discharge due to lower evapotranspiration, inundating its forested floodplain (Benke et al. 

2000). The lower flood plain reaches at least 50% inundation 15% of the time, at which time its relative 

width is approximately 19 times the width of the main channel and 100% inundation 3.6% of the time, 

when it’s relative width is 37 times the width of the main channel (Benke et al. 2000). Habitat in the 

stream consists of wood snags and sandy benthos, with high diversity on the snags and high density but 

low biomass of midges and oligochaetes in the sand (Benke et al. 1984). Most invertebrate production in 

the lower river is derived from allochthonous input rather than in-stream primary production, in 

particular, from microbe-rich amorphous detritus (Benke and Wallace 2015). Snags harbor the majority of 

invertebrate production, with snag predators, including filter-feeding hydropsychid caddisflies, 

consuming most invertebrate production (Benke and Wallace 2015). The Ogeechee is a relatively 

unimpacted river with little urbanization for most of its watershed and no impoundments or obstructions 

of its main channel (Meyer et al. 1997). It is therefore a good reference system for the condition of coastal 

plain rivers. Despite some studies of invertebrate communities within the rivers, how these communities 

change across time and space is poorly understood, and a better understanding of this river could help 

river managers to accurately interpret and apply the results of biomonitoring on the river. 

Objectives 

The purpose of this thesis is to determine how season and associated environmental patterns drive 

benthic invertebrate communities and their trophic structure in the Ogeechee by indirect inference of 

trophic relationships using collected invertebrate assemblages and diet information from literature 

sources. In addition to season and any possible associated ontogenetic effects, I am interested in how 
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physicochemical factors impact these communities. Knowledge of these impacts would help stakeholders 

to understand how southeastern rivers might respond to increasing anthropogenic impacts and climate 

change. Additionally, I am interested in how food web structure performs detecting changes compared to 

traditional community-based metrics, and whether they would be worth using in conjunction with 

community metrics in biomonitoring. If effective, estimated food web metrics could provide a useful tool 

for interpreting samples from monitoring that are more informative than relying solely on simple 

composition-based metrics. 
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CHAPTER 2 

 

OGEECHEE RIVER INVERTEBRATE COMMUNITIES 

 

INTRODUCTION 

When assessing the biological condition of ecosystems, scientists tailor their criteria to local 

habitats using reference sites. Understanding how community structure varies across local conditions 

allows scientists to identify and understand the impacts of anthropogenic disturbance. Scientists must be 

aware of the impacts of local habitat, as well as spatial, temporal and environmental gradients, or they 

will be confounded with human alterations. Seasonal cycles often influence these conditions, setting the 

minima and maxima of environmental variation that constrain aquatic organisms living in these habitats 

(Doledéc 1989) and potentially influencing their lifecycles. 

Environmental Variation 

Seasonality drives much of the variation in lotic systems, whether through temperature, 

hydrological regime or physicochemical variation. For example, in Appalachian streams, specific 

conductance (SPC) peaks in the late summer and early fall (Boehme et al. 2016). These seasonal trends 

are climate dependent; hydrological regimes can range from high discharge in the wet season and 

discontinuity in the dry season to perennial flow with multiple periods of high variability due to patterns 

of snow melt and rainfall (Puckridge et al. 1998, Habdija et al. 2003, Garcia et al. 2015). These changes 

are coupled with seasonal variations in food resources to drive temporal variation in community structure. 

Hydrologically dependent seasonal variation has been found in both algal and invertebrate production in 

Australia, with high productivity in the transitions between the rainy and dry seasons (Garcia et al. 2015).  

In alpine rivers, variation in primary productivity has been linked to seasonal environment effects such as 

light incidence, as well as seasonal disturbance from spates, leading to higher primary production in the 

summer (Uehlinger 2000, Habdija et al. 2003). Detrital resources vary with season and discharge regime, 

with seston availability increasing in unstable, high-discharge periods and standing FPOM and coarse 
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particulate organic matter (CPOM) increasing in low discharge periods (Habdija et al. 2003). Thompson 

and Townsend (1999) found both organic matter and algal production varied between season in their 

study, although which resource varied was dependent on surrounding land use. 

Community Variation 

Invertebrate community structure can be associated with most temporally variable environmental 

factors. Macroinvertebrate community metrics respond to physicochemical variation associated with 

water quality in ways that vary seasonally (Álvarez-Cabria et al. 2010). Responses to conductivity in 

particular can vary with month, altering the proportions of sensitive taxa (Boehme et al. 2016). Patterns in 

macroinvertebrate indices over large temporal and spatial scales have been explained by differences in 

discharge and hydrological variability, suggesting that hydrology is a major factor in structuring in-stream 

habitat (Monk et al. 2008). Certain macroinvertebrate metrics used in water-quality assessment in Spain 

respond to hydrological variation, although whether this effect is seasonal or not depends on the metric 

(Álvarez-Cabria et al. 2010). In sub-arctic streams, hydrological features contributed to the clustering of 

similarly structured communities, with stream width being important in the spring and current velocity 

being important in the fall (Tolonen et al. 2017). 

Hydrological disturbance can have effects on communities independently of overall regime. 

Experimental flooding of a Swiss river lead to community shifts reducing species richness, biomass and 

standing stocks of autochthonous and allochthonous resources until the transitional community was 

replaced with a flood resistant community that were more resistant to flood disturbance (Robinson and 

Uehlinger 2008). Drought can act as a hydrological disturbance, and changes in connectivity, flow, and 

habitat that accompany drought can alter interspecific interactions, resource availability and community 

composition (Lake 2003). Disturbance from freezing had a negative effect on richness in Alaskan 

streams, removing fish predators (Parker and Huryn 2013). Many of these effects, such as freezing or 
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spates during the rainy season, are more likely in certain times of year. Therefore, hydrological events can 

contribute to seasonal differences in community structure even if they are unpredictable. 

Biotic factors are regularly involved in observed patterns of community structure. Seasonal shifts 

in structure in Appalachian streams due to decreases in stream water quality were driven in part by 

ontogeny, as sensitive taxa whose life histories lead to higher incidence in streams at certain times of year 

were absent at impacted sites, distorting the seasonal patterns seen in reference streams (Boehme et al. 

2016). The positive relationship between functional groups and their food resources in streams has been 

well documented, but seasonal patterns are not always as prominent as spatial patterns (Vannote et al. 

1980, Hawkins and Sedell 1981). Seasonal variation in food availability in the Sava river contributed to 

the biomass and abundance of certain functional feeding groups that best exploited available resources 

(Habdija et al. 2003). This was driven by hydrological stability and lead to higher abundances and 

biomasses during the stable winter and summer periods on the river (Habdija et al. 2003). In streams 

where seston, FPOM standing crop and algal production are seasonally variable, they have been found to 

govern the proportion of filterers, collector gatherers and grazers between seasons (Thompson and 

Townsend 1999). CPOM has been found to help structure sub-arctic faunal communities, with the 

dominant behavioral habits of invertebrates being determined by CPOM in the fall but not in the spring 

(Tolonen et al. 2017).  

Objectives 

The Ogeechee River Project initiated to better understand the conditions of the river in case of 

future human impacts. For benthic macroinvertebrates, this means understanding the seasonal and 

longitudinal changes in community structure. To do this, I sampled benthic invertebrates from six sites 

along the river’s length seasonally for three years. I anticipated seasonal patterns in chemical variables to 

respond to the flood pulse and seasonal temperature trends, with less oxygen in warmer weather and 

lower conductivity during the flood pulse, when ions are diluted in increased surface waters. I expected 
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invertebrate assemblages to be influenced by season, which directly influences their life cycles, available 

resources and the phenology of their predators. Discharge, which favors certain habits and acts as a 

disturbance which can remove organisms from the local species pool, should also influence 

macroinvertebrate composition. I anticipated species richness to be governed by disruptive effects such as 

discharge. Warm weather may also facilitate productivity, with influences on community structure. I did 

not expect temperature or dissolved oxygen to have a stronger effect than any of the above phenomenon, 

but it was possible that some effect would be detected as these are both involved in metabolic processes. 

Longitudinally, I expected certain taxa to shift over the river’s length as habitat changed, causing a shift 

from piedmont assemblages to more lowland and estuarine species. 

METHODS 

Study Sites 

Six sites were chosen along the course of the lower Ogeechee River in the Southeastern Plains 

(65) and Southern Coastal Plain (75) Level III US EPA ecoregions. Three upstream sites, at the crossing 

of Georgia (GA) Route 88 (R88), the crossing of GA Route 78 near Wadley (WA) and the crossing of 

Rocky Ford Road (RF) are in the 65 Level III ecoregion while the remaining three downstream sites, at 

the crossing of GA Route 24 near Oliver (OL), the crossing of GA Route 119 (R119) and the crossing of 

GA Route 204 at Morgan’s Bridge (MO), are within the 75 Level III ecoregion (Table 2.1, Griffith et al. 

2001). OL, in the 75i Level IV ecoregion, and WA in the 65l Level IV ecoregion, are very near the border 

of the 65p Level IV ecoregion. The Georgia Environmental Protection Division (GA EPD) uses separate 

multi-metric indices to assess the health of stream communities within each ecoregion, which may 

indicate differences in communities due to habitat that would be a source of variation among the sites. 

However, the EPD does not apply these indices to large rivers and does not have an index for the river-

specific Floodplain and Low Terraces regions, so that variation may not apply. Distances between sites 

should be great enough to avoid interdependence of consecutive sites within the river (i.e. Hurlbert 1984). 
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The sites were chosen to capture longitudinal variation along the river course and in proximity to public 

boat ramps for access purposes. Invertebrate samples and physicochemical measurements were taken 

approximately 100 meters upstream of access points to reduce the influence of anthropogenic disturbance 

at the bridge crossings.  

Sampling was performed as part of a larger biomonitoring project on the Ogeechee River. 

Samples were taken quarterly in March, June, September and December, during the middle of the month. 

Invertebrate samples were taken during the late morning and early afternoon, generally between 10:00 am 

and 2:00 pm, to keep consistent measurements of physical and chemical factors that vary on a daily basis, 

such as temperature and dissolved oxygen. Samples were taken between June 2014 and June 2017. The 

first three years of data, from June 2014 until March 2017 were used in analyses. With three years of 

sampling at 6 sites over 4 seasons, the final sample size was n= 72. 

Physicochemical Monitoring 

Physicochemical measurements were taken with a YSI multimeter before sampling invertebrates. 

In cases where the YSI malfunctioned, measurements were retrieved from other groups working on the 

biomonitoring project who were sampling during the same period. Recorded physical and chemical 

variables included temperature, dissolved oxygen (DO) and percent dissolved oxygen (%DO), 

conductivity and SPC, and pH. Discharge data were retrieved from the USGS gages located closest to 

each site using the readings from 10:00 am on the day of collection (Table 2.1, USGS 2019). All gages 

were approximately 100 meters downstream of the sample reach, except the gage closest to R119 which 

was several miles downstream of the site. 

Invertebrate sampling 

Invertebrate sampling was done using a modified version of the GA Environmental Protection 

Division (EPD) sampling protocol for wadeable streams (GA EPD 2007). Benthic invertebrates were 

collected from appropriate substrates using 1-meter jabs with d-frame nets with a mesh size of 500-µm. 
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20 jabs were taken per sample along a 100-meter reach of the river incorporating both banks. Jab 

locations were chosen in proportion to available habitat. Habitats to be sampled include snags, submerged 

macrophytes, root wads, leaf packs and other accumulations of organic material, and soft sediments and 

sandy substrate. Sandy substrate was deprioritized for sampling, because while densities within sediment 

may be high, biomass is low compared to snags and other habitats and species consist mostly of small 

oligochaetes and dipteran larvae (Benke et al. 1984). Marginal habitats were chosen because they are 

known to have greater richness because they provide more stability and may act as refugia during spates 

(Principe and Corigliano 2006). We pooled jabs into a single sample and emptied them into a 500-µm 

mesh sieve bucket and rinsed the material to remove fine sediments. Large debris were rinsed and 

removed prior to preservation. 

Collected samples were placed into plastic bags and preserved with 95% alcohol and dyed with 

Rose Bengal. In the laboratory, technicians washed samples through a 500-µm mesh sieve, and material 

such as leaves and woody debris were rinsed to dislodge any organisms. Remaining materials were sorted 

in a large, gridded tray. Each square of the grid was assigned a number and random number generation 

was used to select squares to sub-sample. Material from sub-sampled grids was picked through under a 

dissecting microscope and invertebrates were preserved in 95% alcohol for identification. Grids were 

picked completely, and new grids were subsampled randomly with 200 (± 40) organisms picked. 

Remaining material from the grid was preserved separately for inspection for quality control purposes. 

Technicians conducted a search of large or rare organisms that were easily visible on the sample tray and 

collected and stored these separately. Subsampled organisms were then identified to lowest possible 

taxonomic rank, generally genus for most insects, subfamily or tribe for chironomids, genus or family for 

mollusks and decapod crustaceans, and order or higher for other groups (notably annelids and water 

mites). Identification was done with a dissecting or compound microscope using taxonomic keys (Parrish 

et al. 1975, Smith 2001, Merritt and Cummins 2008, Thorp and Covich 2010). Abundances of identified 

organisms were recorded for each sample. 
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Physicochemical analysis 

Analyses were performed in R (R Development Core Team 2017) using the nlme (Pinheiro et al. 

2018) and lme4 (Bates et al. 2015) packages. Differences in environmental variables among sites and 

across seasons were tested using the nlme lme function to fit linear mixed effects models including site 

and season as fixed effects and year as a random effect. Interactions between site and season were tested 

and omitted if insignificant. Year was omitted from the model and lme4’s glm function was used if AIC 

values indicated that it did not improve the model fit, and residuals were checked visually for normality 

and homoskedasticity. Discharge and specific conductance were normalized using a log transformation 

and specific conductance was weighted using the R varPower function to remove heteroskedasticity. 

Principal component analysis (PCA) on correlations was performed using the R stats package prcomp 

function on the environmental parameters to visualize the main components of physicochemical variation. 

%DO and SPC were used instead of DO and conductivity to reduce the temperature dependence of those 

variables. 

Community analyses 

Community analyses were performed in R (R Development Core Team 2017) using the vegan 

(Oksanen et al. 2018), nlme (Pinheiro et al. 2018) and lme4 (Bates et al. 2015) packages, or in PRIMER-

E v7 (Clarke and Gorley 2015) for PERMANOVA and SIMPER. I tested taxonomic richness and 

Shannon indices for the effect of site and season using linear mixed effects models including year as a 

random effect, following the same procedure as for physicochemical variables. Sample assemblages were 

square root transformed to reduce the impact of dominant species and compared between samples using 

Bray-Curtis distances. Non-metric multidimensional scaling (nMDS) was performed with the metaMDS 

function to ordinate assemblage data. Seasonal differences were tested using permutational multivariate 

analysis of variance (PERMANOVA) with season and site as fixed effects and year as a random 

categorical effect, as well as interactions between each pair of factors. PERMDISP was used to test 
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PERMANOVA’s assumption of homogeneity of dispersion (Anderson and Walsh 2013). A two-way 

crossed SIMPER analysis (Clarke 1993) was used to quantify dissimilarity between levels of sites and 

seasons and to identify taxa most responsible for differences between them. Distance-based redundancy 

analysis (dbRDA) was performed on a model selected using the vegan ordistep method with both forward 

and backward stepwise searching and with year as a random effect (a condition in the dbRDA model). 

Permutational F (perm-F) tests were then performed on the dbRDA model and on its terms using vegan. 

RESULTS 

Water chemistry and hydrology 

Discharge differed across both site (F5,66 = 43.91, p < 0.001) and season (F3,63 = 26.09, p < 0.001), 

increasing at downstream sites as well as in the winter and spring, consistent with the flood pulse (Table 

2.2, Table 2.3). Temperatures differed across sites (F5,61 = 2.41, p = 0.0463), being about two degrees 

warmer at the lower three sites than at the upper three sites (Table 2.2), and across seasons, as expected 

(F3,61 = 136.14, p < 0.0001), with winter being coldest, summer being warmest, and fall being almost as 

warm as summer (Table 2.3). Specific conductance differed with both site (F5,61 = 35.80, p < 0.0001) and 

season (F3,61 = 12.93, p < 0.0001) (Table 2.2, Table 2.3). Lower conductance in the spring and winter may 

have been due to higher discharge levels associated with the flood pulse diluting dissolved minerals. Even 

after correcting for the effect of temperature using %DO, oxygen differed between sites (F5,61 = 5.01, p = 

0.0007) and seasons (F3,61 = 12.45, p < 0.0001), with summer having the lowest %DO and winter having 

the highest. There were no significant differences in pH between sites (F5,66 = 1.16, p = 0.3385) or season 

(F3,63 = 2.11, p = 0.1079). There were no significant interactions between site and season, but patterns 

across both sites and seasons for most parameters lead to different physicochemical profiles depending on 

both (Table 2.4). 

Plotting the environmental variables in a PCA revealed distance between samples based on 

season, but not as much based on sites. The first principal component, explaining about 38% of the 
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environmental variance among samples correlated primarily with temperature and %DO, and to a lesser 

extend with SPC and pH, whereas the second principal component explained about 30% of variance and 

correlated primarily with discharge and pH, and somewhat less with SPC (Figure 2.1). Winter samples 

were separated from summer and fall samples, with spring exhibiting a lot of overlap with winter but less 

with fall and summer, which were warmer and had lower discharge. 

Community Structure 

 There were more taxa on average at upstream sites (F5,61 = 4.95, p = 0.0007) (Table 2.7), and a 

slight trend toward fewer taxa in the winter and spring (F3,61 = 2.71, p = 0.0531) (Table 2.5). Spring had 

lower diversity than the other seasons (F3,63 = 10.10, p < 0.0001) and diversity was slightly lower at 

downstream sites (F5,66 = 3.89, p = 0.0048) (Table 2.5). Assemblages overlapped little between winter and 

spring, during the flood pulse, and summer and fall, during base flow (Figure 2.2). PERMANOVA 

corroborated seasonal differences (pseudo-F3,30 = 4.47, p = 0.003) as well as differences between sites 

(pseudo-F5,30 = 3.26, p = 0.001) and across years (pseudo-F2,30 = 6.13, p = 0.001). All interactions were 

also significant, including site by season interactions (pseudo-F15,30 = 1.48, p = 0.001), site by year 

interactions (pseudo-F10,30 = 1.20, p = 0.048), and season by year interactions (pseudo-F6,30 = 2.11, p = 

0.001). PERMDISP revealed uneven dispersion between sites (pseudo-F5,66 = 4.81, p = 0.002), although 

PERMANOVA tends to be more robust to heterogeneity of dispersion than other similar methods such as 

Mantel tests and ANOSIM (Anderson and Walsh 2013). Dispersion among seasons (pseudo-F3,68 = 1.89, 

p = 0.173) and years (pseudo-F2,69 = 0.45, p =0.652) were not significantly different. 

 SIMPER analysis revealed somewhat consistent similarities within sites and dissimilarities 

between sites that generally increased with distance between sites (Table 2.6). Assemblages shifted from 

upstream to downstream sites to include more estuarine taxa, going from predominantly chironomids and 

hydrobiids to assemblages dominated by isopods such as Caecidotea and Lirceus (Appendix B). Seasons 

also had consistent similarities within sites and winter and spring were less dissimilar to each other than 

to other seasons, as were summer and fall (Table 2.7). Spring and to a lesser extent winter were 
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dominated by isopods and mayflies such as baetids in the spring and Baetisca in the winter (Appendix C). 

Fall had greater numbers of chironomids, Palaemonetes shrimp, hydrobiid snails and mayflies such as 

Caenis and Tricorythodes. Summer was similar to fall, with higher levels of hydrobiid snails and 

oligochaetes and fewer mayflies (Appendix C). 

 Site, season, conductivity and pH were included in the dbRDA, with the model constraining 

38% its inertia. A permutation test of the model was significant (perm-F10,59 = 4.06, p = 0.001), as were 

the tests for season (perm-F3,59 = 7.00, p = 0.001), site (perm-F5,59 = 2.95, p = 0.001), conductivity (perm-

F1,59 = 2.47, p = 0.008) and pH (perm-F1,59 = 2.35, p = 0.006). Discharge, temperature and dissolved 

oxygen were not suggested by model selection, possibly due to site and seasonal dependence that 

rendered them redundant. The clustering of summer and fall samples, and winter and spring samples were 

confirmed in the ordination (Figure 2.3) along the dbRDA’s first axis. Based on the centroids of each site 

and Figure 2.4 the second axis of the dbRDA corresponded roughly to a longitudinal gradient from 

upstream to downstream sites, except for MO samples. 

DISCUSSION 

The Ogeechee River has distinct hydrological and chemical gradients that are associated with 

gradients of community composition over space and time. The state of the river is driven by shifts in 

habitat as the river widens, by the flood pulse and by seasonal temperature changes. As the river makes its 

way through its watershed, tributaries contribute their water, leading to increased discharge, as one would 

expect. A wider river may contribute to less shading, which might drive the observed higher temperatures 

at downstream sites. These increases help drive lower oxygen levels, although calmer waters and 

differences in ecosystem metabolism, which were not measured, may have contributed to lower percent 

dissolved oxygen downstream. Meyer and Edwards (1990) documented declines in net daily metabolism 

with increasing stream order of Ogeechee river tributaries, but differences between a 4th order tributary 

and the 6th order mainstem were not negative and so the trend within tributaries may not reflect along a 

continuum in the large river portion of the mainstem. Conductivity changed over the course of the river, 
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first increasing at the middle sites, then decreasing (Table 2.2) in a manner that was not easily explained. 

Changes in geology or in land use may have driven increases in dissolved ions at RF and OL and warrant 

further investigation. Seasonal trends were as I expected, with discharge reflecting the flood pulse and 

temperature reflecting seasonal air temperature patterns, which in turn drove dissolved oxygen levels. 

Higher percent dissolved oxygen in the winter and spring may have been driven by higher discharge 

causing turbulence and mixing or by colder temperatures depressing ecosystem metabolism. Differences 

in conductivity may have been due to more dilute ion concentrations during the flood pulse. There were 

clear differences in physicochemical variables across seasons, and to a lesser extent sites, which lead 

different sites and seasons to have their own physicochemical profile. These profiles could have large 

impacts on invertebrate metabolism and available habitat conditions and serve as environmental filters 

(Power et al. 1988, Poff 1997). 

Invertebrate communities also varied across time and space, probably in response to varying 

habitat conditions including those described above. Higher diversity in the summer and fall and at 

upstream sites may have reflected better conditions for native fauna. However, differences in total taxa 

and some of the differences in Shannon indices may been artefacts of subsampling. With a limited sample 

of 200 invertebrates, dominant species would lower the chance of subsampling less common species, 

especially if those species did not show up in the large and rare search (but see Barbour and Gerritsen 

1996). This would lead to lower sampling of rare species if common species were more abundant at 

certain sites or at certain times of the year. If that is the case, the influence of evenness on Shannon 

indices is still detectable and may be exaggerated by artificially low richness. Another contributor to 

lower taxonomic richness and to lower evenness could be a shift in assemblages from riverine dominated 

to lentic or estuarine dominated fauna. Reese and Batzer (2007) documented a shift in wetland fauna 

along a southeastern river from riverine taxa to lentic fauna such as crangonyctids and asellids, which 

were common in the lower sites during our project and are numerically abundant. These less-even 

communities could simply suggest a shift in habitat rather than a more heavily impacted river. Available 
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habitat might also have shifted as the river widened, and marginal habitats, which often have the most 

diversity and greatest biomass in floodplain rivers due to their available substrate (Principe and 

Corigliano 2006), may have constituted a smaller proportion of river habitat, even with reduced sampling 

of sandy substrates. Seasonal differences could also be due to artefacts of using subsamples. During the 

winter and spring, dominant taxa such as isopods and Baetisca were more important, while common taxa 

in summer and fall were not as abundant and differences were less clear. Many invertebrates are also only 

present in certain seasons (e.g. Leunda et al. 2009) due to migration from other habitats (Danks 2007, 

Stubbington 2012) or due to ontogeny (Benke and Jacobi 1994), or may be undetected in certain life 

stages that are too small to be collected (Tavares-Cromar and Williams 1996, Danks 2007). 

These differences were also reflected in the differences between site, season and year in 

community composition, which were confirmed using PERMANOVA and visible for seasons in the 

nMDS. Overlap in communities between fall and summer and between winter and spring suggests that 

the influence of the flood pulse was an important influence on community structure. Differences between 

years suggested possible interannual variation in environmental parameter and population dynamics but 

may have been due, in part, to different people identifying samples. Spatial and temporal patterns 

corroborated previous work in Southeastern Coastal Plain rivers. Longitudinal shifts toward more lentic 

crustaceans were observed in river flood plains (Reese and Batzer 2007) and seasonal differences such as 

summer increases in production of certain taxa such as Baetis ephippiatus, Tricorythodes, Caenis (Benke 

and Jacobi 1994) and Chimarra moselyi (Benke and Wallace 1997) corresponded to similar increases in 

relative abundances of those same genera in our current project (Appendix C). Similarities of my data to 

previously observed production data confirms the importance of phenology in driving at least some of the 

observed differences in abundance. 

The DBRDA model selected to explain community differences indicated that site and season had 

stronger relationships with sample assemblages than highly correlated variables such as temperature and 

discharge, which suggests that those physical parameters had little influence on aquatic invertebrates that 
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was not adjusted for by habitat choice (for sites) and phenology (for seasons). It is possible that 

interannual variation in these parameters may have had an effect that was lost when controlling for that in 

the model, or that extremes of temperature or discharge might also alter community composition in ways 

that were not detectable using my data. Discharge, which I expected to have a large impact on 

composition and richness, did not, either because disturbance level discharges were not detected using 

sampling, or because flooding is too moderated and predictable in coastal plain rivers. Conductivity and 

pH did contribute to the model, and both are known to be important for certain sensitive taxa (Layer et al 

.2011, Hogsden and Harding 2012, Boehme et al. 2016). Nevertheless, the model appears to confirm the 

primary importance of spatial and temporal drivers of lotic biodiversity. 

Finding spatial and temporal differences in biomonitoring is common but they are not always 

found in tandem. Early investigations of the river continuum concept that incorporated seasonal variation 

found that spatial differences were greater than seasonal ones (Hawkins and Sedell 1981). Leunda et al. 

(2009) found that in their Pyrenean river, despite more consistent differences in biotic indices by season, 

ordinations of community structure had spatial correlated axes that explained a greater proportion of 

variation. Other studies have found greater influence of season on biotic indices and the clustering of 

species assemblages (Linke et al. 1999). The Ogeechee River was also more distinctly different between 

seasons than across sites, but unlike most assessments of lotic invertebrate communities that examine 

both spatial and temporal variation, the Ogeechee is a lowland river, with no large shifts in altitude or 

geology to produce different habitat conditions. Consequently, seasonal differences, which are ubiquitous, 

had larger differences. 

Samples were fairly consistent within sites or seasons, with average similarities between 43% and 

50% while being quite dissimilar between sites or seasons, with average dissimilarities between 51% and 

67%. Subsamples were small, which increases the level of noise in an individual sample, so getting some 

level of consistency in repeated samples is promising for the reliability of subsamples. Additionally, the 

presence of both riverine and lentic invertebrates in samples means that sampling could detect impacts on 
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floodplain assemblages in addition to main channel assemblages. Despite this, further work needs to be 

done before using jabs for large river biomonitoring. Questions remain as to whether comparisons 

between reference conditions and impacted conditions are possible within the Ogeechee. Currently, no 

biotic indices exist for the river, and biotic indices for smaller streams vary by ecoregion in ways that may 

not apply appropriately to larger rivers with significant flood plains. It is also unclear how this type of 

active sampling compares to other sampling methods such as Hess samplers, or passive sampling using 

leaf packs or Hester samplers. If these questions are answered, then biomonitoring using invertebrates 

should be possible (as assemblages were not homogenous within the river) and water resource managers 

could better respond to future disasters and identify proper mitigation strategies. 
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Table 2.1. Ogeechee River sampling sites with associated gage numbers, drainage areas, EPA Level IV 

ecoregions and Level IV ecoregions used for the GA EPD Multi-Metric Index (Griffith et al. 2001, USGS 

2019). 

Site USGS 

Gage 

Number 

Drainage 

Area 

(km2) 

Level IV US EPA Ecoregion Ecoregion Used in Multimetric 

Index 

Georgia 

Route 88 

02200120 1173.19 Coastal Plain Red Uplands (65k) Coastal Plain Red Uplands (65k) 

Wadley 02201230 3470.58 Atlantic Southern Loam Plains 

(65l) 

Atlantic Southern Loam Plains (65l) 

Rocky 

Ford 

02202040 5050.48 Southeastern Floodplains and 

Low Terraces (65p) 

Atlantic Southern Loam Plains (65l) 

Oliver 02202190 6138.27 Floodplains and Low Terraces 

(75i) 

Sea Island Flatwoods (75f) 

Georgia 

Route 119 

02202500 6863.47 Floodplains and Low Terraces 

(75i) 

Sea Island Flatwoods (75f) 

Morgan’s 

Bridge 

02202680 7692.27 Floodplains and Low Terraces 

(75i) 

Sea Island Flatwoods (75f) 
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Table 2.2. Mean (± SE) Ogeechee River hydrological and chemical parameters by site, including 

discharge, temperature, specific conductance, dissolved oxygen and pH. 

Site Discharge 

(m3/s) 

Temperature 

(°C) 

Specific conductance 

(µS/cm) 

Dissolved oxygen 

(mg/l) 

pH 

Georgia 

Route 88 

3.62 (±1.03) 18.3 (±1.9) 58.36 (±2.48) 7.06 (±0.57) 6.89 (±0.13) 

Wadley 15.39 (±3.36) 18.6 (±2.1) 68.02 (±2.53) 7.74 (±0.51) 6.94 (±0.10) 

Rocky 

Ford 

27.92 (±6.84) 18.7 (±1.5) 100.09 (±5.04) 6.85 (±0.44) 7.14 (±0.10) 

Oliver 35.59 (±7.92) 20.8 (±1.9) 103.73 (±7.41) 6.28 (±0.43) 7.01 (±0.13) 

Georgia 

Route 

119 

50.31 (±8.85) 20.2 (±1.9) 89.46 (±5.49) 6.57 (±0.52) 6.82 (±0.12) 

Morgan’s 

Bridge 

51.51 (±9.29) 20.2 (±1.7) 86.78 (±5.77) 6.48 (±0.39) 6.83 (±0.12) 

 

Table 2.3. Mean (± SE) Ogeechee River hydrological and chemical parameters by season, including 

discharge, temperature, specific conductance, dissolved oxygen and pH. 

Season Discharge 

(m3/s) 

Temperature 

(°C) 

Specific conductance 

(µS/cm) 

Dissolved oxygen 

(mg/l) 

pH 

Summer 19.17 (±3.56) 25.7 (±0.3) 94.20 (±4.54) 5.43 (±0.12) 7.00 (±0.07) 

Fall 17.65 (±4.74) 23.4 (±0.6) 92.64 (±7.62) 5.99 (±0.22) 7.05 (±0.11) 

Winter 30.65 (±5.61) 11.3 (±0.7) 79.42 (±4.31) 8.76 (±0.33) 6.74 (±0.09) 

Spring 55.42 (±8.62) 17.3 (±0.8) 71.36 (±3.42) 7.15 (±0.30) 6.96 (±0.10) 
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Table 2.4. Mean (± SE) across three years of hydrological and chemical parameters for each site in each season, including discharge, temperature, 

specific conductance, dissolved oxygen and pH. 

Site Season Discharge (m3/s) Temperature (°C) Specific conductance 

(µS/cm) 

Dissolved oxygen 

(mg/l) 

pH 

Georgia 

Route 88 

Summer 1.09 (±0.14) 25.3 (±0.6) 71.20 (±0.49) 5.29 (±0.18) 6.91 (±0.29) 

Fall 0.72 (±0.24) 21.4 (±1.3) 53.95 (±3.16) 6.01 (±0.30) 7.23 (±0.12) 

Winter 3.85 (±0.94) 10.8 (±2.4) 57.31 (±2.00) 9.13 (±1.06) 6.70 (±0.34) 

Spring 8.82 (±1.24) 15.5 (±3.0) 51.00 (±1.21) 7.81 (±1.12) 6.73 (±0.25) 

Wadley Summer 6.45 (±0.50) 26.6 (±1.0) 75.97 (±3.03) 6.21 (±0.26) 6.99 (±0.22) 

Fall 13.43 (±9.17) 22.1 (±1.4) 71.27 (±6.48) 7.00 (±0.29) 7.13 (±0.16) 

Winter 13.57 (±3.28) 9.6 (±2.0) 65.89 (±2.25) 10.09 (±0.69) 6.81 (±0.11) 

Spring 28.10 (±5.32) 16.1 (±2.8) 58.97 (±2.07) 7.65 (±0.92) 6.80 (±0.29) 

Rocky 

Ford 

Summer 18.63 (±6.83) 24.7 (±0.3) 111.87 (±7.19) 5.46 (±0.38) 7.16 (±0.13) 

Fall 8.91 (±2.52) 20.6 (±1.3) 117.17 (±3.21) 6.56 (±0.68) 7.38 (±0.20) 

Winter 26.09 (±7.32) 11.5 (±1.6) 90.32 (±3.98) 8.67 (±0.90) 6.82 (±0.16) 

Spring 58.05 (±15.57) 17.8 (±1.4) 81.00 (±5.94) 6.72 (±0.43) 7.19 (±0.23) 

Oliver Summer 21.22 (±2.52) 26.3 (±0.3) 111.81 (±2.73) 5.26 (±0.20) 7.19 (±0.08) 

Fall 13.16 (±5.30) 26.1 (±1.5) 131.43 (±13.81) 5.34 (±0.44) 7.18 (±0.25) 

Winter 36.24 (±9.61) 12.3 (±2.0) 89.16 (±14.80) 7.94 (±1.04) 6.63 (±0.30) 

Spring 71.74 (±15.62) 18.3 (±1.5) 82.50 (±6.56) 6.60 (±0.61) 7.03 (±0.31) 

Georgia 

Route 

119 

Summer 35.28 (±10.25) 26.3 (±0.4) 98.31 (±11.81) 5.16 (±0.06) 6.84 (±0.05) 

Fall 34.85 (±16.53) 25.0 (±0.2) 91.82 (±16.23) 5.33 (±0.59) 6.72 (±0.39) 

Winter 50.42 (±15.35) 11.5 (±1.8) 89.22 (±10.76) 8.71 (±0.71) 6.72 (±0.21) 

Spring 80.70 (±20.33) 17.8 (±2.5) 78.47 (±6.54) 7.09 (±0.90) 6.99 (±0.27) 

Morgan’s 

Bridge 

Summer 32.36 (±4.91) 25.1 (±1.1) 96.02 (±9.62) 5.18 (±0.19) 6.88 (±0.09) 

Fall 34.85 (±16.10) 25.0 (±0.3) 90.23 (±20.26) 5.68 (±0.39) 6.64 (±0.29) 

Winter 53.71 (±14.83) 12.2 (±1.8) 84.64 (±9.19) 8.00 (±0.20) 6.79 (±0.40) 

Spring 85.14 (±22.46) 18.3 (±2.1) 76.23 (±6.22) 7.04 (±0.79) 7.00 (±0.16) 
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Table 2.5. Means (±SE) of total taxa and Shannon diversity index (H’) for all samples in the Ogeechee 

River, as well as by site and season. 

 
Total Taxa Shannon H' 

Ogeechee 

River 

30.7 (±0.8) 2.57 (±0.04) 

Season 
  

Summer 32.6 (±1.6) 2.63 (±0.07) 

Fall 32.5 (±1.3) 2.78 (±0.04) 

Winter 28.3 (±1.6) 2.59 (±0.09) 

Spring 29.3 (±1.6) 2.28 (±0.10) 

Site 
  

88 Crossing 35.1 (±2.3) 2.67 (±0.08) 

Wadley 33.9 (±1.6) 2.79 (±0.06) 

Rocky Ford 32.1 (±1.6) 2.62 (±0.10) 

Oliver 29.6 (±1.5) 2.58 (±0.10) 

Hwy 119 26.3 (±1.6) 2.36 (±0.14) 

Morgan's 

Bridge 

27.0 (±1.4) 2.42 (±0.11) 
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Table 2.6. SIMPER average % Bray-Curtis similarities within sites and dissimilarities among sites for 

Ogeechee river macroinvertebrate relative abundances. 

 Georgia 

Route 88 

Wadley Rocky Ford Oliver Georgia 

Route 119 

Morgan’s 

Bridge 

Average 

Similarities 

49.77 45.47 48.94 43.97 48.46 43.73 

      

Average 

Dissimilarities 

Georgia 

Route 88 

Wadley Rocky Ford Oliver Georgia 

Route 119 

Wadley 53.21 

Rocky Ford 58.75 54.61 

Oliver 62.59 59.24 51.44 

Georgia Rt 119 63.81 60.79 51.26 54.14 

Morgan’s Bridge 61.20 60.69 55.75 57.91 53.85 

 

Table 2.7. SIMPER average % Bray-Curtis similarities within seasons and dissimilarities among seasons 

for Ogeechee river macroinvertebrate relative abundances. 

 Summer Fall Winter Spring 

Average 

Similarities 

44.33 48.66 46.26 47.76 

    

Average 

Dissimilarities 

Summer Fall Winter 

Fall 54.97 

Winter 65.01 62.24 

Spring 66.81 64.54 55.90 
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Figure 2.1. PCA on correlations biplot of discharge (m3/s), temperature (°C), SPC (µS/cm), %DO and pH 

of all samples, colored by season and with factor loadings for each variable. 

 

Figure 2.2. Plot of the first two dimensions of a 3D nMDS for macroinvertebrate relative abundance data 

demonstrating seasonal differences. Stress was 0.16. 



33 

 
 
 

 
Figure 2.3. dbRDA plot for macroinvertebrate relative abundance data with samples as points colored by 

their season, arrows denoting the ordination of continuous constraints and labels for the centroids of sites 

and seasons. 
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Figure 2.4. dbRDA plot for macroinvertebrate relative abundance data with samples as points colored by 

their site, arrows denoting the ordination of continuous constraints and labels for the centroids of sites and 

seasons. 
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CHAPTER 3 

 

INFERRING FOOD WEBS FROM LITERATURE SOURCES TO ANALYZE SPATIAL AND 

TEMPORAL VARIATION IN FOOD WEB STRUCTURE 

 

INTRODUCTION 

Community composition has a long history of use in bioassessment and applied community 

ecology, but strides have been made to expand other measures that incorporate ecosystem processes and 

function (Usseglio-Polatera et al. 2000, Gessner and Chauvet 2002, Friberg et al. 2011). One new 

approach has been to incorporate food webs, due to their ability to detect interactions within larger 

systems and to tie compositional data to overall function (Gray et al. 2014). The Ogeechee River’s 

invertebrate food web has been previously studied based on the snag habitat at a single site (Wallace et al. 

1987, Benke and Wallace 2015, Benke 2018), but knowledge of the longitudinal and temporal variation in 

the river are limited. Greater study of the river across time and space would be useful for detecting and 

understanding environmental impacts. In-depth study of the river like that used by Benke and Wallace 

(2015) is too labor intensive for biomonitoring, but using inferred food webs based on known feeding 

relationships is an increasingly popular method (Schneider 1997, Gray et al. 2015, Lu et al. 2016, 

Thompson et al. 2018) and is more feasible for rapid monitoring. 

Food Webs 

Food webs have a number of topological properties that fluctuate predictably in response to 

external factors and can impact the stability of ecological systems (Dunne 2009). Early research into food 

web properties suggested that many of these properties were scale invariant (Briand and Cohen 1984), but 

later research suggested that scale invariance was the result of methodological issues such as low 

taxonomic resolution, binning of phylogenetically or functionally related taxa, ignoring age structure and 



36 

 
 
 

inadequate documentation of diets and interactions (Martinez 1991, Polis 1991). These results spurred 

further research into the patterns of variation in food web properties using larger, more detailed webs. 

The qualitative network structure of a food web, often referred to as its topology, revolves around 

species, represented by nodes, and species trophic interactions, represented by links between nodes. The 

number of nodes (S) in a web represents the species richness or web size, while the number of links (L) 

are a basic measure of its connectivity (Dunne 2009). Complexity and connectivity of a web can be 

studied using multiple properties, such as the linkage distributions and clustering coefficients, but the 

most commonly studied are links per species and connectance. Links per species, also known as linkage 

density, is calculated as L/S, while connectance, the proportion of links out of all possible links, is 

calculated as L/S2 (Dunne 2009). Connectance is of importance to conservation as high connectance 

reduces the rate of species lost to secondary extinctions when a system is subject to primary extinctions 

(Dunne et al. 2002b). Connectance tends to be low, with one meta-analysis finding that connectance 

ranged from 0.026 to 0.315 (Dunne et al. 2002a). 

To understand the trophic composition of food webs, scientists often compute proportions of 

different taxa. Proportions of basal, intermediate and top taxa are commonly investigated, where basal 

taxa are defined as web members that do not consume other organisms and top taxa are defined as web 

members that are not consumed by other organisms (Dunne 2009). Proportions of other groups such as 

cannibals and omnivores (defined as animals that feed on multiple trophic levels) are sometimes 

measured (Dunne 2009). Most commonly the ratio of prey to predators is measured by dividing the total 

of all species that are prey (bottom and intermediate species) by the total of all species that are predators 

(intermediate and top species) (Cohen 1977). Prey to predator ratios have been widely argued to be 

constant (Jeffries 2002, Donald and Anderson 2003), although this is subject to debate (Raia et al. 2007, 

Shulman and Chase 2007) and not generally reflected in stream food webs (Thompson and Townsend 

1999, Schmid-Araya et al. 2002, McHugh et al. 2015). 
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Food chain length is a measure of the number of links from a basal taxon to a given taxon in a 

food chain, generally computed as mean chain length, the average of all food chain lengths for all taxa in 

a web (Dunne 2009). Food chain length is often estimated using stable isotopes. Mean trophic level is a 

related measure that is averaged from the individual trophic levels of all organisms in a web. It can be 

calculated in several ways based on the trophic levels of a species’ prey (Dunne 2009). Many food web 

attributes are highly correlated and analysis of published webs suggests food web attributes covary, with 

connectance correlated to mean trophic level and proportion of intermediate species, and richness 

correlated with linkage density and mean chain length (Vermaat et al. 2009). Meta-analysis suggests that 

diversity and web size drive increases in links and linkage density and decreases in connectance based on 

power law relationships (Riede et al. 2010) 

Structural Variation in Food Webs in Rivers 

Understanding of the patterns of variation in food webs in lotic ecosystems draws on general 

hypotheses of food web structure proposed for a wide variety of systems. With regards to food chain 

length, three major hypotheses have been proposed; a) the ecosystem size hypothesis, in which increases 

in habitat size lead to increases in species richness which in turn increase food chain lengths, b) the 

productivity hypothesis, in which increases in available energy allow that energy to flow through more 

trophic levels without being completely metabolized, and c) the productive space hypothesis which 

combines the two (Post et al. 2000). These hypotheses are sometimes expanded to other structural 

properties. For instance, the ecosystem size hypothesis has found support in pitcher plant communities, 

where both food chain length and linkage density increased with pitcher size, corresponding to an 

increase is species richness (Baiser et al. 2012). In stream mesocosms, the ecosystem size hypothesis has 

also been supported, with mesocosms having smaller food chains than larger natural systems (Brown et 

al. 2011). In drying streams, decreases in habitat size led to lower richness, smaller food chain lengths and 

higher prey-predator ratios as predators went missing from streams faster than prey (McHugh et al. 2015). 

A study of large rivers found support for the ecosystem size hypothesis for food chain lengths and not the 
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productivity hypothesis, although only primary productivity was tested and not availability of 

allochthonous organic materials for decomposers (Sabo et al. 2010). However, this study linked the 

effects of the ecosystem size hypothesis to increased discharge variability in smaller rivers, suggesting 

that disturbance may be reducing food chain length (Sabo et al. 2010). On the other hand, in New 

Zealand, in a study of streams in pine forests (where allochthonous material is of low quality), open 

pastures and tussock, mean food chain length was found to increase with higher primary productivity but 

not with greater detrital food resources (Townsend et al. 1998, Thompson and Townsend 1999). Food 

chain length has also been correlated with primary productivity in arctic streams (Parker and Huryn 

2013). Research on streams in New Zealand found support for both the productivity hypothesis in 

autotrophic streams and for the ecosystem size hypothesis in detritally based heterotrophic streams, but no 

trend that corresponded to both at once, as would be required by the productive space hypothesis 

(Thompson and Townsend 2005a). 

Disturbance in lotic systems has been previously defined as disruptive events with a frequency 

and intensity outside of a predictable range, such as a spate in a stream where discharge is several 

standard deviations above average discharge for that time of year (Resh et al. 1988). However, predictable 

events are sometimes considered disturbances, based on physical impacts and ecological responses (Poff 

1992). Disturbance from flooding has been shown to decrease stability of post-disturbance food webs, 

making them more vulnerable to secondary extinctions (Calizza et al. 2015). Linkage density and 

connectance were negatively correlated with percent bed movement, a measure of hydrologic disturbance, 

in arctic streams (Parker and Huryn 2013). In New Zealand streams, links down per species (links 

between a species and its prey) have been found to decrease with disturbance due to reductions in species 

richness (Townsend et al. 1998). Opposite effects have been suggested from modeling and 

experimentation in California rivers, where preventing floods led to dominance of predator resistant, 

competitive caddisflies, reducing algal productivity and therefore potentially shrinking web size and other 

associated food web properties (Wootton et al. 1996). 
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Habitat has also been implicated in structuring benthic food webs. Heterogeneity of habitat has 

been found to contribute to variation in species richness and connectance of stream food webs at patch 

and reach scales (Thompson and Townsend 2005b). Landscape-scale variation also contributes to 

variation within aquatic systems. Latitude-dependent climate variables have been found to impact a wide 

range of food web structural variables in phytotelmata at a continental scale (Baiser et al. 2012) and large-

scale longitudinal changes in species richness and connectance in rivers have been documented in 

response to changes in physiography (Romanuk et al. 2006). 

The presence or absence of predators can often have major impact on food webs, expanding food 

chains and shifting the species composition and diets of other food web members. In addition to 

increasing mean food chain length, the arrival of a single generalist predator can cause large increases in 

the number of links and amount of omnivory in a web (Woodward and Hildrew 2001). Predators can also 

facilitate other ecological patterns, such as whether increases in productivity drive increases in food chain 

length (Parker and Huryn 2013). In the presence of disturbances which reduce predator resistant dominant 

taxa, predators can enhance productivity and available food by reducing grazing pressure on algae, 

although larger predators can also exclude smaller predators, negatively impacting supply of basal 

resources (Power et al. 2008). The dynamic effect of predation makes its impact hard to generalize, but it 

needs to be considered when analyzing patterns in web structure. 

Food Web Variation 

Food webs can be highly seasonal, with yearlong summary web structure not reflecting the webs 

of discrete time periods. Summary webs overestimate richness, number of links and links down per 

species, and average food chain length values for different seasons in autotrophic streams (Thompson and 

Townsend 1999), and overestimate links, linkage density, proportions of intermediate species and 

connectance in heterotrophic streams (Tavares-Cromar and Williams 1996). Taxa that occur in certain 

seasons but not others can alter species richness and number of links, and therefore connectance 
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(Thompson and Townsend 1999). Prey-predator ratios have been found to be higher in the summer and 

autumn compared to winter and spring due to increases in richness in the warmer months (Thompson and 

Townsend 1999, Schmid-Araya et al. 2002). 

The seasonality of these webs can be based on several factors other than shifts in community 

composition. Thompson and Townsend (1999) found seasonal variation in most food-web properties 

based on availability of food resources such as gross primary production or organic matter. Ontogeny of 

stream invertebrates can lead to diet shifts, inactivity, immigration and emigration at certain times of year. 

Seasonal shifts in proportions of top, intermediate and basal species in Ontario food webs were 

attributable to ontogenetic diet shifts (Tavares-Cromar and Williams 1996). In a Texas saltmarsh Akin 

and Winemiller (2006) found seasonal shifts in diet came from a combination of growth and migration, 

with increases in connectance and mean trophic level as developing fish grew into the size range of larger 

predators. Combined with community structural shifts, these effects could severely alter trophic 

relationships and the vulnerabilities of these systems. 

Objectives 

The Ogeechee and other rivers in the Southeastern Coastal Plain could be better managed for 

fisheries, recreation and water resources with a more complete understanding of the natural variation of 

species interactions within food webs. I constructed food webs based on known interactions from the 

literature to understand whether consistent estimates could be garnered from biomonitoring data and 

whether those inferred interactions varied across sites and seasons. Number of links and linkage density 

are often highly correlated with food web size and as such I expect them to behave similarly. Both are 

reduced with disturbance and therefore higher discharge in the winter and may be higher in the summer 

and fall when discharge is lower, and many invertebrates are active and productive. Transitional periods 

like spring and autumn may support both flooding and baseflow adapted taxa, so it is possible that one or 

both periods support more taxa and more links. Connectance is likely to exhibit similar trends, being 
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higher during periods of lower discharge and disturbance, and when assemblages are more diverse and 

interactions are higher, likely in the summer (Thompson and Townsend 1999). However, connectance is 

sometimes negatively correlated with richness and therefore linkage density, so it is possible that the 

opposite will be found (Parker and Huryn 2013). Length of food chains has been well studied and is likely 

to increase with productivity and decrease with disturbance and is therefore likely to be higher in the 

summer and autumn. Prey-predator ratios may also decrease with diversity and therefore behave similarly 

to links and linkage density as found by McHugh et al. (2015) but may possibly be constant, depending 

on whether prey diversity drops with predator diversity or not. If prey-predator ratios vary with season but 

not with other effects, it may indicate ontogenetic effects which might be reflected in community 

composition analysis. Proportion of intermediate taxa and top taxa may depend on ontogeny and 

intermediate taxa are more likely to occur in seasons where top taxa are large enough to consume at 

higher trophic levels, so possibly in the summer or autumn (Tavares-Cromar and Williams 1996). 

Potential for use of Food Web Metrics in Biomonitoring 

Food web metrics, particularly from inferred data, have been proposed for bioassessment (Gray et 

al. 2014, Morales-Castilla et al. 2015). Due to the heavy dependence of certain food web metrics on 

community structure estimates such as species richness (Bengtsson 1994, Dunne et al. 2002a) and 

concerns about the reliability of inferred food web estimates, it remains possible that inferred food webs, 

at least at present, may not add anything to current monitoring schemes. Therefore, it is important to 

determine if food web metrics can detect changes that community-based metrics cannot detect just as well 

or better. I anticipate that several of the metrics, as mentioned above, will exhibit changes, but that those 

changes will be tied to compositional metrics such as species richness, which will outperform the food 

web metrics. 

METHODS 
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Food webs were constructed from the sample assemblages collected in Chapter 2. The 500-µm 

sieves used in collection of those samples fail to collect meiofauna, which have been found to contribute 

greatly to some stream webs (Schmid-Araya et al. 2002). Therefore, the invertebrate sub-web may 

underrepresent both links and nodes from low-level consumers. Fish and other vertebrate consumers were 

also unrepresented, which would underestimate higher level consumers and food chain lengths. Food web 

research in New Zealand streams suggests that pooling samples from patchy habitats into one reach-wide 

sample may lead to overestimates of number of links and prey-predator ratios and underestimates of 

connectance due to pooling intermediate consumers that are highly linked but do not always occur in the 

same microhabitats (Thompson and Townsend 2005b). However, the study also found greater variation 

between reaches than between patches within reaches, suggesting that differences between samples may 

still be evident regardless of pooling of sub samples. 

Taxonomic resolution can have a significant impact on food web metrics. Martinez (1991) found 

that successive aggregation of species within his food web in Little Rock Lake, Wisconsin initially 

overestimated and then underestimated connectance and linkage density, while prey-predator ratios 

exhibited an opposite trend of initial underestimation followed by over estimation as taxonomic 

aggregation increased. Food chain lengths were always underestimated. This was due to initially 

aggregating trophically redundant species, and then clustering trophically dissimilar species (Martinez 

1991). Further research confirmed that reducing to trophically redundant species lead to lower 

percentages of top taxa, higher percentages of basal and intermediate taxa, and higher connectance, while 

further reduction led to decreases in linkage density, proportion of intermediate taxa and food chain 

length, and increases in proportions of basal and top taxa (Martinez 1993). However, these results are not 

always reflected in streams, where connectance may increase with less resolution but most other 

properties remain fairly constant (Thompson and Townsend 2000). Additionally, inconsistent resolution 

that bins certain species such as algae into a single group leads to lower connectance, prey-predator ratios 

and linkage density (Thompson and Townsend 2000). This should not interfere much with between-
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sample comparisons if invertebrate species are consistently identified to the same taxonomic levels and if 

community composition doesn’t shift toward low resolution groups such as oligochaetes. Absolute values 

of food web characteristics may be off, with some potential for under or overestimating connectance and 

underestimating linkage density. 

Food Web Construction 

I constructed food webs using the WebBuilder R function (Gray et al. 2015) based on 

presence/absence data collected from Ogeechee River samples and a custom database of known feeding 

interactions from the literature. The database (Figure 3.1) and associated forms were built and run in 

Microsoft Access (2016) so that they could easily be added to by non-experts. Following the format of 

Gray et al. (2015), the database tracked consumer and resource taxa, their taxonomic classification 

(genus, subfamily, family, order, class) as well as category (Invertebrate, Vertebrate, Algae, etc.), life 

stage, evidence for the link between consumers and resources (observed, inferred) and the literature 

source for the interaction (including authors, journal information, date of publication and the title of the 

article). Taxonomic information was verified using the Global Names Resolver 

(http://resolver.globalnames.biodinfo.org/), but contrary to Gray et al. (2015), the Integrated Taxonomic 

Information System (ITIS) was used as the primary dataset instead of Global Biodiversity Information 

Facility (GBIF), as it was more up to date for North American taxa. Wallace et al. (1987) have done 

previous work on the lower portion of the river near the bottom two most sites, and have dietary data for 

primary consumers, as well as caddisflies and predators (Benke and Wallace 1997, Benke et al. 2001). 

Additional literature was found using online database searches for individual taxa and their close relatives 

(same genus or family) found in the samples as well as large published food webs from continental North 

America, with emphasis on the southeastern United States. Basal resources were binned into major 

resource groups including filamentous algae, unicellular algae, vascular plant detritus, amorphous 

detritus, wood, fungi and diatoms. Basal resources such as algal species being aggregated can skew their 

proportion of basal to intermediate species and as such would not be reliable for further analysis 

http://resolver.globalnames.biodinfo.org/
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(Martinez 1991). Similar problems may occur for species whose diets are inferred by binning taxonomic 

or functional feeding groups, which could lead to overestimating links. Web structural properties were 

calculated in R using the cheddar package for food web analysis (Hudson et al. 2013, R Development 

Core Team 2017). Structural features generated included number of links, nodes, linkage density, directed 

connectance, mean chain length, prey to predator ratio, proportion of intermediate nodes and proportion 

of top nodes. Isolated nodes that had no links to any other nodes were excluded from prey to predator 

ratios and proportion of intermediate and top nodes. Directed connectance assumes basal resources can 

act as consumers, even though this is not always realistic. Jaarsma et al. (1998) excluded impossible basal 

resource links from their calculation of connectance, as did studies that followed (Thompson and 

Townsend 1999, 2000, 2005a, 2005b), but other food web research has not. Compared to studies where 

basal consumption links are excluded from connectance calculations, these results may be somewhat 

underestimated. 

Food web analyses 

Linear mixed effects models were constructed in R (R Development Core Team 2017) using the 

nlme (Pinheiro et al. 2018) and lme4 (Bates et al. 2015) packages, including sites and seasons as fixed 

effects and year as a random effect, as was done for physicochemical variables and diversity 

measurements in Chapter 2. Interactions between site and season were tested and omitted if insignificant. 

Year was omitted from the model if it did not improve the model fit, and residuals were checked for 

normality and homoskedasticity, as in Chapter 2. Number of links was log transformed to ensure 

normality. Models were used to test richness, number of links, linkage density, connectance, mean food 

chain length, percentage of top and intermediate taxa and prey-predator ratios. Food web metrics, 

especially connectance, number of links and linkage density, can be dependent on species richness. Thus, 

I corrected variables with significant effects using log-log regressions of each metric with number of 

nodes and reran linear mixed models on their residuals to see if patterns persisted (Bengtsson 1994). 

Regressions were performed in R using the lm function.  
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I performed PCA on correlations of the food web properties and diversity metrics to examine the 

structure of the data. Total number of taxa, Shannon’s index, number of links, linkage density, directed 

connectance, mean chain length, prey to predator ratios and proportion of intermediate nodes were 

included in the PCA. Proportion of top nodes and basal nodes were excluded because they were both 

dependent on the proportion of intermediate nodes, since basal nodes were binned food categories. 

PERMANOVA (Clarke and Gorley 2015) was used to further examine differences between groups, using 

site, season and year as fixed effects, since there was some heterogeneity of multivariate normality. I used 

PERMDISP (Anderson and Walsh 2013) to check for heterogeneity of dispersion.  

RESULTS 

Interaction database 

The final database contained 3373 recorded interactions from 74 sources (Appendix A), and 540 

taxa were recorded in the database (Table 3.1). Some of these were of high taxonomic rank, up to order or 

class, due to binning or poor taxonomic resolution in the source literature, particularly for resource taxa. 

To assess the completeness of the database with respect to Ogeechee River food webs, I calculated the 

number of isolated nodes in each food web (Figure 3.2). A mean of 13.27% (standard deviation 2.97%, 

standard error 0.35%) of nodes in a food web were isolated in each food web. Some of these may have 

been basal resources, which were assumed to occur but were not recorded. Isolated nodes do not give 

information about taxa with only some of their links missing or feeding relationships that do not occur in 

nature but were assumed by WebBuilder, and thus do not provide us with a complete picture of how well 

food webs infer links. 

Food web metrics 

Number of links declined at downstream sites (F5,61 = 4.708, p = 0.0011) (Figure 3.3) but did not 

perceptibly change across seasons (F3,61 = 1.237, p = 0.3042). Linkage density was similar, with 

differences by site (F5,66 = 2.7819, p = 0.0247) but not by season (F3,63 = 0.2674, p = 0.8486). R119 was 
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especially lower than the other sites (Figure 3.3) as it was when measuring the number of links. Neither 

site (F5,66 = 1.5193, p = 0.1966) nor season (F3.63 = 2.6391, p = 0.0571) was significantly different for 

directed connectance, although seasonal changes were marginally significant in response to a 0.01 

increase in connectance in the winter and spring (Figure 3.4). Low species richness drives increases in 

connectance (Riede et al. 2010, Parker and Huryn 2013) in small food webs because the number of 

potential links (S2) is small relative to larger webs, so actual links make up a larger portion of total links. 

High connectance may therefore be an artifact of the small size of individual samples, and the lower 

diversity of winter and spring. Mean chain length also differed by site (F5,61 = 3.4030, p = 0.0089) but not 

season (F3,61 = 0.98322, p = 0.4067). R88 had longer food chains than all other sites and MO and 

especially R119 had shorter food chains (Figure 3.5), mirroring the trend in taxonomic richness across 

sites. Prey to predator ratios didn’t change between sites (F5,66 = 0.2975, p = 0.9125) and were only 

marginally significant between seasons (F3,63 = 2.6199, p = 0.0585), with little difference in means, 

compared to the amount of variance (Figure 3.6, Table 3.2). There were no significant differences 

between sites for proportions of intermediate nodes (F5,66 = 0.2154, p = 0.9547) or top nodes (F5,66 = 

0.1127, p = 0.9892), nor were there significant seasonal differences (intermediate F3.63 = 2.1336, p = 

0.1048; top F3,63 = 2.3193, p =0.0839). Given that basal resources were fixed, proportions of top nodes 

and intermediate nodes had an inverse linear relationship, the slight variability between the two was due 

to isolated basal nodes that were excluded from calculations, slightly shifting the proportions of both. 

Log-log regressions for properties that depended on significant or marginally significant factors 

including number of links (R2 = 0.7912, F1,70 = 265.3, p < 0.0001), linkage density (R2 = 0.3896, F1,70 = 

44.67, p < 0.0001), directed connectance (R2 = 0.1086, F1,70 = 8.532, p < 0.0047) and mean chain length 

(R2 = 0.3273, F1,70 = 34.06, p < 0.0001) were significant, but prey to predator ratios were not (R2 = 

0.02766, F1,70 = 1.992, p = 0.1626). After rerunning models on the log-log residuals, number of links and 

linkage density were equivalent, having effectively removed the denominator from linkage density when 

regressing against nodes and were no longer different between sites (F5,66 = 1.4613, p = 0.2152) (Figure 
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3.3). Directed connectance’s seasonal differences were no longer even marginally significant (F3,63 = 

1.2768, p = 0.2900). However unlike number of links and linkage density, the trend remained consistent 

(Figure 3.4). This suggests that either the data were inconclusive to begin with, that it lacked the power to 

detect differences but was not entirely dependent on richness, or that the relationship between taxonomic 

richness and connectance was not linear and was not corrected for properly. Mean chain length was also 

no longer significant (F5,66 = 1.3002, p = 0.2753) and differences between sites both before and after 

correction (Figure 3.5) were similar to the behavior of number of links and linkage density (Figure 3.3). 

Prey to predator ratios, which are not dependent on species richness and consequently did not have a 

significant regression against number of nodes in the food web, still had marginally significant 

differences across seasons (F3,63 = 2.6351, p = 0.0574) and the position of the data was relatively well 

preserved (Figure 3.6). 

No real structure was observed in the PCA plot (Figure 3.7) with respect to sites or seasons, and 

the first component explained 56% of the variance, while the second component explained another 23%. 

The first principal component correlated most strongly with number of links, linkage density and mean 

chain length, with the latter two being strongly dependent on the former two, while the second principal 

component correlated most with diversity metrics, connectance and prey to predator ratios. A 

PERMANOVA test produced highly significant effects of site (perm-F5,61 = 4.2321, p = 0.0010), but not 

season (perm-F3,61 = 1.2273, p = 0.3067). Year was marginally significant (perm-F2,61 = 2.5482, p = 

0.0751). These differences mirrored univariate differences between sites driven by taxonomic richness. 

When repeated with response variables corrected via a log-log regression against number of nodes, sites 

were no longer significantly different (perm-F5,61 = 1.4929, p = 0.1513) but seasons were marginally 

different (F3,61 = 1.8449, p = 0.0956), perhaps reflecting the seasonal differences in metrics such as prey 

to predator ratios that were insensitive to food web metrics and the evenness component of the Shannon 

index. Year was significantly different (F2,61 = 9.1683, p = 0.0001) suggesting interannual variation or 
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identifier artefacts that caused differences in community composition which drove evenness and prey to 

predator ratio differences. 

DISCUSSION 

Of all the variation in food web structure, most was marginally significant (0.05 < p < 0.1) or 

only weakly significant (0.01 < p < 0.05), and effect sizes were generally small, which brings in to 

question the reliability of these differences. Many of the stronger relationships, such as the number of 

links and mean chain length, were dependent on taxonomic richness. Number of links, and linkage 

density behaved similarly and were different across sites, but the relationship completely disappeared 

after controlling for the influence of number of nodes in the food web. While I had expected variation to 

be dependent on taxonomic richness, I had anticipated seasonal differences, but despite lower diversity in 

the winter and spring the only significant differences were between sites. Winter and spring do have 

fewer links (Table 3.2), so perhaps some of the differences were simply too noisy or weak to translate 

from taxonomic richness. Another possibility is that fauna that differed between sites, but not seasons, 

were either better or more poorly represented in the database. Connectance was stable and only exhibited 

marginal increases in the spring and winter, which were dependent on taxonomic richness. I had expected 

that connectance might increase with web size as it does in some webs (Thompson and Townsend 1999) 

or decrease with web size as an artefact of small web size, and it appears to have done the latter, as Parker 

and Huryn (2013) reported similar effects with web sizes of around ~30. My webs were only slightly 

larger and inferring links may have exacerbated the problem if common taxa found in most webs had 

overrepresented numbers of interactions or rare taxa found mostly in larger webs had underrepresented 

numbers of interactions. When controlling for web size, the relationship became non-significant but 

persisted. This may have been due to a non-linear relationship, as connectance is based partially on the 

square of the number of nodes in a food web, but it is unclear how to examine connectance independent 

of taxonomic richness without obliterating much of the meaning of the property. Relatively invariable 

connectance is not surprising for a single river, and connectance is more robust to aggregation than other 
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measurements, so might be more reliable (Martinez 1991). Mean chain length was also different between 

sites, with longer food chains upstream at more taxon rich sites, and not between seasons as I had 

expected. The relationship became non-significant when regressed against number of nodes, indicating 

dependence on web size. It is possible that larger mean chain lengths were indicative of more complete 

webs with more links between consumers, rather than just links between consumers and basal resources 

or totally isolated nodes of consumers that had no inferred feeding relationships. More predators 

represented could also increase mean chain length as it often does (Woodward and Hildrew 2001, Parker 

and Huryn 2013), but given the lack of similar patterns in prey to predator ratios, it is possible that the 

pattern is purely a case of increasing numbers of nodes adding and increasing number of links, leading to 

more opportunities for chains of links. The PCA (Figure 3.7) corroborates this, as mean chain length and 

linkage density were both very correlated to the first PCA axis. 

Prey to predator ratios followed a different pattern from other food-web metrics. Prey to predator 

ratios were not dependent on web size, and differed between seasons, although the difference was only 

marginally significant, and may not have been reliable. I had predicted seasonal variation but had 

suggested that smaller web sizes in the winter and spring might increase prey to predator ratios. Instead 

prey to predator ratios were lowest in the winter and the differences were unaffected by web size. Lower 

ratios may have been due to fewer predators present in the winter leading to more primary or low-level 

consumers being interpreted as predators but not as prey in calculation. This could even be an artefact of 

subsampling, which could fail to detect smaller intermediate level predators when certain primary 

consumers were dominant in the winter. Alternatively, it could simply be a phenological effect on 

community composition, where certain taxa are missing from the system at different times of year due to 

ontogeny, either fewer predators during the winter (and to a lesser degree the summer) or more primary 

consumers during the spring and fall. Ontogeny and phenology have been found to affect temporal 

variation in food webs (Tavares-Cromar and Williams 1996, Akin and Winemiller 2006). Despite the 

similarities between proportions of intermediate taxa, proportions of top taxa and prey to predator ratios, 
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the former two structural components didn’t exhibit significant trends, they were noisier metrics that 

inversely proportional due to basal resources being relatively fixed. 

Most differences, particularly between sites, were driven by taxonomic richness, which suggests 

that most variation in food web structure along the Ogeechee River is not dependent on shifts in 

taxonomic composition between differently connected taxa. Given the reliance on a few general basal 

resources of many Ogeechee River taxa (Wallace et al. 1987, Benke and Wallace 2015) and the generalist 

diets of most invertebrate predators in the river (Benke and Wallace 1997, Benke et al. 2001), this result 

is not surprising. The importance of web size in driving food web structure was not just visible in the 

impact of log-log regressions of structural properties against number of nodes, but in the ordination of 

structural properties. The first axis of the ordination explained most of the variation among samples, but 

interestingly was more strongly related to links, linkage density and mean chain length. While these are 

all dependent on web size, and therefore taxonomic richness, the strength of the relationship suggests that 

the major spatial gradient of food web structure in the Ogeechee is complexity. PERMANOVA seemed to 

support this as site, but not season, had significant effects on food web structure. The same result was 

observed with links, linkage density, and mean chain length, which were strongly explained by the first 

PCA axis. Prey to predator ratios only had seasonal variation and diversity metrics had both site and 

seasonal variation, and both were explained less well by the first principal component and were partially 

explained by the second principal component. The effect of web size is commonly reported in food webs 

(Bengtsson 1994, Thompson and Townsend 1999, Vermaat et al. 2009, McHugh et al. 2015) although it 

is not always consistent between studies. Diversity dependence of food web structure is natural, but the 

dependence visible here may have been affected by features of the interaction database. Taxa with more 

recorded interactions in the database due to more available literature, or taxa that were widely eaten, 

especially when binned to higher taxonomic levels (e.g. chironomid subfamilies) would help drive 

diversity. The more taxa in a food web, the greater the likelihood these link-rich taxa would be included, 

and the more complexity there would be. If subsamples were larger, or all interactions were known, then 
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it might turn out that different taxa are driving greater numbers of links or longer food chains, and that the 

importance of diversity is less important. If it is assumed that the effect is real, it might still be influenced 

by composition. Invertebrates at lower sites, where connectivity was less, might also be less widely 

palatable, and less diverse or lower quality prey might support less diverse secondary consumers and 

smaller, simpler webs overall. Further investigation into the component organisms within food webs 

might help to identify if that is the case. 

Prey to predator ratios varied across seasons independently of taxonomic richness. On the PCA, 

prey to predator ratios were similar to connectance (Figure 3.7) which also varied by season in a 

marginally significant way. When the influence of richness was removed from the PERMANOVA 

analysis, seasons became highly significant, suggesting that prey to predator ratios drove that variation, 

and that taxonomic richness gradients had interfered with that variation. Prey to predator ratios have been 

found to vary with richness in response to habitat size (McHugh et al. 2015) and seasonal variation 

(Thompson and Townsend 1999, Schmid-Araya et al. 2002), changes in the ratio independent of those 

effects are uncommon. Prey to predator ratios are likely to be governed by community structure and are 

likely to be influenced by community composition metrics. Understanding these patterns would be useful 

for determining if prey to predator ratios might complement or be redundant with common biomonitoring 

metrics. 

Compared to many other food webs in the literature (Dunne et al. 2002a), the average food web 

structure of the Ogeechee was not out of place. Despite being derived from small, incomplete webs, 

Ogeechee River connectance had a mean of 0.119 (SE±0.002), which was very similar to the average 

reported by Dunne et al. (2002a) and in the middle of the range used by Riede et al. (2010) and a linkage 

density of 4.21 (±0.09) was on the lower end for Dunne et al. (2002a) and Riede et al. (2010) but similar 

to linkage densities reported by Havens (1992). Mean chain lengths were also similar (Schmid-Araya et 

al. 2002) or higher (Thompson and Townsend 1998, Thompson and Townsend 2005a) than numbers 

reported elsewhere for freshwater invertebrate focused webs, with an average of 4.96 (SE±0.17) links 
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long. Prey to predator ratios were quite low compared to those found in other streams (Schmid-Araya et 

al. 2002, Thompson and Townsend 2005a, McHugh et al 2015) with an average of 0.828 (SE±0.013) that 

suggests more predators than prey on average. This is likely an artefact of excluding fish and binning 

basal taxa. Prey to predator ratios behaved opposite of seasonal patterns in Schmid-Araya et al. (2002), 

which didn’t bin basal taxa or exclude fish, and had much higher proportions of top taxa and fewer 

intermediate taxa. 

Interpretation of many of the metrics was hampered by possible artefacts of the interaction 

database and sampling protocol. It appears that the small subsamples used in rapid biomonitoring, while 

cost-effective for composition-based monitoring (Barbour and Gerritsen 1996) might be inadequate if 

managers want to make use of food web metrics. Identifying cost effective sample sizes for use with 

inferred food webs would require identifying how many rare taxa could be excluded while still getting 

usable results and then calibrating subsample sizes accordingly. The interaction database is also still 

relatively small and ill equipped for other regions, gaining access to more interaction data, especially 

from some of the more modern food web research that does not provide clear records of individual 

interactions, would improve performance considerably. Some groups had spotty records of interactions, 

for instance, very little literature identifies mollusks or oligochaetes as prey to other invertebrates, often 

due to difficulty identifying remains in gut contents. Other taxa have poor records of their diets, 

particularly predator-piercers and crustaceans, because they grind or liquify their food and are excluded 

from analysis (e.g. Hall et al. 2000). Lentic floodplain taxa and riverine taxa often don’t have records of 

interaction despite overlap in sampling; further food web research may need to be done on these ecotones. 

Certain literature (e.g. Benke et al. 2001) bin taxa in certain interactions at very high taxonomic ranks 

(e.g. Zygoptera). These may overestimate interactions considerably and being able to replace them with 

higher resolution data would lead to better results. With these improvements, better estimates of basic 

structural properties would be possible. This includes potentially sensitive ones such as prey to predator 
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ratios, which might misrepresent prey as top predators if too many taxa have few interactions recorded. 

Finally, data from fish, macrophytes and algae would also be useful for more holistic management. 

For the moment, it appears that food web structure provides no advantage over analysis of 

community structure for biomonitoring. Analysis of community structure in Chapter 2 discerned many 

differences across sites and seasons and did so with more certainty and reliability than food web metrics. 

On top of that, differences distinguished by food web metrics were redundant to community metrics. 

Community analysis may also provide better understanding of ecosystem function using functional 

feeding groups (Cummins 1973) and functional traits (Menezes et al. 2010). Responses of food web 

structure to diversity also mean that most of the results of food web analysis were predictable. 

In the future, better databases could be used to perform more sophisticated data analyses. With 

mass or abundance estimates, inferred webs can be used to estimate trivariate measures such as link 

angles (Cohen et al. 2009) which have been used to identify impacts of chemical spills on the transfer of 

energy through food webs (Thompson et al. 2016), increases in biomass flux in restored river food webs 

(Thompson et al. 2018) and constrained feeding relationships in experimental drought food webs 

(Woodward et al. 2012). Inferred food webs can also be applied to investigate web substructure, such as 

investigating the impact of food web “cores” to understand how webs compensate for species loss (Lu et 

al. 2016). Even without improvements to the database, the food webs I generated could be applied to 

management by examining interactions to predict responses to management. Identifying resource 

pathways or potential keystone species by inspecting connectance webs could be used in decision making 

for fisheries management or if restoration is required. If the response of taxa to a certain management 

action is known, food webs can be used to understand how they will propagate through the system. For 

instance, Cross et al. (2013) suggested using the results of a flow food web study to increase fish 

production based on known relationships with their primary food sources. Therefore, it would be 

beneficial to communicate with managers about what priorities food web monitoring could facilitate. 
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The importance of taxonomic richness within food webs of the Ogeechee River further confirms 

the importance of biodiversity. Although food webs and their properties can impart robustness and 

resistance to collapse on an ecological community in response to events such as species extinctions or 

droughts (Dunne et al. 2002b, Lu et al. 2016), the maintenance of the complexity required to do so 

involves maintaining diversity. Promoting biodiversity and promoting stable food webs go hand in hand 

and it is important to manage for both if we are to secure both for the future. 
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Table 3.1. Number of taxa in the database at each taxonomic rank. There were 93 subfamilies, but this 

number was excluded due to certain families lacking subfamilies. 

Taxonomic Rank Number of Unique Entries 

Total Taxa 540 

Genera 320 

Families 143 

Orders 49 

Classes 24 
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Table 3.2. Means (±SE) of food web structural properties for all samples in the Ogeechee River, as well as by site and season. 

 
Nodes Links Linkage 

Density 

Directed 

Connectance 

Mean Chain 

Length 

Prey to 

Predator Ratio 

Proportion of 

Intermediate 

Nodes 

Proportion of 

Top Nodes 

Ogeechee 

River 

35.7 (±0.7) 153 (±6) 4.21 (±0.09) 0.119 (±0.002) 4.96 (±0.17) 0.828 (±0.013) 0.620 (±0.012) 0.267 (±0.011) 

         

88 Crossing 38.8 (±2.1) 173 (±15) 4.39 (±0.20) 0.115 (±0.005) 6.07 (±0.52) 0.817 (±0.027) 0.615 (±0.024) 0.274 (±0.022) 

Wadley 39.0 (±1.6) 171 (±12) 4.34 (±0.17) 0.112 (±0.003) 4.91 (±0.29) 0.806 (±0.030) 0.616 (±0.030) 0.279 (±0.028) 

Rocky Ford 37.8 (±1.4) 174 (±13) 4.57 (±0.20) 0.122 (±0.005) 5.05 (±0.35) 0.817 (±0.027) 0.632 (±0.020) 0.267 (±0.022) 

Oliver 34.8 (±1.5) 156 (±12) 4.44 (±0.24) 0.129 (±0.007) 4.94 (±0.28) 0.833 (±0.033) 0.639 (±0.035) 0.255 (±0.032) 

Hwy 119 32.1 (±1.5) 119 (±11) 3.65 (±0.22) 0.115 (±0.006) 4.12 (±0.39) 0.848 (±0.029) 0.617 (±0.031) 0.257 (±0.027) 

Morgan's 

Bridge 

31.6 (±1.2) 125 (±11) 3.89 (±0.23) 0.123 (±0.006) 4.70 (±0.50) 0.846 (±0.047) 0.600 (±0.039) 0.268 (±0.039) 

         

Summer 37.8 (±1.7) 161 (±11) 4.18 (±0.16) 0.112 (±0.004) 5.12 (±0.31) 0.820 (±0.030) 0.633 (±0.028) 0.264 (±0.027) 

Fall 37.2 (±1.2) 161 (±11) 4.27 (±0.17) 0.115 (±0.003) 5.27 (±0.36) 0.852 (±0.023) 0.646 (±0.018) 0.244 (±0.018) 

Winter 33.7 (±1.5) 142 (±12) 4.10 (±0.21) 0.122 (±0.005) 4.65 (±0.38) 0.772 (±0.024) 0.567 (±0.027) 0.317 (±0.023) 

Spring 33.9 (±1.2) 148 (±11) 4.30 (±0.21) 0.128 (±0.005) 4.81 (±0.33) 0.868 (±0.023) 0.633 (±0.020) 0.242 (±0.019) 
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Figure 3.1. Structure of the feeding interaction database. Boxes are tables with their fields listed below 

the table name. Key images to the left of a field indicate primary keys. Black lines represent relations 

linking foreign keys to their primary keys in another table. ∞ symbols represent many and 1’s represent 

one in a one-to-many relationship between tables. Interactions between consumers and their resources 

were recorded in a table along with the literature source for that record and information on whether the 

feeding relationship was observed or inferred. Both resource and consumer taxa had their taxonomy and 

life stages recorded in a pair of linked tables, with the table for each life stage linked to any interactions 

that life stage was recorded in. Reference sources were recorded with all their information except for 

authors, due to the many-to-many relationship between sources and authors, author information was 

stored separately and linked via an associative table.  
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Figure 3.2. Histogram of the fraction of isolated nodes per sample food web. Bin widths are 0.025. The 

black line represents the mean, 0.133. 
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Figure 3.3. Box and whisker plots of (A) number of links, (B) residuals of links after a log-log regression 

against number of nodes, and (C) linkage density, grouped by site. Log-log regressions of linkage density 

were identical to those of links. Individual values are superimposed as black points. Red points represent 

group means. 
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Figure 3.4. Box and whisker plots of (A) directed connectance, and (B) residuals of directed connectance 

after a log-log regression against number of nodes, grouped by season. Individual values are 

superimposed as black points. Red points represent group means. 
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Figure 3.5. Box and whisker plots of (A) mean chain length, and (B) residuals of mean chain length after 

a log-log regression against number of nodes, grouped by site. Individual values are superimposed as 

black points. Red points represent group means. 
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Figure 3.6. Box and whisker plots of (A) prey to predator ratios, and (B) residuals of prey to predator 

ratios after a log-log regression against number of nodes, grouped by season. Individual values are 

superimposed as black points. Red points represent group means. 
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Figure 3.7. PCA on correlation biplot of total taxa, Shannon index, number of links, linkage density, 

directed connectance, mean chain length, prey to predator ratios and proportions of intermediate nodes, 

with factor loadings for each variable. 
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APPENDIX B 

SITE SIMPER RESULTS 

SIMPER results for within site similarities and among season dissimilarities, cutting off at a 

cumulative 80% similarity or dissimilarity to omit low contributing or rare taxa. 

 

Group 88 Crossing      
Average similarity: 49.77     
 

      

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%  

Chironominae 7.4 9.52 3.5 19.13 19.13  
Tanypodinae 5.13 6.34 2.27 12.75 31.88  
Hydrobiidae 3.83 4.63 2.36 9.31 41.18  
Orthocladiinae 3.19 3.11 2.01 6.26 47.44  
Copepoda 2.21 2.47 1.31 4.97 52.42  
Hydrachnidiae 2.54 2.4 1.81 4.83 57.24  
Oligochaeta 2.44 2.2 0.99 4.42 61.67  
Palaemonetes 2.17 1.83 1.3 3.67 65.34  
Sphaeridae 1.79 1.57 0.86 3.16 68.5  
Ceratopogonidae 1.45 1.3 1.01 2.62 71.12  
Hyalella 1.18 1.3 0.69 2.61 73.73  
Cambaridae 1.63 1.25 0.89 2.52 76.25  
Chironomidae 1.82 1.14 0.64 2.29 78.54  
Hexagenia 0.8 0.91 1.11 1.83 80.37  
 

      
Group Wadley      
Average similarity: 45.47     
 

      

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%  

Chironominae 5.97 7.14 4.89 15.7 15.7  
Tanypodinae 3.78 4.72 1.72 10.38 26.08  
Hydrobiidae 3.96 3.82 1.88 8.4 34.49  
Palaemonetes 2.57 2.84 1.13 6.25 40.74  
Hydrachnidiae 2.64 2.78 1.5 6.12 46.86  
Orthocladiinae 1.97 2.01 1.37 4.42 51.28  
Oligochaeta 1.84 1.91 1.78 4.21 55.49  
Maccaffertium 1.79 1.76 1.71 3.87 59.36  
Cheumatopsyche 1.95 1.54 0.7 3.38 62.74  
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Caecidotea 1.33 1.28 0.94 2.81 65.55  
Copepoda 1.55 1.21 0.74 2.66 68.21  
Cambaridae 1.52 1.17 0.94 2.57 70.78  
Baetidae 1.96 0.96 0.86 2.12 72.9  
Stenelmis 1.34 0.96 0.66 2.12 75.02  
Chironomidae 1.56 0.93 0.54 2.04 77.05  
Ceratopogonidae 1.35 0.91 0.91 2 79.05  
Planoorbidae 0.99 0.87 0.78 1.91 80.96  
 

      
Group Rocky Ford      
Average similarity: 48.94     
 

      

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%  

Lirceus 3.74 4.31 0.97 8.81 8.81  
Chironominae 3.84 4.09 2.08 8.35 17.16  
Tanypodinae 3.22 3.64 2.95 7.44 24.59  
Hydrobiidae 3.88 3.5 0.83 7.15 31.74  
Hydrachnidiae 2.87 3.42 1.99 6.98 38.72  
Caecidotea 2.97 2.93 0.74 5.99 44.72  
Baetidae 2.74 2.67 1.45 5.46 50.17  
Palaemonetes 2.57 2.57 1.03 5.26 55.43  
Cambaridae 2.24 2.41 2.44 4.93 60.36  
Tricorythodes 1.57 1.66 1.02 3.39 63.75  
Maccaffertium 1.36 1.48 1.54 3.03 66.78  
Baetisca 1.05 1.37 0.82 2.79 69.58  
Orthocladiinae 1.48 1.24 1.16 2.54 72.12  
Planoorbidae 1.38 1.23 0.85 2.51 74.63  
Stenelmis 0.99 1.1 0.88 2.25 76.88  
Oligochaeta 1.3 0.82 0.74 1.68 78.56  
Chironomidae 1.29 0.78 0.65 1.6 80.16  
 

      
Group Oliver      
Average similarity: 43.97     
 

      

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%  

Lirceus 3.48 4.19 0.77 9.54 9.54  
Chironominae 3.55 4.02 1.78 9.14 18.67  
Tanypodinae 3.04 2.95 1.41 6.71 25.39  
Baetidae 3.13 2.53 0.53 5.75 31.14  
Hydrobiidae 2.69 2.22 0.82 5.05 36.19  
Hydrachnidiae 2.18 2.13 0.96 4.85 41.04  
Orthocladiinae 1.9 1.75 1.19 3.97 45.01  
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Baetisca 1.39 1.6 0.56 3.65 48.66  
Maccaffertium 1.69 1.52 1.26 3.47 52.12  
Palaemonetes 1.7 1.42 0.73 3.22 55.35  
Cambaridae 1.81 1.36 1.2 3.09 58.44  
Caenis 1.7 1.33 0.82 3.02 61.46  
Tricorythodes 1.93 1.32 0.63 3.01 64.46  
Caecidotea 1.67 1.27 0.88 2.88 67.34  
Stenelmis 1.34 1.15 0.75 2.61 69.95  
Oligochaeta 1.29 1.09 0.66 2.47 72.42  
Perlesta 1.13 0.84 0.55 1.91 74.34  
Ceratopogonidae 1.13 0.82 0.8 1.86 76.2  
Planoorbidae 1.08 0.79 0.66 1.81 78.01  
Cheumatopsyche 1.47 0.72 0.74 1.64 79.65  
Ephemerella 0.78 0.67 0.65 1.53 81.18  
 

      
Group Hwy 119      
Average similarity: 48.64     
 

      

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%  

Lirceus 4.51 6.73 0.87 13.84 13.84  
Caecidotea 4.25 3.89 1.34 8 21.85  
Tanypodinae 3.18 3.61 1.73 7.42 29.26  
Planoorbidae 3.08 3.52 1.7 7.24 36.51  
Chironominae 3.16 3.34 1.24 6.87 43.38  
Hydrobiidae 3.11 2.96 0.97 6.09 49.47  
Baetisca 1.69 2.63 0.6 5.4 54.87  
Palaemonetes 2.47 2.57 1.24 5.29 60.16  
Hydrachnidiae 2.36 2.43 1.06 4.99 65.14  
Copepoda 1.87 1.65 1.13 3.39 68.53  
Maccaffertium 1.17 1.38 0.76 2.84 71.37  
Physa 1.06 1.19 0.86 2.44 73.81  
Baetidae 1.52 1.18 0.89 2.43 76.24  
Cambaridae 1.24 1.14 1.08 2.33 78.58  
Caenis 0.95 1.1 0.55 2.27 80.85  
 

      
Group Morgan’s Bridge     
Average similarity: 43.73     
 

      

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%  

Lirceus 3.59 5.02 0.74 11.48 11.48  
Chironominae 4.21 4.63 2.53 10.6 22.08  
Hyalella 3.7 3.96 1.15 9.05 31.14  
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Tanypodinae 2.82 3.46 3.79 7.91 39.04  
Hydrachnidiae 3.13 3.33 1.47 7.61 46.66  
Baetisca 1.68 2.66 0.61 6.09 52.75  
Hydrobiidae 2.47 2.62 1.04 5.99 58.74  
Planoorbidae 1.5 1.93 1.78 4.41 63.15  
Caecidotea 1.99 1.9 0.75 4.35 67.5  
Caenis 1.21 1.37 0.55 3.14 70.64  
Orthocladiinae 2.2 1.33 1.32 3.05 73.69  
Oligochaeta 2 1.1 0.87 2.52 76.21  
Maccaffertium 1.21 1.05 0.77 2.41 78.62  
Baetidae 1.44 0.98 0.69 2.23 80.85  
 

      
Groups 88 Crossing  &  Wadley     
Average dissimilarity = 53.21     
 

      

 

Group 88 

Crossing 

Group 

Wadley 
            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Tanypodinae 5.13 3.78 1.77 1.61 3.33 3.33 

Chironominae 7.4 5.97 1.77 1.3 3.32 6.65 

Palaemonetes 2.17 2.57 1.45 1.27 2.73 9.39 

Baetidae 0.94 1.96 1.38 0.99 2.59 11.98 

Hydrobiidae 3.83 3.96 1.38 1.24 2.59 14.57 

Orthocladiinae 3.19 1.97 1.27 0.96 2.38 16.95 

Oligochaeta 2.44 1.84 1.21 1.23 2.27 19.22 

Hydrachnidiae 2.54 2.64 1.19 1.45 2.23 21.46 

Cheumatopsyche 0.39 1.95 1.17 0.77 2.2 23.66 

Chironomidae 1.82 1.56 1.1 1.16 2.06 25.72 

Sphaeridae 1.79 0.84 1.01 1.26 1.89 27.61 

Copepoda 2.21 1.55 0.99 1.27 1.87 29.47 

Tricorythodes 0.52 1.24 0.98 0.98 1.84 31.32 

Cambaridae 1.63 1.52 0.94 1.27 1.77 33.09 

Ceratopogonidae 1.45 1.35 0.87 1.11 1.64 34.73 

Ferrissia 1.17 0.37 0.86 0.83 1.62 36.35 

Dubiraphia 1.2 0.86 0.86 1.12 1.61 37.97 

Maccaffertium 0.82 1.79 0.85 1.14 1.59 39.56 

Hyalella 1.18 0.83 0.84 1.15 1.58 41.14 

Hydroptilidae 0.37 1 0.82 0.95 1.54 42.68 

Stenelmis 0.63 1.34 0.82 1.19 1.53 44.22 

Eurylophella 0.44 1.18 0.77 0.48 1.44 45.66 

Caecidotea 0.74 1.33 0.76 1.67 1.44 47.09 

Caenis 0.49 0.95 0.74 0.8 1.39 48.48 
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Peltodytes 0.87 0.43 0.71 0.88 1.34 49.82 

Chromagrion 0.86 0.47 0.67 1.05 1.26 51.07 

Macromia 0.39 0.8 0.61 1 1.15 52.22 

Chimarra 0.17 0.78 0.6 0.6 1.13 53.35 

Corbicula 0.39 0.79 0.59 0.73 1.11 54.46 

Dineutus 0.14 0.65 0.59 0.75 1.1 55.56 

Planoorbidae 0.68 0.99 0.58 1.06 1.09 56.65 

Hexagenia 0.8 0 0.56 1.35 1.06 57.71 

Lirceus 0.34 0.57 0.56 0.74 1.05 58.76 

Pleurocera 0.8 0.43 0.55 0.93 1.04 59.8 

Macronychus 0.25 0.74 0.53 0.71 0.99 60.79 

Pycnopsyche 0.66 0.12 0.53 0.62 0.99 61.78 

Ancyronyx 0.71 0.74 0.52 1 0.98 62.76 

Leptoceridae 0.3 0.53 0.48 0.82 0.91 63.67 

Crangonyx 0.12 0.5 0.48 0.59 0.9 64.57 

Ephemerella 0.32 0.35 0.47 0.55 0.88 65.45 

Neoporus 0.53 0.48 0.46 0.88 0.86 66.31 

Simulium 0.47 0.69 0.45 1.07 0.85 67.16 

Hydroptila 0.27 0.54 0.45 0.92 0.85 68 

Oecetis 0.39 0.6 0.44 0.83 0.83 68.83 

Nectopsyche 0.08 0.69 0.44 0.77 0.83 69.65 

Hirudinea 0.71 0.51 0.44 0.87 0.82 70.47 

Physa 0.31 0.53 0.42 0.98 0.78 71.25 

Polycentropodidae 0.45 0.33 0.37 0.84 0.69 71.94 

Ormosia 0.37 0.17 0.36 0.58 0.68 72.62 

Diptera 0.45 0 0.35 0.8 0.66 73.27 

Rheumatobates 0.31 0.25 0.34 0.56 0.65 73.92 

Leptophlebiidae 0.23 0.39 0.34 0.59 0.63 74.55 

Phylocentropus 0.39 0.08 0.33 0.79 0.63 75.18 

Corixidae 0.39 0.08 0.33 0.81 0.62 75.8 

Argia 0 0.42 0.32 0.83 0.6 76.41 

Baetisca 0.17 0.35 0.32 0.66 0.6 77.01 

Boyeria 0.24 0.28 0.32 0.6 0.6 77.6 

Sialis 0.4 0.08 0.31 0.62 0.59 78.19 

Neureclipsis 0.4 0.12 0.31 0.56 0.58 78.77 

Hydrotrupes 0.17 0.25 0.3 0.65 0.57 79.34 

Polycentropus 0.25 0.23 0.3 0.75 0.56 79.9 

Ceraclea 0.32 0.12 0.28 0.47 0.53 80.43 

 
      

Groups 88 Crossing  &  Rocky Ford    
Average dissimilarity = 58.75     
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Group 88 

Crossing 

Group 

Rocky 

Ford 

            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Chironominae 7.4 3.84 2.75 1.63 4.68 4.68 

Lirceus 0.34 3.74 2.67 0.96 4.55 9.23 

Tanypodinae 5.13 3.22 2.05 1.45 3.49 12.72 

Caecidotea 0.74 2.97 1.83 0.8 3.11 15.83 

Baetidae 0.94 2.74 1.65 1.22 2.8 18.63 

Hydrobiidae 3.83 3.88 1.57 1.39 2.68 21.31 

Orthocladiinae 3.19 1.48 1.53 1.19 2.61 23.92 

Palaemonetes 2.17 2.57 1.35 1.01 2.3 26.22 

Copepoda 2.21 0.67 1.31 1.26 2.23 28.45 

Oligochaeta 2.44 1.3 1.23 1.05 2.09 30.54 

Tricorythodes 0.52 1.57 1.15 1.33 1.96 32.5 

Hydrachnidiae 2.54 2.87 1.12 1.5 1.91 34.41 

Sphaeridae 1.79 0.85 1.08 1.35 1.84 36.25 

Chironomidae 1.82 1.29 1.08 1.24 1.84 38.09 

Ceratopogonidae 1.45 0.71 0.98 1.32 1.66 39.75 

Dubiraphia 1.2 0.73 0.96 1.14 1.64 41.39 

Ferrissia 1.17 0.72 0.96 1.05 1.63 43.02 

Hirudinea 0.71 1.39 0.94 0.56 1.6 44.61 

Cambaridae 1.63 2.24 0.92 1.31 1.57 46.18 

Crangonyx 0.12 1.26 0.92 0.85 1.56 47.74 

Planoorbidae 0.68 1.38 0.82 1.23 1.4 49.15 

Stenelmis 0.63 0.99 0.8 1.64 1.36 50.51 

Hyalella 1.18 0.7 0.77 0.95 1.3 51.81 

Baetisca 0.17 1.05 0.66 0.65 1.12 52.93 

Cheumatopsyche 0.39 0.82 0.64 1.02 1.09 54.03 

Peltodytes 0.87 0 0.64 0.74 1.09 55.12 

Chromagrion 0.86 0.14 0.62 1.01 1.06 56.18 

Simulium 0.47 0.8 0.62 0.68 1.05 57.23 

Ephemerella 0.32 0.62 0.61 0.65 1.04 58.26 

Gammarus 0.17 0.7 0.59 0.76 1.01 59.28 

Hydroptilidae 0.37 0.67 0.59 0.84 1.01 60.29 

Pleurocera 0.8 0.57 0.58 0.88 0.99 61.28 

Macromia 0.39 0.65 0.57 1 0.96 62.24 

Macronychus 0.25 0.8 0.56 0.88 0.95 63.19 

Maccaffertium 0.82 1.36 0.55 1.08 0.94 64.13 

Hexagenia 0.8 0.12 0.53 1.24 0.91 65.03 

Physa 0.31 0.63 0.52 0.9 0.88 65.92 

Pycnopsyche 0.66 0 0.49 0.58 0.83 66.75 

Corbicula 0.39 0.56 0.47 0.7 0.79 67.54 
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Taeniopteryx 0.2 0.68 0.46 0.54 0.78 68.32 

Ancyronyx 0.71 0.38 0.42 0.75 0.72 69.04 

Nectopsyche 0.08 0.54 0.41 0.74 0.7 69.74 

Hydroptila 0.27 0.41 0.39 0.69 0.66 70.4 

Neureclipsis 0.4 0.2 0.38 0.66 0.65 71.05 

Neoporus 0.53 0.39 0.38 0.58 0.64 71.69 

Boyeria 0.24 0.28 0.36 0.62 0.61 72.3 

Leptoceridae 0.3 0.28 0.35 0.63 0.6 72.9 

Eurylophella 0.44 0 0.35 0.54 0.59 73.49 

Bivalvia 0.26 0.35 0.35 0.47 0.59 74.08 

Diptera 0.45 0 0.34 0.8 0.58 74.66 

Ephemeroptera 0.31 0.25 0.34 0.64 0.58 75.24 

Dineutus 0.14 0.32 0.34 0.68 0.58 75.82 

Leptophlebiidae 0.23 0.35 0.34 0.66 0.58 76.4 

Elmidae 0.08 0.53 0.33 0.45 0.56 76.96 

Isonychia 0.08 0.33 0.33 0.53 0.56 77.52 

Caenis 0.49 0.55 0.33 0.63 0.56 78.08 

Ceraclea 0.32 0.08 0.33 0.48 0.56 78.63 

Oecetis 0.39 0.31 0.32 0.78 0.55 79.18 

Sialis 0.4 0 0.3 0.56 0.51 79.69 

Epitheca 0.37 0.14 0.28 0.68 0.48 80.17 

 
      

Groups Wadley  &  Rocky Ford     
Average dissimilarity = 54.61     
 

      

 

Group 

Wadley 

Group 

Rocky 

Ford 

            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Lirceus 0.57 3.74 2.63 1.02 4.82 4.82 

Chironominae 5.97 3.84 1.99 1.22 3.64 8.46 

Hydrobiidae 3.96 3.88 1.81 1.1 3.32 11.77 

Caecidotea 1.33 2.97 1.68 0.86 3.07 14.84 

Baetidae 1.96 2.74 1.45 1.16 2.66 17.5 

Cheumatopsyche 1.95 0.82 1.19 0.96 2.18 19.68 

Tanypodinae 3.78 3.22 1.19 1.29 2.17 21.86 

Tricorythodes 1.24 1.57 1.1 1.12 2.01 23.87 

Palaemonetes 2.57 2.57 1.05 1.36 1.92 25.79 

Chironomidae 1.56 1.29 1.05 1.42 1.91 27.7 

Crangonyx 0.5 1.26 1.03 1.06 1.89 29.6 

Cambaridae 1.52 2.24 1.03 1.47 1.88 31.47 

Copepoda 1.55 0.67 1 0.96 1.84 33.31 

Hydrachnidiae 2.64 2.87 1 1.5 1.83 35.14 
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Orthocladiinae 1.97 1.48 0.97 1.14 1.78 36.92 

Eurylophella 1.18 0 0.96 0.46 1.75 38.67 

Simulium 0.69 0.8 0.87 0.97 1.59 40.26 

Hirudinea 0.51 1.39 0.85 0.52 1.56 41.82 

Hydroptilidae 1 0.67 0.85 0.95 1.55 43.38 

Ceratopogonidae 1.35 0.71 0.84 1.13 1.54 44.91 

Baetisca 0.35 1.05 0.84 0.72 1.53 46.45 

Oligochaeta 1.84 1.3 0.84 1.33 1.53 47.98 

Planoorbidae 0.99 1.38 0.83 1.34 1.52 49.5 

Sphaeridae 0.84 0.85 0.82 0.91 1.5 51 

Hyalella 0.83 0.7 0.81 0.93 1.48 52.48 

Dubiraphia 0.86 0.73 0.76 1.11 1.39 53.87 

Stenelmis 1.34 0.99 0.75 1.16 1.37 55.23 

Caenis 0.95 0.55 0.71 0.92 1.3 56.53 

Maccaffertium 1.79 1.36 0.65 1.07 1.19 57.73 

Macromia 0.8 0.65 0.6 1 1.1 58.82 

Gammarus 0.08 0.7 0.58 0.72 1.06 59.88 

Corbicula 0.79 0.56 0.57 0.81 1.05 60.93 

Nectopsyche 0.69 0.54 0.55 0.99 1 61.93 

Ferrissia 0.37 0.72 0.54 0.88 0.99 62.92 

Physa 0.53 0.63 0.54 1.14 0.98 63.9 

Chimarra 0.78 0 0.52 0.51 0.95 64.85 

Macronychus 0.74 0.8 0.52 0.77 0.95 65.8 

Hydroptila 0.54 0.41 0.51 0.98 0.94 66.74 

Ephemerella 0.35 0.62 0.5 0.8 0.92 67.67 

Taeniopteryx 0.2 0.68 0.49 0.53 0.89 68.56 

Pleurocera 0.43 0.57 0.48 0.77 0.88 69.44 

Neoporus 0.48 0.39 0.46 0.94 0.85 70.29 

Hydropsyche 0.32 0.28 0.45 0.56 0.83 71.12 

Leptoceridae 0.53 0.28 0.45 0.77 0.83 71.95 

Ancyronyx 0.74 0.38 0.45 0.8 0.82 72.77 

Dineutus 0.65 0.32 0.44 0.72 0.81 73.58 

Argia 0.42 0.36 0.44 0.91 0.81 74.39 

Leptophlebiidae 0.39 0.35 0.38 0.6 0.7 75.09 

Oecetis 0.6 0.31 0.38 0.74 0.69 75.78 

Chromagrion 0.47 0.14 0.36 0.6 0.65 76.43 

Peltodytes 0.43 0 0.34 0.52 0.62 77.05 

Acroneuria 0.17 0.33 0.34 0.87 0.62 77.67 

Elmidae 0 0.53 0.33 0.44 0.6 78.27 

Hesperocorixa 0.25 0.14 0.31 0.55 0.56 78.83 

Polycentropus 0.23 0.23 0.3 0.6 0.54 79.37 

Ostracoda 0.08 0.3 0.29 0.53 0.53 79.91 
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Perlesta 0.19 0.35 0.28 0.56 0.52 80.42 

 
      

Groups 88 Crossing  &  Oliver     
Average dissimilarity = 62.59     
 

      

 

Group 88 

Crossing 

Group 

Oliver 
            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Chironominae 7.4 3.55 3.01 1.74 4.8 4.8 

Lirceus 0.34 3.48 2.61 0.82 4.17 8.97 

Tanypodinae 5.13 3.04 2.34 1.44 3.74 12.71 

Baetidae 0.94 3.13 2.17 0.9 3.46 16.17 

Copepoda 2.21 0.82 1.86 1.38 2.98 19.15 

Hydrachnidiae 2.54 2.18 1.61 1.37 2.58 21.72 

Hydrobiidae 3.83 2.69 1.58 1.49 2.53 24.25 

Tricorythodes 0.52 1.93 1.56 0.9 2.48 26.74 

Orthocladiinae 3.19 1.9 1.39 0.97 2.22 28.95 

Palaemonetes 2.17 1.7 1.31 1.32 2.09 31.04 

Oligochaeta 2.44 1.29 1.21 1.23 1.94 32.98 

Chironomidae 1.82 1.2 1.16 1.26 1.86 34.84 

Cheumatopsyche 0.39 1.47 1.08 1.04 1.73 36.57 

Gammarus 0.17 1.37 1.02 0.74 1.62 38.19 

Baetisca 0.17 1.39 1 0.69 1.61 39.8 

Sphaeridae 1.79 0.43 1 1.25 1.59 41.39 

Caecidotea 0.74 1.67 0.99 0.93 1.59 42.98 

Crangonyx 0.12 1.32 0.97 0.72 1.56 44.53 

Ferrissia 1.17 0.64 0.95 0.93 1.52 46.05 

Cambaridae 1.63 1.81 0.95 1.34 1.52 47.57 

Hyalella 1.18 0.77 0.95 1.21 1.51 49.08 

Ceratopogonidae 1.45 1.13 0.93 1.17 1.48 50.56 

Caenis 0.49 1.7 0.91 0.58 1.45 52.02 

Maccaffertium 0.82 1.69 0.88 1.13 1.41 53.43 

Simulium 0.47 1.18 0.88 0.8 1.41 54.83 

Stenelmis 0.63 1.34 0.87 1.14 1.39 56.23 

Perlesta 0 1.13 0.87 0.64 1.39 57.62 

Dubiraphia 1.2 0.69 0.82 1.01 1.31 58.92 

Planoorbidae 0.68 1.08 0.7 0.94 1.11 60.03 

Ephemerella 0.32 0.78 0.68 0.71 1.08 61.11 

Isonychia 0.08 0.86 0.67 0.61 1.07 62.18 

Chromagrion 0.86 0 0.67 1 1.06 63.25 

Ancyronyx 0.71 0.6 0.64 0.68 1.02 64.26 

Peltodytes 0.87 0.14 0.61 0.79 0.98 65.24 
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Pleurocera 0.8 0.12 0.57 0.9 0.91 66.16 

Nectopsyche 0.08 0.86 0.57 0.97 0.9 67.06 

Hydroptila 0.27 0.59 0.56 0.66 0.89 67.95 

Hirudinea 0.71 0.85 0.56 1.13 0.89 68.85 

Taeniopteryx 0.2 0.76 0.55 0.43 0.88 69.73 

Hydroptilidae 0.37 0.5 0.55 0.63 0.88 70.6 

Hexagenia 0.8 0.12 0.53 1.25 0.85 71.45 

Hydropsyche 0 0.67 0.52 0.76 0.83 72.28 

Pycnopsyche 0.66 0 0.51 0.58 0.81 73.1 

Macromia 0.39 0.53 0.5 0.92 0.8 73.9 

Macronychus 0.25 0.63 0.48 0.81 0.77 74.67 

Neoporus 0.53 0.51 0.48 0.75 0.77 75.44 

Oecetis 0.39 0.28 0.41 0.95 0.66 76.1 

Eurylophella 0.44 0 0.37 0.54 0.59 76.68 

Corbicula 0.39 0.2 0.36 0.75 0.57 77.26 

Argia 0 0.46 0.35 0.41 0.57 77.82 

Diptera 0.45 0 0.35 0.79 0.56 78.38 

Neureclipsis 0.4 0.12 0.32 0.55 0.51 78.9 

Leptophlebiidae 0.23 0.37 0.31 0.6 0.49 79.39 

Polycentropodidae 0.45 0.08 0.31 0.78 0.49 79.88 

Sialis 0.4 0 0.3 0.56 0.48 80.36 

 
      

Groups Wadley  &  Oliver     
Average dissimilarity = 59.24     
 

      

 

Group 

Wadley 

Group 

Oliver 
            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Lirceus 0.57 3.48 2.58 0.87 4.36 4.36 

Hydrobiidae 3.96 2.69 2.17 1.49 3.67 8.03 

Chironominae 5.97 3.55 2.14 1.36 3.61 11.64 

Baetidae 1.96 3.13 2.1 0.95 3.55 15.18 

Tanypodinae 3.78 3.04 1.72 1.56 2.91 18.09 

Cheumatopsyche 1.95 1.47 1.61 1.07 2.72 20.82 

Tricorythodes 1.24 1.93 1.52 1 2.57 23.39 

Hydrachnidiae 2.64 2.18 1.4 1.28 2.36 25.75 

Copepoda 1.55 0.82 1.36 0.94 2.29 28.04 

Palaemonetes 2.57 1.7 1.24 1.3 2.1 30.13 

Baetisca 0.35 1.39 1.17 0.7 1.98 32.11 

Chironomidae 1.56 1.2 1.11 1.38 1.88 33.99 

Oligochaeta 1.84 1.29 1.09 1.35 1.85 35.84 

Simulium 0.69 1.18 1.03 1.01 1.74 37.57 



88 

 
 
 

Eurylophella 1.18 0 1.01 0.45 1.71 39.28 

Crangonyx 0.5 1.32 1.01 0.8 1.7 40.99 

Hyalella 0.83 0.77 1 1.14 1.7 42.68 

Gammarus 0.08 1.37 0.98 0.74 1.65 44.33 

Caenis 0.95 1.7 0.97 0.8 1.63 45.96 

Orthocladiinae 1.97 1.9 0.96 1.18 1.63 47.59 

Cambaridae 1.52 1.81 0.96 1.2 1.61 49.2 

Hydroptilidae 1 0.5 0.9 0.86 1.52 50.72 

Caecidotea 1.33 1.67 0.9 1.01 1.52 52.24 

Ceratopogonidae 1.35 1.13 0.81 1.13 1.37 53.62 

Maccaffertium 1.79 1.69 0.78 1 1.32 54.94 

Ephemerella 0.35 0.78 0.77 1.01 1.31 56.25 

Perlesta 0.19 1.13 0.76 0.58 1.29 57.53 

Hydropsyche 0.32 0.67 0.76 0.84 1.28 58.81 

Dubiraphia 0.86 0.69 0.71 1.44 1.2 60.01 

Chimarra 0.78 0.28 0.71 0.71 1.2 61.21 

Stenelmis 1.34 1.34 0.68 1.07 1.14 62.35 

Ancyronyx 0.74 0.6 0.66 0.7 1.12 63.47 

Isonychia 0.08 0.86 0.64 0.59 1.08 64.55 

Planoorbidae 0.99 1.08 0.64 1.11 1.08 65.63 

Hydroptila 0.54 0.59 0.62 0.84 1.05 66.68 

Taeniopteryx 0.2 0.76 0.59 0.43 1 67.68 

Sphaeridae 0.84 0.43 0.59 0.7 1 68.68 

Ferrissia 0.37 0.64 0.59 0.74 1 69.68 

Dineutus 0.65 0.25 0.59 0.89 0.99 70.67 

Macromia 0.8 0.53 0.57 0.98 0.96 71.63 

Corbicula 0.79 0.2 0.56 0.71 0.94 72.57 

Argia 0.42 0.46 0.49 0.73 0.82 73.39 

Nectopsyche 0.69 0.86 0.49 1.06 0.82 74.22 

Macronychus 0.74 0.63 0.48 0.79 0.82 75.03 

Neoporus 0.48 0.51 0.47 0.98 0.8 75.83 

Oecetis 0.6 0.28 0.45 0.77 0.76 76.59 

Hirudinea 0.51 0.85 0.44 0.84 0.74 77.33 

Physa 0.53 0.49 0.44 0.98 0.74 78.07 

Leptoceridae 0.53 0.12 0.41 0.71 0.7 78.77 

Leptophlebiidae 0.39 0.37 0.39 0.66 0.66 79.43 

Peltodytes 0.43 0.14 0.39 0.56 0.66 80.08 

 
      

Groups Rocky Ford  &  Oliver     
Average dissimilarity = 51.44     
 

      

 

Group 

Rocky Ford 

Group 

Oliver 
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Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Hydrobiidae 3.88 2.69 1.9 1.48 3.69 3.69 

Baetidae 2.74 3.13 1.84 1.1 3.59 7.28 

Caecidotea 2.97 1.67 1.7 0.87 3.31 10.59 

Chironominae 3.84 3.55 1.5 1.29 2.92 13.51 

Hydrachnidiae 2.87 2.18 1.43 1.53 2.77 16.28 

Lirceus 3.74 3.48 1.42 0.95 2.75 19.04 

Crangonyx 1.26 1.32 1.25 1.1 2.43 21.47 

Tanypodinae 3.22 3.04 1.24 1.19 2.41 23.88 

Cheumatopsyche 0.82 1.47 1.15 1.09 2.24 26.12 

Orthocladiinae 1.48 1.9 1.09 1.34 2.12 28.23 

Gammarus 0.7 1.37 1.08 0.79 2.1 30.33 

Palaemonetes 2.57 1.7 1.07 1.39 2.07 32.41 

Tricorythodes 1.57 1.93 1.06 0.9 2.06 34.47 

Hirudinea 1.39 0.85 1.01 0.62 1.96 36.43 

Oligochaeta 1.3 1.29 1 1.19 1.94 38.37 

Cambaridae 2.24 1.81 0.92 1.13 1.78 40.15 

Chironomidae 1.29 1.2 0.9 1.3 1.75 41.9 

Simulium 0.8 1.18 0.89 0.72 1.72 43.62 

Copepoda 0.67 0.82 0.88 0.67 1.71 45.32 

Caenis 0.55 1.7 0.86 0.64 1.67 46.99 

Hyalella 0.7 0.77 0.85 1.03 1.65 48.65 

Planoorbidae 1.38 1.08 0.85 1.23 1.65 50.3 

Stenelmis 0.99 1.34 0.82 1.59 1.6 51.9 

Sphaeridae 0.85 0.43 0.78 1.37 1.52 53.42 

Maccaffertium 1.36 1.69 0.74 1.02 1.44 54.86 

Hydroptilidae 0.67 0.5 0.72 0.75 1.39 56.25 

Perlesta 0.35 1.13 0.7 0.59 1.37 57.62 

Ephemerella 0.62 0.78 0.68 0.82 1.32 58.95 

Ferrissia 0.72 0.64 0.64 0.81 1.24 60.18 

Nectopsyche 0.54 0.86 0.63 1.12 1.23 61.41 

Isonychia 0.33 0.86 0.63 0.62 1.22 62.63 

Taeniopteryx 0.68 0.76 0.62 0.49 1.21 63.85 

Physa 0.63 0.49 0.58 0.96 1.12 64.97 

Ceratopogonidae 0.71 1.13 0.57 0.79 1.11 66.08 

Hydroptila 0.41 0.59 0.55 0.68 1.06 67.14 

Baetisca 1.05 1.39 0.54 0.68 1.04 68.19 

Ancyronyx 0.38 0.6 0.51 0.52 0.98 69.17 

Corbicula 0.56 0.2 0.5 0.83 0.98 70.15 

Hydropsyche 0.28 0.67 0.46 0.79 0.89 71.04 

Dubiraphia 0.73 0.69 0.43 0.96 0.84 71.88 

Macromia 0.65 0.53 0.43 0.83 0.84 72.72 
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Pleurocera 0.57 0.12 0.42 0.68 0.81 73.52 

Argia 0.36 0.46 0.4 0.53 0.79 74.31 

Leptophlebiidae 0.35 0.37 0.39 0.7 0.75 75.06 

Macronychus 0.8 0.63 0.38 0.75 0.75 75.81 

Neoporus 0.39 0.51 0.35 0.74 0.68 76.49 

Dineutus 0.32 0.25 0.35 0.81 0.67 77.16 

Neoperla 0.17 0.39 0.34 0.6 0.65 77.81 

Elmidae 0.53 0 0.34 0.44 0.65 78.47 

Acroneuria 0.33 0.19 0.32 0.7 0.62 79.09 

Ostracoda 0.3 0.08 0.3 0.51 0.58 79.67 

Corixidae 0.32 0.37 0.28 0.51 0.55 80.21 

 
      

Groups 88 Crossing  &  Hwy 119     
Average dissimilarity = 63.81     
 

      

 

Group 88 

Crossing 

Group 

Hwy 119 
            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Lirceus 0.34 4.51 3.61 0.89 5.66 5.66 

Chironominae 7.4 3.16 3.51 1.4 5.5 11.16 

Caecidotea 0.74 4.25 2.86 1.34 4.48 15.64 

Tanypodinae 5.13 3.18 2.4 1.37 3.76 19.4 

Orthocladiinae 3.19 0.25 2.34 1.56 3.66 23.06 

Planoorbidae 0.68 3.08 1.91 1.51 2.99 26.05 

Hydrachnidiae 2.54 2.36 1.55 1.53 2.43 28.48 

Oligochaeta 2.44 1.48 1.52 1.23 2.38 30.85 

Hydrobiidae 3.83 3.11 1.43 1.46 2.24 33.09 

Palaemonetes 2.17 2.47 1.34 1.13 2.1 35.19 

Copepoda 2.21 1.87 1.32 1.21 2.07 37.26 

Baetisca 0.17 1.69 1.27 0.71 1.99 39.25 

Crangonyx 0.12 1.54 1.21 0.69 1.9 41.15 

Chironomidae 1.82 1.15 1.21 1.35 1.9 43.05 

Ceratopogonidae 1.45 1.04 1.19 1.27 1.86 44.91 

Baetidae 0.94 1.52 1.15 1.03 1.81 46.72 

Sphaeridae 1.79 0.75 1.05 1.1 1.64 48.36 

Hyalella 1.18 1.14 1.03 1.08 1.61 49.97 

Ferrissia 1.17 0.81 1.02 1.07 1.6 51.57 

Tricorythodes 0.52 1.01 0.99 1 1.54 53.12 

Gammarus 0.17 1.28 0.98 0.8 1.53 54.65 

Physa 0.31 1.06 0.97 1.24 1.53 56.18 

Dubiraphia 1.2 0.12 0.95 1.02 1.49 57.67 

Cambaridae 1.63 1.24 0.91 1.21 1.42 59.09 
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Simulium 0.47 0.82 0.77 0.68 1.2 60.3 

Peltodytes 0.87 0.17 0.72 0.79 1.13 61.43 

Chromagrion 0.86 0 0.71 0.99 1.11 62.53 

Ephemerella 0.32 0.57 0.68 0.73 1.07 63.6 

Hirudinea 0.71 1.11 0.66 0.89 1.03 64.64 

Maccaffertium 0.82 1.17 0.65 1.02 1.02 65.65 

Cheumatopsyche 0.39 0.74 0.64 1.04 1.01 66.66 

Caenis 0.49 0.95 0.61 0.66 0.95 67.62 

Pleurocera 0.8 0 0.6 0.89 0.93 68.55 

Stenelmis 0.63 0.28 0.57 1.11 0.89 69.44 

Ancyronyx 0.71 0 0.55 0.87 0.87 70.3 

Pycnopsyche 0.66 0 0.54 0.56 0.84 71.15 

Hexagenia 0.8 0.12 0.53 1.16 0.84 71.98 

Nectopsyche 0.08 0.66 0.48 0.74 0.75 72.73 

Corixidae 0.39 0.28 0.45 0.62 0.71 73.44 

Hydroptila 0.27 0.33 0.44 0.59 0.69 74.13 

Perlesta 0 0.53 0.43 0.43 0.68 74.81 

Liodessus 0.31 0.31 0.43 0.52 0.67 75.48 

Macromia 0.39 0.2 0.4 0.69 0.63 76.11 

Eurylophella 0.44 0 0.38 0.54 0.6 76.72 

Corbicula 0.39 0.31 0.38 0.7 0.6 77.31 

Diptera 0.45 0 0.38 0.79 0.59 77.91 

Collembola 0.25 0.33 0.37 0.91 0.59 78.49 

Neoporus 0.53 0.44 0.37 0.59 0.57 79.07 

Tabanidae 0.37 0.2 0.36 0.76 0.56 79.63 

Ceraclea 0.32 0.17 0.34 0.45 0.53 80.16 

 
      

Groups Wadley  &  Hwy 119     
Average dissimilarity = 60.79     
 

      

 

Group 

Wadley 

Group 

Hwy 119 
            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Lirceus 0.57 4.51 3.67 0.95 6.03 6.03 

Chironominae 5.97 3.16 2.9 1.39 4.78 10.81 

Caecidotea 1.33 4.25 2.45 1.21 4.02 14.84 

Hydrobiidae 3.96 3.11 1.9 1.28 3.12 17.96 

Tanypodinae 3.78 3.18 1.72 1.47 2.83 20.79 

Planoorbidae 0.99 3.08 1.69 1.31 2.79 23.57 

Palaemonetes 2.57 2.47 1.55 1.77 2.55 26.13 

Orthocladiinae 1.97 0.25 1.51 1.39 2.49 28.61 

Baetisca 0.35 1.69 1.48 0.73 2.44 31.05 
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Baetidae 1.96 1.52 1.4 1.04 2.31 33.36 

Crangonyx 0.5 1.54 1.36 0.88 2.24 35.59 

Copepoda 1.55 1.87 1.19 1.37 1.96 37.56 

Cheumatopsyche 1.95 0.74 1.15 0.92 1.89 39.45 

Hydrachnidiae 2.64 2.36 1.15 1.17 1.89 41.34 

Oligochaeta 1.84 1.48 1.14 1.13 1.87 43.21 

Chironomidae 1.56 1.15 1.11 1.41 1.83 45.04 

Eurylophella 1.18 0 1.06 0.46 1.74 46.77 

Tricorythodes 1.24 1.01 1.05 0.85 1.72 48.5 

Stenelmis 1.34 0.28 0.99 1.15 1.62 50.12 

Hyalella 0.83 1.14 0.98 0.91 1.62 51.73 

Maccaffertium 1.79 1.17 0.93 1.09 1.53 53.27 

Simulium 0.69 0.82 0.93 0.84 1.53 54.8 

Gammarus 0.08 1.28 0.89 0.75 1.47 56.26 

Ceratopogonidae 1.35 1.04 0.87 1.04 1.42 57.69 

Cambaridae 1.52 1.24 0.84 1.31 1.38 59.07 

Hydroptilidae 1 0.2 0.81 0.85 1.34 60.4 

Physa 0.53 1.06 0.75 1.12 1.23 61.64 

Ferrissia 0.37 0.81 0.71 0.92 1.16 62.8 

Sphaeridae 0.84 0.75 0.66 0.69 1.09 63.89 

Dubiraphia 0.86 0.12 0.66 0.99 1.09 64.98 

Macromia 0.8 0.2 0.62 0.92 1.03 66.01 

Ephemerella 0.35 0.57 0.62 1.01 1.02 67.03 

Corbicula 0.79 0.31 0.61 0.82 1 68.03 

Dineutus 0.65 0.25 0.61 0.76 1 69.02 

Chimarra 0.78 0.08 0.59 0.59 0.98 70 

Caenis 0.95 0.95 0.58 0.78 0.95 70.96 

Hirudinea 0.51 1.11 0.55 0.7 0.91 71.86 

Hydroptila 0.54 0.33 0.54 0.76 0.9 72.76 

Ancyronyx 0.74 0 0.52 0.78 0.85 73.61 

Perlesta 0.19 0.53 0.5 0.5 0.83 74.44 

Nectopsyche 0.69 0.66 0.5 0.89 0.83 75.27 

Peltodytes 0.43 0.17 0.46 0.64 0.76 76.03 

Neoporus 0.48 0.44 0.45 0.91 0.74 76.76 

Argia 0.42 0.39 0.41 0.88 0.68 77.44 

Oecetis 0.6 0.17 0.41 0.71 0.68 78.12 

Leptoceridae 0.53 0 0.4 0.67 0.65 78.77 

Macronychus 0.74 0.17 0.38 0.57 0.63 79.4 

Chromagrion 0.47 0 0.34 0.54 0.56 79.96 

Leptophlebiidae 0.39 0 0.33 0.48 0.55 80.51 

 
      

Groups Rocky Ford  &  Hwy 119     



93 

 
 
 

Average dissimilarity = 51.26     
 

      

 

Group 

Rocky Ford 

Group 

Hwy 119 
            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Caecidotea 2.97 4.25 2.73 1.26 5.34 5.34 

Hydrobiidae 3.88 3.11 1.84 1.45 3.59 8.92 

Lirceus 3.74 4.51 1.62 0.84 3.16 12.09 

Chironominae 3.84 3.16 1.47 1.23 2.87 14.96 

Baetidae 2.74 1.52 1.47 1.18 2.87 17.83 

Planoorbidae 1.38 3.08 1.44 1.42 2.81 20.64 

Crangonyx 1.26 1.54 1.37 0.89 2.67 23.31 

Palaemonetes 2.57 2.47 1.28 1.56 2.5 25.82 

Copepoda 0.67 1.87 1.26 1.34 2.45 28.27 

Tanypodinae 3.22 3.18 1.26 1.28 2.45 30.72 

Hydrachnidiae 2.87 2.36 1.17 1.59 2.28 33 

Oligochaeta 1.3 1.48 1.12 1.04 2.18 35.18 

Gammarus 0.7 1.28 1.1 0.95 2.14 37.33 

Cambaridae 2.24 1.24 1.08 1.29 2.11 39.43 

Orthocladiinae 1.48 0.25 1.06 1.19 2.06 41.49 

Hyalella 0.7 1.14 0.96 1.02 1.88 43.37 

Hirudinea 1.39 1.11 0.91 0.61 1.77 45.14 

Chironomidae 1.29 1.15 0.89 1.41 1.74 46.88 

Physa 0.63 1.06 0.85 1.28 1.66 48.54 

Simulium 0.8 0.82 0.77 0.7 1.51 50.04 

Sphaeridae 0.85 0.75 0.76 1.26 1.49 51.53 

Cheumatopsyche 0.82 0.74 0.74 1.14 1.45 52.98 

Tricorythodes 1.57 1.01 0.69 1 1.35 54.33 

Stenelmis 0.99 0.28 0.69 1.06 1.34 55.67 

Maccaffertium 1.36 1.17 0.69 1.3 1.34 57 

Baetisca 1.05 1.69 0.68 0.69 1.33 58.33 

Ephemerella 0.62 0.57 0.64 0.95 1.25 59.58 

Ferrissia 0.72 0.81 0.64 0.87 1.24 60.82 

Taeniopteryx 0.68 0.08 0.59 0.49 1.15 61.97 

Hydroptilidae 0.67 0.2 0.58 0.73 1.12 63.09 

Nectopsyche 0.54 0.66 0.56 0.88 1.1 64.19 

Perlesta 0.35 0.53 0.56 0.64 1.09 65.28 

Caenis 0.55 0.95 0.53 0.7 1.03 66.32 

Ceratopogonidae 0.71 1.04 0.51 0.64 0.99 67.31 

Macromia 0.65 0.2 0.5 0.89 0.98 68.29 

Hydroptila 0.41 0.33 0.46 0.66 0.9 69.19 

Corixidae 0.32 0.28 0.44 0.6 0.86 70.04 
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Dubiraphia 0.73 0.12 0.43 0.61 0.85 70.89 

Macronychus 0.8 0.17 0.43 0.67 0.84 71.73 

Corbicula 0.56 0.31 0.42 0.62 0.81 72.54 

Pleurocera 0.57 0 0.39 0.6 0.77 73.31 

Argia 0.36 0.39 0.36 0.61 0.7 74.01 

Dineutus 0.32 0.25 0.35 0.62 0.69 74.7 

Elmidae 0.53 0 0.34 0.44 0.66 75.36 

Basiaeschna 0.25 0.26 0.33 0.75 0.64 76 

Neoporus 0.39 0.44 0.32 0.66 0.62 76.62 

Isonychia 0.33 0.25 0.31 0.58 0.61 77.23 

Collembola 0 0.33 0.3 0.7 0.59 77.82 

Hydropsyche 0.28 0.2 0.3 0.66 0.58 78.4 

Polycentropodidae 0.33 0.12 0.3 0.73 0.58 78.98 

Leptophlebiidae 0.35 0 0.29 0.48 0.56 79.54 

Boyeria 0.28 0.08 0.28 0.68 0.55 80.1 

 
      

Groups Oliver  &  Hwy 119     
Average dissimilarity = 54.14     
 

      

 

Group 

Oliver 

Group 

Hwy 119 
            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Caecidotea 1.67 4.25 2.59 1.36 4.79 4.79 

Baetidae 3.13 1.52 2.28 0.94 4.21 9 

Chironominae 3.55 3.16 2.16 1.55 4 13 

Planoorbidae 1.08 3.08 1.79 1.46 3.31 16.3 

Lirceus 3.48 4.51 1.79 0.76 3.31 19.61 

Crangonyx 1.32 1.54 1.49 0.94 2.75 22.36 

Orthocladiinae 1.9 0.25 1.48 1.37 2.72 25.08 

Copepoda 0.82 1.87 1.47 1.42 2.71 27.8 

Hydrobiidae 2.69 3.11 1.44 1.17 2.67 30.46 

Gammarus 1.37 1.28 1.22 0.9 2.26 32.72 

Cheumatopsyche 1.47 0.74 1.21 0.98 2.24 34.96 

Simulium 1.18 0.82 1.17 0.78 2.17 37.13 

Tanypodinae 3.04 3.18 1.16 1.2 2.14 39.26 

Palaemonetes 1.7 2.47 1.15 1.21 2.13 41.39 

Hydrachnidiae 2.18 2.36 1.12 1.04 2.07 43.46 

Oligochaeta 1.29 1.48 1.08 1.29 1.99 45.45 

Hyalella 0.77 1.14 1.06 1.2 1.95 47.4 

Stenelmis 1.34 0.28 1 1.13 1.85 49.25 

Cambaridae 1.81 1.24 0.97 1.29 1.79 51.04 

Maccaffertium 1.69 1.17 0.97 1.06 1.79 52.83 
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Perlesta 1.13 0.53 0.97 0.68 1.78 54.61 

Tricorythodes 1.93 1.01 0.93 0.61 1.71 56.33 

Chironomidae 1.2 1.15 0.92 1.38 1.7 58.03 

Physa 0.49 1.06 0.86 1.09 1.58 59.61 

Taeniopteryx 0.76 0.08 0.71 0.4 1.31 60.92 

Isonychia 0.86 0.25 0.7 0.62 1.3 62.22 

Ceratopogonidae 1.13 1.04 0.7 0.87 1.29 63.51 

Hirudinea 0.85 1.11 0.68 0.97 1.26 64.78 

Caenis 1.7 0.95 0.68 0.63 1.25 66.03 

Hydroptila 0.59 0.33 0.64 0.64 1.19 67.22 

Ferrissia 0.64 0.81 0.63 0.85 1.16 68.38 

Hydropsyche 0.67 0.2 0.62 0.85 1.15 69.53 

Baetisca 1.39 1.69 0.62 0.73 1.14 70.67 

Nectopsyche 0.86 0.66 0.52 1.01 0.97 71.64 

Sphaeridae 0.43 0.75 0.51 0.75 0.95 72.59 

Ephemerella 0.78 0.57 0.51 0.67 0.94 73.53 

Hydroptilidae 0.5 0.2 0.5 0.5 0.92 74.45 

Dubiraphia 0.69 0.12 0.47 0.99 0.86 75.31 

Corixidae 0.37 0.28 0.46 0.52 0.85 76.16 

Macromia 0.53 0.2 0.45 0.85 0.83 76.99 

Ancyronyx 0.6 0 0.43 0.4 0.8 77.79 

Neoporus 0.51 0.44 0.43 0.79 0.79 78.58 

Corbicula 0.2 0.31 0.41 0.8 0.76 79.33 

Macronychus 0.63 0.17 0.41 0.74 0.75 80.09 

 
      

Groups 88 Crossing  &  Morgan’s Bridge    
Average dissimilarity = 61.20     
 

      

 

Group 88 

Crossing 

Group 

Morgan’s 

Bridge 

            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Chironominae 7.4 4.21 2.97 1.4 4.85 4.85 

Lirceus 0.34 3.59 2.82 0.8 4.61 9.45 

Tanypodinae 5.13 2.82 2.44 1.63 3.98 13.44 

Hyalella 1.18 3.7 2.37 1.19 3.87 17.31 

Orthocladiinae 3.19 2.2 1.97 1.32 3.22 20.53 

Hydrobiidae 3.83 2.47 1.86 1.6 3.04 23.57 

Hydrachnidiae 2.54 3.13 1.79 1.37 2.92 26.49 

Oligochaeta 2.44 2 1.68 0.93 2.74 29.23 

Ceratopogonidae 1.45 1.47 1.52 1.09 2.49 31.71 

Palaemonetes 2.17 1.26 1.38 1.45 2.25 33.97 

Copepoda 2.21 1.5 1.37 1.39 2.24 36.21 
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Caecidotea 0.74 1.99 1.31 1.06 2.13 38.34 

Baetisca 0.17 1.68 1.22 0.7 1.99 40.34 

Sphaeridae 1.79 1.07 1.21 1.3 1.97 42.31 

Chironomidae 1.82 1.22 1.19 1.22 1.94 44.25 

Cambaridae 1.63 0.6 1.18 1.5 1.93 46.18 

Baetidae 0.94 1.44 1.11 0.77 1.82 47.99 

Planoorbidae 0.68 1.5 1.01 1.39 1.66 49.65 

Dubiraphia 1.2 0.28 0.95 1.03 1.56 51.2 

Ferrissia 1.17 0.47 0.94 0.86 1.54 52.74 

Caenis 0.49 1.21 0.83 0.85 1.35 54.09 

Ephemeroptera 0.31 0.95 0.78 0.73 1.27 55.36 

Tricorythodes 0.52 0.88 0.76 0.86 1.25 56.61 

Chromagrion 0.86 0.51 0.71 1.13 1.16 57.77 

Peltodytes 0.87 0.17 0.7 0.82 1.15 58.92 

Maccaffertium 0.82 1.21 0.68 1.08 1.11 60.03 

Physa 0.31 0.65 0.65 0.96 1.06 61.09 

Simulium 0.47 0.39 0.63 0.77 1.04 62.13 

Pleurocera 0.8 0 0.61 0.9 1 63.13 

Hirudinea 0.71 0.39 0.6 0.95 0.99 64.12 

Leptophlebiidae 0.23 0.82 0.59 0.67 0.97 65.09 

Ancyronyx 0.71 0 0.58 0.87 0.95 66.04 

Gyrinus 0 0.65 0.56 0.41 0.92 66.96 

Pycnopsyche 0.66 0 0.52 0.57 0.85 67.8 

Hexagenia 0.8 0.38 0.51 1.07 0.83 68.63 

Crangonyx 0.12 0.46 0.48 0.59 0.79 69.42 

Neoporus 0.53 0.61 0.47 0.76 0.77 70.19 

Ephemerella 0.32 0.22 0.46 0.43 0.76 70.95 

Polycentropus 0.25 0.42 0.46 0.8 0.76 71.7 

Hydroptilidae 0.37 0.35 0.42 0.73 0.68 72.38 

Polycentropodidae 0.45 0.08 0.41 0.95 0.68 73.06 

Oecetis 0.39 0.44 0.41 0.85 0.68 73.73 

Diptera 0.45 0.08 0.4 0.84 0.65 74.38 

Eurylophella 0.44 0.35 0.4 0.6 0.65 75.03 

Macromia 0.39 0.17 0.38 0.71 0.62 75.65 

Bivalvia 0.26 0.26 0.36 0.62 0.59 76.23 

Leptoceridae 0.3 0.17 0.36 0.64 0.58 76.81 

Stenelmis 0.63 0.31 0.35 0.75 0.57 77.38 

Chimarra 0.17 0.32 0.34 0.72 0.56 77.95 

Rheumatobates 0.31 0.17 0.34 0.47 0.55 78.5 

Cheumatopsyche 0.39 0.08 0.33 0.74 0.54 79.04 

Sialis 0.4 0 0.33 0.56 0.54 79.58 

Corixidae 0.39 0.23 0.32 0.61 0.52 80.1 



97 

 
 
 

 
      

Groups Wadley  &  Morgan’s Bridge    
Average dissimilarity = 60.69     
 

      

 

Group 

Wadley 

Group 

Morgan’s 

Bridge 

            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Lirceus 0.57 3.59 2.73 0.83 4.5 4.5 

Hyalella 0.83 3.7 2.54 1.35 4.19 8.69 

Chironominae 5.97 4.21 2.32 1.58 3.83 12.51 

Hydrobiidae 3.96 2.47 1.98 1.22 3.26 15.78 

Baetidae 1.96 1.44 1.63 1.1 2.68 18.46 

Tanypodinae 3.78 2.82 1.58 1.59 2.6 21.06 

Palaemonetes 2.57 1.26 1.57 1.37 2.58 23.64 

Hydrachnidiae 2.64 3.13 1.55 1.24 2.56 26.2 

Orthocladiinae 1.97 2.2 1.48 1.14 2.43 28.63 

Oligochaeta 1.84 2 1.47 0.77 2.43 31.05 

Baetisca 0.35 1.68 1.44 0.73 2.37 33.42 

Cheumatopsyche 1.95 0.08 1.42 0.87 2.34 35.77 

Caecidotea 1.33 1.99 1.22 1.44 2.01 37.78 

Ceratopogonidae 1.35 1.47 1.14 0.95 1.87 39.65 

Copepoda 1.55 1.5 1.12 1.07 1.85 41.5 

Chironomidae 1.56 1.22 1.09 1.28 1.8 43.3 

Tricorythodes 1.24 0.88 0.98 0.92 1.61 44.91 

Cambaridae 1.52 0.6 0.95 1.27 1.56 46.47 

Stenelmis 1.34 0.31 0.92 1.06 1.52 48 

Sphaeridae 0.84 1.07 0.92 0.83 1.51 49.51 

Eurylophella 1.18 0.35 0.9 0.45 1.49 50.99 

Maccaffertium 1.79 1.21 0.89 1.01 1.47 52.46 

Hydroptilidae 1 0.35 0.86 0.96 1.41 53.88 

Simulium 0.69 0.39 0.8 1.19 1.32 55.2 

Planoorbidae 0.99 1.5 0.78 1.24 1.29 56.49 

Ephemeroptera 0 0.95 0.78 0.65 1.28 57.77 

Caenis 0.95 1.21 0.7 0.88 1.16 58.93 

Chimarra 0.78 0.32 0.68 0.72 1.12 60.05 

Dubiraphia 0.86 0.28 0.67 0.95 1.11 61.15 

Macromia 0.8 0.17 0.65 0.95 1.07 62.22 

Oecetis 0.6 0.44 0.62 0.96 1.03 63.25 

Corbicula 0.79 0 0.6 0.64 0.99 64.24 

Leptophlebiidae 0.39 0.82 0.6 0.62 0.99 65.23 

Ancyronyx 0.74 0 0.55 0.77 0.9 66.13 

Crangonyx 0.5 0.46 0.53 0.63 0.88 67.01 
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Gyrinus 0 0.65 0.53 0.41 0.88 67.89 

Neoporus 0.48 0.61 0.53 1.01 0.87 68.76 

Hydropsyche 0.32 0.35 0.53 0.59 0.87 69.63 

Physa 0.53 0.65 0.52 0.89 0.86 70.5 

Dineutus 0.65 0 0.51 0.62 0.83 71.33 

Chromagrion 0.47 0.51 0.5 0.76 0.83 72.16 

Ephemerella 0.35 0.22 0.47 0.64 0.77 72.93 

Ferrissia 0.37 0.47 0.45 0.68 0.75 73.68 

Hirudinea 0.51 0.39 0.45 0.8 0.75 74.42 

Hydroptila 0.54 0.25 0.45 0.85 0.74 75.17 

Leptoceridae 0.53 0.17 0.44 0.74 0.73 75.9 

Peltodytes 0.43 0.17 0.44 0.66 0.73 76.63 

Macronychus 0.74 0.12 0.43 0.56 0.71 77.34 

Nectopsyche 0.69 0.17 0.42 0.7 0.69 78.03 

Polycentropus 0.23 0.42 0.39 0.68 0.64 78.67 

Epitheca 0 0.43 0.35 0.67 0.57 79.24 

Argia 0.42 0 0.34 0.83 0.57 79.81 

Pleurocera 0.43 0 0.33 0.56 0.54 80.35 

 
      

Groups Rocky Ford  &  Morgan’s Bridge    
Average dissimilarity = 55.75     
 

      

 

Group 

Rocky Ford 

Group 

Morgan’s 

Bridge 

            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Hyalella 0.7 3.7 2.63 1.24 4.72 4.72 

Hydrobiidae 3.88 2.47 2.08 1.18 3.73 8.45 

Baetidae 2.74 1.44 1.63 1.26 2.93 11.38 

Caecidotea 2.97 1.99 1.6 0.88 2.87 14.25 

Chironominae 3.84 4.21 1.58 1.38 2.84 17.09 

Palaemonetes 2.57 1.26 1.5 1.15 2.69 19.78 

Lirceus 3.74 3.59 1.43 0.98 2.56 22.34 

Hydrachnidiae 2.87 3.13 1.34 1.29 2.4 24.73 

Oligochaeta 1.3 2 1.3 0.61 2.33 27.07 

Cambaridae 2.24 0.6 1.3 1.46 2.33 29.4 

Orthocladiinae 1.48 2.2 1.28 0.89 2.3 31.7 

Tricorythodes 1.57 0.88 1.16 1.19 2.08 33.78 

Tanypodinae 3.22 2.82 1.1 1.41 1.98 35.75 

Crangonyx 1.26 0.46 1.09 0.97 1.96 37.72 

Copepoda 0.67 1.5 1.07 0.98 1.92 39.64 

Ceratopogonidae 0.71 1.47 1.05 0.73 1.88 41.52 

Sphaeridae 0.85 1.07 1.03 1.06 1.85 43.37 
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Hirudinea 1.39 0.39 1 0.5 1.79 45.16 

Stenelmis 0.99 0.31 0.92 1.43 1.66 46.82 

Ephemeroptera 0.25 0.95 0.92 0.75 1.64 48.46 

Chironomidae 1.29 1.22 0.87 1.16 1.57 50.03 

Planoorbidae 1.38 1.5 0.82 1.24 1.47 51.49 

Gammarus 0.7 0.3 0.79 0.87 1.42 52.91 

Caenis 0.55 1.21 0.73 0.82 1.31 54.23 

Maccaffertium 1.36 1.21 0.72 1.21 1.29 55.52 

Simulium 0.8 0.39 0.69 0.67 1.24 56.76 

Leptophlebiidae 0.35 0.82 0.67 0.68 1.21 57.97 

Gyrinus 0.2 0.65 0.67 0.51 1.2 59.17 

Cheumatopsyche 0.82 0.08 0.67 0.84 1.2 60.37 

Baetisca 1.05 1.68 0.65 0.7 1.17 61.54 

Physa 0.63 0.65 0.63 1.04 1.14 62.68 

Hydroptilidae 0.67 0.35 0.62 0.86 1.12 63.8 

Ephemerella 0.62 0.22 0.59 0.7 1.06 64.86 

Dubiraphia 0.73 0.28 0.54 0.68 0.96 65.82 

Taeniopteryx 0.68 0.19 0.53 0.49 0.94 66.77 

Macronychus 0.8 0.12 0.51 0.72 0.91 67.68 

Macromia 0.65 0.17 0.5 0.84 0.9 68.58 

Polycentropus 0.23 0.42 0.5 0.77 0.89 69.47 

Oecetis 0.31 0.44 0.49 0.92 0.88 70.35 

Ferrissia 0.72 0.47 0.48 0.7 0.87 71.22 

Nectopsyche 0.54 0.17 0.47 0.81 0.83 72.05 

Corbicula 0.56 0 0.45 0.6 0.8 72.85 

Neoporus 0.39 0.61 0.43 0.73 0.77 73.63 

Pleurocera 0.57 0 0.42 0.59 0.75 74.37 

Chromagrion 0.14 0.51 0.41 0.67 0.73 75.1 

Bivalvia 0.35 0.26 0.4 0.49 0.71 75.81 

Hydroptila 0.41 0.25 0.4 0.74 0.71 76.52 

Corixidae 0.32 0.23 0.36 0.66 0.64 77.16 

Elmidae 0.53 0.08 0.35 0.44 0.63 77.79 

Polycentropodidae 0.33 0.08 0.32 0.81 0.58 78.36 

Ostracoda 0.3 0.08 0.31 0.53 0.56 78.93 

Eurylophella 0 0.35 0.3 0.38 0.54 79.47 

Leptoceridae 0.28 0.17 0.3 0.61 0.54 80 

 
      

Groups Oliver  &  Morgan’s Bridge    
Average dissimilarity = 57.91     
 

      

 

Group 

Oliver 

Group 

Morgan’s 

Bridge 
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Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Hyalella 0.77 3.7 2.75 1.17 4.75 4.75 

Baetidae 3.13 1.44 2.13 0.99 3.69 8.44 

Chironominae 3.55 4.21 1.79 1.34 3.09 11.53 

Hydrobiidae 2.69 2.47 1.77 1.12 3.05 14.59 

Tricorythodes 1.93 0.88 1.7 1.09 2.93 17.52 

Hydrachnidiae 2.18 3.13 1.52 0.87 2.63 20.15 

Orthocladiinae 1.9 2.2 1.46 1.13 2.52 22.67 

Tanypodinae 3.04 2.82 1.43 1.44 2.47 25.14 

Copepoda 0.82 1.5 1.39 1.01 2.4 27.54 

Lirceus 3.48 3.59 1.38 0.75 2.39 29.93 

Caecidotea 1.67 1.99 1.3 1.08 2.25 32.18 

Oligochaeta 1.29 2 1.25 0.7 2.16 34.34 

Crangonyx 1.32 0.46 1.2 0.83 2.07 36.41 

Cambaridae 1.81 0.6 1.19 1.27 2.06 38.47 

Cheumatopsyche 1.47 0.08 1.18 0.91 2.04 40.51 

Palaemonetes 1.7 1.26 1.18 1.22 2.04 42.55 

Gammarus 1.37 0.3 1.13 0.83 1.95 44.5 

Planoorbidae 1.08 1.5 1.09 1.72 1.88 46.38 

Ceratopogonidae 1.13 1.47 1.05 0.87 1.81 48.19 

Simulium 1.18 0.39 1.03 0.74 1.78 49.97 

Chironomidae 1.2 1.22 1 1.29 1.72 51.7 

Caenis 1.7 1.21 0.93 0.75 1.61 53.31 

Maccaffertium 1.69 1.21 0.93 1 1.61 54.93 

Stenelmis 1.34 0.31 0.91 0.95 1.57 56.49 

Ephemeroptera 0.12 0.95 0.88 0.69 1.51 58.01 

Perlesta 1.13 0.25 0.75 0.56 1.29 59.3 

Isonychia 0.86 0.22 0.71 0.61 1.22 60.51 

Leptophlebiidae 0.37 0.82 0.69 0.69 1.2 61.71 

Sphaeridae 0.43 1.07 0.68 0.69 1.18 62.89 

Taeniopteryx 0.76 0.19 0.64 0.41 1.11 64 

Hirudinea 0.85 0.39 0.63 0.91 1.09 65.09 

Ephemerella 0.78 0.22 0.63 0.7 1.09 66.18 

Gyrinus 0.17 0.65 0.63 0.5 1.08 67.26 

Physa 0.49 0.65 0.58 0.87 1 68.27 

Baetisca 1.39 1.68 0.56 0.69 0.96 69.23 

Hydroptilidae 0.5 0.35 0.55 0.61 0.95 70.18 

Nectopsyche 0.86 0.17 0.55 0.91 0.94 71.12 

Hydroptila 0.59 0.25 0.54 0.61 0.93 72.06 

Ferrissia 0.64 0.47 0.53 0.61 0.92 72.98 

Oecetis 0.28 0.44 0.52 1.03 0.9 73.88 

Dubiraphia 0.69 0.28 0.52 1.01 0.9 74.78 



101 

 
 
 

Hydropsyche 0.67 0.35 0.51 0.81 0.89 75.67 

Neoporus 0.51 0.61 0.48 0.8 0.83 76.5 

Ancyronyx 0.6 0 0.47 0.4 0.8 77.31 

Macronychus 0.63 0.12 0.45 0.7 0.78 78.08 

Macromia 0.53 0.17 0.44 0.79 0.76 78.84 

Chromagrion 0 0.51 0.41 0.66 0.7 79.54 

Corixidae 0.37 0.23 0.39 0.54 0.67 80.22 

 
      

Groups Hwy 119  &  Morgan’s Bridge    
Average dissimilarity = 53.85     
 

      

 

Group Hwy 

119 

Group 

Morgan’s 

Bridge 

            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Caecidotea 4.25 1.99 2.85 1.44 5.29 5.29 

Hyalella 1.14 3.7 2.59 1.1 4.8 10.09 

Chironominae 3.16 4.21 1.97 1.5 3.66 13.75 

Lirceus 4.51 3.59 1.79 0.75 3.32 17.07 

Hydrobiidae 3.11 2.47 1.61 1.34 2.99 20.06 

Planoorbidae 3.08 1.5 1.58 1.45 2.94 23.01 

Orthocladiinae 0.25 2.2 1.52 1.01 2.82 25.83 

Palaemonetes 2.47 1.26 1.52 1.11 2.82 28.65 

Hydrachnidiae 2.36 3.13 1.52 1.08 2.81 31.46 

Crangonyx 1.54 0.46 1.49 0.84 2.77 34.24 

Oligochaeta 1.48 2 1.46 0.74 2.71 36.94 

Tanypodinae 3.18 2.82 1.39 1.26 2.59 39.53 

Baetidae 1.52 1.44 1.38 0.96 2.56 42.09 

Copepoda 1.87 1.5 1.27 1.3 2.36 44.45 

Tricorythodes 1.01 0.88 1.13 1.1 2.11 46.56 

Chironomidae 1.15 1.22 0.99 1.41 1.84 48.4 

Ceratopogonidae 1.04 1.47 0.96 0.73 1.78 50.17 

Gammarus 1.28 0.3 0.95 0.76 1.77 51.94 

Sphaeridae 0.75 1.07 0.89 0.86 1.64 53.59 

Cambaridae 1.24 0.6 0.88 1.51 1.64 55.23 

Ephemeroptera 0 0.95 0.85 0.65 1.58 56.8 

Hirudinea 1.11 0.39 0.81 0.78 1.5 58.31 

Simulium 0.82 0.39 0.8 0.64 1.48 59.79 

Leptophlebiidae 0 0.82 0.73 0.64 1.35 61.14 

Maccaffertium 1.17 1.21 0.68 0.88 1.26 62.4 

Physa 1.06 0.65 0.65 0.99 1.21 63.61 

Cheumatopsyche 0.74 0.08 0.65 0.97 1.21 64.83 

Ferrissia 0.81 0.47 0.64 0.77 1.19 66.02 
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Gyrinus 0 0.65 0.56 0.42 1.04 67.06 

Perlesta 0.53 0.25 0.56 0.56 1.04 68.1 

Ephemerella 0.57 0.22 0.54 0.79 1 69.1 

Nectopsyche 0.66 0.17 0.49 0.74 0.92 70.02 

Stenelmis 0.28 0.31 0.48 0.83 0.89 70.91 

Neoporus 0.44 0.61 0.48 0.78 0.89 71.79 

Caenis 0.95 1.21 0.47 0.63 0.87 72.66 

Chromagrion 0 0.51 0.43 0.66 0.79 73.45 

Oecetis 0.17 0.44 0.42 0.81 0.79 74.24 

Baetisca 1.69 1.68 0.41 0.84 0.75 74.99 

Hydroptila 0.33 0.25 0.4 0.58 0.74 75.73 

Hydropsyche 0.2 0.35 0.37 0.65 0.69 76.43 

Corixidae 0.28 0.23 0.35 0.47 0.65 77.07 

Epitheca 0.19 0.43 0.34 0.66 0.63 77.7 

Eurylophella 0 0.35 0.34 0.38 0.62 78.33 

Isonychia 0.25 0.22 0.33 0.55 0.62 78.95 

Argia 0.39 0 0.32 0.52 0.6 79.55 

Hydroptilidae 0.2 0.35 0.32 0.65 0.6 80.15 
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APPENDIX C 

SEASONAL SIMPER RESULTS 

SIMPER results for within season similarities and among season dissimilarities, cutting off at a 

cumulative 80% similarity or dissimilarity to omit low contributing or rare taxa. 

Group Summer      
Average similarity: 44.33     
 

      

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%  

Chironominae 5.14 5.6 1.93 12.62 12.62  
Hydrobiidae 5.88 5.51 1.49 12.44 25.07  
Tanypodinae 3.78 3.67 1.69 8.27 33.34  
Hydrachnidiae 2.83 2.4 1.48 5.42 38.76  
Oligochaeta 3.34 2.22 1.46 5 43.77  
Planoorbidae 2.12 1.83 1.29 4.13 47.9  
Palaemonetes 1.87 1.6 0.89 3.62 51.51  
Cambaridae 1.89 1.6 1.38 3.6 55.11  
Caecidotea 1.9 1.41 0.57 3.17 58.29  
Tricorythodes 1.34 1.41 0.97 3.17 61.46  
Sphaeridae 2.11 1.29 0.75 2.91 64.37  
Orthocladiinae 1.76 1.24 1.09 2.79 67.16  
Hirudinea 2.07 1.2 1.08 2.7 69.86  
Hyalella 1.52 1.16 0.48 2.63 72.49  
Chironomidae 1.59 1.01 0.66 2.28 74.77  
Maccaffertium 1.29 0.96 1.03 2.17 76.94  
Macronychus 1.22 0.89 0.8 2.01 78.95  
Cheumatopsyche 1.35 0.78 0.4 1.76 80.71  
 

      
Group Fall      
Average similarity: 48.66     
 

      

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%  

Chironominae 5.47 6.83 2.26 14.03 14.03  
Tanypodinae 4 4.79 2.86 9.84 23.88  
Hydrobiidae 3.88 4.35 2.68 8.94 32.82  
Hydrachnidiae 3.37 3.93 3.06 8.07 40.89  
Palaemonetes 3.54 3.68 1.46 7.56 48.45  
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Caenis 2.73 2.94 1.37 6.04 54.49  
Oligochaeta 1.96 2.02 1.24 4.16 58.65  
Ceratopogonidae 1.65 1.84 2.43 3.78 62.43  
Tricorythodes 2.29 1.69 0.96 3.48 65.91  
Stenelmis 1.54 1.6 1.03 3.29 69.2  
Cambaridae 1.66 1.46 1.25 3 72.2  
Caecidotea 1.46 1.18 0.8 2.42 74.62  
Orthocladiinae 1.31 1.14 1.08 2.35 76.97  
Baetidae 1.51 1.12 1.05 2.3 79.27  
Planoorbidae 1.13 0.93 0.78 1.92 81.18  
 

      
Group Winter      
Average similarity: 46.26     
 

      

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%  

Chironominae 4.33 5.3 1.84 11.46 11.46  
Lirceus 4.14 5.28 1.17 11.42 22.88  
Baetisca 3.18 4.84 1.12 10.46 33.34  
Hydrachnidiae 3.11 3.69 1.85 7.97 41.31  
Tanypodinae 3.07 3.31 1.42 7.16 48.47  
Copepoda 2.11 2.26 1.1 4.87 53.34  
Hydrobiidae 2.31 2.18 1.17 4.7 58.05  
Orthocladiinae 2.35 2.01 1.03 4.35 62.39  
Maccaffertium 1.98 1.85 1.54 3.99 66.39  
Palaemonetes 1.76 1.55 1.05 3.36 69.75  
Caecidotea 1.48 1.54 0.73 3.33 73.07  
Baetidae 1.86 1.31 0.67 2.83 75.9  
Hyalella 1.52 1.28 0.47 2.78 78.67  
Cambaridae 1.22 1 1.04 2.15 80.83  
 

      
Group Spring      
Average similarity: 47.76     
 

      

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%  

Lirceus 5.9 8.15 1.09 17.07 17.07  
Tanypodinae 3.27 4.71 1.7 9.86 26.93  
Chironominae 3.83 4.1 1.36 8.58 35.51  
Caecidotea 3.79 3.87 1.2 8.1 43.61  
Baetidae 3.52 2.97 0.79 6.22 49.83  
Maccaffertium 1.59 2.21 1.92 4.64 54.47  
Orthocladiinae 1.9 2 1.31 4.19 58.66  
Planoorbidae 1.58 1.92 0.82 4.03 62.69  
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Copepoda 1.48 1.35 0.95 2.82 65.51  
Hyalella 1.58 1.15 0.56 2.4 67.92  
Cambaridae 1.25 1.14 0.73 2.39 70.3  
Hydrobiidae 1.24 1.13 0.91 2.37 72.67  
Palaemonetes 1.33 1.13 0.75 2.36 75.03  
Chironomidae 1.58 1.05 0.62 2.2 77.23  
Physa 0.99 1.05 0.81 2.2 79.43  
Hydrachnidiae 1.17 0.97 0.67 2.03 81.46  
 

      
Groups Summer  &  Fall     
Average dissimilarity = 54.97     
 

      

 

Group 

Summer 
Group Fall             

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Hydrobiidae 5.88 3.88 2.46 1.28 4.47 4.47 

Palaemonetes 1.87 3.54 1.77 1.59 3.23 7.69 

Oligochaeta 3.34 1.96 1.72 0.91 3.13 10.82 

Caenis 0.88 2.73 1.6 1.32 2.91 13.74 

Tanypodinae 3.78 4 1.55 1.45 2.81 16.55 

Chironominae 5.14 5.47 1.47 1.23 2.67 19.21 

Ceratopogonidae 1.86 1.65 1.41 1.17 2.57 21.78 

Sphaeridae 2.11 0.87 1.37 1.19 2.5 24.28 

Hydrachnidiae 2.83 3.37 1.33 1.42 2.41 26.69 

Tricorythodes 1.34 2.29 1.22 1.13 2.23 28.92 

Hirudinea 2.07 0.82 1.18 0.76 2.14 31.06 

Caecidotea 1.9 1.46 1.11 0.93 2.02 33.08 

Ferrissia 0.58 1.57 1.11 1.12 2.02 35.09 

Copepoda 1.21 0.95 1.1 0.84 1.99 37.09 

Planoorbidae 2.12 1.13 1.09 1.45 1.97 39.06 

Chironomidae 1.59 1.4 1.02 1.27 1.85 40.91 

Hyalella 1.52 0.93 1.01 0.87 1.84 42.75 

Orthocladiinae 1.76 1.31 0.96 0.72 1.74 44.49 

Baetidae 0.93 1.51 0.94 1.33 1.72 46.21 

Crangonyx 1.23 0.27 0.93 0.75 1.7 47.9 

Cambaridae 1.89 1.66 0.92 1.42 1.68 49.58 

Cheumatopsyche 1.35 0.64 0.91 0.72 1.66 51.24 

Gammarus 1.1 0.59 0.9 0.73 1.63 52.87 

Stenelmis 0.93 1.54 0.88 1.16 1.6 54.47 

Dubiraphia 0.73 1.16 0.82 1.13 1.48 55.95 

Macronychus 1.22 0.47 0.77 1.1 1.41 57.36 

Maccaffertium 1.29 0.5 0.73 1.16 1.32 58.68 
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Physa 0.83 0.36 0.69 1.36 1.26 59.94 

Corixidae 0.67 0.34 0.64 0.82 1.16 61.1 

Corbicula 0.64 0.64 0.59 0.9 1.08 62.18 

Hydroptilidae 0.69 0.41 0.59 0.86 1.08 63.26 

Ancyronyx 0.69 0.79 0.58 0.67 1.06 64.32 

Nectopsyche 1 0.6 0.57 1.01 1.04 65.36 

Hydroptila 0.51 0.43 0.56 0.83 1.02 66.39 

Oecetis 0.78 0.25 0.55 0.98 1 67.39 

Argia 0.21 0.76 0.53 0.7 0.97 68.36 

Chimarra 0.54 0.22 0.51 0.56 0.93 69.29 

Macromia 0.17 0.7 0.49 0.86 0.89 70.18 

Chromagrion 0.21 0.66 0.48 0.74 0.87 71.06 

Peltodytes 0.26 0.56 0.48 0.66 0.87 71.92 

Pleurocera 0.57 0.36 0.43 0.73 0.78 72.7 

Gyrinus 0.43 0.06 0.4 0.33 0.72 73.43 

Lirceus 0.45 0.34 0.4 0.86 0.72 74.15 

Simulium 0.13 0.46 0.4 0.54 0.72 74.87 

Epitheca 0.25 0.56 0.39 0.74 0.72 75.59 

Rheumatobates 0.37 0.28 0.38 0.61 0.68 76.27 

Polycentropodidae 0.44 0.06 0.35 0.84 0.64 76.91 

Dineutus 0.47 0.24 0.32 0.63 0.58 77.5 

Hexagenia 0.37 0.5 0.31 0.66 0.57 78.06 

Bivalvia 0.41 0.08 0.31 0.44 0.56 78.63 

Leptoceridae 0.26 0.2 0.27 0.54 0.49 79.12 

Ephemerella 0 0.39 0.26 0.46 0.48 79.6 

Ephemeroptera 0.18 0.17 0.26 0.38 0.47 80.08 

 
      

Groups Summer  &  Winter     
Average dissimilarity = 65.01     
 

      

 

Group 

Summer 

Group 

Winter 
            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Hydrobiidae 5.88 2.31 3.31 1.61 5.09 5.09 

Lirceus 0.45 4.14 2.96 1.17 4.55 9.64 

Baetisca 0 3.18 2.58 1.22 3.97 13.61 

Oligochaeta 3.34 0.55 2.08 0.95 3.2 16.81 

Tanypodinae 3.78 3.07 1.71 1.39 2.63 19.44 

Hydrachnidiae 2.83 3.11 1.62 1.22 2.49 21.93 

Chironominae 5.14 4.33 1.62 1.31 2.48 24.42 

Copepoda 1.21 2.11 1.58 1.19 2.43 26.85 

Hirudinea 2.07 0.13 1.42 0.82 2.19 29.03 
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Ceratopogonidae 1.86 0.49 1.39 0.94 2.14 31.17 

Orthocladiinae 1.76 2.35 1.37 1.03 2.11 33.28 

Sphaeridae 2.11 0.57 1.36 1.11 2.09 35.37 

Caecidotea 1.9 1.48 1.27 1.01 1.95 37.32 

Tricorythodes 1.34 0.62 1.19 1.32 1.83 39.15 

Baetidae 0.93 1.86 1.15 1.02 1.78 40.93 

Simulium 0.13 1.45 1.15 0.91 1.77 42.7 

Cheumatopsyche 1.35 0.9 1.15 0.82 1.77 44.47 

Planoorbidae 2.12 0.97 1.13 1.43 1.74 46.21 

Hyalella 1.52 1.52 1.12 0.89 1.72 47.92 

Taeniopteryx 0 1.35 1.07 0.74 1.65 49.57 

Crangonyx 1.23 0.62 1.01 0.79 1.56 51.13 

Chironomidae 1.59 0.92 1.01 1.3 1.56 52.68 

Palaemonetes 1.87 1.76 1.01 1.26 1.55 54.23 

Cambaridae 1.89 1.22 0.98 1.16 1.51 55.74 

Maccaffertium 1.29 1.98 0.95 1.18 1.46 57.2 

Gammarus 1.1 0.25 0.91 0.7 1.39 58.59 

Macronychus 1.22 0 0.91 1.14 1.39 59.99 

Eurylophella 0 1.08 0.82 0.49 1.26 61.25 

Stenelmis 0.93 0.34 0.77 1.18 1.18 62.43 

Caenis 0.88 0.29 0.76 0.93 1.18 63.61 

Hydroptilidae 0.69 0.66 0.71 0.8 1.08 64.69 

Nectopsyche 1 0.34 0.7 1.15 1.08 65.77 

Neoporus 0.06 0.91 0.68 1.01 1.04 66.82 

Hydroptila 0.51 0.6 0.66 0.94 1.01 67.83 

Hydropsyche 0.27 0.59 0.64 0.78 0.98 68.81 

Physa 0.83 0.26 0.64 1.03 0.98 69.79 

Ephemerella 0 0.79 0.6 0.65 0.92 70.71 

Oecetis 0.78 0.25 0.57 0.98 0.88 71.59 

Ferrissia 0.58 0.25 0.54 0.69 0.83 72.42 

Leptophlebiidae 0.11 0.71 0.51 0.62 0.79 73.21 

Corixidae 0.67 0 0.51 0.74 0.79 74 

Chimarra 0.54 0.21 0.51 0.55 0.78 74.77 

Dineutus 0.47 0.32 0.49 0.85 0.76 75.53 

Macromia 0.17 0.66 0.48 0.88 0.73 76.27 

Corbicula 0.64 0.06 0.47 0.64 0.73 77 

Ancyronyx 0.69 0 0.47 0.8 0.73 77.73 

Dubiraphia 0.73 0.32 0.44 0.78 0.68 78.41 

Gyrinus 0.43 0.13 0.43 0.34 0.66 79.07 

Pleurocera 0.57 0.34 0.43 0.66 0.66 79.73 

Polycentropodidae 0.44 0.32 0.37 0.81 0.57 80.29 
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Groups Fall  &  Winter     
Average dissimilarity = 62.24     
 

      

 
Group Fall 

Group 

Winter 
            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Lirceus 0.34 4.14 3.13 1.21 5.03 5.03 

Baetisca 0.19 3.18 2.64 1.28 4.24 9.27 

Caenis 2.73 0.29 2.02 1.37 3.24 12.51 

Palaemonetes 3.54 1.76 1.92 1.68 3.09 15.6 

Chironominae 5.47 4.33 1.76 1.22 2.83 18.43 

Tanypodinae 4 3.07 1.74 1.4 2.8 21.23 

Hydrobiidae 3.88 2.31 1.71 1.1 2.75 23.98 

Tricorythodes 2.29 0.62 1.7 1 2.73 26.71 

Baetidae 1.51 1.86 1.35 1.35 2.18 28.88 

Orthocladiinae 1.31 2.35 1.3 1.12 2.09 30.97 

Hydrachnidiae 3.37 3.11 1.27 1.11 2.05 33.02 

Copepoda 0.95 2.11 1.27 1.23 2.04 35.06 

Maccaffertium 0.5 1.98 1.25 1.32 2.01 37.07 

Hyalella 0.93 1.52 1.25 0.77 2 39.08 

Oligochaeta 1.96 0.55 1.23 1.26 1.98 41.05 

Ferrissia 1.57 0.25 1.2 1.14 1.93 42.98 

Simulium 0.46 1.45 1.17 0.98 1.88 44.86 

Taeniopteryx 0 1.35 1.08 0.76 1.74 46.6 

Ceratopogonidae 1.65 0.49 1.06 1.74 1.7 48.31 

Chironomidae 1.4 0.92 1.01 1.43 1.63 49.94 

Caecidotea 1.46 1.48 1.01 1.23 1.62 51.55 

Stenelmis 1.54 0.34 0.98 1.15 1.58 53.14 

Eurylophella 0 1.08 0.89 0.49 1.43 54.57 

Cambaridae 1.66 1.22 0.87 1.36 1.39 55.96 

Dubiraphia 1.16 0.32 0.8 1.01 1.29 57.25 

Ephemerella 0.39 0.79 0.75 0.77 1.2 58.45 

Neoporus 0.23 0.91 0.73 1.05 1.17 59.63 

Cheumatopsyche 0.64 0.9 0.7 0.91 1.13 60.75 

Hydroptilidae 0.41 0.66 0.68 0.79 1.09 61.84 

Planoorbidae 1.13 0.97 0.67 0.99 1.08 62.92 

Sphaeridae 0.87 0.57 0.63 0.83 1.02 63.94 

Hirudinea 0.82 0.13 0.62 0.99 1 64.94 

Ancyronyx 0.79 0 0.6 0.58 0.97 65.91 

Macromia 0.7 0.66 0.6 1.04 0.96 66.87 

Hydroptila 0.43 0.6 0.6 0.74 0.96 67.82 

Argia 0.76 0.06 0.59 0.66 0.95 68.77 
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Crangonyx 0.27 0.62 0.58 0.68 0.94 69.71 

Leptophlebiidae 0 0.71 0.56 0.64 0.9 70.61 

Gammarus 0.59 0.25 0.54 0.5 0.87 71.49 

Corbicula 0.64 0.06 0.53 0.73 0.86 72.34 

Nectopsyche 0.6 0.34 0.5 0.83 0.8 73.14 

Chromagrion 0.66 0.34 0.49 0.76 0.79 73.93 

Epitheca 0.56 0 0.46 0.73 0.74 74.67 

Physa 0.36 0.26 0.46 0.88 0.74 75.41 

Peltodytes 0.56 0.31 0.46 0.65 0.74 76.14 

Hydropsyche 0.06 0.59 0.46 0.75 0.73 76.87 

Dineutus 0.24 0.32 0.44 0.63 0.7 77.58 

Ephemeroptera 0.17 0.44 0.43 0.45 0.69 78.26 

Perlesta 0 0.49 0.36 0.39 0.58 78.84 

Oecetis 0.25 0.25 0.36 0.8 0.58 79.43 

Macronychus 0.47 0 0.34 0.58 0.55 79.98 

Leptoceridae 0.2 0.36 0.34 0.61 0.54 80.51 

 
      

Groups Summer  &  Spring     
Average dissimilarity = 66.81     
 

      

 

Group 

Summer 

Group 

Spring 
            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Lirceus 0.45 5.9 4.48 1.18 6.71 6.71 

Hydrobiidae 5.88 1.24 3.84 1.76 5.74 12.45 

Caecidotea 1.9 3.79 2.35 1.02 3.51 15.96 

Baetidae 0.93 3.52 2.27 1.07 3.39 19.35 

Chironominae 5.14 3.83 2.1 1.44 3.15 22.5 

Oligochaeta 3.34 1.06 2 0.91 3 25.5 

Hydrachnidiae 2.83 1.17 1.79 1.36 2.69 28.18 

Tanypodinae 3.78 3.27 1.56 1.35 2.34 30.52 

Sphaeridae 2.11 0.26 1.5 1.19 2.25 32.77 

Ceratopogonidae 1.86 0.77 1.47 1.03 2.2 34.98 

Hirudinea 2.07 0.28 1.39 0.85 2.08 37.05 

Crangonyx 1.23 1.36 1.37 1.03 2.05 39.1 

Hyalella 1.52 1.58 1.36 1.11 2.03 41.13 

Copepoda 1.21 1.48 1.34 1.08 2.01 43.14 

Tricorythodes 1.34 0.5 1.28 1.33 1.91 45.05 

Palaemonetes 1.87 1.33 1.27 1.44 1.9 46.95 

Orthocladiinae 1.76 1.9 1.13 0.89 1.69 48.64 

Chironomidae 1.59 1.58 1.08 1.24 1.61 50.25 

Cheumatopsyche 1.35 0.75 1.05 0.79 1.58 51.82 



110 

 
 
 

Planoorbidae 2.12 1.58 1.04 1.48 1.56 53.38 

Gammarus 1.1 0.66 1.03 0.87 1.54 54.93 

Cambaridae 1.89 1.25 1.01 1.36 1.51 56.44 

Macronychus 1.22 0.11 0.89 1.17 1.33 57.77 

Perlesta 0 1.13 0.87 0.84 1.31 59.08 

Physa 0.83 0.99 0.86 1.21 1.28 60.36 

Stenelmis 0.93 0.44 0.84 1.28 1.26 61.62 

Maccaffertium 1.29 1.59 0.81 1.29 1.21 62.82 

Nectopsyche 1 0.06 0.72 1.04 1.07 63.9 

Baetisca 0 0.84 0.67 1.26 1 64.9 

Caenis 0.88 0 0.66 0.85 0.98 65.88 

Isonychia 0 0.82 0.64 0.74 0.95 66.83 

Neoporus 0.06 0.78 0.62 1.31 0.93 67.76 

Oecetis 0.78 0.19 0.61 0.96 0.91 68.67 

Ferrissia 0.58 0.4 0.6 0.8 0.9 69.57 

Ephemerella 0 0.72 0.57 0.8 0.85 70.43 

Simulium 0.13 0.85 0.55 0.61 0.82 71.25 

Hydroptilidae 0.69 0.3 0.55 0.78 0.82 72.07 

Corixidae 0.67 0.11 0.54 0.82 0.81 72.89 

Corbicula 0.64 0.17 0.54 0.76 0.81 73.7 

Dubiraphia 0.73 0.37 0.51 0.8 0.76 74.46 

Leptophlebiidae 0.11 0.62 0.5 0.71 0.74 75.21 

Hydropsyche 0.27 0.3 0.44 0.58 0.66 75.87 

Ancyronyx 0.69 0.13 0.44 0.79 0.66 76.52 

Chimarra 0.54 0.11 0.42 0.48 0.63 77.15 

Hydroptila 0.51 0.06 0.41 0.71 0.61 77.76 

Gyrinus 0.43 0.06 0.4 0.33 0.6 78.36 

Isoperla 0 0.53 0.4 0.84 0.6 78.96 

Pleurocera 0.57 0 0.39 0.56 0.59 79.55 

Ephemeroptera 0.18 0.3 0.36 0.48 0.54 80.09 

 
      

Groups Fall  &  Spring     
Average dissimilarity = 64.54     
 

      

 
Group Fall 

Group 

Spring 
            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Lirceus 0.34 5.9 4.69 1.22 7.27 7.27 

Chironominae 5.47 3.83 2.29 1.31 3.55 10.82 

Caecidotea 1.46 3.79 2.27 1.1 3.52 14.34 

Caenis 2.73 0 2.22 1.52 3.43 17.77 

Baetidae 1.51 3.52 2.19 1.06 3.4 21.17 
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Hydrobiidae 3.88 1.24 2.15 1.29 3.33 24.5 

Palaemonetes 3.54 1.33 2.12 1.57 3.28 27.78 

Hydrachnidiae 3.37 1.17 2.11 1.77 3.26 31.05 

Tricorythodes 2.29 0.5 1.8 1.14 2.79 33.84 

Tanypodinae 4 3.27 1.61 1.34 2.49 36.33 

Hyalella 0.93 1.58 1.24 1.27 1.92 38.25 

Ferrissia 1.57 0.4 1.2 1.1 1.86 40.11 

Oligochaeta 1.96 1.06 1.18 1.29 1.83 41.94 

Chironomidae 1.4 1.58 1.16 1.31 1.79 43.74 

Crangonyx 0.27 1.36 1.15 0.74 1.78 45.51 

Copepoda 0.95 1.48 1.1 1.27 1.7 47.21 

Orthocladiinae 1.31 1.9 1.02 1.12 1.57 48.79 

Stenelmis 1.54 0.44 1.01 1.12 1.57 50.35 

Ceratopogonidae 1.65 0.77 0.98 1.74 1.51 51.87 

Dubiraphia 1.16 0.37 0.97 1.24 1.51 53.38 

Maccaffertium 0.5 1.59 0.97 1.3 1.5 54.88 

Planoorbidae 1.13 1.58 0.95 1.13 1.48 56.35 

Perlesta 0 1.13 0.89 0.85 1.38 57.74 

Simulium 0.46 0.85 0.84 0.89 1.31 59.04 

Cambaridae 1.66 1.25 0.82 1.15 1.27 60.31 

Ephemerella 0.39 0.72 0.74 0.97 1.15 61.46 

Sphaeridae 0.87 0.26 0.7 0.93 1.08 62.54 

Gammarus 0.59 0.66 0.68 0.67 1.06 63.6 

Hirudinea 0.82 0.28 0.67 1.09 1.04 64.64 

Isonychia 0.17 0.82 0.66 0.81 1.03 65.67 

Baetisca 0.19 0.84 0.65 1.23 1.01 66.68 

Neoporus 0.23 0.78 0.64 1.32 0.99 67.67 

Physa 0.36 0.99 0.63 0.93 0.98 68.64 

Argia 0.76 0.06 0.59 0.66 0.92 69.56 

Cheumatopsyche 0.64 0.75 0.58 0.99 0.91 70.47 

Ancyronyx 0.79 0.13 0.58 0.57 0.89 71.36 

Macromia 0.7 0.3 0.56 0.99 0.86 72.22 

Leptophlebiidae 0 0.62 0.49 0.64 0.75 72.98 

Corbicula 0.64 0.17 0.49 0.67 0.75 73.73 

Chromagrion 0.66 0.11 0.49 0.71 0.75 74.48 

Epitheca 0.56 0 0.48 0.73 0.74 75.22 

Peltodytes 0.56 0.06 0.48 0.58 0.74 75.96 

Nectopsyche 0.6 0.06 0.47 0.74 0.73 76.68 

Hydroptilidae 0.41 0.3 0.46 0.69 0.71 77.39 

Isoperla 0 0.53 0.43 0.84 0.66 78.06 

Macronychus 0.47 0.11 0.4 0.68 0.62 78.68 

Hexagenia 0.5 0 0.4 0.76 0.62 79.29 
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Corixidae 0.34 0.11 0.39 0.49 0.61 79.9 

Hydroptila 0.43 0.06 0.36 0.53 0.56 80.46 

 
      

Groups Winter  &  Spring     
Average dissimilarity = 55.90     
 

      

 

Group 

Winter 

Group 

Spring 
            

Species   Av.Abund   Av.Abund Av.Diss   Diss/SD Contrib% Cum.% 

Lirceus 4.14 5.9 2.62 1.11 4.7 4.7 

Baetisca 3.18 0.84 2.48 1.28 4.43 9.13 

Caecidotea 1.48 3.79 2.37 1.09 4.23 13.36 

Baetidae 1.86 3.52 2.3 1.09 4.12 17.48 

Hydrachnidiae 3.11 1.17 2.02 1.24 3.62 21.1 

Chironominae 4.33 3.83 1.68 1.52 3.01 24.11 

Hyalella 1.52 1.58 1.65 1.12 2.95 27.06 

Crangonyx 0.62 1.36 1.36 0.88 2.43 29.49 

Simulium 1.45 0.85 1.33 1.01 2.39 31.87 

Orthocladiinae 2.35 1.9 1.27 1.19 2.27 34.14 

Tanypodinae 3.07 3.27 1.2 1.37 2.15 36.29 

Hydrobiidae 2.31 1.24 1.19 1.08 2.13 38.42 

Palaemonetes 1.76 1.33 1.16 1.28 2.08 40.5 

Taeniopteryx 1.35 0.06 1.16 0.75 2.08 42.58 

Copepoda 2.11 1.48 1.11 1.37 1.99 44.57 

Chironomidae 0.92 1.58 1.1 1.28 1.96 46.53 

Perlesta 0.49 1.13 0.98 0.84 1.76 48.29 

Maccaffertium 1.98 1.59 0.96 1.09 1.71 50 

Cambaridae 1.22 1.25 0.9 1.24 1.61 51.62 

Physa 0.26 0.99 0.88 0.98 1.58 53.19 

Planoorbidae 0.97 1.58 0.87 0.99 1.56 54.76 

Eurylophella 1.08 0.22 0.87 0.51 1.55 56.31 

Ephemerella 0.79 0.72 0.86 0.94 1.54 57.85 

Oligochaeta 0.55 1.06 0.85 1.03 1.52 59.36 

Cheumatopsyche 0.9 0.75 0.78 0.86 1.39 60.76 

Leptophlebiidae 0.71 0.62 0.75 0.9 1.35 62.1 

Isonychia 0.23 0.82 0.74 0.75 1.32 63.42 

Neoporus 0.91 0.78 0.73 1.22 1.3 64.72 

Tricorythodes 0.62 0.5 0.69 0.71 1.23 65.96 

Hydroptilidae 0.66 0.3 0.61 0.64 1.1 67.06 

Gammarus 0.25 0.66 0.58 0.7 1.03 68.09 

Ceratopogonidae 0.49 0.77 0.55 0.9 0.99 69.08 

Macromia 0.66 0.3 0.54 0.91 0.97 70.05 
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Ephemeroptera 0.44 0.3 0.54 0.55 0.96 71.01 

Hydroptila 0.6 0.06 0.51 0.61 0.92 71.93 

Stenelmis 0.34 0.44 0.49 0.95 0.87 72.8 

Isoperla 0.08 0.53 0.46 0.88 0.83 73.63 

Hydropsyche 0.59 0.3 0.46 0.75 0.82 74.45 

Ferrissia 0.25 0.4 0.43 0.82 0.77 75.22 

Sphaeridae 0.57 0.26 0.42 0.79 0.76 75.98 

Ceraclea 0.24 0.22 0.36 0.6 0.65 76.62 

Dubiraphia 0.32 0.37 0.35 0.61 0.62 77.24 

Attaneuria 0 0.4 0.34 0.59 0.6 77.85 

Leptoceridae 0.36 0.11 0.33 0.64 0.6 78.45 

Dineutus 0.32 0.06 0.33 0.57 0.59 79.04 

Hirudinea 0.13 0.28 0.31 0.74 0.56 79.59 

Lepidostoma 0.44 0 0.31 0.44 0.56 80.15 
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