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by 
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ABSTRACT 

The loggerhead turtle (Caretta caretta) is a species federally listed as 
 

“threatened” whose global populations are declining. Georgia Department of Natural Resources 

conservation protocols for this species require the daily monitoring of nesting activity and permit 

physical relocation of nests which are at risk of being eroded or flooded  by storms and high  tides  

in order to increase hatch success--the proportion of hatched to unhatched eggs. Relocated nests 

are moved to an area with higher elevation in order to avoid flooding, but other variables such as 

increased temperature and decreased moisture are introduced when relocating. For years 

temperature and moisture have been regarded as the most important factors that contribute to 

hatch success but these variables are not always directly considered when relocating nests. It is 

likely that other environmental variables have an effect on hatch success and influence 

temperature and moisture. 

The hypothesis that a combination of geological and biological factors better 

predicts hatch success compared to temperature and/or moisture alone was tested. Secondly the 

environmental variables which influence temperature, moisture, and likelihood of tidal washover 

were also examined to evaluate their impact on hatch success. Loggerhead nests on Ossabaw 

Island, Georgia were monitored throughout incubation; upon incubation completion, hatch 

success was calculated. For all nests, temperature, moisture, vegetation cover and composition, 

elevation, dune morphology, and tidal washovers were recorded. These variables were analyzed 



 

to assess their individua l and combined influences on nest conditions and ultimately on hatch 

success. In addition to number of washover events, temperature, and moisture, nest vegetation 

and elevation were important predictors of hatch success in loggerhead sea turtle nests and 

should be considered when nest relocation is required. 
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CHAPTER 1 

INTRODUCTION 

There are seven species of sea turtles extant in our world today. Globally-recognize d 

species include the leatherback (Dermochelys coriacea), flatback (Natator depressus), Kemp’s 

ridley (Lepidochelys kempii), olive ridley (Lepidochelys olivacea), green turtle (Chelonia 

mydas), hawksbill turtle (Eretmochelys imbricata), and the loggerhead turtle (Caretta caretta), 

although there is some debate that more species exist (Spotila 2004). All sea turtle species are 

classified as Vulnerable, Endangered, or Critically Endangered as defined by the International 

Union for the conservation  of Nature (IUCN) Red List  with  globally  decreasing population 

trends (except for N. depressus which is defined as Data Deficient). The loggerhead sea turtle is 

the most common sea turtle nesting on the Atlantic coast of the United States and is the most 

studied sea turtle in the world (Spotila 2004). Caretta caretta is a globally Vulnerable and 

Endangered species as defined and identified by the IUCN Red List, however increasing nesting 

trends over the past two decades indicates that the Northwest Atlantic subpopulation is 

increasing (Casale and Tucker 2017). The majority of loggerheads in the United States nest on 

beaches ranging from Florida to North Carolina including all Georgia  barrier island  beaches, as 

well as parts of Alabama and Texas (Ehrhart et al. 2003; NMFS and USFWS 2008; Witherington 

and Witherington 2011). 

In the eastern United States, loggerheads are major consumers of horseshoe crabs 

(Limulus polyphemus), hermit crabs (Pagurus pollicaris), echinoderms, spider crabs (Libinia 

spp.), whelks  (Busycon spp.), other invertebrates, and fish bycatch from trawlers, (Ruckdeschel 

and Shoop 1988; Youngkin 2001). Loggerheads are also important prey items in marine systems, 

particularly for apex predators (eg. great white and tiger sharks; Fergusson et al. 2000; Heithaus 
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et al. 2002). Loggerhead sea turtles provide novel habitat to many epibiont  species which reside  

on the carapaces and plastrons of most adult sea turtles (Bjorndal 2003; Witherington and 

Witherington 2015). Loggerheads appear to host the most diverse range of epibionts of all  sea 

turtle species (Bjorndal 2003), and multiple studies  have described over 100  epibiont  species 

living on loggerheads nesting in Georgia (Frick et al. 1998, 2000). 

Beyond ecological importance, Caretta caretta, among other sea turtle species, have 

become popular, charismatic megafauna that grasp the interest of tourists and citizen scientists 

(reviewed in Cazabon-Mannette et al. 2017). Many beaches where sea turtles nest host events 

where people can volunteer to monitor beaches. This increased interest in an endangered 

megafauna species that relies on both terrestrial and marine habitats to complete its  life  cycle can 

be a major tool in conservation management because people are willing to pay to encounter sea 

turtles in the wild and to preserve their habitats making loggerheads a keystone species whereby 

their protection yields protection for other species (Whitehead 1992; Cazabon-Mannette et al. 

2017). Because of its widespread presence on the East Coast, Caretta caretta can be an 

ambassador for endangered or threatened marine wildlife and beach conservation. Federal 

protection under the Endangered Species Act and critical habitat designation for several Georgia 

nesting habitats are afforded for this species (NMFS and USFWS 2008). For these reasons, there 

are considerable efforts to restore historical populations and maintain habitat for this species. For 

example, all sea turtle nests in Georgia are identified and monitored for the duration of nest 

incubation. 

While monitoring and protecting  nests are important,  most  conservation  plans  also  call 

for nest relocation. For example, nests laid close to the spring high tideline are more likely to be 

inundated by tides which can decrease hatch success (Foley et al. 2006). Current conservation 
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plans suggest that nests laid at sites below the spring high tide line be relocated to areas of higher 

elevation to increase nest hatch success, or the proportion of hatched to unhatched eggs in each 

nest (NMFS and USFWS 2008). This drastic step is taken since hatch success is vital for the 

recovery of endangered and threatened marine turtle populations (Dutton et al. 2005). The egg is 

arguably the most vulnerable stage of life for loggerheads (Özdemir et al. 2008;  Sim  et al. 2015) 

with previous studies reporting up to 21% egg mortality within the nest (see Özdemir et al. 

2008). The majority of overall mortality  in loggerhead  populations  occurs within  the first year of 

life (Ascani et al. 2016) with an estimated 10-30% of eggs laid surviving to become year old 

hatchlings (Frazer 1986). Since the incubation period  is  critical,  nest relocation  is  an important 

tool used by management agencies to increase hatch success (Dutton et al. 2005; Tuttle  and 

Rostal 2010; Ilgaz et al. 2011) while  still  allowing  nests to incubate  on nesting  beaches as 

opposed to incubating in hatcheries. 

A number of environmental factors influence hatching success, and it is important to 

consider environmental variables when choosing sites for nest relocation. In particular, 

temperature is considered among the most important  environmental  parameters which  affect 

hatch success (Bull 1980; Wibbels 2003;  Blair  2005).  For  example,  the suitable  temperature 

range for incubating loggerhead nests is 26.5 - 32°C (Bull 1980; Wibbels 2003; Blair 2005), and 

maybe up to 34°C (Yntema and Mrosovsky 1982), and incubation temperatures outside  of this 

range may lead to lower hatch success or doom the nest entirely (Blair 2005; Bull 1980; Wibbels 

2003; Yntema and Mrosovsky 1982). These temperature ranges are particularly concerning since 

climate change is likely to make many nests within  the current loggerhead  nesting  range exceed 

the suitable range within years or decades (Butt et al. 2016). Many studies have examined the 

effects of temperature on nests incubating under lab conditions (Bull and Vogt 1979; Bull 1985; 
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Georges et al. 1994; Howard et al. 2014), so it is important to also assess nest temperature in 

relation to successful incubation conditions in situ. 

A second major factor that can influence loggerhead hatch success is nest substrate 

moisture (Wood and Bjorndal 2000; Lolavar  and Wyneken 2015;  Wyneken and Lolavar  2015). 

For example, nests at low elevations experience higher moisture as a result of more frequent tidal 

inundation and experience  lower  hatching  success (Foley  et al. 2006),  making  inundations  a 

major concern for monitoring, relocation,  and conservation  efforts. Too  much  or  too little 

moisture in a nest can result in decreased hatch success (Carthy et al. 2003),  although  there is 

some debate about ideal nest moisture. McGehee (1990) found 25% moisture to be ideal for 

successful incubation with decreased hatch success at lower  and  higher  moisture  levels.  High 

nest moisture during incubation can impede gas exchange between the egg and the environment, 

delaying development and increasing mortality, while also impeding the ability of hatchlings to 

emerge successfully (Marco et al. 2017). However, the effects of nest moisture on hatch success 

are unclear, with some studies demonstrating moisture effects (Lolavar and Wyneken 2015), and 

others showing no impact of moisture (Foley et al. 2006; Horrocks and Scott 1991; Wood and 

Bjorndal 2002), and effects may be confounded by moisture’s relationship to nest temperature 

(Godfrey et al. 1996; Yntema and Mrosovsky 1980). 

Tidal washover and nest inundation are important factors which lead to decreased hatch 

success in sea turtle nests (Wood and Bjorndal 2000; Foley et al. 2006; Brig 2014). Nests that are 

washed over and inundated by tides usually experience high rates of embryo mortality thereby 

decreasing hatch success (Wood and Bjorndal 2000) as a result of embryo asphyxiation (Foley  et 

al. 2006). However nests that are only partially washed over or that only  experience inundations 

once or twice may still produce viable hatchlings (Foley et al. 2006). Freshwater inundations of 
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nests may also occur after heavy rain events. Georgia barrier island  beaches have relict  marsh 

mud beneath the sand which may result in heavy precipitation draining slowly  once it  passes 

through the thin sand layer above the mud (Bishop et al. 2011). Nests laid at lower elevations are 

closer to this mud and are more likely to be inundated by a perched water table (Bishop et al. 

2011). Tidal washover and inundation may dramatically affect hatch success depending on the 

frequency and intensity of washover events. 

While temperature, moisture, and tidal washover are considered important drivers  of 

hatch success, a number of other variables on nesting beaches can influence either or  both  of 

these drivers. For example, vegetation can be an important driver of both temperature and 

moisture content. Potential effects, depending on plant species and density, include shading to 

reduce temperature and moisture loss, minimizing heat transfer, or a drying effect from 

transpiration (Fowler 1979; Ferreira Júnior et al. 2008). There has been relatively little research 

correlating vegetation and hatch success in turtles. For green turtles (Chelonia mydas), nests at 

or within the vegetation line have decreased incubation periods compared to nests laid at low- or mid-

beach locations (Fowler 1979). Nests of the hawksbill turtle (Eretmochelys imbricata) had higher 

hatch success when laid on open beach compared to nests laid more  than 1 m into vegetation 

(Ditmer and Stapleton 2012). A study analyzing vegetation and the freshwater painted turtle 

(Chrysemys picta) indicated that decreased vegetation led to increased hatch success (Warner et 

al. 2010). No studies have analyzed vegetation in  relation  to hatch success in loggerhead turtle 

nests, although Ferreira Júnior et al. (2008) suggest that vegetation  may be a factor to consider 

when choosing locations for nest relocation. For example, vegetation could be harmful to nests due 

to nest invasion by root  systems  (Witherington  1986).  Vegetation may play an important role in 

nest site selection in some beach habitats utilized by C. mydas, C. caretta, E. 
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imbricata, and D. coriacea as the nesting turtles cue into the presence of vegetation as an 

indicator of nesting habitat  (Fish  et al. 2005;  Fujisaki  et al. 2018).  Vegetation may be an 

important indicator of good nesting habitat  especially  as beach habitat  is  expected to change in 

the face of a changing climate (Fish et al. 2005; Fujisaki et al. 2018).  It remains  unclear  how 

beach dune vegetation influences either temperature or moisture and ultimately hatch success of 

loggerhead nests. 

In addition to vegetation, elevation of the nest above sea level can also influence a 

number of other nest environmental conditions. This is especially important since elevation is 

usually the metric used when determining nest relocations. For example, nests in higher 

elevations result in higher incubation temperatures and increased hatch success (see Pfaller et al. 

2009; McNeill et al. 2016). However, other studies demonstrate that nests relocated to areas of 

higher elevations may result in decreased hatch success due to high average temperatures and 

decreased moisture (Lolavar  and Wyneken 2015;  Tomillo et al. 2014;  Hays et al. 2017; 

Kobayashi et al. 2017). Horrocks and Scott (1991) found that E. imbricata nests laid above or 

below an average elevation for their study site (1.11m) experienced decreased hatch success 

suggesting that some turtles may select nest sites based on elevation. Further, they suggest that 

hatch success is generally positively correlated with elevation (Horrocks and Scott 

1991). Although elevation may serve as a major cue for nesting in  loggerheads  (Wood and 

Bjorndal 2000), the relationship between elevation and hatch success is still unclear and requires 

further attention. 

Finally, dune morphology may play a role in nest site selection by turtles (Wood and 

Bjorndal 2000), while also affecting the other environmental parameters. Specific dune 

morphology might affect nest environments as the sun strikes nest sites at different angles, 



15 
 

 

intensities, and for varying time per day (R. Kelly Vance, personal communication). Nests in 

locations where the strike of the dune results in more direct morning or mid-day sun could have 

warmer incubation temperatures and decreased moisture compared to nests on dunes with strikes 

that result in less direct morning sun and more late-day sun, which tends to be less intense in 

comparison (Lavallin 2015).  The dip  of the sea side  (generally  the windward  side)  of  a dune 

could also impact  incubation conditions. A nest on  a dune  that has a steeper dip  (the slope 

relative to a horizontal plane) may have more direct early morning sunlight resulting in 

accelerated early morning heating, and it may have better drainage leading to decreased moisture 

compared to a nest with lower dip angles. 

It is currently unclear which environmental factor or combination of factors have the 

 

greatest impact on loggerhead hatch success, and this information is critical for nest management 

and relocation strategies  to be successful. Further,  the factors that currently limit  hatch success 

are likely to be exacerbated under future climate conditions. For example,  warming  air 

temperatures will likely result  in  warming  nest temperatures. Precipitation  volume  and patterns 

are expected to change in coming years which will alter nest moisture, sand temperatures, and 

vegetation composition on dunes (Feagin et al. 2010). As sea level changes, most Georgia barrier 

islands are experiencing erosional loss of dunes (Griffin and Henry 1984, Meyer 2013;  Bishop  et 

al., unpublished data). By better understanding how these factors affect hatch success, we can 

update management protocols to increase efficiency in conservation efforts by concentrating 

relocation efforts only on high-risk nests, selecting optimum sites when relocation is necessary, 

and be better prepared to deal with climate change-related obstacles in the future. 
 

Specifically, in coastal Georgia, the relocation efforts require many man hours and resources 

(Mark Dodd, GA Department of Natural Resources Sea Turtle Program Coordinator, personal 
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communication). Therefore, my main objective was to explore how a collection of environmental 

parameters‒temperature, moisture, vegetation, elevation, distance from the tideline, dune 

morphology, and tidal inundation‒may interact to affect hatch success in loggerhead  sea turtle 

nests on a Georgia barrier island.  Specifically,  I tested the following  hypotheses:  1)  Nest site 

biotic and abiotic variables  will  affect nest temperature, moisture,  and likelihood  of nest 

washover; 2) Vegetation within the immediate vicinity of the nest has an indirect effect hatch 

success; 3) Nests deposited at higher elevations and nests on dunes with steeper dips will be 

associated with higher temperatures, lower nest moisture and lower likelihood of tidal washover. 

Combined, this information can be vital for sea turtle nest management both within Georgia and 

throughout the loggerhead range. 
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CHAPTER 2 

METHODS 

Study Site 
 

Sea turtle nest monitoring was conducted on Ossabaw Island,  Georgia’s  third  largest 

barrier island (31.77°N -081.08°W; Figure 1; Appendices 1-8). The climate on Ossabaw is 

categorized as humid subtropical with generally hot summers and mild winters (Peel et al. 2007). 

Ossabaw Island is managed by the Georgia Department of Natural Resources, and is only 

accessible by boat with very limited public access. The island’s oceanside coast consists of five non-

consecutive beaches which total 17.1 km for potential sea turtle nesting habitat. Ossabaw Island is 

undeveloped and has light  human  influence,  as such, no man-made  structures such as sea walls 

obstruct sea turtles’  access to these beaches. Further, due  to limited  accessibility,  there is little 

direct human impact to turtle nests. 

Initial Nest Excavation and Monitoring 
 

All beaches on Ossabaw Island were monitored daily during  Georgia’s  nesting  season 

(May 5 - September 8, 2017; May 3 - September 26, 2018)  beginning  at first  daylight 

approximately 30  minutes  before sunrise.  Sampling  was shortened in  2017  due  to Hurricane 

Irma. Every morning, I identified new nests by  locating  crawlways which  indicated  a female 

turtle attempted to nest the previous night. At the apex of the crawlway, a number of  indicators 

were used to determine whether a nest was laid‒ripped vegetation, thrown sand, and the presence 

of a body pit (Figure  2). When one  or more  of these signs  were present, I probed  the body  pit 

with a 1m long stick to locate the egg chamber. This method was used because the surface sand 

above the egg chamber will be less compacted compared to surrounding areas which were not 

disturbed by the turtle (Brig 2014). When the probing stick sank through soft sand, the sand was 
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removed by hand until the top of the egg chamber was located. Upon finding eggs, the nest was 

assigned a reference number and GPS coordinates were taken. 

Nests in this study were selected in an attempt to keep the sample proportional to the 

population of nests on each of the five beaches (ie. if 50% of island nests were located on North 

Beach, approximately 50% of the  selected sample  were North Beach nests). The  frequency 

which nests were added to the sample was likewise proportional to the number of nests up to that 

point in time  based on  the number  of new nests deposited  daily.  Based on Ossabaw nesting 

history from 2012 - 2016 nesting seasons (GADNR, unpublished data), on average 47% of total 

nests for the island are deposited during the month of June, so approximately 47% of the 

sampled population were nests deposited in  June. The same methodology  was applied  for  all 

other months in the nesting seasons. However because of the unpredictable nature of female site 

selection, it was impossible to select nests at complete random. 

From all nests selected for sampling,  I removed  and counted  all  eggs and placed them 

into a bucket with  cool,  moist  sand. I measured the total depth of the nest and then began to 

return the eggs. After counting eggs, I returned half of the clutch to the nest chamber first,  and 

then placed a HOBO Pendant® Temperature Data Logger (accuracy ± 0.53°C) set to record 

temperature at 30 minute intervals attached to nylon mason line into  the nest. The logger  was 

placed in the middle of the nest approximately halfway from all sides of the nest chamber. I then 

placed the remaining half of the eggs back into the nest. The eggs were re-covered with sand in 

order to recreate how the mother tamped down  sand over  the eggs during  oviposition.  Egg 

removal occurred between the hours  of 06:20  and 10:30  (with  the exception  of 9 nests which 

were discovered when beach monitoring lasted into the afternoon). In total, eggs were kept out of 

the chamber for no more than 10 minutes before being replaced. When eggs are removed within 



19 
 

 

12 hours of oviposition, it is generally considered to do little harm because the embryo  has not  

yet attached to the wall of the egg (Mrosovsky 1988). 

Three metrics were used for nest temperatures. I calculated the mean nest temperature 

throughout incubation, starting with the time the logger was placed into  the nest and ending  at 

23:30 on the day of hatching. The day of hatching was determined for all nests that successfully 

hatched by subtracting four days from the recorded emergence date since it takes loggerhead 

hatchlings approximately that long to emerge from the nest after hatching (Godfrey and 

Mrosovsky 1997). For all nests where no hatching occurred, temperature records ended at 23:30 

on the day before inventory. Second, since there is  a temperature  range that is  considered 

suitable for successful incubation (26.5 - 32°C as defined by Blair 2005;  Bull  1980;  Wibbels 

2003), I calculated the number of hours outside this acceptable range. However, since some 

literature suggests that some clutches may be able to withstand incubation up  to 34°C  (Yntema 

and Mrosovsky 1982), I also calculated the number of hours above this extreme temperature. 

Finally, for all nests which produced one or more hatchlings, the average temperature during the 

middle third of incubation was calculated to estimate hatchling sex ratios based on methods in 

LeBlanc et al. (2012). 

After counting eggs, I recorded vegetation around the nest by placing a 100 cell, 1 m2 

quadrat grid over the nest so that the center of the nest was in the center of the quadrat. Percent 

vegetation was calculated by counting how many cells had any vegetation present in them. This 

method was repeated during the nest inventory  to determine  if  vegetation  cover changed during 

the course of incubation. If vegetation was present around the nest at the time of nest inventory, a 

photo was taken so plants could be identified. All plants were identified to general taxonomic 
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group according to Witherington and Witherington (2011) and placed into one of three 

categories: grasses, sedges, or herbs and flowers. 

Nests were then covered with a plastic screen approximately 1.2 m x 1.2 m and staked 

down at the four corners with metal pencil rod to deter potential predators.  Each nest was 

identified by a 1m long wooden stake hammered into the ground approximately  0.5 m shoreward  

of the egg chamber. At this  time,  a line  was drawn on the stake indicating  the sand height.  This 

line was used as the reference for nest height when measuring nest elevation later in the season. I 

then measured the distance from the surface of the sand above the egg chamber to the previous 

night’s high tideline (DTL). 

The dip and strike of the dune face, or beach slope, hosting  the nest were measured using  

a Brunton pocket transit according to methods in Coe et al. (2010).  The strike  of a planar 

geological feature is line produced by  the intersection  of the planar  feature with  a horizontal 

plane. The compass orientation of this line may be recorded as an azimuth. In this case, the 

planar geological features are the dune faces where nests are laid. Strike azimuths range from 0 - 

359° (where 360°=0° or due north). The dip is the inclination or slope of that planar geological 

feature relative to a horizontal plane. The dip is measured 90° from the recorded strike.  Dip 

includes  two measurements‒dip  magnitude  and dip  direction  (Figure  3). The dip  magnitude 

refers to the degree of slope of the feature relative to the horizontal  plane.  Dip  ranges from 0 to 

90 degrees. A flat surface is 0 degrees. Because the strike could dip one of two ways (180° 

difference) a dip direction is given to define direction  of the slope.  These measurements indicate 

the direction the dune face slopes relative to strike (with a north  reference), and how  steep the 

slope of the dune face is. Dip and strike measurements were taken 3-4 weeks after the deposition 
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of a nest. This was done to allow any sand disturbed by the nesting  turtle  to settle so a true shape 

of the dune could be measured. 

A Trimble R8 real-time kinematic (RTK) satellite navigation system was used to measure 

the elevation of nests above sea level  in  meters (accuracy ± 0.02  m)  within  the  NAVD88 

geodetic datum, US State Plane 1983 Georgia East Zone projection. Measurements were taken 

twice during the 2017 nesting season, once in June and once in  August  to ensure that all  nests 

were sampled and to reduce the chance of any major weather events destroying nests before data 

collection occurred. Measurements were taken once during mid-July for nests deposited in  2018. 

For elevation, I used point data for each nest. Due to equipment availability, elevation was 

measured for 164 nests. 

I measured nest moisture content using an Aquaterr EC-350 Digital Soil Moisture, 
 

Temperature, and Salinity Meter (accuracy ± 2%) inserted ~15 cm to the right of the egg 

 

chamber when facing the dune face so that measurements closely reflected the moisture content 

of the nest without puncturing any eggs with the meter. Before each use, the probe end was 

submerged in water and calibrated to 100% moisture. After calibration,  the probe was inserted 

into the ground and readings were taken at the surface, 20 cm, and 40 cm below the surface. 

Moisture was averaged over these depths for a mean moisture content on each sample date. I 

measured moisture content in each nest every 10 - 16 days throughout incubation, so that the 

moisture of each nest was measured at least 4 - 5 times during the season. Moisture readings 

were always taken between 06:00 and 09:00 so that direct overhead sun had minimal effect on 

the amount of moisture present. The percent moisture of each nest was calculated by taking the 

mean value across all moisture recordings for each nest during its incubation (Lolavar and 

Wyneken 2017). 
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For the duration of the nest incubation, nests were visually inspected daily. In addition to 

noting any signs of nest depredation, by monitoring daily, I also recorded if the tide reached or 

washed over the nest during the previous night’s tidal cycle. If large amounts of wrack were 

deposited over the nest by tides, it was removed by hand. Similarly, if large  amounts  of sand 

buildup occurred on top of the predator screen, it was removed  by hand according  to protocol set 

in place by the Georgia  DNR. Nests were inspected  and  maintained  daily  until  predation, 

hatching crawlways were found, or until 70 days after the nest was deposited. Once hatchling 

crawlways were observed leaving a nest, the nest was marked as hatched, and the nest was 

inventoried five days later. If no signs of hatchlings were observed by day 70 of incubation, the 

nest was opened and inventoried, since this is an indication that no eggs will successfully hatch 

(Dodd and Raybould 2014). 

Nest Inventory and Processing 

 

During nest inventories, I removed the entire contents of the nest, and counted all hatched 

and unhatched eggs. Any live hatchlings  found  in  the nest at the time  of inventory  were allowed 

to crawl to the ocean by themselves. During the 2018 field season, after the inventory was 

completed, all unhatched eggs were opened and assessed for development using  stages described 

by Miller et al. (2017). Initially eggs were categorized as fresh, rotten before stage, rotten beyond 

identification, or partially  developed.  Eggs were categorized  as fresh if  the  appearance was akin 

to a freshly laid egg (eg. yolk is undeveloped and wet, no white spots, and no blood spots have 

formed, Figure 4a) which  indicates  an unfertilized egg (Miller  et al.  2003).  Eggs  were 

categorized as rotten before stage if there was no visible sign of an embryo but the yolk appeared 

solid or decomposition of egg contents had occurred (which indicates a fertilized egg that did not 

complete incubation) (Figure 4b). These undeveloped, rotten eggs were generally classified as 
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early development (Miller et al. 2017). If there was visual presence of an embryo but stage of 

development could not be confirmed due to decomposition, the egg was categorized as rotten 

beyond identification (Figure 4c). If there was any visible development of an embryo, the egg 

was categorized as partially developed (Figure 4d). The partially developed embryos were 

photographed and preserved in a 10% buffered formalin solution. The photos of the partially 

developed embryos were used to ascribe each embryo to one of three broad categories (early, 

middle, and late developmental stages) based on thirty-one stages of development (Whitmore 

and Dutton 1985; Miller et al. 2017). The following classifications were made based on 

Whitmore and Dutton (1985) and Özdemir et al. (2008):  early: embryos  with no visible  carapace, 

no pigmentation,  ≤10 mm total length;  middle:  embryos  with  visible  carapace with  no 

pigmentation (scutes not colored),  10 - 30  mm  total length;  late: embryos  with  dark scutes 

present on carapace, >30 mm total length. 

Statistical Analysis 
 

The number of hatched eggs was calculated by counting the number of eggshells  within 

the chamber that were at least 50% intact. The numbers of live and dead hatchlings found in the 

nest were also recorded. Hatch success was calculated using the following equation: 

 

Where N Hatched is the number of hatched eggs at the end of incubation, N Total is the 

total number of hatched and unhatched eggs at the end of incubation, and HS is the percent hatch 

success. 

In order to determine which factors might affect hatch success, I used a hierarchical 

approach relating all measured environmental parameters to either temperature, moisture, or 
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number of washovers, all of which are considered critical for loggerhead hatching success 

(Wood and Bjorndal 2000). 

A generalized linear model (GLM) was run with a Poisson distribution using a log link 

function to explain variation in hatch success. The GLM comprised of one response variable 

(hatch success) with average temperature, average moisture, and number of washovers as 

potential predictor variables. 

To identify which environmental elements most impact temperature and moisture and 

ultimately affect hatch success, beach morphology variables were analyzed using a multivariate 

principal component analysis (PCA). Because PCA is not reliable for a large number of variables 

(Pond et al. 1996), a select number of variables  was selected based on  pairwise  correlations 

(Table 1) and variables thought to affect the physical location of nests. Latitude, dip, strike, 

elevation, DTL, and vegetation were included in this analysis. 

Next, I selected the first three principal components because they explained 70% of the 

variation in the dataset (Table 2). In order to determine which factors contributed to mean 

temperature and moisture, I used two separate multiple regression analyses. Either temperature 

or moisture were the response variables, and I used the newly generated principal components 

(PC 1, 2 and 3, see Table 2) as the explanatory variables. Since the principle components all had 

significant contributions from multiple variables, I also ran multiple regression analyses with 

temperature and moisture as response variables and beach morphology variables as potential 

predictor variables. This was done in an attempt to parse out which variables most influence 

temperature and moisture within each principal component from the PCA. 

The number of washovers was non-normally distributed, so a GLM with a Poisson 

distribution and log link function was constructed to identify factors contributing to the number 
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of times a nest was washed over. The GLM used washovers as the response variable with 

potential washover factors as the three principal components from the beach morphology PCA. 

All data were analyzed using JMP v. 13 (SAS Institute, Cary, USA). Although all data 

were not able to be collected for each of the sampled nests, they were used in subsequent 

analyses whenever possible. The rejection level was ɑ=0.5 for all statistical tests. 



26 
 

 

CHAPTER 3 

RESULTS 

During the 2017 nesting season, the first nest was laid  on  May 8, and the final  nest was 

laid on July 31. During this season, 89 nests were sampled (Figure 1; Appendices 1-4). Hurricane 

Irma hit Ossabaw on September  10-11,  2017,  and  washed away 11 nests that remained 

incubating. All personnel were evacuated from the island on  September  8, 2017,  which  was the 

last day in the season which nests were monitored. While it is possible that some of the 

remaining nests had successful hatchling emergences before the hurricane made landfall, it was 

impossible to discern after personnel returned to the beaches. Upon returning to the beaches on 

September 15, 2017, all primary dunes and vegetation had been washed away and none of the 

nests remaining before Hurricane Irma were visible. An additional 9 nests were lost due to 

depredation by either feral hogs (Sus scrofa) or raccoons (Procyon lotor). 

The first nest of the 2018 nesting season was laid on May 15, and the final nest was laid 

on August 3. During this season, 111 nests were sampled  (Figure  1; Appendices  5-8). By the 

time monitoring began in 2018, the majority of primary dunes had rebuilt  following  Hurricane 

Irma with mostly grasses, sedges, and herbs having re-established since being wiped out 

completely in September, 2017 (personal observation). Of the 111 nests initially  sampled,  9 

were lost due to hog and raccoon depredation, resulting in 102 nests used in the analysis. 

Between 2017 and 2018 field seasons, 200  total nests were initially  identified for this 

study. However, by the end of incubation, a total of 170 inventoried nests had a discernible hatch 

success and were used for subsequent analysis. Hatch success ranged from 0 - 99.2% (number of 

hatched eggs per clutch ranged from 0 - 134) with an average of 46.2% (SD±37.8) hatch success 

(Figure 5). Of these nests, 47 (27.6%) had no hatched eggs. 
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The average temperature for all nests was 29.73℃ (SD±0.87). In nests producing at least 

one hatchling (HS>0%), temperatures were measured as low as 23.96℃ in  the  coolest  nest and 

as high as 35.22℃ in the warmest nests. Many nests incubated completely within the optimal 

temperature range of 26.5 - 32℃ (N=62). However many nests remained successful even after 

incubating for hours outside of the acceptable temperature range. For example,  two nests 

incubated during the 2018 season experienced temperatures above 32℃ for 588.5 and 583 hours 

but were both successful with hatch successes of 88% and 96.6% respectively. 

Average moisture throughout incubation ranged from 5.4 - 89.6% with an average of 

49.3% (SD±18.1). Nests with average moisture at either extreme of the range produced some 

hatchlings. One nest which had an average moisture 89.6% had an 81.9% hatch success. Two 

nests on the opposite end of the spectrum with 5.4% and 8.5% moisture had hatch successes of 

21.0% and 1.8% respectively. 

Tidal washover and/or inundation affected 70 nests (41.2%). Of nests that experienced a 

tidal event, a large percentage only experienced one or two events throughout incubation  (26% 

and 14% and respectively) (Figure 6). Beyond 6 washover events, generally no hatch success 

occured. However in two instances, washovers of 7 and 8 times resulted in hatch success greater 

than 0 (45.3% and 0.97% respectively) (Figure 7). 

Vegetation was found around the majority of nests (54.7%; N=93) at some point while 

 

eggs were incubating. The percent cover of vegetation within those 93 nests ranged from 1.5 - 

87.5%. The majority of vegetation surrounding nests were classified as grasses followed by 

sedges, and flowers and herbs being the least abundant (Table 3). 

Nest elevation ranged from 1.44 - 4.25m above sea level (Figure 8) with a mean elevation 

of 2.09m (SD±0.37). Dip and strike were measured for 168 nests. Strike ranged from 0 - 350° 
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with the majority of nests striking 1 - 89° (ie. Northeast-Southwest). The distribution of dips 
 

measured ranged from 00 - 22° with the majority of dip direction classified as dipping  SE. Overall 

the dips of dunes where nests were laid were gently sloped with an average dip of 06° (SD±05). 

Hatch success correlated with a large number of variables (notably temperature, moisture, 

 

elevation, vegetation), and many environmental variables  correlated with  temperature  and 

moisture (Table1). The beach morphology PCA (Figure 9) supports a 3-factor structure of nest 

latitude, strike, dip, elevation, DTL, and vegetation (Table 2). The variables which contributed to 

PC1 (factor loadings ≥0.40) were latitude, dip, and elevation which contrasted with strike. PC1 is 

loaded heavily (factor loadings ≥0.60) on higher nests with steeper slopes  striking  to the NE (1- 

89°). The variables which contributed to PC2 (factor loadings ≥0.40) were strike, DTL, and 

vegetation which contrasted with latitude. PC2 is heavily loaded (factor loadings ≥0.60) on 

vegetation across a latitudina l gradient; nests deposited farther southward have more vegetation. 

The variables which contributed to PC3 (factor loadings ≥0.40) were DTL and vegetation. PC3 is 

heavily loaded (factor loadings ≥0.55) on increased vegetation as nests are located farther away 

from the tideline and closer to dunes. Together these three components account for 69.8% of the 

variation seen in the data (Table 2). 

Principal Components 1, 2, and 3 were all found to be significantly correlated with the 

average temperature in the nest. Only PC2 was found to be significantly correlated to average 

moisture. (Table 4). Multiple  regression  analysis  with  temperature  as a response variable 

indicated that vegetation and elevation correlate positively with temperature and explain 37% of 

variation in nest temperature (Figure 10). For every increase in  nest elevation  by 1 m, average 

nest temperature increases by 1°C (Figure 11a). Similarly, as average vegetation cover increases 

in 20% increments, average nest temperature increases by 0.5°C (Figure 11b). Multiple 
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regression with moisture as the response  variable  using  individua l  beach morphology variables 

as potential predictor variables yielded elevation,  vegetation,  DTL, and strike  as significant 

factors affecting moisture and explain 18% of the variation (Figure 12). Most notable  was 

elevation (p=0.0045) whereby moisture decreased by 10% per increase of nest elevation by 1 m 

(Figure 13a). Vegetation, DTL, and strike  were also important  in  explaining  variation  in 

moisture. Moisture significantly decreased (p=0.0124) as more vegetation was present (Figure 

13b). Moisture also decreased significantly (p=0.0166) the farther away a nest was placed from 

the tideline (Figure 13c). Moisture generally  decreased as strike  increased (p=0.0268)  where 

nests placed on dunes that strike to the NE-SW had more moisture than those dunes that strike SE-

NW, N-S, or E-W (Figure 13d; Appendices 9-16). 

The GLM with number of washovers as the response variable indicated that principal 

components 1, 2, and 3 were all significant in explaining the number of tidal events a nest 

experienced (Table 5). 

The GLM with hatch success as the response variable indicated that temperature, 

moisture, number of washovers, and all combinations, were significantly correlated to hatch 

success. However, both washovers (𝜒𝜒2 = 1102) and nest temperature (𝜒𝜒2 = 781) seemed to have 

the strongest effects on hatching success (Table 6). 

Embryo Mortality 

 

A total of 5,718 unhatched eggs from 88 nests incubated in 2018 were opened. Of 

these, 4,232 were assessed as early, middle, or late stage of development.  The remaining  1,486 

were classified as rotten beyond identification (N=1,164), unfertilize d (N=194), or unknown 

(N=128). Fertility was 97.98% for the 88 nests assessed in 2018. 
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The largest percent of nest mortality occurred in early stage embryos followed by 

late stage embryos with  a very small  percentage of nest mortality  occurring  in  the  middle  stage 

of embryonic development (Figure 14). The average percentage of early stage development eggs 

was 45% (SD±32; N=88)  per nest. The average percentage of  middle  stage development  eggs 

was 4% (SD±10; N=62) per nest, and the average percentage of late stage development eggs was 

27% (SD±31; N=77) per nest. A larger percentage of late stage development eggs were found in 

nests laid at the beginning of the season and decreased as the season progressed. 

Inversely, the percentage of early stage development eggs per nest increased as the season 

continued (Figure 15). Each stage of development had some significant correlation with 

incubation temperatures inside the nest (Table 7). 

Hatchling Sex Ratios 
 

Hatchling sex ratios were estimated based on the average temperature during the 

middle third of incubation (Standora and Spotila 1985; Kaska et al. 1998) using the equation for 

hatchling sex ratio in LeBlanc et al. (2012). Of the 170 nests included in this study,  47 had 0% 

hatch success which made it impossible  to determine  the average temperature during  the critical 

or thermosensitive period (middle third of incubation) which is needed to estimate hatchling sex 

ratios. Additionally, some of the remaining nests had datalogger  malfunctions resulting  in  118 

nests with discernable critical period temperatures. The average temperature for  these nests 

during the critical period was 29.87℃ (SD±0.90). Over the 2017 and 2018 nesting seasons, 

average males estimated per nest was 24.4% (SEM±1.69), and average females estimated per 

nest was 75.6% (SEM±1.69), and there were no male-biased nests in 2018 (Table 8). 
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CHAPTER 4 

DISCUSSION 

Temperature, moisture and tidal inundation have long been known to drastically affect 

hatch success in sea turtle nests (Carthy et al. 2003; Tuttle and Rostal 2010; Ditmer and 

Stapleton 2012; Brig 2014; Lolavar and Wyneken 2015; Hays et al. 2017). Many studies have 

analyzed nesting conditions and their effects on eggs in laboratory settings  with  constant 

variables like moisture and temperature (Bull and Vogt 1979; Dutton and Whitmore 1984; 

Georges et al. 1994; Fisher et al. 2014). These studies have offered valuable insight to 

 

development and the success of the nest, but few measure these variables in situ and attempt to 

explain variation in these variables by measuring a suite of other environmental parameters. 

For my study, all three major environmental variables affected the hatching success of 

loggerhead turtles, although temperature and number of tidal washovers may have a stronger 

effect. In addition, many variables measured in this study correlated with hatch success such as 

percent cover of vegetation, nest elevation, and nest dip. However, by using a hierarchical 

approach, I was able to explain some of the variation in temperature, moisture, and frequency of 

tidal washovers as they are impacted by other environmental variables.  In particular,  elevation 

and vegetation cover were important drivers of the three factors generally considered most 

important for hatching success, although further exploration is necessary. 

Mean nest temperature had a strong, positive relationship with hatching success, such that 

as temperature of the nest increased, so did the number of successfully hatched eggs. This is not 

surprising, since temperature controls embryo development (Bull and Vogt 1979;  Bull  1980)  and 

the average nest temperature in this study was well within the accepted optimal range of  26.5- 

32°C. Further, nests rarely consistently experienced temperatures outside the optimal range in 
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this study, and few nests exhibited average temperature near the two ends of the range. My study 

supports findings from other studies (Carthy et al. 2003; Ditmer and Stapleton 2012) that hatch 

success increases as temperature increases. Other studies  have reported a decreased hatch 

success (eg. Hays et al. 2017) if incubation temperatures exceed temperatures 31.5°C. Similarly 

some studies have indicated that nests with warmer temperatures experience lower hatch success 

(Lolavar and Wyneken 2015; Kobayashi et al. 2017)  with  some nests experiencing  temperatures 

of 36-37°C  toward the end of incubation. In this  study,  average temperatures never reached 

32°C, so the positive correlation of hatch success with temperature holds true when nests do not 

incubate at average temperatures above 32°C (Fisher et al. 2014). 

Nest temperature was consistently impacted by vegetation  and elevation  such that 

warmer nests had more vegetation and were placed at higher elevations. Vegetation was more 

common around hotter nests indicating  that it  does not  provide  cooling  effects. However this 

effect could change if vegetation composition consisted of more  broad-leaved  species instead of 

the narrow-leaved species of grasses and sedges (Ferreira Júnior et al. 2008; Brantley et al. 2014) 

which were most common on Ossabaw dunes during this study. Grasses are the first plants to 

establish after a major storm or tide event and facilitate the building of primary dunes (Brantley 

 

et al. 2014) which explains the composition  of vegetation  observed around  nests on  Ossabaw. 

Both seasons when data were collected were preceded by hurricanes (Matthew in 2016  and Irma 

in 2017) which majorly or entirely  wiped  out  all  primary  dunes  and all  vegetation  associated 

with them (personal observation). It may also be possible that vegetation  is  only  found  in 

locations farther away from the tideline in areas of high  elevation.  Vegetation may ultimately  act 

as an indicator for parts of the beach where the tide doesn’t often reach and where sand 

temperature and moisture are within ideal incubation ranges. 
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In addition to vegetation, the elevation of a nest directly impacted the temperature. In the 

face of predicted climate change, it is possible that nests at higher elevations may experience 

temperatures outside of the optimal range. However, it is likely that elevations will change with 

predicted climate change and sea level rise, which will likewise alter beach morphology and 

loggerhead nesting habitat (Brantley et al. 2014). It has been suggested that in the face of a 

changing climate, sea turtles may undergo a phenologica l shift by nesting at different elevations 

(Hawkes et al. 2007). Because the nests in this study were left in situ, it  may be possible  that 

turtles naturally place nests where incubation temperatures will  not  exceed lethal  limit 

temperatures especially given that few if any nests in this study at high elevations exceeded the 

thermal limit. However this could change if nesting beaches experience drastically higher air 

temperatures, more precipitation,  or other  factors that would  drastically  change sand 

temperatures from the time to nest site selection and throughout incubation. Similarly, steeper 

nests—those with larger dips—were warmer. This may be due to those sloped nests experiencing 

sun radiance for longer periods of time than those nests which have little or no slope (R. Kelly 

Vance, personal communication; Lavallin 2015). Likewise, more sloped  nests generally  had 

higher elevations leading to an increase in nest temperature. 

Moisture was most influenced by elevation, vegetation, DTL, as well as the strike  of 

dunes. Nests with more vegetation, higher elevation,  and farther away from the tideline  were 

drier. Nests with higher elevations tend to incubate  at higher  temperatures leading  to a decrease 

in nest moisture as evaporation occurs and as the likelihood of washovers is  decreased (Foley et 

al. 2000; Lavallin 2015). It is also possible that the nest’s distance from the water table has a 

significant impact on temperature (Lavallin 2015). These high nests are also less likely to 

experience tidal events which contribute to increased moisture in the nest. The negative 
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relationship between vegetation and moisture indicates that the  grass and sedge species  are 

wicking away moisture from around the nest substrate. Dune morphology in the form of strike 

impacts nest moisture in that nests on host dunes that strike to the NE-SW have generally  drier 

nests compared to those striking  to the  SE-NW. This  might  be indicative  of nests on dunes 

striking to the NE-SW getting more intense overhead sun for longer in the day compared to nests 

which strike more southerly which get the less intense afternoon sun. 

The frequency with which nests experienced tidal washover was influenced by the same 

beach morphology variables as temperature and moisture. Most importantly washover was 

influenced by elevation, vegetation, DTL, and latitude. Nests placed higher up on dunes farther 

away from the tideline are less likely to be washed over by spring high tides  and storm surge 

events. The presence of vegetation also decreased a nest’s likelihood of experiencing a tidal 

washover. This may simply be an effect of vegetation increasing away from the  tideline,  but  it 

may also be possible that sand builds up around vegetation  (Brantley et al. 2014)  over the course  

of incubation effectively creating mini-dunes around nests which may buffer some tides 

(personal observation). What was interesting was the latitudina l gradient of washovers that 

increased as nests were placed farther north on the island. It may be possible that the northern  

end of the island experiences washovers more frequently due to an increased number of 

washover fans on low areas of beach and increased vegetation on the south end of the island 

(Gale Bishop, personal communication). These washover fans are occurring as transgression of 

beaches occurs, pushing back the shoreline as a result of rising sea levels (Bishop et al., 

unpublished data). 
 

Tidal inundation and washover has consistently been cited as a factor that decreases hatch 

success in marine turtle nests (Wood and Bjorndal 2000; Foley et al. 2006; Brig 2014). All nests 
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in this study were left in situ reflecting the natural nest site selection by females. About 59% of 

nests (N=100) were never washed over indicating  that turtles  might  select sites  based on 

likelihood of washover. It should be noted that one nest in this study experienced 7 washover 

events and yielded a hatch success of 45.3% suggesting  that  there are other  factors within  the 

nest environment that may combat the effects of successive washovers. Specifically this nest had 

an average elevation (2.1 m) and an above average dip of 10°. This slope of the dune may have 

helped the nest and surrounding substrate drain after washovers. While most nests can withstand 

minimal tidal inundations and washover without drastic impacts on hatch success, nests at low 

elevations more frequently inundated by tides experience  low  hatch success (Foley  et al. 2006; 

Brig 2014). One study conducted on low-relief mangrove islands, which are physically different 

habitats from those of barrier islands, showed that high moisture was a significant contributing 

factor to lower hatch success only when tidal inundation  occurred (Foley  et al. 2006).  This 

appears to hold true in this study as tidal inundation  and temperature have seemingly  more 

influence on resulting hatch success than does moisture. In this study, hatch success decreased 

exponentially with subsequent washovers experienced by a nest. This indicates that the 

relocation of nests may only be necessary when tidal inundations are likely to be frequent 

throughout incubation. 

Because of the patterns of daily and seasonal temperature and moisture fluctuation, 

 

studying nest conditions in situ is vital in understanding how a collection of environmental 

variables impact hatch success. Analyzing biotic and abiotic environmental variables of beach 

morphology at the nest site indicates how these variables affect temperature, moisture, and 

washover events which is especially important because many of these variables are studied as 

singular variables or are grouped with one or two other environmental variables to explain hatch 
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success. These trends can be extrapolated to generally determine how combinations of these 

environmental factors are related to temperature, washovers, and moisture and in turn how 

they impact hatch success. 

The higher rates of embryo mortality seen in early and late stages of embryo development 

compared to middle stages has been reflected in other mortality studies (Özdemir et al. 2008; 

Ilgaz et al. 2011). The increase of early stage mortality and decrease of late stage mortality as the 

 

season progressed (Figure 15) could potentially be linked  to some environmental  phenomenon 

which rendered development  impossible.  It is  possible  that a sudden temperature drop and 

moisture increase as a result of heavy precipitation events could halt development in many nests. 

Eggs laid in May that would have been in the last stages of development would have been 

inventoried shortly after this series of rain. Similarly  eggs that had been laid  just  before or during 

this period in June (when the nesting events reach their peak on Ossabaw (GADNR, unpublished 

data)) would have stopped  developing early and would  not  have been inventoried  until  the  70 

day mark toward the end of the season. This idea could be analyzed  more in  depth to determine 

how closely nest temperature drops  coincided  with  individual  rain  events. However this  would 

not explain why nests laid  after these precipitation  dates continued  with  the same trend.  The 

trends in egg mortality may be more  largely  influenced  by  some  other environmental  variable, 

and should be explored further. 

While not considered for environmental  factors affecting hatch success, maternity  could 

be an additional factor which influences nest hatch success (Ditmer and Stapleton 2012).  Of the 

170 nests used in this study, 160 have been assigned maternity through maternal DNA present in 

freshly-laid egg shells (Shamblin et al. 2011). These 160  nests were laid  by 106  unique  females. 

Of these, 24 were individuals that had not been identified through the Northern Recovery Unit 
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(NRU) Loggerhead DNA genetics project in the years previous (beginning  with  the genesis  of 

the project in 2008) to the nesting season that they were active, so they were assumed to be 

neophytes recruiting to the breeding population for the first time. The remaining 82  individua ls 

were remigrants that had nested in the area previously based on genetic sampling of eggs which 

began in 2008. Hatching success was higher in the neophytes than in the remigrant individua ls 

(Wilcoxon rank-sum tests, N=30, 130; p=0.0218)  (Appendix  17). The nesting  grounds  included 

in the NRU are Georgia, South Carolina, and North Carolina  with  sporadic  samples  from 

Virginia and rarely more northern states when turtles nest there. 

Many loggerhead nesting grounds are estimated to produce female-biased  sex ratios 

(Kaska et al. 1998; Foley et al. 2000). Ossabaw Island produces  female-biased incubation 

conditions in Caretta caretta. Foley et al. (2000; 2006) suggest that there is a natural nesting 

pattern that combats hatchling sex-bias when nests are left in situ and that relocation should only 

be considered for nests which are highly likely to experience complete loss. Male loggerheads 

appear to mate more frequently than do females thereby increasing their  operational  sex ratio to 

be about 50:50 male:female even though most populations have a female bias (Hays et al. 2010). 

Because of this operational sex ratio, the increase of female-biased beaches helps loggerhead 

populations increase. However if temperatures continue to increase and reach or exceed upper 

lethal limits, it may be beneficial to leave more nests in situ to avoid a complete female bias and 

increased rates of hatchling mortality due to incubation temperatures exceeding lethal limits. 

The management of Caretta caretta for increasing nesting populations begins with 

managing nests for increased hatch success. There are many factors which may influence the 

success of a nest, and most of these variables are dependent on others. While nest temperature, 

 

likelihood of tidal washover, and moisture are important predictors of hatch success, other 
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environmental variables interact with each other to influence the aforementioned  variables.  In 

order to achieve warmer temperatures and decreased moisture, it may be necessary to relocate 

nests in order to avoid tidal washovers. The findings  here support  relocation  to higher  dunes 

where vegetation is present in order to influence temperature and moistures. This study also 

indicates that the presence of vegetation is a good gauge of a location which will be conducive to 

high hatch success. Relocating nests to elevations which correlate with a specific average 

temperature and moisture associated with high hatch success could increase the success of the 

nest. However dunes of high elevation may not be available on all nesting beaches due to natural 

factors (eg. tidal washover fans, loss of dunes due to storm events) or man-made factors (eg. sea 

walls) (Wang and Horwitz 2007; Bishop et al., unpublished data). If these dunes are not present 

or if seasonal temperatures are expected to be too hot for successful incubation, simply 

relocating a nest farther away from the tideline may be significant enough to increase hatch 

success. 

In addition to consideration of elevation and DTL, vegetation cover and composition 

 

should be considered as a variable which influences the success of a nest. Although vegetation 

composition and cover may change throughout  incubation  (as observed in  this  study),  relocating 

a nest nearby presently existing vegetation may increase nest temperature which would be 

desirable in certain nesting seasons where temperatures are expected to be lower than average or 

heavy rains are expected to decrease sand temperatures. The slopes of dunes could be an 

important factor to consider when relocating as well as dunes with steeper slopes have better 

drainage (decreased moisture) and may experience warmer temperatures more suitable to 

successful incubation. 
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The interconnectedness of temperature, moisture, tidal  washover, elevation,  vegetation, 

dip, strike, and distance to the tideline make all of these variables important to some degree in 

predicting hatch success. By understanding how  these variables  change  the incubation 

environment, managers for this species can better predict not only how  successful a nest will  be 

but can also make educated decisions when considering nests for relocation to increase hatch 

success. This study upholds similar findings from other research such that warmer temperatures 

with less moisture increase hatch success and have significant impacts on the success of the nest. 

The consistent instance of vegetation occurring  with  nests that have higher  temperatures and 

lower moisture indicates that the presence of vegetation  should  be used as an identifier for 

locations that have conditions which result in high hatch success. When relocating nests, moving 

nests to dunes farther away from the high tideline that have vegetation is the  best way to place 

nests in locations where high hatch successes are more likely. 
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Table 1. Significant pairwise correlations between hatch success (HS), temperature, moisture, 

and other environmental variables measured throughout incubation. Distance from tideline 
(DTL). 

 

 

Parame ters Spe arman ρ Probability> |ρ| 

 

 

HS * dip 0.2645 0.0005 

HS * elevation 0.5549 <0.0001 

HS * vegetation 0.5087 <0.0001 

HS * moisture -0.2227 0.0036 

HS * # washovers -0.5597 <0.0001 

HS * temperature 0.6069 <0.0001 

HS * hours outside temperature range 0.2263 0.0030 

Temperature * dip 0.1743 0.0239 

Temperature * elevation 0.5529 <0.0001 

Temperature * vegetation 0.5060 <0.0001 

Temperature * moisture -0.5112 <0.0001 

Temperature * # washovers -0.3783 <0.0001 

Moisture * strike -0.1769 0.0222 

Moisture * elevation -0.2260 0.0037 

Moisture * vegetation -0.3562 <0.0001 

Moisture * DTL -0.1540 0.0457 

Moisture * # washovers 0.3053 <0.0001 
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Table 2. Factor loadings for factors related to beach morphology of the nest site. 

 
 

Parame ter PC1 PC2 PC3 

 

 
Latitude 

 

 
0.42 

 

 
-0.68 

 

 
0.20 

Strike -0.60 0.45 0.07 

Dip 0.75 0.09 0.11 

Elevation 0.74 0.35 0.14 

Vegetation 0.07 0.68 0.57 

Distance from tideline 0.38 0.49 -0.70 

Percentage of variation 29.9 24.9 15.0 
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Table 3. Composition of vegetation surrounding nests at time of inventory. N=62. 

 

 

 Grasse s Se dge s Flowers and Herbs 

No. of nests 46 30 8 

(%) 74.2 48.3 12.9 
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Table 4. Multiple regression summaries using principal components (PC) from nest site 

parameters for nest variables average temperature and average moisture. 
 

 

Parame ter t Ratio Probability >|t| 

 
 

Temperature  

PC1 3.95 
 0.0001 

PC2 5.86 
 <0.0001 

PC3 5.65  <0.0001 

F  
27.24 

 

P 

R2 

 
<0.0001 

0.34 

 

Moisture    

PC1 -1.50  0.1358 

PC2 -4.22 
 <0.0001 

PC3 -0.48  0.6319 

F  
6.71 

 

P  0.0003  
 

R2 0.11 
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Table 5. Summary of GLM parameter estimates fitted to number of washovers. 
 
 

Parame ters L-R X2 Probability > X2
 

 
 
 

 

PC1 109.6 <0.0001 

PC2 150.6 <0.0001 

PC3 39.71 <0.0001 
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Table 6. Summary of GLM parameter estimates fitted to hatch success. 
 
 

Parame ters L-R X2 Probability > X2
 

 
 
 

 

# washovers 1102 <0.0001 

Temperature 781.3 <0.0001 

Moisture 279.9 <0.0001 

# washovers * temperature 264.7 <0.0001 

Moisture * # washovers * temperature 121.5 <0.0001 

Moisture * temperature 100.2 <0.0001 

Moisture * # washovers 96.63 <0.0001 
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Table 7. Significant pairwise correlations between percentages of embryo mortality and 

environmental parameters. Here early, middle, and late refer to percentages of early, middle, and 

late stage embryos per unhatched  eggs in  a nest. Day of year refers to the day of year the nest 

was deposited based. 

 
 

Parame ters Spe arman ρ Probability> |ρ| 

 

 
 

Early * day of year 0.3700 0.0004 

Early * no. eggs incubating -0.2235 0.0364 

Early * hours below 26.5°C -0.2149 0.0443 

Middle * middle third temperature -0.4480 0.0070 

Middle * hours above 34°C -0.2799 0.0275 

Middle * hours outside 26.5-34°C -0.3952 0.0015 

Late * day of year -0.3821 0.0006 

Late * latitude 0.3141 0.0054 

Late * hours below 26.5°C 0.3629 0.0012 

Late * hours outside 26.5-34°C 0.2388 0.0365 

Late * early -0.6830 <0.0001 
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Table 8. Summary of estimated hatchling sex ratios using the average temperature during the 

middle third of incubation (critical period temperature) based on the formula for sex ratios as 

described in LeBlanc et al. (2012). In 2017, N=60; in 2018, N=58. 

 

 

 
Female 

2017  

 
Male 

 

 
Female 

2018  

 
Male 

Average % 

per Nest 71.8 

 
(2.55) 

 
28.2 

 
79.6 

 
(2.10) 

 
20.4 

(SEM)      

Median 75.4 
(%) 

 
24.6 85.9 

 
14.1 

Estimated 

# 3386 
 

1122 3096 
 

683 
 

Hatchlings 

 

Range (%)* 

 

 
17.2 - 98.9 1.06 - 82.8 40.3 - 98.0 1.99- 59.7 

 
 

*Range values are observed from individual nests. 
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Figure 1. Map of Ossabaw Island, Georgia with nest locations for 2017 and 2018 nesting 

seasons. 
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Figure 2. Image of a body pit made by a nesting female loggerhead by disturbing the topmost inches of 
sand with her flippers before and after eggs are deposited. Spartina from beach wrack outline the location 
of the body pit. 
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Figure 3. Characteristics of dip and strike as they were measured on sand dunes. 
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Figure 4. Image classification of unhatched eggs. (a.) Unfertilized eggs remain visibly similar to freshly- 

laid eggs even after 50-70 days under incubation conditions. No signs of decomposition arere present. (b.) 

Contents of eggs that would be categorized as rotten before stage (RBS). Yolk does not retain its liquid 

state and some evidence of mold and decomposition is  present. No embryo is  visibly present. (c.) 

Contents of an egg that would be classified as rotten beyond identification (RBID). Development of an 

embryo is clearly present (black scutes are visible on the yolk in the upper righthand corner), but the egg 

contents are too rotten or decomposed to identify stage of development. (d.) Eggs classified as partial had 

an embryo that is visible to the naked eye with no signs of decomposition or decomposition so slight that 

stage identification remains possible. 
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Figure 5. Distribution of hatch success (%) for nests on Ossabaw Island, Georgia 2017, 2018. 

N=170. 
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Figure 6. Distribution of tidal washover or inundation events per nest during incubation. N=170. 
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Figure 7. (a.) Distribution of frequencies of washovers experienced by individua l nests. (b.) 

Resulting hatch success (%) as influenced by the number of washovers each nest experienced. 

N=170. 
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Figure 8. Distribution of nest elevation above mean sea level (m). N=164. 
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Figure 9. Ordination of beach morphology variables’ scores derived from a principal component 

analysis (PCA). 
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Figure 10. Multiple regression analysis with elevation and vegetation as predictor 
variables for temperature. N=162. 
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Figure 11. Multiple regression of elevation (m) above mean sea level (a.) and percent 

vegetation cover (b.) for nests plotted against residual temperature. N=162. 
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Figure 12. Multiple regression analysis with elevation, vegetation, distance to the 

tideline, and dune strike as predictor variables for moisture. N=161. 
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Figure 13. Multiple regression with (a.) elevation (m) above mean sea level, (b.) percent 

vegetation cover, (c.) nest distance to the tideline in meters (DTL), and (d.) nest strike for 

nests plotted against residual moisture. N=161. 
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Figure 14. Total early, middle, and late stage embryo mortality from nests laid in the 

2018 nesting season. N=88. 
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Figure 15. Percentage of early and late stage embryo mortalities per nest (N=88)  based 

on number of unhatched eggs as they change throughout the season. Day of year refers to 

the Julian date when nests were deposited. Percentage of early embryos is represented by 

open circles; percentage of late embryos is represented by closed circles.  Early  stage 

(dashed line) = -62.4 + (0.62 *day of year) (R2 = 0.123, p <0.001) Late stage = 138.8 + (0.88 * 

day of year) (R2 = 0.152, p <0.001) 
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APPENDICES 
 

Appe ndix 1. Aerial view of Ossabaw Island with nest locations for nests incubating on North 

Beach during the 2017 nesting season. 
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Appe ndix 2. Aerial view of Ossabaw Island with nest locations for nests incubating on North 

Middle Beach during the 2017 nesting season. 
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Appe ndix 3. Aerial view of Ossabaw Island with nest locations for nests incubating on South 

Middle Beach during the 2017 nesting season. 
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Appe ndix 4. Aerial view of Ossabaw Island with nest locations for nests incubating on South 

Beach during the 2017 nesting season. 
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Appe ndix 5. Aerial view of Ossabaw Island with nest locations for nests incubating on North 

Beach during the 2018 nesting season. 
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Appe ndix 6. Aerial view of Ossabaw Island with nest locations for nests incubating on North 

Middle Beach during the 2018 nesting season. 
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Appe ndix 7. Aerial view of Ossabaw Island with nest locations for nests incubating on South 

Middle Beach during the 2018 nesting season. 
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Appe ndix 8. Aerial view of Ossabaw Island with nest locations for nests incubating on South 

Beach during the 2018 nesting season. 
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Appe ndix 9. Temperature profile for NB26, 2017 throughout incubation with incubation 

duration, strike/dip, elevation, and average incubation temperature. 
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Appe ndix 10. Temperature profile for NB44, 2017 throughout incubation with incubation 

duration, strike/dip, elevation, and average incubation temperature. 
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Appe ndix 11. Temperature profile for NB74, 2017 throughout incubation with incubation 
duration, strike/dip, elevation, and average incubation temperature. 
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Appe ndix 12. Temperature profile for NM22, 2017 throughout incubation with incubation 

duration, strike/dip, elevation, and average incubation temperature. 
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Appe ndix 13. Temperature profile for NB55, 2018 throughout incubation with incubation 
duration, strike/dip, elevation, and average incubation temperature. 
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Appe ndix 14. Temperature profile for NB60, 2018 throughout incubation with incubation 

duration, strike/dip, elevation, and average incubation temperature. 
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Appe ndix 15. Temperature profile for SB71, 2018 throughout incubation with incubation 

duration, strike/dip, elevation, and average incubation temperature. 
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Appe ndix 16. Temperature profile for SB16, 2018 throughout incubation with incubation 

duration, strike/dip, elevation, and average incubation temperature. 
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Appe ndix 17. Wilcoxon rank-sum test comparing hatch success (%) in neophyte and remigrant 

nesters on Ossabaw Island, 2017-2018. N=30 (neophyte), 130 (remigrant); p=0.0218 
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