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Figure 54 Apparent Heat Release Rate 
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Figure 55 Apparent Heat Release Rate- Detail of Figure 54 
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Table XXII: Maximum Apparent Heat Release Rate and Respective CAD 

Fueling 

Strategy 

Peak Heat Release 

Rate (J/degree) 

Crank Angle 

CDC 21.45 373.50° 

10% n-Butanol 22.13 373.14° 

20% n-Butanol 21.26 373.14° 

30% n-Butanol 19.60 368.82° 

40% n-Butanol 27.99 366.84° 

 

4.2.3 Mass Fraction Burned 

 Mass fraction burned is a cumulative characteristic of heat release, specifically the 

integration of gross heat release plotted against the CAD. It gives insight to the burning rate of the 

fuel where CA10, CA50, and CA90 are representative of 10%, 50%, and 90% of the mass of the 

fuel being consumed. In Figure 56 below, the mass fraction burned for each fueling strategy is 

presented. Ignition delay and combustion duration can be analyzed from this data. Ignition delay 

as defined above is the time from the start of injection to CA10, while the combustion duration is 

the time from CA10 to CA90. The test fuels behave similarly due to the engines high temperature 

& high vortex auxiliary chamber. The overlap of the mass fraction burned is a good indication of 

the engines ability to burn various fuels. This is shown by CA50 for each fueling strategy which 

falls within 375° ± 2° with respect to the crank angle. A decrease in both ignition delay and 

combustion duration can be seen as the concentration of n-butanol being injected increases. This 

contradicts what would be expected given the alcohol based fuel’s lower cetane number when 

compared to neat ULSD#2. This is a result of both the chemical and physical properties of the fuel 

as well as the injection strategy. The volatility of n-butanol as observed by the thermogravimetric 
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analysis, combined with its’ lower viscosity promoted increased atomization and evaporation. 

When combined with the increased mixing time obtained by injecting into the intake manifold a 

more premixed charge is introduced into the combustion chamber allowing for the shorter ignition 

delay and faster rate of combustion (Soloiu and Gaubert 2018). Overall a 12.5% decrease in 

ignition delay and a 31.6% decrease in combustion duration was observed between CDC and the 

40% dual fuel strategy.  

 

Figure 56 Mass Fraction Burned 
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Table XXIII: Mass Fraction Burned 

 CDC 10% n-Butanol 20% n-Butanol 30% n-Butanol 40% n-Butanol 

CA10 365.76° 365.40° 365.04° 364.86° 364.68° 

CA50 377.10° 376.02° 375.48° 375.12° 373.50° 

CA90 403.92° 395.64° 395.46° 393.30° 390.78° 

 

Table XXIV: Combustion Duration 

 CDC 10% n-Butanol 20% n-Butanol 30% n-Butanol 40% n-Butanol 

Ignition 

Delay 
14.4°/ 1 ms 13.68°/ 0.95 ms 13.14°/ 0.93 ms 12.24°/ 0.85 ms 12.6°/ 0.88 ms 

Combustion 

Duration 
38.16°/ 2.65 ms 30.24°/ 2.10 ms 30.42°/ 2.11 ms 28.44°/ 1.98 ms 26.10°/ 1.81 ms 

 

4.2.4 Instantaneous Volume Averaged Maximum Gas Temperature 

To maintain the integrity of the engine, a vital parameter to consider is instantaneous 

volume averaged maximum gas temperature. If the maximum temperature inside the cylinder 

becomes too high and the oil film is negatively affected, then the reliability and lifespan of the 

engine will be compromised. The max gas temperature also directly correlates to the amount of 

NOx and soot emissions produced. Higher concentrations of NOX occur as a result of a higher 

maximum temperature. Soot had an inverse relationship. It decreases with increasing temperature 

and pressure.  

In the ideal diesel cycle during the compression stroke the pressure in the cylinder 

increases, which correlates to an increase in temperature. The high compression ratio of the diesel 

engine causes the temperature of the combustion chamber to be above that of the ignition point. In 

order to accurately calculate the maximum gas temperature a zero dimensional model was used 

and the contents of the cylinder are considered homogeneous and operate under the ideal gas law. 
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Figure 57 below presents the instantaneous volume averaged maximum gas temperature for all 

fueling strategies. Maximum temperatures range from a minimum of 1760 K observed in the 30% 

dual fuel strategy to a maximum of 1794 K observed in the 40% dual fuel strategy. This is a 1.9% 

difference. This consistency is a result of the extensive premixing from both the use of an auxiliary 

combustion chamber as well as the port fuel injection. The rapid inflections in temperature 

correlate to the delays in premixed combustion (Soloiu and MoncadaB 2018).  

 

Figure 57 Instantaneous Volume Averaged Maximum Gas Temperature 

Inflection

s 
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4.2.5 Ringing Intensity 

Fuel properties, mixture composition and heat release rates will all influence the rate of 

pressure rise in cylinder. The magnitude of pressure waves will impact the life of an engine as well 

as the noise it produces. Gaseous pollution is a prominent concern when it comes to IC engines. 

Noise pollution is also a concern due to the higher compression ratios and autoigniton behavior 

of CI engines. Ringing Intensity (RI) was calculated using Equation 14. A value of 0.05 was used 

for β, which is a constant that relates pressure rise rate and pulsation amplitude (J.A. Eng 2002). 

𝑹𝑰 =  
(𝜷(

𝒅𝑷

𝒅𝒕
)

𝒎𝒂𝒙
)

𝟐

𝟐𝜸𝑷𝒎𝒂𝒙
√𝜸𝑹𝑻𝒎𝒂𝒙               Equation 14 

 Ringing intensity for all fueling strategies are displayed in Figure 58. RI increased with the 

mass flow rate of n-butanol. The 40% dual fuel strategy had the highest RI at 5.66 MW/m2. This 

was 220% higher than conventional diesel combustion. CDC had the lowest RI at 1.77 MW/m2. 

The influence of the maximum gas temperature can be considered negligible due to the narrow 

range in which they fell. The biggest influences on the RI of each strategy would therefore be the 

maximum pressure release rates. The 40% dual fuel strategy had the highest RI intensity due the 

MPRR being 127% higher than that of CDC. 
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Figure 58 Ringing Intensity 

4.2.6 Cylinder Heat Fluxes and Heat Transfer  

Evaluation of the heat fluxes is necessary to evaluate the heat transfer. The models used 

are based off the work of Borman and Nishiwaki (1987) and were further developed by Soloiu 

(Soloiu 2012). To evaluate the heat fluxes the in-cylinder Reynolds number must be calculated. 

Equation 15 below is used to calculate instantaneous volume-averaged in-cylinder Reynolds 

number.  
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𝑅𝑒(𝛼) = 𝜌(𝛼)
𝑆∙𝑁∙𝐷

30∙𝜇(𝛼)
                         Equation 15 

 Where ρ is the density of in-cylinder gas, S is the engine stroke, N is the engine speed, D 

the piston diameter, and µ is the air viscosity.  Equation 16 below was used for the calculation of 

the air viscosity. 

𝜇(𝛼) = 4.94 ∙
1273.15+110.4

𝑇𝐴(𝛼)+110.4
∙ (

𝑇𝐴(𝛼)

1273.5
)1.5 − 10−5

              Equation 16 

TA is the cylinder gas temperature at each increment of 0.18°CAD. For the convection flux, 

σ is the Stefan-Boltzmann constant, while the emissivity factor ε was considered for the smoothed 

walls of the combustion chamber. 

�̇�(𝛼) = 𝐴
𝜆𝐴(𝛼)

𝐷

̇
𝑅𝑒(𝛼)0.7(𝑇𝐴(𝛼) − 𝑇𝑤) + 𝜎 ∙ 𝜀(𝑇𝐴

4(𝛼) − 𝑇𝑤
4)                Equation 17 

The air conductivity is calculated using the following formula.  

𝜆𝐴(𝛼) = −1.2775 ∙ 10−8 ∙ 𝑇𝐴(𝛼) + 7.66696 ∙ 10−5 ∙ 𝑇𝐴(𝛼) + 0.00444888         Equation 18 

Due to the triple vortex separate combustion chamber, the conditions inside the combustion 

chamber reach a Reynolds numbers well above 100,000 which is considered highly turbulent. The 

Reynolds numbers varied with CDC having the lowest and the 30% dual fuel strategy having the 

highest. The magnitude and crank angle locations of the radiation, convection, and total heat fluxes 

are visible in Figure 59. Shown in the figure, the total heat fluxes are relatively similar for CDC 

up to 30% port fuel injection of n-butanol. The 40% dual fuel strategy had the highest fluxes and 

deviated from the other strategies. This correlates to the higher AHRR observed. The total flux 

(solid line) is a combination of the convection and radiation heat fluxes (dashed lines). The primary 

source of heat transfer comes from the forced convection from the bulk gas to the cylinder walls 

as seen in Figure 58. 
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Figure 59 Heat Fluxes 

The heat losses in the cylinder are based on the heat fluxes and the apparent heat release 

calculated in previous sections. Figure 60 and Figure 61 below show the losses throughout the 

cycle for CDC and 40% n-butanol dual fuel strategy respectively. The heat losses described as 

convection is shown as the blue area on each plot. The radiation heat losses are represented by the 

green area, between the blue line and red gross heat release line. The heat losses for all fuels across 

all loads are very similar with the heat losses due to convection being larger in every case. The 

Total Flux 

Radiation 

Flux 

Convection 

Flux 
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heat losses at TDC are minimal and begin to grow with the expansion of the gasses and the increase 

in combustion chamber volume. The presence of n-butanol affected the local droplet temperatures 

and vapor pressures due to the higher vaporization rate, increasing convection fluxes.  The 

radiation flux followed the in-cylinder temperature curve (Soloiu and Gaubert 2018). Combustion 

efficiency was higher at 100% at 450° crank angle for the 40% fueling strategy due to the shorter 

combustion duration experienced.  

 

Figure 60 Heat Losses for Conventional Diesel Combustion 
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Figure 61 Heat Losses for Dual Fuel Combustion at 40% of the Total Fuel Mass Flow Rate 

4.3 Emissions and Efficiencies Investigation 

4.3.1 Nitrogen Oxides and Soot 

 The main goal of this study was to reduce the emissions produced from combustion by 

controlling the reactivity of the air/fuel charge through the use of dual fuel combustion. The 

emissions data is collected and analyzed based on a reference measurement of conventional diesel 

combustion at the same speed and load. Data is converted to the mass in grams of the select 
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emission per kilowatt-hour. Shown in Figure 62 below the concentrations of NOX emissions are 

plotted based on concentration of n-butanol. A decrease in NOX was observed from CDC to the 

30% dual fuel strategy. This was a reduction from a maximum of 3.0 g/kWh to a minimum of 2.4 

g/kWh which is a 20% reduction. The 40% dual fuel strategy increased from the 30% strategy by 

8%. The decrease in NOX emissions was a result of the cooling effect of the alcohol based fuel 

caused by its’ higher latent heat of vaporization. 
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Figure 62 Nitrogen Oxide Emissions for increasing n-Butanol Concentrations 
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 The port fuel injection of n-butanol resulted in a homogeneous air/fuel mixture prior to 

ignition, resulting in much lower levels compared to CDC. The slight change in trend for n-butanol 

blends can be related to some increases seen in AHRR, specifically the 40% dual fuel strategy 

which lead to the increase in NOX observed (Soloiu and Gaubert 2018).  

Soot emissions are shown in Figure 63. A steady decrease in soot can be seen as the 

concentration of n-butanol increases. CDC has the highest concentration of soot at 0.37 g/kWh. 

The 30% dual fuel strategy had the lowest concentration of soot at 0.073 g/kWh. The 40% fueling 

strategy was marginally higher at 0.074 g/kWh. Between the 30% dual fuel strategy and CDC a 

reduction of soot of 80% was observed. Port fuel injection allowed for in-cylinder mixing which 

created a more homogenous mixture, reducing fuel rich areas across the chamber. The higher 

oxygen content of n-butanol allowed a more complete combustion by enhancing soot oxidation 

(Soloiu and Gaubert 2018). This also happens as a result of butanol’s high volatility which 

increased mixing rates and carbon recession rates (Amann et al 1980).   
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Figure 63 Soot Emissions for increasing n-Butanol Concentrations 

4.3.2 Carbon Monoxide and Unburned Hydrocarbons 

 Figure 64 and Figure 66 display the carbon monoxide CO emissions and unburned 

hydrocarbon UHC emissions for each fueling strategy.  Both CO and UHC emissions increased 

with n-butanol concentration. CO emissions increased from 0.98 g/kWh for CDC to 25.1 g/kWh 

for the 40% dual fuel strategy. This is a 2461% increase.  This results from CO being unable to 

fully oxidize because of the decreased combustion duration and the increase in the total amount 

of fuel present at the time of combustion (Soloiu and Gaubert 2018). This correlates to the 
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decrease in the relative air/fuel ratio visible in Figure 65. UHC emissions weren’t as drastic with 

a 1091% increase from CDC to the 40% dual fuel strategy. This is a result of butanol passing 

straight through the cylinder during valve overlap as well as the decreased air fuel ratio causing a 

lower combustion efficiency. Increases in CO and UHC can also be attributed to over mixing 

(Soloiu and MoncadaB 2018). 
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Figure 64 Carbon Monoxide Emissions for increasing n-Butanol Concentrations 
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Figure 65 Unburned Hydrocarbons Emissions for increasing n-Butanol Concentrations 
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4.3.3 Aldehyde Emissions 

 Aldehyde emissions are shown in Figure 67. The aldehyde emissions recorded were for 

formaldehyde only. Dual fuel combustion increases formaldehyde emissions due to the 

combustion of the oxygenated alcohol. This is confirmed by the observed trend. As n-butanol 

concentration increases so does the aldehyde emissions. The increase in aldehyde emissions 

contributes to the increase in convection heat losses due to a quenching effect (CIMAC WG 17). 
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Figure 66 Formaldehyde Emissions for increasing n-Butanol Concentrations 
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4.3.4 Efficiencies and Specific Fuel Consumption 

The efficiency of the engine is a vital parameter to knowing whether or not the injection 

strategy is viable. Mechanical and indicated thermal efficiencies (ITE) give an indication to how 

the engine is operating.  

The efficiencies of the investigation are presented in Figure 68 below. Mechanical 

efficiency is defined as the ratio of BMEP to IMEP. Indicated thermal efficiency is the ratio of 

indicated power to fuel energy. Mechanical efficiencies were higher for the alcohol fumigation 

strategies. This was a result of the higher cylinder pressures observed as well as negating parasitic 

losses due to the external injection pump for the n-butanol. The maximum mechanical efficiency 

was 58% for the 30% dual fuel strategy, while the minimum was 56% for CDC. A trend should be 

observed with the mechanical efficiency increasing with increasing cylinder pressure. This trend 

holds true to the up to the 30% dual fuel strategy. The 40% dual fuel strategy breaks the trend. 

This is due to the earlier onset of combustion decreasing the amount of energy released during the 

expansion stroke as well as the higher heat transfer observed (Soloiu and Gaubert 2018). Indicated 

thermal efficiencies decreased with increasing n-butanol fumigation. CDC had the highest ITE at 

43% and dropped to the lowest at 37.8% for the 40% dual fuel strategy. This occurred because the 

total fuel energy increased with the increasing n-butanol concentration, while the indicate power 

remained consistent for all fueling strategies at 3.4 kW. 

The diesel equivalent brake specific fuel consumption (BSFC) was selected instead of the 

standard brake specific fuel consumption (BSFC) to account for the decrease in flow through the 

primary injector caused by the secondary injection source. Equation 19 below was used to calculate 

the Diesel equivalent BSFC (Xing-cai et al 2004). 



122 

 

 

 

𝐷𝑖𝑒𝑠𝑒𝑙 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝐵𝑆𝐹𝐶 = 𝐵𝑆𝐹𝐶 ×
𝐿𝐻𝑉𝐵𝑙𝑒𝑛𝑑

𝐿𝐻𝑉𝑈𝐿𝑆𝐷
               Equation 19 

Figure 69 below presents the diesel equivalent BSFC for all fueling strategies. A linear 

increase was seen from CDC to the 40% dual fuel strategy. CDC had a BSFC of 273.17 g/kWh 

while the 40% dual fuel strategy had a BSFC of 314.30 g/kWh. This is a 15.1% increase. The 

increase results from the lower energy density of the n-butanol. This also corresponds to an 

increase in mechanical efficiency (Soloiu and Gaubert 2018). 

 

Figure 67 Mechanical and Thermal Efficiencies for increasing n-Butanol Concentrations 
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Figure 68 Diesel Equivalent Brake Specific Fuel Consumption for increasing n-Butanol 

Concentrations 

 



124 

 

 

 

CHAPTER 5: CONCLUSIONS  

5.1 Conclusions  

Dual fuel combustion in an indirect injected diesel engine was researched to study its 

characteristics and exhaust gas emissions.   

The hypothesis for research stated: If a dual fuel combustion strategy involving the port 

fuel injection of n-butanol is used in conjunction with the indirect injection of ultra-low sulfur 

diesel, then engine out emissions for nitrogen oxides and soot in single cylinder, off-road diesel 

engines can be reduced below Tier 4 EPA while maintaining engine performance. Combustion 

results validate the stated hypothesis with significant reductions being made in both NOX and soot 

emissions. At 2400 rpm and 3 bar brake mean effective pressure a 21% reduction in NOX from a 

maximum of 3.0 g/kWh to a minimum of 2.4 g/kWh was observed due to the cooling effect of the 

butanol. Soot emissions were reduced by 80% from 0.37 g/kWh to 0.073 g/kWh due to more 

complete combustion caused by the increased oxygen content of the butanol. Port fuel injection 

also allowed for greater in-cylinder mixing which created a more homogenous mixture, reducing 

fuel rich areas across the chamber. Peak reductions were all made at the 30% butanol mass flow 

rate.   

Combustion pressure results show an increase in peak pressure with increasing mass flow 

rates of n-butanol. For the highest concentration of butanol tested at 40% of the total fuel flow rate, 

displayed pressure rise rates 127% higher than that of conventional diesel combustion. This is due 

to the volatility of the alcohol fuel and the increased mixing from injecting butanol into the intake 

manifold. Peak heat release rates were observed to increase with the mass flow rate of butanol with 

a 30.5% increase between CDC and the 40% dual fuel combustion strategy. The increase in peak 
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pressure, maximum pressure rise rates, and heat release rates can be attributed to the shorter 

ignition delay and combustion duration. Both decreased with increasing butanol mass flow rates. 

This contradicts what would be expected given the alcohol based fuel’s lower cetane number when 

compared to neat ULSD#2. This is a result of both the chemical and physical properties of the fuel 

as well as the injection strategy. The volatility of n-butanol and its’ lower viscosity promoted 

increased atomization and evaporation. When combined with the increased mixing time obtained 

by injecting into the intake manifold a more premixed charge is introduced into the combustion 

chamber. Overall a 3.6% decrease in ignition delay and a 31.6% decrease in combustion duration 

was observed between CDC and the 40% dual fuel strategy. 

Peak temperatures remained consistent around 1800 K. Ringing intensity for dual fuel 

strategies exceeded that of CDC, increasing with the increasing mass flow rates of butanol. RI for 

the 40% dual fuel strategy was the highest. This was a result of the substantial increase in peak 

pressure rise rates for this fueling strategy. The lowest RI for the dual fuel strategies was for the 

20% dual fuel strategy which was higher than CDC by 6.2%. The heat flux was increased with 

increasing butanol content. Butanol blends increased the heat flux from the high vaporization rate 

of the fuel. Carbon monoxide and unburned hydrocarbon emissions increased by 2461% and 

1091% respectively for the 40% dual fuel strategy. This results from CO being unable to fully 

oxidize because of the decreased combustion duration and the increase in the total amount of fuel 

present at the time of combustion. UHC emissions increased as a result of butanol passing straight 

through the cylinder during valve overlap as well as the increased lower air/fuel ratios caused by 

the increase of fuel in cylinder from the alcohol injection. Despite increases NOX + NMHC 

emissions for all fuel strategies remained below EPA standards. CO emissions exceeded EPA 
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standards once the flow rate of n-butanol reached 20%. Optimization of the injection timing for 

both the port fuel injector and main injector could reduce both CO and UHC emissions.   

Mechanical efficiencies were 1-2% higher for the alcohol fumigation strategies with the 

maximum occurring with the 30% dual fuel strategy. This was a result of the higher cylinder 

pressures observed as well as negating parasitic losses due to the external injection pump for the 

n-butanol. Indicated thermal efficiencies decreased with increasing n-butanol concentration. CDC 

had the highest ITE at 43% and dropped to the lowest at 37.8% for the 40% dual fuel strategy. 

This occurred because the total fuel energy increased with the increasing n-butanol concentration. 

A linear decrease was seen in diesel equivalent BSFC from CDC to the 40% dual fuel strategy. 

The largest contributor to this result is the lower energy content of n-butanol. Comparing 

parameters suggests that the optimum dual fuel mode is at the 20% flow rate. RI intensity is at a 

minimum for the dual fuel combustion modes, indicated thermal efficiency reaches a maximum of 

40% for the dual fuel modes, mechanical efficiency is close to the maximum at 58%, and 

significant reductions in both NOX (19.8%) and soot (62%) are achieved. CO monoxide emissions 

do increase past EPA standards here but could be reduced through optimization of the injection 

timing. The combustion and emissions characteristics for dual fuel combustion displayed 

promising results with potential to reduce emissions in cylinder and promote the increase use of 

renewable fuels.  

5.2 Future Work 

This study focused primarily on the effect the mass flow rate of the butanol would have on 

combustion characteristics and emissions.  There are many factors that influence the production of 

gaseous emissions including the injection timing, operating speed, operating load, and the use of 
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exhaust gas re-circulation (EGR). Through the development of an EGR system NOX emissions 

could be further reduced. The effect that injection timing would have on carbon monoxide and 

unburned hydrocarbon emissions could also be explored.  
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