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ENERGY STORAGE MANAGEMENT AND SIMULATION FOR

 NANO-GRIDS 

by

SHANTU GHOSE 

(Under the Direction of Adel El Shahat) 

ABSTRACT 

Energy storage has been utilized in many forms and applications from a flashlight to the Space 

Shuttle. There is a worldwide effort to develop battery model with high energy level and 

power densities for a variety range of applications, including hybrid electric vehicles 

(HEV) and photovoltaic system (PV). To improve battery technology, understanding the battery 

modeling is very important. So, modeling the thermal behavior of a battery is a vital 

consideration before designing an effective thermal management system which will operate 

safely and prolong the lifespan of an energy storage system. The first part of this work 

focused on the aging model of lithium-ion battery and a simple thermal model of lithium-

ion and lead-acid battery using MATLAB/Simulink. After that, an artificial neural 

network model (ANN) is developed to predict various characteristics at wide temperature 

range. In this case, comparisons between the training/testing data outputs and targets 

validating both models with a regression accuracy of 99.839% and 98.727% respectively for 

Li-ion and Lead-Acid battery while it is 99.912% for the aging model of Li-ion battery. In the 

end, this energy storage device is used to interconnect with HOMER. This HOMER project 

aims at designing a solar-wind hybrid power system for Statesboro, Georgia. The cost 

analysis is performed utilizing HOMER software based on solar irradiance, wind speed, and 

residential load profile. The proposed HOMER model, using solar & wind with the grid was 

more cost efficient as the cost of energy (COE) was found 0.0618$/kWh 



where the average residential electricity rate in Statesboro is 0.116$/kWh. As a result of using 

this model, the total cost is reduced by 46.72% compared to other conventional power systems. 

In the second part of HOMER simulation, while comparing among three types of storage 

devices, another minimum COE is found using wind with grid connection. As the wind speed is 

good enough for Statesboro, Georgia, simulation shows that minimum COE is 0.0499$/kWh, 

0.0386$/kWh and 0.0633$/kWh respectively for Li-ion, Lead-acid, and Vanadium. 

INDEX WORDS: Storage device, Renewable energy, Battery aging, Thermal modeling, ANN, 

HOMER, NPC, Cost of energy, Hybrid power system. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Energy storage is continuing to play an essential part in power world today. To achieve a secure 

and sustainable power industry, the first step needs to take is making the electricity grids smarter 

with the integration of renewable energy resources (RES) (Boroyevich, Cvetkovic, Burgos, & 

Dong, Intergrid: A Future Electronic Energy Network, Sept. 2013). Renewable energy resources 

(RES) can capture their energy from on-going natural processes, such as sunlight, wind, tidal 

energy and geothermal heat flow (Twidell & Weir, 2006). Some of them are infinite while some 

of them have an only limited amount in nature. Moreover, some of them, for example, solar or 

wind are available in a natural way to use, but some of them should be formed like coal. 

Renewable energy sources are always free of carbon. That means it will not create any CO2 that 

can cause air pollution. Renewable energy will not run out from nature, and that is why it is 

called green energy. Renewable energy is a pathway to a sustainable energy future. It can be 

converted to electricity and later that can be stored or transported to home. We can list some 

other examples of renewable energy which are present in the immediate environment and can be 

tapped. These are wave energy, wind energy, solar energy, tidal current energy, biomass, hydro 

and geothermal energy. Figure 1 shows various types of renewable energy sources which are 

available in nature. 
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Figure 1: Renewable energy sources (Enclyclopaedia Britannica, n.d.). 

According to annual energy report by the U.S. Energy Information Agency (EIA) ((EIA), Annual 

Energy Outlook, April 2015), renewable energy is expected to grow significantly from 2013 to 

2040. From figure 2 it is clear that largest growth will be in the field of solar and wind. In 2013, 

total non-hydropower renewable generation was nearly equal to hydroelectric generation (Zhang 

W. , May, 2015). On the other hand, in 2040, non-hydropower will contribute more than sixty 

percent of total renewable generation. In this case, the total share of renewable generation will 

increase from 13 percent in 2013 to 18 percent in 2040 (Zhang W. , May, 2015). 
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Figure 2: Renewable electricity generation ((EIA), Annual Energy Outlook 2015, April, 2015) 

Although, to produce adequate energy from available renewable energy sources is one of the 

major issues. With the increase of world population and economic growth, we need more energy. 

Renewable energy is gradually gaining interest in recent research due to the considerations on 

the depleting nature of non-renewable resources and availability of renewable energy resources. 

As a result, every nation is looking for a solution for producing energy from renewable energy 

sources with current technologies. According to the Global Energy Statistical Yearbook 2017 

(Global Energy Statistical Yearbook, 2017), figure 3 describes the statistical data of electricity 

production from renewable energy in different countries of the world. We can see that about 22 

percent of total U.S. electricity comes from renewable energy sources (Global Energy Statistical 

Yearbook, 2017). 
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Figure 3: Electricity production from renewable and non-renewable sources (Global Energy 

Statistical Yearbook, 2017) 

1.2 Energy Storage DC Nano-grid 

1.2.1 Energy Storage 

An energy storage device mainly used for storing electric energy when needed and releasing it 

when required to operate on next stage. There are various energy storages in mobile small-

powered applications such as mobile phone, laptop, etc., and in vehicular applications such as 

hybrid electric vehicles (HEV) and electric vehicles (EVs). For large-scale energy storages such 

as pumped hydro storages (PHS) and compressed air energy storages (CAES) have been widely 

used (Duong, 2013). 

1.2.2 Energy Storage DC Nano-grid 

Traditionally, for small-scale power applications, Battery Energy Storage System (BESS) is 

typically used for energy capacity because of its high energy density. On the other side, Flywheel 

Energy Storage System (FESS) and Ultra-Capacitor (UC) are typically used for fast power 
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dynamics due to their high-power density. For large-scale power applications, Pumped Hydro 

Storage (PHS) and Compressed Air Energy Storage (CAES) are used for both energy and power 

purposes. 

In micro-grid and renewable energy plants, when there is need of a medium scale or large-scale 

energy storage, and PHS and CAES are inaccessible, the only solution is to coordinate small-

scale energy storage frameworks together to shape an energy storage DC Nano-grid. To get 

better efficiency and integration, energy storage nano-grid should be DC rather than AC. Figure 

4 gives the initial idea of DC micro-grid. 

 

Figure 4: Block diagram of DC microgrid (Konrad, Loria, Miller, & Yamasaki, May 5, 2014) 

For micro-grid applications, the energy storage DC Nano-grid can store redundant energy during 

the normal mode of micro-grid and support the energy to micro-grid during island mode. The 

energy storage DC Nano-grid also can provide fast power back-up during the transient period of 

micro-grid from normal mode to island mode or vice versa.  
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Nano-grids are one kind of micro-grids, which can serve a single building or a single load. 

Figure 5 describes the modern power system. Here power comes from various types of power 

plants like nuclear, coal or hydroelectric, etc. using HVDC (high voltage DC) system (Eriksson, 

Nov 2011) (Wright, Rogers, Manwell, & Ellis, Jun 2002). Nano-grid consists of energy storage 

with generating units to achieve the maximum output from accessible renewable energy. We can 

divide micro-grid into AC and DC nano-grids. The residential setup (up to 25 kW) is known as 

AC nano-grid. 

 

Figure 5: Concept of the electric power system (Cvetkovic I. , July,2010) 

AC nano-grid is an integral part of an electric power system which is shown in figure 5. So, a 

smart future home includes several types of renewable energy sources combined with grid 

connection. It includes (a) renewable source: solar panels as PV system and wind turbine, (b) 

energy storage devices: hybrid electric vehicles (HEV) and battery (c) utility grid connection 

through energy control center (ECC) and (d) loads: home appliances (Salameh & Davis, 2003) 
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(Cvetkovic, et al., 2009). Figure 6 showing the interconnections and elements of an assortment of 

home electric energy segments that together include a feasible home with the AC-nanogrid 

framework. 

 

Figure 6: A feasible future home (Salameh & Davis, 2003) (Cvetkovic, et al., 2009) 

1.3 Why Energy Storage 

We can choose energy storage mainly for three reasons 

1. Less carbon energy in future 

2. Energy security and reliability 

3. Energy price 

Low carbon energy future means a vast reduction in the emission of CO2 from electricity 

generation, transport and heating systems.  
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Energy security ensures the ability for energy supply. As oil and gas from the North Sea are 

declining day by day, experts forecast that within 2020, 50-60 percent oil will be imported while 

the percentage is more than 70 for gas (Department of Energy and Climate Change, 2010). So, 

we need energy security policy to fulfill this growing demand. On the other hand, reliability cope 

with random deviations in supply and demand. A dependable energy network is one in which 

energy must be given consistently when it is important there must be negligible "loss-of-load" 

probability. 

Energy price is directly related to the variation in supply and demand. It is linked to the economy 

and effects the price of a traded product. Oil prices exceed hundred dollars for a barrel in 2012 

(BP Statistical Review of World Energy., 2012). Energy storage can be a solution of maintaining 

price stability in the electricity market.  

1.4 Scope of Battery Aging and Thermal Model 

Noteworthy research efforts are being made to understand and mitigate the degradation of Li-ion 

batteries upon usage. Battery aging models can be used to optimize the battery usage to achieve 

robust battery solutions. To design the battery aging model one of the most important factors is 

temperature. It significantly affects the performance, safety, and cycle lifetime of Lithium-ion 

batteries (LiB). Although the comprehensive effects of temperature on the aging behavior of 

Lithium-ion batteries (LiB) have yet to be found (Leng F. e., Effect of Temperature on the Aging 

rate of Li-Ion Battery Operating above Room Temperature, 2015).  

On the other hand, the near future will be more dependent on hybrid electric vehicles (HEV) as 

they are the most encouraging alternative solution to reduce the greenhouse gases in the car 

industry. Especially, plug-in HEV and a vehicle-to-grid idea will have a powerful impact in both 

reductions of greenhouse gases and electricity distribution system (Tremblay, Dessaint, & 
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Dekkiche, 2007). So, all of these new technologies will depend on battery modeling. As a result, 

it is very essential to develop accurate battery models. By using ANN (artificial neural network) 

technique both the battery aging and thermal model can be developed to predict various 

characteristics at wide temperature range. In this study, ANN models were implemented with an 

optimal number of layers and neurons, which were trained, simulated and at last verified with 

99.912% regression accuracy for the aging model of Li-ion battery while this percentage is 

99.839 and 98.727 for the thermal model of Li-ion and Lead-acid battery. 

1.5 Research Objectives 

This study concentrates on the Li-ion battery aging model and thermal modeling of both Li-ion 

and lead-acid battery. The goal is to improve the regression accuracy of both aging and thermal 

model using ANN (Artificial Neural Network). In addition, cost analysis has been done for wind-

solar hybrid power system for Statesboro, Georgia. To fulfill these goals, the following 

procedures were conducted: 

• Development of aging model of Li-ion battery and thermal modelling of both lithium-ion 

and lead-acid battery using ANN. 

• Several types of model parameters like maximum charge storage capacity, aging of 

resistance & capacitance, aging of rate constant, SOC (state of charge), DOC (depth of 

charge), load current, heat flow etc. are described in the form of 3D figure. 

• A study to validate the proposed HOMER model based on actual location-based monthly 

solar irradiance and wind speed. 

• Cost analysis is performed for electricity generation utilizing HOMER. 
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 CHAPTER 2 

LITERATURE REVIEW 

There has been tremendous research work to the advancement of various existing rechargeable 

batteries. Among them, lithium-based batteries appear to occupy a prime position in different 

viewpoints (Kennedy, Patterson, & Camilleri, 2000). In purpose of significant production of 

HEVs, performance analysis and aging behavior of Li-ion batteries is very important. This 

chapter addresses a brief description of the existing battery aging process and thermal modeling 

of lithium-ion and lead-acid batteries. 

2.1 Aging Process of Li-ion Battery 

The study of the aging process is not an easy task. The most common studied regarding aging 

mechanism on electrode level made by Vetter (Vetter, et al., March, 2005) is shown in figure 7. 

 

Figure 7: Aging process of Li-ion batteries (Groot, 2014) 
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Aging mechanism is very much related with operating conditions (Broussely, et al., 2005) and 

can be categorized into following terms: (a) loss of electrode material (b) loss of cyclable lithium 

and (c) loss of conductivity in electrodes or electrolyte. 

2.1.1 Aging Model 

Lots of work has been done in the field of battery modeling. It includes electrochemical models, 

equivalent circuit based models and impedance based models (Narula, 2014). 

 

Figure 8: Electrochemistry-based Model (Leng F. e., Effect of Temperature on the Aging rate of 

Li-ion Battery Operating above Room Temperature, 2015). 
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ECBE (electrochemistry-based model) is created based on the first principle of electrochemistry 

and then convert the partial differential equations into circuit model. After that, it is validated by 

electrochemical impedance spectrometer (EIS) which is the most well-known aging 

identification tool for various types of LiB (lithium-ion batteries) cells (Leng, Tan, Rachid, & Le, 

2014). 

Figure 8 represents the most developed ECBE which is used to measure the effects of aging 

behavior of cycled Li-ion battery within 25°C to 55°C temperature range (Leng F. e., Effect of 

Temperature on the Aging rate of Li-ion Battery Operating above Room Temperature, 2015). 

Feng found that due to surface film and phase changes on the LCO (Li-cobalt) electrodes is the 

main reason to increase in the degradation rate of the maximum charge capacity of the lithium-

ion battery (Leng F. e., Effect of Temperature on the Aging rate of Li-ion Battery Operating 

above Room Temperature, 2015). 

From experimental analysis, Feng concluded that degradation rates of Li-ion increases with the 

increase of temperature which includes maximum charge capacity, charge transfer rate, total 

resistance, Warburg element resistance, Warburg element capacitance and Warburg RC time 

constant (Leng F. e., Effect of Temperature on the Aging rate of Li-ion Battery Operating above 

Room Temperature, 2015). 

2.2 Thermal Modeling for Lithium-Ion Battery 

A mathematical model of a battery can be defined by a voltage regarding current and state of 

charge (SOC). This model included a simple voltage source in series with a constant resistance 

(M. & Dessaint, n.d.). 

We can define voltage source by equation (2.1) 
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𝐸 = 𝐸𝑜 − 𝐾
𝑄

𝑄 − 𝑖𝑡
+ 𝐴𝑒𝑥𝑝 (−𝐵. ∫ 𝑖𝑑𝑡) 

2.1 

𝑉𝑏𝑎𝑡𝑡 = 𝐸 − 𝑅. 𝑖 2.2 

Where, 𝐸 = no-load voltage (V), 𝐸𝑜 = battery constant voltage (V), 𝐾 = polarization voltage (V), 

𝑄 = battery capacity (Ah), ∫ 𝑖𝑑𝑡 = actual battery charge (Ah), 𝐴 = exponential zone amplitude 

(V), 𝐵 = exponential zone time constant inverse (Ah)-1, 𝑉𝑏𝑎𝑡𝑡 = battery voltage (V), 𝑅 = internal 

resistance (Ω), 𝑖 = battery current (A). 

2.2.1 Battery Parameters 

There are three major points which are used to find out model parameters are: charged voltage, 

end of exponential zone and end of a nominal zone. The exponential part (𝐴𝑒𝑥𝑝(−𝐵. 𝑖𝑡)) is 

calculated as follows 

 

Figure 9: Thermal model of Li-ion battery (M. & Dessaint, n.d.). 

A: voltage drop during the exponential zone (V) 
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           𝐴 =  𝐸𝐹𝑢𝑙𝑙 − 𝐸𝐸𝑥𝑝  

𝐴 = 1.4𝑉 − 1.25𝑉 = 0.15𝑉 2.3 

3 / (B): charge at the end of exponential zone (Ah) 

𝐵𝐵 =
3

𝑄𝐸𝑥𝑝
 

2.4 

𝐵 =
3

1.3𝐴. 1ℎ
= 2.308(𝐴ℎ) − 1 

2.5 

Equation (2.1) is used to calculate other parameters. Polarization voltage (𝐾) can be found from 

fully charged voltage (𝐸𝐹𝑢𝑙𝑙) and end of nominal zone 

         𝐾 =
(𝐸𝐹𝑢𝑙𝑙 − 𝐸𝑁𝑜𝑚 + 𝐴(exp(−𝐵. 𝑄𝑁𝑜𝑚) − 1)). (𝑄 − 𝑄𝑁𝑜𝑚)

𝑄𝑁𝑜𝑚
 

 

  𝐾 = 0.0125 (𝑉) 2.6 

TABLE 2.1 BATTERY PARAMETERS (Tremblay, Dessaint, & Dekkiche, 2007) 

Type 

Parameters 

Lithium-ion 

3.6 V 1Ah 

Lead-acid 

12 V 1.2 Ah 

𝐸𝑜 (V) 3.7348 12.6463 

𝑅 (Ω) 0.09 0.25 

𝐾 (V) 0.00876 0.33 

𝐴 (V) 0.468 0.66 

𝐵 (Ah)-1 3.5294 2884.61 

Then we can easily calculate voltage constant 𝐸𝑜 

         𝐸𝑜 = 𝐸𝐹𝑢𝑙𝑙 + 𝐾 + 𝑅𝑖 − 𝐴  

𝐸𝑜 = 1.4 + 0.0125 + 0.0046 ∗ 1.3 − 0.15 = 1.268(𝑉) 2.7 

We can use this approach and can be implemented to other types of battery like Lead-acid or 

Nickel-Cadmium to determine model parameters. 
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2.2.2 Circuit Description 

This model shows the effect of temperature change of a 7.4 V, 5.4 Ah Li-ion battery (LiCoO2). 

The ambient and internal temperature can be varied during charging and discharging process.  

2.2.3 Simulation Results 

 

Figure 10: Simulation results (a) battery voltage (b) battery current (c) SOC and (d) ambient & 

internal temp of Li-ion battery (M. & Dessaint, n.d.). 
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2.3 Thermal Modeling for Lead-Acid Battery 

2.3.1 Battery Model 

A physical system of a lead-acid battery consists of three parts: thermal model, a charge with 

capacity model and an equivalent circuit model (Jackey R. A.). Thermal model works with 

electrolyte temperature whether the charge and capacity model keep tracks of battery’s state of 

charge (SOC), depth of charge (DOC) and battery’s capacity. Battery equivalent circuit acts on 

battery circuit equations as well as battery current and nonlinear circuit elements.  

2.3.2 Branch Voltage 

It represents open circuit voltage for one cell. It varies with temperature and state of charge 

(SOC). 

𝐸𝑚 = 𝐸𝑚0 − 𝐾𝐸(273 + 𝜃)(1 − 𝑆𝑂𝐶) 2.8 

Where 𝐸𝑚= open circuit voltage (EMF) in volts, 𝐸𝑚0= open circuit voltage at full charge, 𝐾𝐸= 

constant in volts/ oC, 𝜃= electrolyte temperature in oC, 𝑆𝑂𝐶= battery state of charge 

2.3.3 Terminal Resistance and Main Branch Resistance 1 & 2 

Terminal resistance is assumed to be constant and can be varied with SOC.  

𝑅𝑜 = 𝑅𝑜𝑜[1 + 𝐴𝑜(1 − 𝑆𝑂𝐶) 2.9 

Where 𝑅𝑜= resistance in ohms, 𝑅𝑜𝑜= value of 𝑅𝑜 at 𝑆𝑂𝐶 =1 in Ohms, 𝐴𝑜= constant. 

Main branch resistance 1, varied with 𝐷𝑂𝐶 (depth of charge). It increases in an exponential way 

when the battery exhausted during discharge.  

𝑅1 = −𝑅10 ln (𝐷𝑂𝐶) 2.10 

Where 𝑅1= main branch resistance in ohms, 𝑅10= constant in ohms, 𝐷𝑂𝐶= battery depth of 

charge 
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Main branch resistance 2, increases in an exponential way when the battery state of charge 

increased. 

𝑅2 = 𝑅20  
exp [𝐴21(1 − 𝑆𝑂𝐶)]

1 + exp (
𝐴22𝐼𝑚

𝐼∗ )
 

2.11 

Where 𝑅2= main branch resistance in ohms, 𝑅20= constant in ohms, 𝐴21, 𝐴22= constant, 𝐸𝑚= 

open circuit voltage in volts, 𝐼𝑚= main branch current in Amps, 𝐼∗= nominal battery current in 

Amps 

2.3.4 Main Branch Capacitance 1 

𝐶1 = 𝜏1/𝑅1 2.12 

Here 𝐶1= main branch capacitance in Farads, 𝜏1= main branch constant in seconds, 𝑅1 =

 main branch resistance in ohms 

2.3.5 Parasitic Branch Current 

𝐼𝑃 = 𝑉𝑃𝑁𝐺𝑃0exp ( 
𝑉𝑃𝑁 /(𝜏𝑃𝑆 + 1)

𝑉𝑃𝑜
+ 𝐴𝑃(1 −

𝜃

𝜃𝑓
) 

2.13 

Where 𝐼𝑃= current loss in the parasitic branch, 𝑉𝑃𝑁 = voltage at the parasitic branch, 𝐺𝑃0 = 

constant in seconds, 𝜏𝑃 = parasitic branch time constant in seconds, 𝑉𝑃𝑜 = constant in volts, 𝐴𝑃 = 

a constant, 𝜃 = electrolyte temperature in °C, 𝜃𝑓  = electrolyte freezing temperature in °C 

2.3.6 State of Charge and Depth of Charge 

SOC = 1 −
Qe

C(0, θ)
    2.14 

DOC = 1 −
Qe

C(Iavg, θ)
 2.15 



31 

 

Here 𝑆𝑂𝐶 = battery state of charge, 𝐷𝑂𝐶 = battery depth of charge, 𝑄𝑒 = the battery’s charge in 

Amp-seconds, 𝐶 = the battery’s capacity in Amp-seconds, 𝜃 = was electrolyte temperature in °C, 

𝐼𝑎𝑣𝑔 = the mean discharge current in Amps 

 

Figure 11: Thermal model of Lead-acid battery (Jackey R. A.). 

2.3.7 Simulation Results 

In this simulation, at first, the battery is discharged at a constant current of 10A. The battery is 

then recharged at a constant 10A back to the primary state of charge. Here cooling is primarily 

using convection, and that heating is mostly from battery internal resistance, 𝑅2. 
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Figure 12: Simulation results at 25C (a) load current (b) SOC (c) temperature (d) terminal 

voltage (e) DOC and (f) heat flow (Jackey R. A.). 
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CHAPTER 3 

METHODOLOGY 

Battery storage is the costliest part of a PV-storage system. So, it is essential to predict the 

behavior of a battery to get the most out of it without compromising its lifetime. Battery 

modeling is a very complex procedure due to various electrical, chemical and thermal 

phenomena. For better understanding, we first studied some models like Li-ion and Lead-acid 

battery model. Then we developed our model using ANN (Artificial Neural Network) at different 

temperature level. 

3.1 ANN-Predictive Thermal Batteries Models 

This study describes Artificial Neural Network (ANN) application as one of the powerful 

artificial intelligence nonlinear regression techniques for batteries parameters estimation (El 

Shahat, Neural Network Storage Unit Parameters Modeling, 2014). ANN is a computational 

structure inspired by a biological nervous system.  

3.1.1 Artificial Neural Networks (ANNs) Technique 

An artificial neural network can be divided into three types of neuron layers (et, 2017). 

(a) Input layer: This layer is responsible for receiving information (data), signals, or 

measurements from the outside condition. These inputs (samples or patterns) are 

standardized within the limit values produced by activation functions. This 

standardization brings about better numerical precision for the mathematical operations 

completed by the network. 
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(b) Hidden layers: These layers are made out of neurons which are responsible for extracting 

patterns associated with the process. These layers perform a large portion of the internal 

processing from a network. 

(c) Output layer: This layer is also made of neurons and thus is liable for creating and 

presenting the final network outputs, which result from the processing performed by the 

neurons in the previous layers. 

An ANN consists of elementary and closely interrelated processors called neurons or nodes. The 

neurons are associated with each other by weighted links over which signals can pass. Every 

neuron accepts more than one inputs signals from other neurons according to their construction 

weights and creates a single output which may transmit to several other neurons. Back-

propagation learning algorithm has become the most popularly used technique in engineering 

application (El-Shahat, 2014). The main working procedure of a neuron is shown in figure 13. 

 

Figure 13: Neuron function (El-Shahat, 2014) 

Figure 14 describes a feedforward network with multiple layers composed of one input layer 

with n sample signals, two hidden neural layers consisting of n1 and n2 neurons respectively, 

and, finally, one output neural layer composed of m neurons representing the respective output 

values. 
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Figure 14: Example of a multiple layers feed-forward neural-network (Silva, Spatti, Flauzino, & 

Liboni, 2016) 

The ANN modeling can be divided into two steps: (a) train the network and (b) test the network 

with data. A training set is a group of matched input and output patterns. It is necessary that all 

the information the network needs to learn to be supplied to the network as a data set. When each 

pattern is read, the network uses the input data to produce an output, which is then compared to 

the training pattern. If there is a difference, the connection weights are altered in such a way that 

the error is decreased. After the network has run through all the input patterns, if the error is still 

greater than the maximum desired tolerance, the ANN runs through all the input patterns 

repeatedly until all the errors are within the required tolerance. When the training reaches a 

satisfactory level, the network holds the weights constant, and the trained network can be used to 

make decisions or identify patterns in new data sets not used to train it.  

An important issue in designing a network to decide the units in each layer. Using too few units 

can fail to detect the signals entirely in a complex data set, leading to under fitting. On the other 

hand, using too many units will increase the training time, perhaps so much that it becomes 
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impossible to train it completely in a reasonable period. The best number of hidden units depends 

on several factors such as the numbers of input and output units, the number of training cases, 

the amount of noise in the targets, the complexity of the error function, the network architecture, 

and the training algorithm. The best approach to find the optimal number of hidden units is trial 

and error. 

3.2 Designing ANN Models 

3.2.1 Design with ANN 

Designing ANN models require some basic steps which are shown in figure 15. 

 

 

 

 

 

 

 

 

 

3.2.2 Data Collection 

 The first step of designing ANN model is to collect and preparing the data. Here we have 

collected data at different temperature level for both lithium-ion and a lead-acid battery.  

Data 

Collection 

Processing Data 

Building the Network 

Training the Network 

Testing 

Network 

Figure 15: Flow diagram of ANN model 



37 

 

3.2.3 Data Processing 

To train the ANNS models more effectively there are three data processing ways. They are: (1) 

solve missing data problem, (2) to normalize the data and (3) to randomize the data. The average 

of neighboring values can replace the missing data. (Tymvios, Michaelides, & Skouteli, 2008). 

3.2.4 Building the Network 

In this step, a designer can define the number of hidden layers, neurons in each layer, transfer 

function in each layer, training function, weight/bias learning function, and performance 

function. In this work, multilayer perceptron (MLP) and linear networks are used (El-Shahat, 

2014). 

3.2.5 Training the Network 

At the final step, the weights are accustomed to make the actual outputs close to the target 

outputs of the network. In this work, data at different temperature level are simulated to develop 

the MLP (multilayer perceptron) network. 

3.2.6 Testing the Network 

The final step is to test the performance of the developed model. At this stage, unseen data can 

be exposed to the model. For this study, values of temperature at different level have been used 

to test the ANN models. 

3.3 Lithium-Ion Battery ANN Model 

3.3.1 Li-Ion Battery Aging Model 

Temperature always has a significant effect on battery performance, life cycle, safety and other 

parameters. Although, the extensive effects of temperature on the behavior of cycle aging rate of 

lithium-ion battery have yet to be determined. Based on the aging behavior of lithium-ion battery 
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we have developed an ANN model. Figure 16 represents the battery aging model using ANN. It 

has two inputs: temperature and cycle with eight outputs and hidden layers.  

 

Figure 16: ANN aging model & design 

In this work, network structure is designed with a log-sigmoid function in the hidden layer and a 

purely linear function in the output layer as shown in figure 16. The number of neurons in the 

hidden layer was selected to minimize the error to a desired performance level with the lowest 

possible number of neurons. For lithium-ion aging model, we have used eleven neurons for 

hidden layer one and eight neurons for hidden layer two. The number of neurons in hidden layer 

two must be equal to the number of outputs. 

 

Figure 17: Network construction for aging model 
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Figure 17 describes the full network construction with input, output and two hidden layers. 

 

Figure 18: Hidden layer of aging model 

 

Figure 19: Output layer of aging model 

 

Figure 20: Output layer weights of aging model 



40 

 

 

Figure 21: Hidden layer weights of aging model 

Figure 18-21 shows the inside architecture of hidden layer one and two with the weighted links 

of eight and eleven neurons of corresponding hidden layer. 

To train the ANN model 70% and 30% data used for training and testing set. Figure 22 

represents the training state of lithium-ion battery aging model. 
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Figure 22: Training state of aging model 

 

Figure 23: Mean square error of aging model 

Figure 23 shows the mean square error which is used to optimize performance, and logistic 

sigmoid, linear network function was used to train the ANN. The mean square error (MSE) for 

this model was found to be less than 10−3 as shown in figure 23. 
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Figure 24: Absolute error for aging model 

Figure 24 shows the absolute error for lithium-ion battery aging model. 

 

Figure 25: Regression factor for training data of aging model 
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Figure 26: Comparison for the testing data of aging model 

Figures 25 and 26 describe the comparisons between the training/testing data outputs and targets 

validating the model with a regression accuracy of 99.912%. Here the training and testing 

performance of the ANN model was 98.912% and 99.995% respectively using a feed-forward 

back-propagation technique (El-Shahat, 2014). 

 

 

 

 

 

 



44 

 

3.3.2 Li-Ion Battery Thermal Model 

Figure 27 describes the model design using ANN. It has three inputs, two outputs with two 

hidden layers. For Li-ion battery temperature level was 5 to 35 degrees Celsius. 

 

Figure 27: ANN model & design. 

Here the network structure is a general approximator with a log-sigmoid function in the hidden 

layer and a purely linear function in the output layer as shown in figure 27. The number of 

neurons in the hidden layer was elected to minimize the error to a desired performance level with 

the lowest possible number of neurons. It is also increases the prediction accuracy of the model 

(El Shahat, Haddad, & Kalaani, An Artificial Neural Network Model for Wind Energy 

Estimation, 2015). For li-ion model, we have used seven neurons for hidden layer one and two 

neurons for hidden layer two. The number of neurons in hidden layer two must be equal to the 

number of outputs. 
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Figure 28 shows the full network construction with input, output, and two hidden layers. 

 

Figure 28: Network construction 

Figure 29-32 shows the inside architecture of hidden layer one and two with the weighted links 

of seven and two neurons of the corresponding hidden layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Output layer 

Figure 31: Output layer weights 

Figure 29: Hidden layer 
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Figure 31 & 32 represents the Simulink model used in the sizing process. A set of algebraic 

equations used to generate the sizing parameters without the need for retraining the network 

every time. To train the ANN model 70% and 30% data used for training and testing set. 

Figure 32: Hidden layer weights 
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Figure 33: Training state 

Figure 34 shows the mean square error which is used to optimize performance, and logistic 

sigmoid, linear network function was used to train the ANN. The mean square error (MSE) for 

this model was found to be less than 10−3 as shown in figure 34. 

 

Figure 34: Mean square error 



48 

 

 

Figure 35: Regression factor for the training data 

 

Figure 36: Comparison for the testing data 

Figures 35 and 36 illustrate the comparisons between the training/testing data outputs and targets 

validating the model with a regression accuracy of 99.839%. Here the training and testing 
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performance of the ANN model was 98.839% and 99.995% respectively using the feed-forward 

back-propagation technique (El-Shahat, 2014). 

3.3.3 Lead-Acid Battery ANN Model 

Figure 37 describes the model design using ANN. It has three inputs, five outputs with two 

hidden layers. For lead-acid battery temperature level was -5 to 75 degrees Celsius. 

 

Figure 37: ANN model & design 

Here the model configuration is a multilayer network with a log-sigmoid function in the hidden 

layer and a purely linear function in the output layer as shown in figure 37. The number of 

neurons in the hidden layer was selected to minimize the error to a desired performance level 

with the lowest possible number of neurons. It is also increases the prediction accuracy of the 

model (El Shahat, Haddad, & Kalaani, An Artificial Neural Network Model for Wind Energy 

Estimation, 2015). For lead-acid model, we have used eleven neurons for hidden layer one and 

five neurons for hidden layer two. The number of neurons in hidden layer two must be equal to 

the number of outputs. 
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Figure 38 shows the full network construction with input, output, and two hidden layers. 

 

Figure 38: Network construction 

Figure 39-42 shows the inside architecture of hidden layer one and two with the weighted links 

of eleven and five neurons of the corresponding hidden layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: Hidden layer 

Figure 40: Output Layer 
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Figure 41 & 42 depicts the Simulink model used in the sizing process. A set of algebraic 

equations used to generate the sizing parameters without the need for retraining the network 

every time. 

 

 

 

 

 

 

Figure 41: Output layer weights 
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To train the ANN model 70% and 30% data used for training and testing set. 

 

Figure 42: Hidden layer weights 
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Figure 43: Training state 

Figure 44 shows the mean square error which is used to optimize performance, and logistic 

sigmoid, linear network function was used to train the ANN. The mean square error (MSE) for 

this model was found to be less than 10−2 as shown in figure 44. 

 

Figure 44: Mean square error 

 

 



54 

 

 

Figure 45: Regression factor for the training data 

 

Figure 46: Comparison for the ANN model testing data 

Figures 45 and 46 illustrate the comparisons between the training/testing data outputs and targets 

validating the model with a regression accuracy of 98.727%. Here the training and testing 
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performance of the ANN model was 98.727% and 99.983% respectively using the feed-forward 

back-propagation technique (El-Shahat, 2014). 

3.4 HOMER Simulation 

In this study, we created a HOMER (Hybrid Optimization of Multiple Energy Resources) 

simulation model using lithium-ion and lead-acid battery to measure cost-effectiveness and 

comparison with other energy storage devices. 

3.4.1 Solar and Wind Availability 

The radiation which is available on earth's surface can be calculated in many ways. The radiation 

is calculated based on immediate normal irradiance (DNI) and Global Horizontal Irradiance 

(GHI). GHI is typically measured with a pyranometer and DNI with a pyrheliometer (Reno, 

Hansen, & Stein, 2012) . The wind asset shifts with each day and the period of the year as well 

as some degree from year to year. Wind turbine takes an average power output characteristic 

which depends on the producer's determinations. Wind turbine begins creating power at the cut-

in speed and power yield increments straightly with the variety of twist speed from cut-in to 

evaluate speed. The power acquired from the wind turbine can be written as 

𝑃𝑤 =
1

2
 𝜌𝜋𝑅2𝐶𝑝𝑉3 

3.1 

Where, 𝜌 is the air density (𝜌=1.225 𝑘𝑔/𝑚3), 𝑅 is the blade length, and 𝑉 is the wind speed 

(Sarkar & Khule, 2016). Here, we used one wind turbine generator. The power curve is the most 

vital property of the wind turbine, which represents the measure of force the turbine produces 

versus wind speed. 

http://www.3tier.com/en/support/glossary/#ghi
http://www.3tier.com/en/support/glossary/#ghi
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Figure 47: Power curve for 10 kW AC 

3.4.2 Data Collection 

Solar and wind speed data are acquired from NASA for Statesboro, Georgia. As displayed in 

HOMER, the latitude and longitude of this place are 32°26.9′𝑁, 81°47.0′𝑊 respectively. Figure 

48(a,b) presents the average-daily-irradiance per month for 6.4 to 7.8 (kW/m2) range and the 

average daily wind speed per month. 

 
(a) 

 
(b) 

Figure 48: (a) Average-daily-sun-irradiance per month, (b) Average-daily-wind-speed per month 
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3.5 HOMER Simulation Model 

HOMER, software is used for evaluations in both stand-alone and grid-connected systems 

(Givler & Lilienthal, 2005) (lilienthal, Gilman, & Lambert, 2005). 

 

(a) 

 

(b) 

Figure 49: (a) Framework arrangement in HOMER (grid connected), (b) Framework 

arrangement in HOMER (off-grid) 

Figure 49 represents the Hybrid Power System Design using HOMER. This model consists of 

Generic flat plate PV, Generic 10 kW wind turbine, 50 kW generator, converter, residential load 

and Generic 1kWh Li-ion battery. In normal operation hour, PV and wind turbine feed the load 

demand while the extra energy from these components is stored in these batteries. 

The simulation procedure fills two needs. Firstly, it checks all feasibility of the system. HOMER 

considers the model to be workable if it can sufficiently serve the electric load and fulfill some 

other requirements forced by the client. Secondly, the life-cycle cost of the system configuration 

is resolved, which is the total cost of installing and operating the system over its life span. To 

evaluate the system performance under various operating conditions, simulation processes have 

been carried out using HOMER built-in data (NASA Surface meteorology and Solar Energy) 
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which is calculated based on location. During optimization, HOMER simulates a various 

combination of the system and avoid the results which are not feasible. Then it shows the 

feasible results based on total net present cost (NPC). From these results, we can choose the 

feasible output with minimum net present cost. Optimization process decides the optimum value 

of every different result that interest the modeler (Giraud & Salameh, 2001). 

For optimum cost calculation, HOMER simulates both off-grid and on-grid design under the 

same load. Here, we used the following input parameters. 

3.5.1 Generic Flate Plate PV 

This photovoltaic array is flat plate type and manufactured by Generic. 

3.5.2 Wind Turbine 

In this paper, Generic 10 kW wind turbine is used.  

3.5.3 Storage Device 

Here we used Generic 1kW Li-ion which is a modified kinetic model battery. It includes rate 

dependent losses, temperature dependence on capacity, cycle lifetime estimation using Rainflow 

counting and temperature effect on calendar life. Additionally, it can support the system in off-

grid mode. From the following cost curve, we can see that, by adding different quantity we can 

vary the cost which will eventually make an effect on total net present cost (NPC). 
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Figure 50: Cost curve of Li-ion battery 

3.5.4 System Converter 

It is a system converter manufactured by Generic.  

3.5.5 Advanced Grid 

When there is insufficient power, the grid supplies power to fulfill the load demand. On the other 

hand, it consumes power when excessive power is available.  

TABLE 3.1 TECHNICAL DATA FOR HOMER MODEL 

Input Parameters Wind Turbine PV Module Converter Li-ion Battery 

Capital Cost ($) 2000 4615 420 30 

Replacement Cost ($) 1540 3692 350 28 

O & M ($) 8 

 

8 

 

1 

 

1 

 

Lifetime(year) 20 25 15 - 

Efficiency (%) - 13 90 - 

Hub Height (meter) 24 - - - 

Operating temperature (°C) - 47 - - 

Derating Factor (%) - 80 - - 
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Input Parameters Wind Turbine PV Module Converter Li-ion Battery 

Initial SOC (%) - - - 100 

Minimum SOC (%) - - - 20 

Capacity Degradation Limit (%) - - - 30 

Nominal Voltage - - - 3.7 

Nominal Capacity(kwh) - - - 1 

Maximum Capacity(Ah) - - - 276 

 

3.5.6 Optimization Outputs 

In this study, we have considered residential load. Assuming that, the lifetime of the whole 

project is 25 years. Figure 51 and 52 show the optimization results for our proposed model with 

and without grid connection respectively. The optimization process is carried out through every 

possible selection of variables in this hybrid power system without considering the sensitivity 

variables (U., P. S., & A. P. S., 2012). 

From figure 51 there are two optimized results, the second one has no contribution from wind 

resource which results in more dependency on solar energy. So, we can ignore this combination. 

The first result has contributions from all the energy sources. Additionally, it costs least for per 

kWh energy. On the other hand, from figure 52, we can see that, for off-grid connection, we have 

selected the second result as it has contributions from all the energy sources. 

The minimum COE obtained from the result is $0.0618. In this scenario, the percentage of 

renewable energy contribution is 98%. In the proposed grid connected model, an optimum 

number of renewable energy sources is activated and supplies electricity to the load. From figure 

51 & 52, it can be clearly seen that off-grid power system for the same load is more expensive 



61 

 

($1.11) than grid-connected system ($0.0618). The NPC (net present cost) for on-grid and off-

grid design is $34,660 and $58,714 respectively. 

 

Figure 51: Screenshot of optimized results (grid connected) 

 

Figure 52: Screenshot of simulation for finding optimal design (without grid) 

 

Figure 53: Snapshot of electricity production & consumption 

According to figure 53 total yearly production of our proposed model is 47,329 kWh/yr and 

consumption for residential load 43,391 kWh/yr. Then we can sell the rest of the production to 

the grid. Monthly average electricity production from various parameters is shown in figure 54. 

It is clear that most of the contribution came from solar irradiance. 
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Figure 54: Snapshot of monthly average electricity production 

Table 3.2 describes various cost parameters used for this simulation of lithium-ion battery. 

Table 3.2 OPTIMIZED ANALYSIS FOR THE COST 

Component Capital ($) Replacement ($) O&M ($) Fuel ($) Total ($) 

Generator 1600 0 0 0 1249.65 

Wind Turbine 2000 490.96 103.43 0 2314.70 

Battery 600 237.59 258.54 0 1051.41 

PV 23,075 0 517.11 0 23,592.11 

Converter 420 148.50 12.91 0 553.46 

System 50,770 8,709.14 22,645.75 0 34,659.6 

 

This study represents a comparison between a stand-alone and a grid-connected hybrid system 

for Statesboro without considering the effect of sensitivity variables (U., P. S., & A. P. S., 2012). 

The simulation results show that, grid-connected hybrid power system which includes solar and 

wind is more cost-effective than without grid-connected system for the same load. Our designed 

HOMER model is more cost-efficient as our energy-cost-effective (COE) is 0.0618$/kWh, and 

the average residential electricity rate in Statesboro is 0.116$/kWh (Electricity Local, n.d.).  
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3.6 Comparison of Distinct Types of Storage Devices using HOMER 

To make power networks more intelligent and encouraging with incorporation of renewable 

energy sources, storage devices are acknowledged as the essential initiative to accomplish a safe 

power sector (Loh, Chai, & Blaabjerg, May 2013) (Boroyevich, Cvetkovic, Burgos, & Dong, 

Intergrid: A Future Electronic Energy Network, Sept 2013). As fossil powers, for example, coal, 

oil is exhausting day by day, renewable energy sources have been urged to guarantee energy 

security of the entire world. Within 2040, non-hydropower renewable energy sources will 

represent more than 66% of the total renewable era, while on the other hand, the total renewable 

share of all power era will increment from 13% in 2013 to 18% in 2040 (Annual Energy 

Outlook, April 2015). To store the energy, we need a backup system. For this reason, several 

types of batteries like Li-ion, Lead-acid and Vanadium continue being the favored choice.  

A battery can convert stored chemical energy into electrical energy with some internal heat 

losses (Xing, Ma, Tsui, & Pecht, 2011). Maximum capacity of a battery can be determined by 

SOC (state of charge), SOH (state of health) and SOF (state of function). SOC of a cell is the 

percentage of its total energy capacity that is still available to discharge while on the other hand, 

SOH describes the present condition and ability to deliver the specified performance compared 

with a new battery (Zhang, Lee, & Huang, 2014). Li-ion batteries have greater power in a 

smaller package. It has fundamentally higher life cycle than a lead acid battery in the field of 

discharge. Lead acid batteries require ordinarily more crude material than lithium-particle to 

accomplish a similar energy storage, having a substantially bigger effect on the earth amid the 

mining procedure (Albright, edie, & Al-Hallaj, 2012). In case of vanadium redox flow battery, it 

has low power and energy densities which suggest more complex system compared to other 

storage batteries (Guarnieri, Mattavelli, Petrone, & Spagnuolo, Dec 2016). 
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Here, we have designed three diverse types of battery model using HOMER which are Li-ion, 

Lead-acid and Generic Vanadium. Solar & wind data is acquired from NASA Surface 

meteorology and Solar Energy for the location of Statesboro, Georgia. The previous figure 48 

shows the monthly average daily solar radiation and wind speed. 

3.7 Correlation of Technical Parameters 

3.7.1 Storage Devices 

Here we used Generic 1kW Li-ion, Lead-acid & Generic Vanadium which is modified kinetic 

model battery. From the following figure of the cost curve, it is observed that by adding different 

quantity total net present cost (NPC) can be varied. 

 
(a) 

 
(b) 

 
(c) 

Figure 55: Cost curve for (a) 1 kW Li-ion (b) 1 kW Lead-acid (c) Generic Vanadium 

3.7.2 Charging Time 

There are three types of Li-ion battery: cobalt, manganese, and phosphate. The time required for 

a full charge is 2-4h, 1h or less, 1h or less respectively while for lead-acid time is varied from 8-

16 hours (Diouf & Pode, 2015). Almost all Li-ion battery is “deep cycle” implying that they can 

be completely charged and discharged.  
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3.7.3 Cycle Life 

With 80% discharge rate, the typical life cycle of Li-ion cell varies from 500-1000 cycles (except 

for phosphate: 1000-2000) while it is 200-300 cycles for Lead-acid battery (Diouf & Pode, 

2015). On the other hand, the cycle life of Vanadium redox is greater than 10,000 cycles with 

100% DOD (depth of discharge). So, lithium-ion battery has altogether higher life cycle than a 

lead-acid battery.  

3.7.4 Rate Execution 

While figuring out what limit of a battery to use for a framework, a basic thought for a lead-acid 

battery is to what extent the framework will take to discharge. Along with shorter discharge 

period, we will get less capacity from a lead-acid cell. There are two distinct categories of lead-

acid battery: flooded and sealed/valve regulated (SLA or VRLA). A 100Ah Li-ion cell will 

accomplish more than 98Ah within 30-minute discharge while 100Ah VRLA cell will just 

convey 80Ah in 4-hour time (Wanga, Adelmanna, & Reindla, 2012). 

3.7.5 Frosty Weather Performance 

In cold ambience, both lithium-ion and lead-acid battery lose capacity, but into the -20°C 

territory Li-ion loses altogether less capacity. 

3.7.6 Ecological Impact & Recycling 

Li-ion batteries are more environment friendly than lead-acid or vanadium but reusing of Li-ion 

cell are costlier than lead-acid batteries (Wanga, Adelmanna, & Reindla, 2012). It requires 

mining of lithium carbonate, aluminum, copper and iron metal. On the other hand, lead is 

extremely unsafe for a human being. More than 96% of lead-acid batteries in the USA are reused 

which has a huge effect on the natural condition.  
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3.7.7 Analysis of Cost 

Generally, for the identical size, Li-ion battery is costlier than lead-acid. In our HOMER 

simulation, we can design the system in such way that we will get minimum COE (cost of 

energy). 

The cost development of three types of batteries has been presented in table 3.3. Here we 

consider the hub height is 24 meters for wind turbine and operating temperature of the solar cell 

is 47°C. In the beginning, we put some values for capital cost, replacement cost and maintenance 

cost to get optimized results. Then HOMER simulates with these given input data and gives us 

the simulated results for each of the storage devices. 

TABLE 3.3 COST ANALYSIS FOR BATTERIES 

Input Parameters 
Wind 

Turbine 

PV 

Module 
Converter Li-ion 

Lead-

acid 
Vanadium 

Capital Cost ($) 2000 4615 420 30 200 
5000$(Cell Stacks-kw),200$ 

(Electrolyte-kwh) 

Replacement 

Cost ($) 
1540 3692 350 28 150 

1000$(Cell Stacks-

kw),200$(Electrolyte-kwh) 

O & M ($) 8 8 1 1 10 100 

Lifetime(year) 20 25 15 8 6 15 

Efficiency (%) - 13 90 

100%- 

20hr rate 

99% at 

4hr rate 

100%- 

20hr rate 

80% at 

4hr rate 

65-75% 

Minimum SOC 

(%) 
- - - 20 - 20 

Nominal Voltage - - - 3.7 2 50 

Nominal 

Capacity(kwh) 
- - - 1 1.03 - 
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From the following simulation results of cost (figure 56), we can see that Vanadium-ESS cell 

stack has the highest capital, replacement, and maintenance cost while lithium-ion has the 

minimum cost. 

 
(a) 

 
(b) 

 
(c) 

Figure 56: Cost summary of (a) 1 kW Li-ion [ASM] (b) 1 kW Lead-acid [ASM] (c) Generic 

Vanadium 

3.7.8 Electricity Production & State of Charge (SOC) 

From the HOMER simulation results based on wind and solar data, we can see that Li-ion 

battery has the highest electricity production per year which is 47,560 kWh/yr whether the 

amount is 47,329 kWh/yr and 47,330 kWh/yr for Lead-acid and Vanadium respectively. 

 
(a) 

 
(b) 

 
(c) 

Figure 57: Monthly electric production for (a) Li-ion (b) Lead-acid (c) Generic Vanadium 

On the other hand, Vanadium has almost 100% SOC while the value is 51% and 22.5% for 

lead-acid and lithium-ion respectively. Simply defined, state of charge (SOC) of a battery or 

cell is the percentage of its total energy capacity that is still available to discharge (Erdinc, 
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Vural, & Uzunoglu, A dynamic lithium-ion battery model considering the effects of 

temperature and capacity fading, 2009). 

 
(a) 

 
(b) 

 
(c) 

Figure 58: SOC of (a) Vanadium (100%) (b) Lead-acid (51%) (c) Li-ion (22.5%) 
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CHAPTER 4 

 RESULTS 

4.1 Lithium-Ion Battery 

4.1.1 Li-Ion Battery Aging Model 

The ANN model for the proposed range of temperature and cycle as model inputs, with the 

corresponding values of eight outputs, is presented. Figure 59-66 gives the outputs of different 

parameters at different temperature (25℃ to 55℃) for ANN models. 

 

Figure 59: Maximum charge storage capacity (Qm) 

Figure 59 shows that Maximum charge storage capacity (Qm) gradually decreases with the 

increasing number of cycles. This is due to the degradation mechanisms of irreversible capacity 

loss are increased by temperature (Ning, 2003).  

 

Figure 60: The aging of m1 of cobalt-oxide electrode 
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Figure 60 shows the degradation of m1 of an LCO (lithium cobalt-oxide) electrode with cycling 

at different temperatures ranging from 25°C to 55°C. The degradation of m1 is due to two 

mechanisms. One is the formation of the surface film and its subsequent modification on the 

electrode, and another one is the structural/phase changes of the electrode (Zhang D. e., 2000). 

 

Figure 61: The aging of rate constant vs. temperature 

 

Figure 62: Total resistance of electrodes resistance and electrode/electrolyte resistance 

Hence, both mechanisms result in a decrease in the charge transfer rate (K) with cycling. This 

charge transfer rate shows the rate of Li+ transport as it goes from electrode to electrolyte and 

from electrolyte to electrode (Winter, 2010). This two mechanisms will decrease the transport 

rate, and this is observed in figure 61. Both will also increase the electrode’s impedance, and this 

is observed in figure 62.   
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Figure 63: The aging of m2 of graphite electrode 

Figure 63 shows the degradation of the m2 of the graphite electrode with different cycle number. 

The m2 in the ECBE (electrochemistry-based model) model describes the effectiveness of the 

graphite electrode for providing its stored Li-ions (L., T., Pecht, & Z, 2014). This degradation 

mainly due to the formation of the SEI (presence of surface film) and its growth on the surface of 

the graphite electrode. 

 

Figure 64: The aging of Warburg element resistance 

Warburg element can be used to determine the aging of the electrolyte. This Warburg element 

models the electrolyte as a dielectric of a parallel plate capacitor with the two electrodes as the 

two plates of a capacitor. It designs the electrolyte system as a series of Rw and Cw where Rw is 

known as the resistance of the electrolyte and Cw is related to the capacitance of the equivalent 

parallel plate capacitor. 
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As temperature increases from 25°C to 55°C, the diffusivity of active Li-ions in the electrolyte 

Increases (Park, 2010) due to the increase in Qm (maximum charge storage capacity) as a result 

of the enhanced electrochemical reduction-oxidation (redox) at anode and cathode. As a result, a 

decrease in the resistance of the electrolyte is observed when the cell is initially cycled, as shown 

in figure 64. 

 

Figure 65: The aging of Warburg element capacitance 

On the other hand, the Warburg element capacitance increases with temperature as shown in 

figure 65. This is due to the formation of SEI on the electrodes and separator that decrease the 

available surface of the active materials during cycling. 

 

Figure 66: The aging of Warburg RC time constant 
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From figure 66, we can see that increasing the temperature will increase the rate of RC, and this 

indicates that the response to the change in current deliver from lithium-ion batteries will become 

slower at high temperature. 

 

Figure 67: Comparison between training and output data of aging model 

Figure 67 shows the comparison between training and output data. For the training data, 

regression accuracy is 99.912% while it is 99.995% for the output data. 

4.1.2 Li-Ion Battery Thermal Model 

The ANN model for the proposed range of time, ambient temperature, and voltage as model 

inputs, with the corresponding values of State of Charge (SOC) and Internal Temperature as 

outputs is presented. Finally, algebraic equations for the ANN model could be deduced. The 

proposed neural network unit is using the back propagation (BP) learning algorithm due to its 

benefits. The validity of this unit comes from the comparison between real values with 

corresponding from Neural Network obtained in MATLAB environment. The ANN training and 

testing data are extracted from Mathwork Model for lithium-ion Simulink model (M. & Dessaint, 

n.d.). Figure 68-70 gives the outputs of different parameters at different temperature for ANN 

models. 
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Figure 68: Output voltage in volts at different temperature 

 

Figure 69: State of Charge (SOC) at different temperature 

 

Figure 70: Ambient & Internal temperature in Celsius 
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From the above figures, it is observed that the temperature dependent battery model performs 

close to reality. Due to the increase in ambient temperature from 5 to 35ºC, battery SOC and 

internal temperature also increase. As the cell/internal temperature increases/decreases due to 

charge (or discharge) heat losses and ambient temperature variations, the output voltage and 

capacity also increase/decrease. 

4.2 Lead-Acid Battery Thermal Model 

The ANN model for the proposed range of time, ambient temperature and voltage as model 

inputs, with the corresponding values of State of Charge (SOC), Depth of Charging (DOC), 

Current, Internal Temperature and Heat Flow as outputs is presented. Finally, algebraic 

equations for the ANN model could be deduced. The proposed neural network unit for lead-acid 

battery is also using the back propagation (BP) learning algorithm due to its advantages.  

Figure 71-75 gives the outputs of different parameters at different temperature for ANN models. 

 

Figure 71: State of Charge (SOC) at different temperature range 
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Figure 72: Depth of Charge (DOC) at different temperature range 

 

 

Figure 73: Charging/Load current in ampere at different temperature range 

In this simulation process, at first, the battery is discharged at a constant current of 10A. The 

battery is then recharged at a constant 10A back to the initial condition of charge. 
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Figure 74: Internal temperature in Celsius 

 

Figure 75: Heat flow in watts at different temperature range 

From the above figures, it is clear that with the increase of ambient temperature from -5 to 75ºC, 

battery SOC & DOC, internal temperature, heat flow, also increases. 

4.3 Output from HOMER 

4.3.1 Optimization Results 

In this study, we have considered residential load. Assuming that, the lifetime of the whole 

project is 25 years. Based on different optimization results on various case we have created a 

comparison table for these storage devices. 
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Table 4.1 OPTIMIZATION OUTPUTS FOR DIFFERENT BATTERIES 

No Simulation Type Li-ion 

COE 

($/kWh) 

Lead-acid 

COE ($/kWh) 

Vanadium 

COE ($/kWh) 

1 Solar & wind with grid 0.0620 0.0731 0.0599 

2 Solar & wind without grid 1.11 1.23 2.4 

3 Solar with grid 0.0771 0.0759 0.353 

4 Solar without grid 1.06 1.23 12.96 

5 Wind with grid 0.0499 0.0386 0.0281 

6 Wind without grid 0.238 10.40 17.24 

 

From the above table we can clearly see that in case of solar & wind with the grid, the minimum 

COE (cost of energy) from the result is 0.0620$, 0.0731$ and 0.0599$ respectively. In this 

scenario, the percentage of renewable energy contribution is 97%, 98%, and 98% respectively 

for Li-ion, Lead-acid and Vanadium battery. For other types of simulation, the COE is quite high 

except wind with grid simulation result. As the wind speed is good enough for Statesboro, GA 

we get another minimum COE which is 0.0499$, 0.0386$ and 0.0281$ respectively. However, 

without grid connection for lead-acid battery COE is high enough which is 10.40$. 

In the proposed grid connected model, an optimum number of renewable energy sources is 

activated and supplies electricity to the load. From figure 76 & 77, it can be clearly seen that for 

Li-ion battery, the off-grid power system for the same load is more expensive (1.11$/kWh) than 

grid-connected system (0.0620$/kWh) which is true for the other mentioned storage devices. 
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Figure 76: Comparison among three different storage devices 

Based on table 4.1 we have created a comparison chart among those storage devices which is 

shown in figure 76. In case of solar without the grid simulation, the COE is 12.96 $/kWh for the 

vanadium battery. On the other hand, for wind without grid simulation, another highest COE is 

observed which is 10.4 $/kWh and 17.24 $/kWh respectively for lead-acid and vanadium battery. 

Figure 77-80 shows the optimized outputs for different storage devices with and without grid 

connection. 

 

Figure 77: Screenshot of optimized results (Li-ion/grid connected) 
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Figure 78: Screenshot of optimized results (Li-ion/without grid) 

 

Figure 79: Screenshot of optimized results (Lead-acid/grid connected) 

 

Figure 80: Screenshot of optimized results (Vanadium/grid connected) 

The simulation results show that, a grid-connected hybrid power system with various storage 

devices which includes solar and wind is more cost-effective than without grid-connected hybrid 

power system for the same residential load. If we want to supply power to the grid, then Li-ion 

battery would be an excellent choice. Moreover, if we go with an only wind turbine, then 

Vanadium would be more cost-effective battery among these. In our proposed system the COE 

for lithium-ion battery with grid connection is 0.0620/0.0731/0.0599$/kWh while the average 

residential electricity rate in Statesboro is 0.116$/kWh (Electricity Local, n.d.). So, our designed 

HOMER model is more cost-efficient. 
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CHAPTER 5 

CONCLUSION 

5.1 Summary of Present Work 

In this study, a thermal model of lithium-ion and a lead-acid battery along with an aging model 

of lithium-ion battery is designed with the help of Artificial Neural Network (ANN). Then we 

used these storage devices to simulate using HOMER to find out minimum cost of energy for 

electricity production. In a nutshell, major findings are listed below: 

• Li-ion battery aging model is created with the help of ANN. 

• Effect of temperature on the aging rate is depicted with the help of 3D figure for various 

characteristics like maximum charge storage capacity, aging of graphite electrode, aging 

of Warburg element capacitance/resistance/RC time constant, etc. 

• An accurate Artificial Neural Network model is developed for the thermal model of 

lithium-ion and lead-acid battery using MATLAB. 

• Several types of model parameters like SOC, DOC, load current, heat flow, etc. are well 

described in the form of a 3D figure as the training data for ANN models. 

• Then ANN technique models are adopted to generalize the process for modeling and 

characteristics estimation for the whole capacity rates range due to its advantages. 

• These ANN models are created with suitable numbers of layers and neurons, trained, 

simulated, checked, and their algebraic equations concluded accurately with excellent 

regression constant. 

• A wind-solar hybrid power system is designed for Statesboro, Georgia using HOMER. 

• Both off-grid and on-grid system designed and optimized for comparison purposes. 



82 

 

• The cost analysis is performed utilizing HOMER software based on solar irradiance, 

wind speed, and load profile.   

• Economic comparison of lithium-ion, lead-acid and vanadium is presented. Cost 

correlation of these batteries is also discussed via net present cost (NPC). 

• The cost comparison is done using HOMER based on solar and wind data for Statesboro. 

5.2 Future Work 

Although lots of research work has been done and continuously going to storage device 

application, there are still some opportunities to accelerate the revolution in this field. Here some 

future works recommended below 

• Still, there is scope to study about the comprehensive effects of temperature on the cyclic 

aging rate of lithium-ion batteries. 

• The lithium-ion battery usability can be expanded with maximum allowable temperature 

range. 

• ANN can be used for predictive controlling to enhance the overall performance of a 

battery. 

• Application for partial discharge (PD) recognition, ANN could be a solution. 

• Artificial Intelligence like PSO (Particle Swarm Optimization) or Genetic Algorithm can 

be done using ANN to drive batteries at an enhanced performance. Then Fuzzy Logic 

controller can be implemented. 

• HOMER simulation model can be implemented practically in a remote locality where 

grid connection is not available. 

• The proposed HOMER model could be a solution for producing electricity at lower cost 

for any developing country. 
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