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ABSTRACT 

Due to its high cost, project managers must be able to monitor the performance of construction 

heavy equipment promptly. This cannot be achieved through traditional management techniques, 

which are based on direct observation or on estimations from historical data. Some manufacturers 

have started to integrate their proprietary technologies, but construction contractors are unlikely to 

have a fleet of entirely new and single manufacturer equipment for this to represent a solution. 

Third party automated approaches include the use of active sensors such as accelerometers and 

gyroscopes, passive technologies such as computer vision and image processing, and audio signal 

processing. Hitherto, most studies with these technologies have aimed to activity identification or 

to identifying active and idle times. Given that most actions performed with construction 

machinery involve cyclic activities, cycle time estimation is much more relevant. In this study, 

hardware and software requirements were optimized toward that goal. This approach had three 

facets: first, signal spectral analysis was performed through the short-time Fourier transform 

(STFT) and the continuous wavelet transform (CWT) for comparison; second, audio and active 

sensor data have been submitted to a machine learning framework for activity classification 

accuracy comparison; and, third, Bayesian statistical models were used to include historical data 

for cycle time estimation enhancement. As a result, audio signals have been used along with a 

Markov-chain-based filter to achieve cycle time estimation with an accuracy of over 81% for up 

to five days of single-machine operation. 
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CHAPTER 1 

 INTRODUCTION 

1.1 Problem Statement 

Research shows that non-value adding activities consume between 50% and 75% of the total 

time spent on a construction jobsite, as opposed to less than 10% inactive time in manufacturing 

(Construction Industry Institute 2014). A key cause to this situation is that manufacturing activities 

are constantly measured and controlled through state-of-the-art automated systems, while 

construction management is much more rudimentary. In fact, state-of-practice performance 

monitoring is based on manual data collection performed through direct observation of live 

activities or video streams. This activity is time consuming, expensive in terms of labor cost, prone 

to human error, and rarely allows for immediate application of corrective measures.  

A major restriction to developing an automated performance monitoring system for the 

construction environment is that projects are greatly diverse and that the activities within them are 

hard to classify. Even projects with the same design are different due to unique factors, such as: 

soil conditions, weather conditions, accessibility to power sources and utilities, logistics for supply 

and access, regulatory requirements, contractual constraints, personnel skill, and management 

level of expertise (Intergraph Corporation 2012). These conditions complicate not only live 

monitoring of construction sites but also project planning.  

Project managers commonly allocate most of a project’s cost toward owning and operating 

heavy equipment. Thus, equipment type and quantity must be selected optimally to obtain an 

acceptable financial yield. To do so, an expected production rate per piece of machinery is 

calculated through historic data, manufacturer manuals, or guides (Peurifoy, et al. 2010, Caterpillar 
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2017).  Projected productivity rarely matches actual productivity due to the same factors that make 

each project unique, so managers attempt to use common-practice monitoring to apply corrective 

measures. Statistics show that this combination is ineffective. In fact, the need for an automated 

monitoring system has been long identified by the industry and academia (Akhavian and Behzadan 

2014, Ahn, Lee and Peña-Mora 2012, Khosrowpour, Nieblesb and Golparvar-Fard 2014, Navon 

2005, Tajeen and Zhu 2014, Teizer, et al. 2010). With an automated performance monitoring 

system for heavy equipment, managers would be able to apply on-time corrective measures that 

would not only reduce idle times but also help avoid on-site struck-by accidents. 

1.3 Hypothesis 

If an activity recognition and cycle time estimation framework is developed based on jobsite 

sensor data recordings, then it can be used to as a foundation toward a real-time construction 

equipment monitoring system with universal compatibility. 

1.2  Scope of Present Work 

For earthmoving operations, yield is calculated in terms of volume of displaced material or 

finished surface area. Tractors, loaders, excavators, and graders are the principal machinery used 

to execute these tasks. Productivity estimations for all these types of equipment are inversely 

proportional to cycle time. Other parameters for calculation like bucket capacity, fill factor, and 

blade size, are fairly constant because they depend on equipment design and type of material being 

worked with. Thus, an attempt for real-time monitoring of construction equipment must focus on 

calculating cycle times accurately. 

Some manufacturers have started to integrate their own monitoring technologies, but 

contractors are unlikely to have a fleet of entirely new and/or single manufacturer equipment for 
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this to be solution. Third party approaches toward an automated heavy equipment monitoring 

system are three-fold: the use of active sensors such as GPS, accelerometers, and gyroscopes (Ahn, 

Lee and Peña-Mora 2014, Teizer, et al. 2010, Torrent and Caldas 2009); the use of passive 

technologies such as computer vision and image processing (Bügler, et al. 2014, Golparvar-Fard, 

Heydarian and Niebles 2013, Gong, Caldas and Gordon 2011, Zhu, et al. 2016);  and audio signal 

processing for activity recognition (Cheng, et al. 2017, Cho, Lee and Zhang 2017).  

Most studies focus on activity recognition or comparing active vs. idle times, not cycle time 

estimation, which would be more relevant. Additionally, no comparison among these technologies 

has been made. Regarding audio signal processing for construction equipment activity recognition, 

various microphone types and placement settings have been compared and machine learning 

algorithms have been enhanced (Cheng, Rashidi, et al. 2017). Consequently, it was determined 

that on site microphone placement produced consistently better results than microphones placed 

on board the equipment and that the radial basis function (RBF) kernel selection for the support 

vector machine (SVM) classifier produced better results than the linear kernel. The present work 

aimed to further optimize hardware and software configurations via the following key objectives: 

• Examine options for audio time-frequency feature extraction by comparing results 

obtained using the short-time Fourier transform (STFT) versus results obtained using the 

continuous wavelet transform (CWT). 

• Evaluate construction equipment activity classification accuracy by comparing two 

major monitoring approaches: active sensors and audio signal processing 

• Evaluate potential for activity labeling classification accuracy improvement by 

combining audio data and active sensor data as input. 
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• Implement Bayesian methods to develop a cycle time forecasting system capable of 

being implemented over multiple days of operation. 

1.4 Research Limitations 

It is important to note that this research was performed under the following conditions: 

• This study was performed using jobsite sensor recordings. Thus, the performance 

monitoring framework is not applied in real-time conditions. 

• Audio and active sensor data was taken for single machines working independently. 

More realistic jobsite conditions involve multiple machines working simultaneously. 

• Computational processing and memory capabilities (7th Generation Intel Core i7 laptop 

with 16 GB of RAM) proved to be a limiting factor while performing certain 

algorithms, like the wavelet transform. 

• Active sensor data collection was performed through the MATLAB Support Package 

for Android Devices, which requires the mobile device, mounted on board the heavy 

machinery, to be connected via Wi-Fi to a host computer on site. Interruptions to 

wireless connectivity hindered the possibility of obtaining a representative amount of 

field data. 

1.4 Organization of Thesis 

The rest of the thesis is organized in the following order: 

Chapter 2 is the literature review divided in six sections. First, a detailed introductory overview 

about the need for a monitoring system and state-of-practice techniques is presented. In the 
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following three sections, the main third party automated approaches for construction equipment 

monitoring (active sensors, passive sensors, and audio signal processing) are described, along with 

advantages and limitations of each. In the fifth section, the Fourier transform, and the wavelet 

transform are discussed thoroughly. Finally, Bayesian models and applications of such in the 

manufacturing and construction industries are detailed. 

Chapter 3 covers the research methodology for this study, which is subdivided in three parts. 

First, the audio signal processing framework is presented, including data collection setup and result 

evaluation criteria. Second, the outline for cycle time estimation using audio signals as input and 

Bayesian models for filtering is described. Finally, the active sensor data processing framework is 

described. It is important to note that cycle time estimation using active sensors was not part of the 

scope of this thesis. Active sensors were only used to label activities and compare classification 

accuracy against the audio framework. 

Chapter 4 presents the experimental results and related discussions. First, results obtained by 

processing audio signals through the STFT versus the CWT are compared. Second, active sensor 

(accelerometers) data labeling accuracy is compared versus audio signal processing labeling 

accuracy. Third, a brief evaluation of the potential benefit of combining audio and active sensor 

data is executed. Finally, optimal hardware and software settings are used for cycle time 

estimation. 

Chapter 5 presents a summary of the present work along with recommendations for future 

work. 
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CHAPTER 2 

 LITERATURE REVIEW 

2.1 Automation for Construction Site Monitoring 

Most non-farming labor efficiency has at least doubled since the 1960s, except for construction 

industry. In fact, the Lean Construction Institute (2017) estimates that over 70% of projects are 

over budget and delivered late and affirms that the construction industry records about 800 deaths 

and thousands of injuries per year. A real-time, automated performance monitoring system that 

may allow the construction industry to reduce waste, improve safety, and manage labor efficiently 

is a pressing need considering that construction industry contributes to at least 10% of the gross 

national product (Navon 2005). One of the major impediments for developing such automated 

performance monitoring system for the construction environment is that projects are diverse and 

that the activities within them are hard to classify, even during different stages of the same project.  

Construction heavy equipment is a key component in any jobsite and represents a high potion 

of total project costs. Thus, measuring and analyzing its operation is essential for productivity 

improvement, not only to control current projects, but also to update historical databases (Ahn, 

Lee and Peña-Mora 2014). These databases allow for better planning in future projects that, in 

consequence, can yield a safer working environment and reduce carbon footprint. 

Hitherto, construction equipment is commonly monitored through a sampling concept that 

relies on an operator manually filling documentation to record what is taking place on the field. 

This method relies on the idea that the time spent on value-adding activities is an indirect 

measurement of equipment productivity (Rashidi 2015).  It is evident that this approach is not ideal 

because it is subject to human error, it is time-consuming, and does not allow immediate response 
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and corrective measures by project managers (Rezazadeh, Dickinson and McCabe 2013). That is 

the reason why an automated, real-time monitoring and tracking system is an urgent need. 

Some manufacturers have started to integrate their proprietary monitoring devices to new 

equipment, but construction contractors are unlikely to have a fleet of entirely new and single 

manufacturer equipment for this to represent a solution. Third party attempts to achieve an 

automated heavy equipment monitoring and tracking system are based either in using active 

sensors or in using passive sensors. Active sensors are those that produce a change in current or 

voltage due to an external environmental stimulation. Passive sensors are those that require an 

external source of excitation because they produce a passive signal, e.g., change in resistance or 

change in capacitance. These technologies will be discussed thoroughly in the following sections. 

2.2 Active Sensors: Gyroscopes and Accelerometers 

The basic principle behind active sensor technology consists in mounting gyroscopes and 

accelerometers onto construction equipment to detect movement in the three-dimensional 

Cartesian coordinate system. Specific movement patterns are then related to a specific activity. 

These activity-related patterns are trained to a computer through a supervised machine learning 

algorithm. Once several activities have been trained, a library has been created. This library is, 

finally, validated and used for real-time activity recognition. 

Promising advances in active sensor application for activity recognition of construction 

equipment have been achieved in a study performed by Ahn, Lee, and Peña-Mora (2014). They 

successfully used low-cost micro-electro-mechanical-systems (MEMS) accelerometers to identify 

three modes of excavator operation (engine-off, idling, and working) with an accuracy of up to 

93%. Nonetheless, these results have been obtained in a controlled environment, with one specific 
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machine, and with a limited quantity of operations. Additionally, MEMS have to be mounted on 

the equipment, which may represent a setback while using this system on leased or rented 

machines. 

Other significant results were obtained through the extraction of multi-modal data from 

integrated cell phone sensors, specifically: GPS, gyroscope, accelerometer (Akhavian and 

Behzadan 2014). Results from implementation of several machine learning classifiers (k-nearest 

neighbors [K-NN], decision tree, logistic regression, support vector machines [SVM], and neural 

networks) showed successful cataloging of engine on, engine off, idling, and maneuvering 

activities. However, all tested classifiers were inaccurate in other activities that involved beam and 

bucket movements. This can be explained by the fact that cell phones were mounted in cabin, 

where the patterns generated by beam and bucket movements were attenuated by the distance and 

by the movement patterns produced due to other classified activities. 

2.3 Passive Sensors: Computer Vision 

The evolution of computational capacities, communication networks, and high-resolution, 

digital cameras has presented computer vision as an interesting instrument for unlimited 

applications. Furthermore, smart devices put this all these capabilities on hands of any individual. 

A worker in a construction jobsite can carry an inexpensive camera or smartphone, record video, 

and provide potential means for productivity estimation through computer vision algorithms. A 

real-time system could also be executed by placing recording devices on a jobsite and applying a 

computer vision algorithm. The principle of operation for computer vision consists of four basic 

steps depicted in Figure 2.1: equipment recognition, equipment tracking, action recognition, and 

performance assessment.  
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The equipment recognition step is currently based on one of three techniques: part-based 

recognition, appearance-based recognition, and feature-based recognition. Once a specific 

equipment is recognized, the equipment is tracked to reduce the viewing area and avoid noise from 

background dynamics. Finally, action recognition is performed to be able to achieve a performance 

assessment. It is important to note that an action is composed of several activities and movements. 

For example, the action digging a foundation consists of activities like digging, swinging, and 

dumping, which consist of several movements like raising the arm, lowering the arm, swinging 

the bucket, grabbing soil, and pushing soil (Cheng, et al. 2016). That definition for action is one 

of the pillars of this study. 

 
Figure 2.1: Flowchart for computer vision-based performance monitoring of heavy equipment (Cheng, et al. 2016). 

Numerous approaches have been documented for vision-based action recognition of heavy 

equipment and workers. Kim and Caldas (2013) proposed an action recognition method that 

related workers and their interactions with specific objects or tools as a work rate measurement 

system for productivity estimation. Azar, Dickinson, and McCabe (Rezazadeh, Dickinson and 

McCabe 2013) developed a hybrid framework that involved object recognition, tracking, and 

action recognition of dump trucks and loaders to estimate loading cycles. Golparvar-Fard, 
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Heydarian, and Niebles (2013) used a multi-class support vector machine (SVM) classifier to 

recognize and localize equipment actions given a video sequence previously recorded from a fixed 

camera. Experimental results for this SVM classifier yielded average accuracies of 86.33% and 

98.33% for an excavator and a dump truck, respectively.  Bügler, et al. (2014) proposed a method 

for tracking the progress of earthmoving actions by combining two vision-based technologies: 

photogrammetry and video analysis. Photogrammetry was used to determine the total volume of 

removed soil at given intervals, while video analysis was used to determine equipment active and 

idle times. Combining the data obtained from both sources served them to calculate individual 

equipment productivity and specific site performance factors. 

 
Figure 2.2: Layout for computer vision-based equipment action recognition (Golparvar-Fard, Heydarian and Niebles 2013). 

Although active sensor action recognition and computer vision-based action recognition have 

a promising panorama, there is still opportunity for other technologies. The use of active sensors 

is still in its early stages of development, while computer vision-based technologies have several 

setbacks. Cameras require a proper level of illumination in order to capture quality video. 

Complete darkness or direct sunlight are inevitable sources of noise in projects that are active 

without interruption during sunny days, cloudy days, rainy days, or even nights. Furthermore, 

cameras have a limited field of view. The necessity to place cameras in a circular pattern in order 
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to cover all angles in a jobsite is depicted in Figure 2.2. This type camera network highly 

increments the need of processing power and significantly hinders the possibility of generating 

low-cost, real time framework for activity recognition. Finally, most construction projects are 

performed by contractors and subcontractors that usually have a problem with being recorded 

continuously due to privacy issues or legal issues that could arise from a job-related accident. 

2.4 Audio Signal Processing 

2.4.1 Microphones 

Microphones are the primary devices used for audio recording. A microphone generally 

contains a moving diaphragm or surface designed to capture electroacoustic waves and generate a 

corresponding electrical signal. Sound sources have different characteristics (e.g., waveform, 

phase, dynamic range, attack time, frequency), so microphones are designed specifically 

depending on the application.  Pickup pattern or type of transducer are common characteristics 

considered for microphone classification (Ballou 2015).  

A microphone is designed to capture different directions of incoming sound with different 

intensity. This is the microphone’s pickup pattern. Some common microphone designs under the 

pickup pattern classification scheme are omnidirectional, bidirectional, and unidirectional or 

cardioid microphones. In an omnidirectional microphone, pickup pattern is equal in all directions. 

Omnidirectional microphones are particularly useful in a setting that requires all audio elements 

to be captured, as in an orchestra. In a bidirectional microphone, pickup pattern is equal on opposite 

directions and negligible 90° from these. Bidirectional microphones are particularly useful when 

the audio sources of interest are placed in front of each other, like two speakers holding a 

conversation face to face.  In a unidirectional microphone, the pickup pattern has a cardioid shape 
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facing to one direction. Unidirectional microphones and other variations of directional 

microphones are the most widely used of all previously mentioned microphones because they 

allow to focus on one specific audio source. More details about these and other microphones are 

provided in Figure 2.3. 

Microphone Omnidirectional Bidirectional Directional Supercardioid Hypercardioid 

Directional response 
characteristics 

     

Voltage output 𝐸 = 𝐸𝑜 𝐸 = 𝐸𝑜 cos 𝜃 𝐸 =
𝐸𝑜

2
(1 + cos 𝜃) 𝐸 =

𝐸𝑜

2
[(√3 − 1) + (3√3 ) cos 𝜃)] 𝐸 =

𝐸𝑜

4
(1 + 3 cos 𝜃) 

Random energy efficiency (%) 100 33 33 27 25 
Front response

Back response
 1 1 ∞ 3.8 2 

Front random response

Total random response
 0.5 0.5 0.67 0.93 0.87 

Front random response

Back random response
 1 1 7 14 7 

Equivalent distance 1 1.7 1.7 1.9 2 
Pickup angle (2θ) for 3 dB 

attenuation 
-  90⁰ 130⁰ 116⁰ 100⁰ 

Pickup angle (2θ) for 6 dB 
attenuation 

-  120⁰ 180⁰ 156⁰ 140⁰ 

Figure 2.3: Performance characteristics of several microphones (Ballou 2015). 

 The transducer is the device that converts a physical stimulus into an electrical signal output. 

Common microphones regarding the type of transducer outline are carbon, crystal, and ceramic 

microphones, condenser microphones, dynamic microphones, and electret microphones. The 

transducer is a determining factor when it comes to microphone’s response to sound frequencies, 

structural vibrations, temperature, humidity, and other environmental factors. 

A multifaceted jobsite is likely to involve multiple pieces of equipment that may work 

simultaneously generating sound from various directions and environmental conditions that vary 

along the year or depending on the activities being executed. Pickup pattern must be flexible 

enough to allow focusing on a source on interest and the transducer must be robust enough to 

withstand inclement weather and other contingencies while maintaining stable audio signal 

recording characteristics.  Thus, properly selecting microphone type and placement setting is a key 
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for acoustical modeling of construction jobsites. In a separate work, hardware requirements have 

been analyzed thoroughly (Cheng, Rashidi, et al. 2017) and the XMOS xCORE-200 multichannel 

array microphone has been selected accordingly. This microphone array board consists of is 

hardware and reference software platform equipped with seven omnidirectional MEMS 

transducers with pulse density modulation (PDM) output. As illustrated in Figure 2.4, one 

microphone is located on the center of the board and the remaining six are distributed equidistantly 

on a circular pattern along the edge of the board. MEMS microphones are a variant of condenser 

microphones, which have good sensitivity to all frequencies, but are highly susceptible to structural 

vibration and humidity (Yamaha 2016). Liabilities that can be easily overcome during controlled 

data collections but must be kept in mind for a permanent application. 

 
Figure 2.4: xCORE-200 microphone array evaluation board – top (XMOS Ltd. 2016). 

2.4.1 Advantages of Audio Signal Processing 

Audio signal processing for action recognition can certainly signify several advantages over 

other passive and active sensor technologies. According to Rashidi (2015) these advantages are, 
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at least, four: first, some complex actions are easier to recognize through sound (e.g., a hydraulic 

hammer attached to an excavator arm produces insignificant movement to be identified through 

accelerometers or cameras, but does produce a characteristic sound); second, characteristic 

equipment sound is independent of the operator; third, microphones can be placed on a jobsite and 

record data in an omnidirectional manner, whereas, accelerometers must be fixed onto the 

equipment and cameras have a limited field of view; fourth, data transmission rates for audio 

signals are usually 400 times smaller than video signals, which considerably reduces processing 

requirements. 

This set of advantages has resulted in the application of audio signal processing in fields such 

as medicine, industrial automation, robotics, identification and tracking, gadgets, and military 

technology. Commonly known applications include: ultrasonic imaging for obstetrics, tissue 

scanning, and engineering structural analysis; ultrasonic sensors for object detection and distance 

measurement in industrial automation and robotics; sound navigation and ranging (SONAR) for 

navigation and tracking; and sound detection and ranging (SODAR) for meteorology and wind 

energy feasibility analysis. The following sections; however, are focused on providing insight on 

applications that involve action recognition. 

2.4.1 Audio Signal Processing in Medicine 

Several techniques have been applied to monitor patients with chronic disease such as asthma 

and chronic obstructive pulmonary disease (COPD). Specifically, to evaluate the adherence to 

inhaler medication, which includes taking doses in a consistent schedule and method.  The inhaler 

compliance assessment (INCA) device, depicted in Figure 2.5 (left), was developed as an approach 

to evaluate inhaler adherence. This device is attached to a widely used variety of inhalers. When 

the patient opens the mouthpiece to take a dose, the INCA device takes an audio recording with a 
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timestamp. Figure 2.5 (right) is an example of a typical audio sample after applying the fast Fourier 

transform (FFT) algorithm to extract its frequency features. One month of typical inhaler use yields 

60 audio files corresponding to 60 doses of medication. Analyzing this data set takes an 

experienced pulmonary clinician an average of 30 minutes. This type of labor intensive analysis is 

not feasible in a large case study. Thus, a computer algorithm has been designed to analyze audio 

data sets and provide an adherence score based on dose schedule and the pattern of blister, 

exhalation, and inhalation events (Holmes, et al. 2014). 

 
Figure 2.5: Inhalator with INCA device (left). Spectrogram of one sample taken by INCA device (right) (Holmes, et al. 2014). 

2.4.2 Audio Signal Processing in Manufacturing and Power Industry 

Audio signal processing, specifically ultrasound, has important applications as Condition 

Based Maintenance (CBM). Ultrasonic sound is usually in the range of 20 kHz to 100 kHz, which 

is far beyond the human ear audible range. Therefore, certain techniques are necessary to interpret 

ultrasound. The two major approaches to the use of ultrasound in CBM are direct interpretation by 

a trained technician and computer-based analysis. Direct interpretation by a trained technician is 

performed through a technique of heterodyning or translating ultrasound to an audible range that 

can be interpreted through headphones and a decibel display. Computer analysis is performed via 

a software that records several audio benchmarks of a failure cases and proper functioning. Once 

a case library is created, future recordings are compared to the audio benchmarks to produce a 
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condition diagnosis. Some typical applications of ultrasound processing in CBM include: bearing 

inspection; testing gears/gearboxes; pumps; motors; steam trap inspection; valve testing; 

detection/trending of cavitation; compressor valve analysis; leak detection in pressure and vacuum 

systems such as boilers, heat exchangers, condensers, chillers, tanks, pipes, hatches, hydraulic 

systems, compressed air audits, specialty gas systems and underground leaks; and testing for arcing 

and corona in electrical apparatus (Naik 2009).  

Bengtsson, et al. (2004) define computer-based analysis as a three-module process, as depicted 

in Figure 2.6. First, the sound is recorded into a computer as an input to the processing module. 

The processing module consists of two steps: pre-processing to remove unwanted noise and to 

extract a period information and feature extraction to identify characteristic features of the audio 

sample and create a vector. Once a vector is created, the condition monitoring and diagnosis 

module consists in comparing the audio sample to an existing library and provide a condition 

diagnosis. If the software is in a learning process, when a new vector is identified it is stored to the 

case library. This model is characteristic to most audio-based machine learning practices. Thus, it 

can be considered as a basis for this study. 

 
Figure 2.6: Schematic of the case-based fault diagnosis system with its three steps to condition diagnosis (Bengtsson, et al. 2004). 
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2.5 Frequency Domain Analysis 

It is generally more relevant to analyze a signal in terms of its frequency components. That is, 

frequency features give significance to most naturally occurring signals, e.g., like sound or light.  

Every periodic signal can be represented as a sum of sine waves of various frequencies, phases, 

and amplitudes. For example, Eq. 2.1 can be decomposed as the sum of Eq. 2.2 and 2.3, as shown 

in Figure 2.7.  

𝑓1(𝑡) = sin(𝑡) + 0.2 ⋅ sin(3𝑡) 

𝑓2(𝑡) = sin(𝑡) 

𝑓3(𝑡) = 0.2 ⋅ sin(3𝑡) 

 
Figure 2.7: Signal decomposition as sum of waves. 

The Fourier transform, calculated through Eq. 2.4, allows to extract frequency (𝜔) magnitude 

and phase features. The magnitude portion of the Fourier transform for Eq. 2.1 is plotted in Figure 

2.8. It can be observed that the magnitude has peaks at one and three, as expected.       

𝑋(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

∞

 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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Figure 2.8: Fourier transform magnitude plot (Eq. 2.1). 

 A limitation to the Fourier transform is that does not illustrate frequency changes over time 

because it represents data as a sum of sine waves, which extend to infinity. Thus, techniques such 

as the short-time Fourier transform (STFT) and the wavelet transform have been devised to provide 

time-frequency signal representations. 

2.5.1 Short-Time Fourier Transform 

 The STFT consists on dividing a long-time signal into shorter portions or bins through a 

windowing approach and calculating the Fourier transform for each of these bins. This process 

allows to extract frequency magnitude and phase features and represent them as they change over 

time. That is, a time-frequency representation. An important condition while performing the STFT 

is correct window size selection. The window must be long enough to provide enough resolution 

without compromising the temporal aspects of the signal 

2.5.2 Wavelet Transform 

A wavelet is a wave-like oscillation with zero mean and finite length. Wavelets come in several 

form factors, as shown in Figure 2.9, and must be selected depending on the application. In 
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addition, important wavelet characteristics are scale and shift. Scale refers to how the wavelet is 

stretched or compressed. A greater scale refers to stretched wavelet, which results in a lower 

frequency. Shift refers to how a wavelet is delayed or advanced along the signal. A signal’s 

frequency features can be localized in time or space by varying scale and shift parameters. 

 
Figure 2.9: Example Morlet wavelet form. 

There are two main types of wavelet transforms: the continuous wavelet transform (CWT) and 

the discrete wavelet transform (DWT). The difference between these two transforms resides on 

how the shifts and scales are discretized. For a one-dimensional signal (e.g., audio), the output of 

the CWT are coefficients, which are function of scale (frequency) and shift (time). In MATLAB, 

the CWT not only allows to scale wavelet frequency by integer powers of two (2𝑛), or octaves, 

but also allows scaling within the octaves. The DWT, allows to scale frequencies by a factor of 

two in multiple levels (Figure 2.10). For each level, the signal is filtered by a high pass and a low 

pass band. This results on the extraction of frequency coefficients of interest. The process in then 

repeated for subsequent levels after discarding half the samples per the Nyquist criterion. 

 Per MathWorks, Inc. (2017-b) the CWT ideal for time-frequency analysis and for filtering of 

localized frequency components due to its capability for fine-frequency resolution, and the DWT 
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ideal for signal compression and noise reduction due to its ability to decompose signals in fewer 

coefficients. Thus, the CWT is used in this study. 

 
Figure 2.10: Multilevel DWT decomposition (MathWorks, Inc. 2017-b). 

2.7 Bayesian Models 

An appealing characteristic of Bayesian statistics is the ability to include historical data to 

perform calculations based on degrees of belief. Bayesian methods have become increasingly 

relevant in cycle time estimation, productivity estimation, and other situations requiring stochastic 

modeling. In fact, the Metropolis Algorithm for Monte Carlo has been listed by the IEEE Journal 

Computing in Science and Engineering as one of the “10 algorithms with the greatest influence on 

the development and practice of science and engineering in the 20th century” (Dongarra and 

Sullivan 2000). Using random processes and probabilistic simulations derived from a fraction of 

the typically-required samples, this algorithm offers an efficient way to seek for answers to 

problems that may be too complex to solve exactly through a frequentist approach. 

2.5.1 Bayesian Models in Manufacturing 

There is some prominent research regarding Bayesian models for productivity estimation in 

the manufacturing industry.  Chen, George, and Tardif (2001) proposed a Bayesian approach for 
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modeling cycle time mean and variance at different levels of work-in-progress. They used Markov 

Chain Monte Carlo (MCMC) methods, in particular the Gibbs sampling and the Metropolis-

Hastings algorithms, to parcel and parametrize cycle time mean versus work-in-progress with 

linear piecewise functions.  Promising results were obtained when comparing the outcomes of this 

model against a typical non-linear model. Abdoli and Choobineh (2004) led simulations of a 

resource-sharing, multi-class production environment to compare the performance of Bayes and 

empirical Bayes methods applied to parametrize different models for flow time forecasting. Their 

results unequivocally suggest that simpler models reliably yield better forecasts than complex 

models in which parameters were selected without complete comprehension.  More recently, Shen 

(2008) developed a Bayesian network model for cycle time estimation in the LCD screen defect 

detection process. Given that defect detection is generally conveyed by human visual inspection, 

the time required for this process is commonly estimated through complex frequentist statistical 

models. Nonetheless, Bayesian models, once again, provided a relatively simple and reliable 

solution. 

2.5.2 Bayesian Models in Construction 

Because of the complex nature of the construction environment, the industry and academia 

have long trusted on Bayesian statistical methods in a variety of applications including:  modeling 

workflow for productivity forecasting, analyzing structural resistance to natural forces, and 

analyzing safety hazards. 

Regarding productivity estimation, MCMC-based models have been particularly applicable.  

Semaan (2016) performed a stochastic productivity analysis of a ready mix concrete batch plant 

using a queuing model based on Markov chains and a simulation model based on Monte-Carlo-

based MicroCyclone modeling software. Results demonstrated that the MicroCyclone simulations 
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effectively evaluate idleness and yield innovative insight into the impact on plant productivity 

resulting from changing truck size and quantity. Such findings led to MicroCyclone being used to 

model numerous activities including: tunneling, paving, bridge construction, bridge redocking, and 

several other construction operations (Halpin and Riggs 1992, Lutz and Halpin 1992, Pang, Zhang 

and Hammad 2006). 

Concerning structural analysis, precisely Performance Based Design (PBD), Bayesian models 

are useful to determine the amount of stress that a structure will be subject to when considering 

natural phenomena. Adeli, et al. (2011) published remarkable insights after performing a 

probabilistic seismic demand analysis using MCMC methods to simulate the effects on structural 

performance from parameters with known prior distribution, but no correlation (i.e., earthquakes 

and economic factors). 

Safety in the construction industry deeply relies on providing proper proximity warnings and 

understanding the workers’ responses to such warnings. Looking forward to creating a proactive 

collision warning system, Zhu, et al. (2016)  applied Kalman filtering to predict movement of 

construction equipment and workers in a construction jobsite. Location estimates from a computer 

vision framework were provided as input to the filter. Then, the filter generated its own estimates 

and a corrected location was determined using Kalman gain as a degree of belief. The filters were 

continuously adjusted based on historical position data and showed incremental effectiveness as 

more data became available. Luo, et al. (2016) conducted a field experiment to gather location-

based data on workers’ response rates to varying levels of safety hazard warnings. Bayesian model 

founded on MCMC methods were applied to get realistic and versatile response rate estimates 

from simulation because they found that construction jobsites are constantly evolving depending 

on various factors, like complexity and urgency. 
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This study aims to profit from the demonstrated versatility of Bayesian models to a field that 

has been overlooked despite its pressing need and potential for application: cycle time modeling 

of construction equipment using an audio-based activity identification model as input. 
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CHAPTER 3 

 RESEARCH METHODOLOGY 

Audio and acceleration data were recorded and processed to evaluate the accuracy of activity 

classification using support vector machines (SVM). For audio data, frequency feature extraction 

was executed using the short-time Fourier transform (STFT) and the continuous wavelet transform 

(CWT). The application of these techniques was compared for activity labeling and for cycle time 

estimation. For acceleration data, frequency features were only extracted with the CWT and 

labeling accuracy was compared against audio labeling accuracy. Acceleration data was not used 

for cycle time estimation. The methodology for audio data processing and acceleration data 

processing will be discussed separately in sections 3.1 and 3.2, respectively. 

3.1 Audio Data Processing 

Heavy equipment and tools generate distinctive sound patterns while operating on construction 

jobsites. It has been proven that audio signals can be processed through machine learning 

techniques to accurately identify activities performed by such equipment (Cheng, et al., 2017). 

Taking the output of the previously devised system as direct observation data and using historic 

data to design Markov-chain-based filter, this study aims at an optimal cycle time forecasting 

system.  

The process for cycle time estimation is summarized in Figure 3.1. To separate the audio signal 

processing portion from the statistical analysis parts, it will be presented in 2 sections:  

• Data Collection and Machine Learning for Classification composed by onsite audio 

recording and the machine learning framework. 
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• Cycle Time Forecasting composed by the Markov chain filter and the cycle time 

estimation algorithm. 

 

 
Figure 3.1: Cycle time forecasting framework. 

3.1.1 Data Collection and Machine Learning for Classification 

The audio signal portion of this study begins with on-site audio recording of construction 

equipment under normal operation. Then, audio recordings are fed to a machine learning 

framework consisting of: audio enhancement through a de-noising algorithm, time-frequency 

representation of the audio signal through the STFT and the CWT for comparison, library 

generation for posterior labeling using the SVM classifier, and high-level activity label acquisition 

through a window filtering approach. This process, depicted in Figure 3.2, is detailed in the 

following sections. 

 
Figure 3.2: Machine learning model for audio signal processing. 

3.1.1.1 Audio Recording 

Audio data from individual pieces of equipment performing routing actions were taken using 

the XMOS xCORE-200 multichannel array microphone connected to a laptop computer on site, 

less than 15 meters away from the sound source of interest. Simultaneously, a video sample was 

taken to serve as a reference for manual action classification into major activities (e.g., digging, 
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loading, dumping, crushing rock) and minor activities (e.g., swinging, maneuvering, extending 

arm). The usual setup for audio and video collection is depicted in Figure 3.3. 

 
Figure 3.3: Audio data collection setup. 

3.1.1.2 Noise Reduction 

Unprocessed audio data signals contained useful audio patterns from heavy equipment mixed 

with noise from other sound sources found in a jobsite. This noise had to be filtered out to enhance 

the audio data sets or it could negatively affect the ability of recognizing certain activity patterns. 

Denoising had to be balanced to effectively remove noise without distorting the signal of interest 

and it had to adapt considering that noise sources in a jobsite are not constant, e.g., workers and 

equipment perform short tasks in an intermittent manner. Thus, a denoising algorithm for non-

stationary environments developed by Rangachari and Loizou (2006) was selected for MATLAB 

implementation. Although this technique was initially devised for speech enhancement, it is 

versatile enough to be applied in other audio enhancement operations. In principle, the algorithm 

performs an estimate of the relative level of noise versus signal of interest that adapts quickly in 

each frame of the signal. Then, a signal smoothing operation in the frequency domain is performed 

accordingly. 
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3.1.1.3 Frequency Feature Extraction 

Once enhanced, data sets were converted to the time-frequency domain representation using 

two techniques for comparison: the short-time Fourier transform (STFT) and the continuous 

wavelet transform (CWT). The STFT consists on dividing a long-time signal into short segments 

and computing the Fourier transform for each segment; therefore, allowing to extract sinusoidal 

frequency magnitude and phase content of each segment and represent these features as they 

change over time. The CWT is a derivation of the Fourier transform that was designed to locate 

frequency features in time or space. The Fourier transform is a powerful tool for frequency 

analysis; however, it does not characterize rapid frequency changes efficiently because it 

represents data as a sum of sine waves, which extend to infinity. A wavelet is a rapidly-decaying, 

wave-like oscillation that has zero mean. Unlike sinusoids, wavelets are well localized in time or 

space. Thus, wavelets are ideal for time-frequency representation of an audio signal.  

Wavelets come in different form factors. Selecting size and shape parameters adequately is 

crucial for each application. An important wavelet characteristic is its scaling factor. A wave’s 

scale factor is inversely proportional to its frequency. That is, scaling a sine wave by 2 (stretching 

the wave) results in reducing its original frequency by half, or by an octave. For a wavelet, there 

is a reciprocal relationship between the scale and a constant of proportionality called center 

frequency. This situation is because a wavelet, unlike a sine wave, has a center frequency and a 

band-pass characteristic in the frequency domain. The relationship between center frequency and 

scale is given by Eq. 3.1.  

𝐹𝑒𝑞 =
𝐹𝑐

𝑠 ∙ 𝑇
 (3.1) 
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Where, 𝐹𝑒𝑞 is equivalent frequency, 𝐹𝑐 is the center frequency,  𝑠 is the scaling factor, and 𝑇 is the 

sampling period. 

MATLAB was used to implement both techniques. For STFT, a Hanning widow size of 512, 

a 1024-point discrete Fourier transform, and a 50% overlap (256 samples) were selected. A 512-

point window size is optimal because it is long enough to provide a good resolution without 

compromising the temporal aspects of the signal.  For CWT, a bump wavelet was implemented 

using two sets of parameters: 10 octaves, 24 scales per octave, and a 100-sample shift; and 8 

octaves, 32 scales per octave, and a 100-sample shift. A bump wavelet is ideal when it is intended 

to perform a time-frequency analysis, as is the case with audio signals (MathWorks, Inc. 2017-a). 

3.1.1.4 Support Vector Machine 

Time-frequency representations of the audio data sets were used to generate a library for 

posterior activity classification. This library was generated using a support vector machine (SVM) 

discriminative classifier. The principle for SVM is that, giving it an input of training data for class 

1 and class 2 learning, it generates a dividing hyperplane with maximum distance to the training 

examples (Figure 3.4). Twice this distance is defined as margin. Margin maximization reduces 

susceptibility to noise while using the SVM generated library to classify new data. 

 
Figure 3.4: Optimal SVM hyperplane (OpenCV 2016). 
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Let (𝒙𝒊, 𝑦𝑖) for 𝑖 = 1,2, … , 𝑛 be the training data, where 𝑥𝑖 ∈ ℝ𝑑is a d-dimensional feature 

vector, and 𝑦𝑖 ∈ {+1, −1} denotes the class of 𝑥𝑖. The equation of an ideal separating hyperplane 

can be given by Eq. 3.2. 

𝒘 ∙ 𝒙 + 𝑏 = 0 

 
Figure 3.5: Two hyperplanes satisfying the constraints (Kowalczyk 2015). 

From Figure 3.5, two constraining hyperplanes, described by Eq. 3.3 and Eq. 3.4, can be 

selected so that all data points are separated.  

𝒘 ∙ 𝒙 + 𝑏 = 1 

𝒘 ∙ 𝒙 + 𝑏 = −1 

That means that for each vector 𝒙𝒊, either Eq. 3.5 or Eq. 3.6 is fulfilled. 

𝒘 ∙ 𝒙𝒊 + 𝑏 ≥ 1 

𝒘 ∙ 𝒙𝒊 + 𝑏 ≤ −1 

Multiplying Eq. 3.5 and Eq. 3.6 by 𝑦𝑖, a generalized form for all 𝑖 can be obtained, as seen in Eq. 

3.7. 

(3.3) 

(3.2) 

(3.4) 

(3.5) 

(3.6) 
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𝑦𝑖(𝒘 ∙ 𝒙𝒊 + 𝑏) ≥ 1 

It can be proven that the maximum margin is given by Eq. 3.8. 

𝑚 =
2

‖𝒘‖
 

Thus, maximizing the margin involves minimizing ‖𝒘‖ subject to Eq. 3.6. 

Of course, actual training data is usually multidimensional and hyperplane determination 

requires a complex optimization process. To make the binary class separation easier, it is first 

necessary to perform mapping operation Φ ∶  ℝ𝑑 → ℋ, where ℋ is a high dimensional Hilbert 

space. Increasing the dimensionality of data improves its resemblance to a linearly separable data 

set. For this study, mapping is performed through the radian basis function (RBF) kernel, depicted 

in Eq. 3.9. 

𝐾(𝒙, 𝒙′) = exp(−𝛾‖𝒙 − 𝒙′‖2) 

The SVM training operation was performed using the MATLAB Statistics and Machine 

Learning Toolbox. Through the fitcsvm command, a variant to the optimization problem is 

resolved:  

𝑚𝑖𝑛
𝒘, 𝑏, 𝜉

    
1

2
‖𝒘‖2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

 

subject to,  

𝑦𝑖(𝒘 ∙ 𝒙𝒊 + 𝑏) ≥ 1 − 𝜉𝑖              for 𝑖 = 1,2, … , 𝑛 

𝜉𝑖 ≥ 0                                             for 𝑖 = 1,2, … , 𝑛  

(3.7) 

(3.8) 

(3.10) 

(3.11) 

(3.12) 

(3.9) 
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Where, 𝜉𝑖 is a set of slack variables introduced to relax the constraints in case that the classes can’t 

be separated and C is an overfitting prevention parameter. 

 Four audio segments of the construction equipment performing a major activity were used to 

train Class 1, and four audio segments of the construction equipment performing a minor activity 

were used to train Class 2. Each of these segments was selected to be two to six seconds long and 

included only the STFT frequency or wavelet coefficient magnitude portion.  To guarantee correct 

SVM parameter selection, ten-fold cross validation was used. All 𝛾, 𝜉𝑖, and C were set to be 

automatically optimized by the training algorithm. 

3.1.1.5 Window Filtering 

Once an SVM library had been generated for a specific construction equipment, it was used 

for classification of the rest of the audio file. Nonetheless, direct implementation would potentially 

yield an output with predicted activities changing erratically from one time-frequency segment to 

the next. Therefore, a window filtering algorithm was implemented to smooth out the classified 

output. The window filtering parameters are small window size, large window size, and threshold. 

Initially, if the SVM labels indicate that the percentage for a certain activity is greater than the 

threshold throughout the small window, the whole small window is labeled as that activity. Then, 

this is repeated using the small window labels for the large window size. Window sizes varied, but 

usual size for the small window was one-quarter of a second and for large window was one to three 

seconds. 

3.1.1.6 Confusion Matrix  

Once labels were generated, the results were evaluated using a confusion matrix by comparing 

the predicted labels vs. the manually-classified correct labels. Refer to the example confusion 
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matrix portrayed in Table 3.1, cell TP1 is used to indicate true positive classification for activity 

1, cell FP2 is used to indicate false positive classification for activity 2, cell FP1 is used to indicate 

false positive classification for activity 1, and cell FP2 is used to indicate false positive 

classification for activity 2.  

Table 3.1: Example confusion matrix. 

Example Correct Label 

Act 1 Act 2 

Predicted 
Label 

Act 1 Cell TP1 Cell FP1 

Act 2 Cell FP2 Cell TP2 

3.1.2 Cycle Time Forecasting 

Regardless of the nature of the project, it is likely to involve earthmoving and material moving 

cyclic operations. As shown in Table 3.2, these actions are performed through a sequence of major 

and minor activities. Major activities are value-generating activities and minor activities are 

necessary transition activities. Using the output from the previous section, cycle time estimation 

is executed after the Markov chain filter. More details are provided in the following sections. 

Table 3.2: Typical actions performed by heavy equipment. 

Equipment Action Typical Activity Sequence Type 

Excavator/ Loader/ 

Dozer (dozer less 

effective) 

Excavating/ Moving 

material/ 

Backfilling/ Truck 

loading        

Digging Major 

Swinging or maneuvering Minor 

Dumping Major 

Swinging or maneuvering Minor 

Excavator/ Loader Compacting/ 

Demolishing 

Compressing with bucket Major 

Swinging or maneuvering Minor 

Grader/ Dozer/ Loader 

(loader less effective) 

Grading/ Ripping/ 

Clearing/ Blending 

Pushing material with blade/bucket Major 

Reversing or maneuvering Minor 

3.1.2.1 Markov Chain Filter 

The output from the audio framework was not sufficiently smooth to estimate cycle times 

accurately. Therefore, Markov chains were incorporated to include ground truth statistical data 
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into activity labeling. To design a suitable Markov chain, concepts like time-frequency bins per 

second, decisions while in act, and calls for act had to be devised. 

The number of frequency bins per second for the STFT is obtained through Eq. 3.13. If the 

sampling frequency is 44100 Hz, the window size is 512 samples, and 256 samples are overlapped, 

the number of time-frequency bins per second is 172.26. If the CWT were used, the number of 

bins per second would simply be the original sampling frequency divided by the shifting 

parameter, or 441 time-frequency bins per second. 

𝐵𝑃𝑆 =
𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑊𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 − 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
  

The SVM classifier labels each bin so the time elapsed in each activity multiplied by the 

number time-frequency bins represents decisions taken while in each activity. From manually-

labeled activities, the total time spent while performing major activities (Act 1) and minor activities 

(Act 2) was calculated and then multiplied by the number of time-frequency bins in one second. 

The number of calls for each activity is the number of transitions from the previous activity. The 

probability of the state changing to Act 2 given that it is Act 1 is equivalent to the calls for Act 2 

divided by the number of decisions taken while in Act 1. The probability of the state being Act 1 

and keep being Act 1 is the complement. This is illustrated by Eq. 3.14 to 3.17. 

𝑃(𝐴𝑐𝑡 2 | 𝐴𝑐𝑡 1) =
𝐶𝑎𝑙𝑙𝑠 𝑓𝑜𝑟 𝐴𝑐𝑡 2

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝐴𝑐𝑡 1
 

𝑃(𝐴𝑐𝑡 1 | 𝐴𝑐𝑡 1) = 1 − 𝑃(𝐴𝑐𝑡 2 | 𝐴𝑐𝑡 1) 

𝑃(𝐴𝑐𝑡 1 | 𝐴𝑐𝑡 2) =
𝐶𝑎𝑙𝑙𝑠 𝑓𝑜𝑟 𝐴𝑐𝑡 1

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝐴𝑐𝑡 2
 

𝑃(𝐴𝑐𝑡 2 | 𝐴𝑐𝑡 2) = 1 − 𝑃(𝐴𝑐𝑡 1 | 𝐴𝑐𝑡 2) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.13) 



43 

 

 

 

Table 3.3: Ground truth data for JD 700J assuming STFT for frequency feature extraction. 

Activity Start 

(seconds) 

Elapsed 

time 

 Call 

Act 

1 

Call 

Act 

2 

Act 

1 

time 

Act 

2 

time 

Decisions 1 Decisions 2 

Pushing soil with blade 0 35 NA   35 
 

6029   

Reversing 35 13   1   13   2239 

Pushing soil with blade 48 25 1   25   4306   

Reversing 73 13   1   13   2239 

Pushing soil with blade 86 44 1   44   7579   

Reversing 130 28   1   28   4823 

Pushing soil with blade 158 23 1   23   3962   

Reversing 181 16   1   16   2756 

Pushing soil with blade 197 46 1   46   7924   

Reversing 243 23   1   23   3962 

Pushing soil with blade 266 31 1   31   5340   

Reversing 297 16   1   16   2756 

Pushing soil with blade 313 27 1   27   4651   

Reversing 340 14   1   14   2412 

Pushing soil with blade 354 5 1   5   861   

End 359               

TOTAL     7 7 236 123 40653 21188 

A typical arrangement of ground truth data for Markov chain design using the STFT approach 

is depicted in Table 3.3. The total time that the construction equipment spent on performing major 

activities and minor activities was manually labeled. This is indicated in the columns Act 1 Time 

and Act 2 Time. Multiplying these by the number of bins per second (i.e., 172.26) produces the 

values in columns Decisions 1 and Decisions 2. The number of calls for each activity is simply the 

number of transitions from Act 1 to Act 2, and vice versa. Using this data, the elements of the 

Markov chain are:  

While in Act 1, 

𝑃(𝐴𝑐𝑡 2 | 𝐴𝑐𝑡 1) =
𝐶𝑎𝑙𝑙𝑠 𝑓𝑜𝑟 𝐴𝑐𝑡 2

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝐴𝑐𝑡 1
=

7

40653
= 0.00017219 → 0.017% 

𝑃(𝐴𝑐𝑡 1 | 𝐴𝑐𝑡 1) = 1 − 𝑃(𝐴𝑐𝑡 2 | 𝐴𝑐𝑡 1) = 0.99982781 → 99.983% 
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While in Act 2, 

𝑃(𝐴𝑐𝑡 1 | 𝐴𝑐𝑡 2) =
𝐶𝑎𝑙𝑙𝑠 𝑓𝑜𝑟 𝐴𝑐𝑡 1

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝐴𝑐𝑡 2
=

7

21188
= 0.000330 → 0.033% 

𝑃(𝐴𝑐𝑡 2 | 𝐴𝑐𝑡 2) = 1 − 𝑃(𝐴𝑐𝑡 1 | 𝐴𝑐𝑡 2) = 0.999670 → 99.967% 

The Markov chain matrix for the JD 700J dozer using the state-dependent probability 

distributions is depicted in Table 3.4.  A graphical representation of the Markov process is depicted in  

Figure 3.6. 

Table 3.4: Markov matrix for JD 700J. 

John Deere 700J Next State 

Act1 Act2 

Current 

State 

Act1 0.999828 0.000172 

Act2 0.000330 0.999670 

 

Figure 3.6: Two-state Markov process for JD 700J. 

The flow diagram for the Bayesian filter is shown in Figure 3.7. The audio portion (sensor 

data) is depicted in blue, the Markov process portion is depicted in red, the current state is depicted 

in green, and decision boxes are depicted in grey. The predicted state for the Markov chain is the 

one with highest probability in the Markov process. The accuracy for the prediction is the 

probability by which it was predicted. Likewise, the accuracy for the SVM-predicted state is taken 

as the percentage over the widow filter by which it was determined. The next state is the one with 

greater accuracy, either the SVM-predicted state or the Markov process state. The exponent (n) of 

the Markov process is reset if the current state diverges from the previous state. Otherwise, the 

Markov matrix is elevated to the next power (n+1) for the following step. 
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Figure 3.7: Adaptive Markov filter process diagram. 

3.1.2.2 Cycle Time Estimator 

If cycle time for a specific action can be accurately measured, then it can be used along with 

manufacturer data to determine the equipment productivity. A machine work cycle is a succession 

of major and minor activities, as shown in Table 3.2. Cycle time is the time elapsed during such 

succession. Therefore, the cycle time estimator was designed in MATLAB to scan through the 

labeled audio signal, count continuous activities by type, and determine the average time elapsed 

on each cycle. 
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3.2 Accelerometer Data Processing 

Mobile phone micro-electro-mechanical-systems (MEMS) accelerometers were used to collect 

data and process it through a model similar to that used for audio signals, as depicted in Figure 

3.8. The objective was to evaluate activity labeling accuracy and compare to that achieved with 

audio signals using the confusion matrix approach. The details about the MEMS model will be 

discussed in the following paragraphs. 

 
Figure 3.8: Machine learning model for MEMS accelerometer data processing. 

Data was collected using a mobile phone interfaced to a laptop computer on site via Wi-Fi 

using the MATLAB Support Package for Android Devices. The mobile device was fixed on board 

heavy equipment with a support arm, as depicted in Figure 3.9. Video and audio data was jointly 

collected for reference and comparison. 

 
Figure 3.9: MEMS data collection setup. 

Accelerometer data obtained from cell phone devices was captured for three axes, as shown in 

Figure 3.10. To standardize this data and disregard the orientation of the device, it was preferred 

MEMS Data 
Collection

Noise 
Reduction

Frequency 
Feature 

Extraction
SVM 

Window 
Filtering

Labeled 
Activities
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to work with the magnitude of the acceleration data and remove any constant effects (e.g., gravity) 

by subtracting the mean from the data. An example standardized data set is depicted in Figure 

3.11. 

 
Figure 3.10: Three axis representation of acceleration data. 

 
Figure 3.11: Standardized acceleration data. 

Standardized accelerometer data contained information of interest along with noise. However, 

noise was not as directly influenced by external sources because the sensors were mounted directly 

on board the equipment. It was observed that a third-order Butterworth low-pass filter with a cutoff 

frequency of half the sampling frequency sufficed to eliminate noise and aliasing. Given that a 

maximum sampling frequency of 100 Hz was achievable with these MEMS devices, a 50 Hz cutoff 

frequency was selected. 

For frequency feature extraction, the CWT was employed using a bump wavelet with 4 

octaves, and 48 scales per octave. CWT was preferred over STFT because it allowed a higher 
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resolution time-frequency representation than the windowing approach required for STFT. That 

is, with the CWT an array of 100 columns can be obtained for one second of data (one column per 

sample), as opposed the array size achievable using a few samples per window.  

For SVM training, four accelerometer data segments of the construction equipment performing 

a major activity were used to train Class 1, and four audio segments of the construction equipment 

performing a minor activity were used to train Class 2. Each of these segments was selected to be 

two to six seconds long and included the CWT scale coefficient magnitude along with its 

corresponding label.  To guarantee correct SVM parameter selection, ten-fold cross validation was 

used. All 𝛾, 𝜉𝑖, and C were set to be automatically optimized by the training algorithm. 

Once an SVM library had been generated for a specific construction equipment, it was used 

for classification of the rest of the audio file. Nonetheless, direct implementation would potentially 

yield an output with predicted activities changing erratically from one time-frequency segment to 

the next. Therefore, a window filtering algorithm was implemented to smooth out the classified 

output. The window filtering parameters are small window size, large window size, and threshold. 

Initially, if the SVM labels indicate that the percentage for a certain activity is greater than the 

threshold throughout the small window, the whole small window is labeled as that activity. Then, 

this is repeated using the small window labels for the large window size. Window sizes varied, but 

usual size for the small window was one-quarter of a second and for large window was one to three 

seconds. 
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CHAPTER 4 

 RESULTS AND DISCUSSION 

Results are presented and discussed in five sections: first, the support vector machine (SVM) 

labeling results obtained from processing audio signals through the continuous wavelet transform 

(CWT with 10 octaves and 24 scales per octave) versus the short-time Fourier transform (STFT) 

are compared; second, the SVM labeling results obtained from processing audio signals through 

the CWT (8 octaves and 32 scales per octave) versus the STFT are compared; third, the SVM 

labeling results obtained from processing audio data are compared against the results obtained 

from processing active sensor data; fourth, the Markov filter is applied to audio SVM labels after 

CWT and STFT feature extraction to evaluate single-day cycle time estimation accuracy; and, 

finally, the Markov filter is applied to audio SVM labels after STFT feature extraction to evaluate 

multiple-day cycle time estimation accuracy. 

4.1 Audio - CWT (NO: 10 and SO: 24) vs. STFT 

The performance of the audio signal processing framework for the first CWT configuration 

(10 octaves and 24 scales per octave) versus the STFT (1024 frequency points, 512-sample 

window, and 256 overlapped samples) was evaluated using recordings taken at local jobsites for 

the following equipment: 1) John Deere 700J dozer, 2) John Deere 670G grader, 3) JCB 3CX 

backhoe excavator, and 4) Komatsu PC200 excavator. Each recording was submitted to denoising, 

time-frequency feature extraction via the STFT and the CWT, and SVM training using 10 to 30 

seconds of data for activity 1 (major activity) and 10 to 30 seconds of data for activity 2 (minor 

activity). Then, activity classification and filtering were performed to an independent audio 

segment. The classified labels are shown graphically in Figures 4.1, 4.3, 4.5, and 4.7. In each 
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figure, the upper plot shows the labels obtained using the features extracted using the CWT, the 

middle plot shows the labels obtained using the features extracted using the STFT, and the bottom 

plot shows the observed, correct labels. Major activities are represented by a high position and 

minor activities are represented by a low position. A 30-second portion of the CWT and the STFT 

of each audio file is depicted in Figures 4.2, 4.4, 4.6, and 4.8. A black line depicting major and 

minor activities was plotted over the figures to provide physical significance to the frequency 

magnitude graphs. The visual time-frequency representations had to be cropped due the 

computational cost of plotting the CWT. That is, the CWT for a 300-second audio file, with a 

sampling frequency of 441000 Hz, and 240 scales yields an array with over 3 billion cells, as 

opposed to roughly 52 thousand cells required for the STFT with the current configuration.  

The comparison graphs for the John Deere 700J dozer after implementing the CWT with 10 

octaves and 24 scales per octave versus the STFT are shown in Figures 3.1 and 3.2. Major activities 

included pushing soil and duping while minor activities included maneuvering and reversing. 

 
Figure 4.1: JD 700J – CWT 10/24 vs. STFT labeling comparison. 
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Figure 4.2: JD 700J– CWT 10/24 scalogram  vs. STFT spectrogram comprison. 

The comparison graphs for the John Deere 670G grader after implementing the CWT with 10 

octaves and 24 scales per octave versus the STFT are shown in Figures 4.3 and 4.4. Major activities 

included grading and clearing surface soils while minor activities included maneuvering and 

reversing.  

 
Figure 4.3: JD 670G – CWT 10/24 vs. STFT labeling comparison. 
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Figure 4.4: JD 670G– CWT 10/24 scalogram  vs. STFT spectrogram comprison. 

The comparison graphs for the JCB 3CX backhoe excavator after implementing the CWT with 

10 octaves and 24 scales per octave versus the STFT are shown in Figures 4.5 and 4.6. Major 

activities included excavating, scooping, and dumping while minor activities included 

maneuvering, swinging, and idle times. 

 
Figure 4.5: JCB 3CX – CWT 10/24 vs. STFT labeling comparison. 



53 

 

 

 

 
Figure 4.6: JCB 3CX– CWT 10/24 scalogram  vs. STFT spectrogram comprison. 

The comparison graphs for the Komatsu PC200 excavator after implementing the CWT with 

10 octaves and 24 scales per octave versus the STFT are shown in Figures 4.7 and 4.8. Major 

activities included excavating, scooping, and dumping while minor activities included 

maneuvering, swinging, and idle times. 

 
Figure 4.7: Komatsu PC200 – CWT 10/24 vs. STFT labeling comparison. 
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Figure 4.8: Komatsu PC200– CWT 10/24 scalogram  vs. STFT spectrogram comprison. 

To provide a more objective comparison for labeling accuracies, the confusion matrix true 

positives for major activities (Act 1) and minor activities (Act 2) are summarized side by side in 

Table 4.1. Refer to Table 3.1 for an explanation about confusion matrices and true positives. 

Consider that a balance in true positives is better than having a high accuracy in one class at the 

cost of the accuracy of the other class. By careful observation, it can be determined that the STFT 

provides slightly better results than the CWT 

Table 4.1: CWT 10/24 vs. STFT true positive classification accuracy comparison.  

 CWT 10/24 STFT 

 Act 1 Act 2 Act 1 Act 2 

JD 700J 87.30% 88.37% 93.44% 87.53% 

JD 670G 91.76% 52.46% 79.31% 79.28% 

JCB 3CX 82.06% 60.73% 91.44% 54.62% 

Komatsu PC200 69.45% 68.34% 62.18% 72.75% 

Regarding CWT configuration, per MathWorks, Inc. (2017-a), using a smaller number of 

octaves with a higher resolution within the octaves is preferable when the features of interest 

primarily are contained in higher frequencies. The 10-octave CWT scalograms presented in this 
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section include frequencies less than 125 Hz, which can be observed to have negligible 

magnitudes. 

4.1 Audio - CWT (NO: 8 and SO: 32) vs. STFT 

The performance of the audio signal processing framework for the second CWT configuration 

(8 octaves and 32 scales per octave) versus the STFT was evaluated using recordings taken at local 

jobsites for the following equipment: 1) John Deere 700J dozer, 2) John Deere 670G grader, 3) 

JCB 3CX backhoe excavator, 4) Komatsu PC200 excavator, and 5) Komatsu 39PX dozer. SVM 

training and classification was performed as in the previous section. The classified labels are 

shown graphically in Figures 4.9, 4.11, 4.13, 4.15, and 4.17. A 30-second portion of the CWT and 

the STFT of each audio file is depicted in Figures 4.10, 4.12, 4.14, 4.16, and 4.18. 

The comparison graphs for the John Deere 700J dozer after implementing the CWT with 8 

octaves and 32 scales per octave versus the STFT are shown in Figures 4.9 and 4.10. Major 

activities included pushing soil while minor activities included maneuvering and reversing. 

 
Figure 4.9: JD 700J – CWT 8/32 vs. STFT labeling comparison. 
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Figure 4.10: JD 700J– CWT 8/32 scalogram  vs. STFT spectrogram comprison. 

The comparison graphs for the John Deere 670G grader after implementing the CWT with 8 

octaves and 32 scales per octave versus the STFT are shown in Figures 4.11 and 4.12. Major 

activities included grading and clearing surface soils while minor activities included maneuvering 

and reversing.  

 
Figure 4.11: JD 670G – CWT 8/32 vs. STFT labeling comparison. 
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Figure 4.12: JD 670G– CWT 8/32 scalogram  vs. STFT spectrogram comprison. 

The comparison graphs for the JCB 3CX backhoe excavator after implementing the CWT with 

8 octaves and 32 scales per octave versus the STFT are shown in Figures 3.13 and 3.14. Major 

activities included excavating, scooping, and dumping while minor activities included 

maneuvering, swinging, and idle times. 

 
Figure 4.13: JCB 3CX – Labeling CWT 8/32 vs. STFT labeling comparison. 
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Figure 4.14: JCB 3CX– CWT 8/32 scalogram  vs. STFT spectrogram comprison. 

The comparison graphs for the Komatsu PC200 excavator after implementing the CWT with 

8 octaves and 32 scales per octave versus the STFT are shown in Figures 4.15 and 4.16. Major 

activities included excavating, scooping, and dumping while minor activities included 

maneuvering, swinging, and idle times. 

 
Figure 4.15: Komatsu PC200– Labeling CWT 8/32 vs. STFT labeling comparison. 



59 

 

 

 

 
Figure 4.16: Komatsu PC200– CWT 8/32 scalogram  vs. STFT spectrogram comprison. 

The comparison graphs for the Komatsu 39PX dozer after implementing the CWT with 8 

octaves and 32 scales per octave versus the STFT are shown in Figures 4.17 and 4.18. Major 

activities included pushing soil and duping while minor activities included maneuvering and 

reversing. 

 
Figure 4.17: Komatsu 39PX – Labeling CWT 8/32 vs. STFT labeling comparison. 
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Figure 4.18: Komatsu 39PX– CWT 8/32 scalogram  vs. STFT spectrogram comprison. 

The confusion matrix true positives for major activities (Act 1) and minor activities (Act 2) are 

summarized in Table 4.2. By careful observation, it can be determined that the CWT (8 octaves 

and 32 scales per octave) consistently provides better results than the STFT.  

Table 4.2: CWT 8/32 vs. STFT true positive classification accuracy comparison. 

 CWT 8/32 STFT 

 Act 1 Act 2 Act 1 Act 2 

JD 700J 82.19% 97.36% 93.44% 87.53% 

JD 670G 92.86% 78.73% 79.31% 79.28% 

JCB 3CX 89.01% 68.21% 91.44% 54.62% 

Komatsu PC200 62.05% 79.45% 62.18% 72.75% 

Komatsu 39PX 89.20% 90.18% 85.53% 82.19% 

In general, it can be observed that CWT scalograms yield a better time-frequency magnitude 

representation than STFT spectrograms. Additionally, it has been proved that using a smaller 

number of octaves with higher resolution within the octaves is preferable when lower-frequency 

features are not of interest. Using a CWT with 8 octaves outperformed using a CWT 10 with 

octaves on processing time and labeling accuracy. 
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4.3 Audio Data vs. Active Sensor Data 

The performance of mobile micro-electro-mechanical-systems (MEMS) accelerometers data 

processing framework was compared against the audio signal processing framework using 

recordings taken at local jobsites for the following equipment: 1) JCB 3CX backhoe excavator, 2) 

Komatsu 39PX dozer, 3) Caterpillar 420D backhoe excavator, and 4) John Deere 550J dozer. Each 

MEMS recording was submitted to denoising, time-frequency feature extraction the CWT (4 

octaves and 48 scales per octave), and SVM training using 8 to 24 seconds of data for activity 1 

(major activity) and 8 to 24 seconds of data for activity 2 (minor activity). Each audio recording 

was submitted to denoising, time-frequency feature extraction the STFT (1024 frequency points, 

512-sample window, and 256 overlapped samples), and SVM training using 8 to 24 seconds of 

data for activity 1 and 8 to 24 seconds of data for activity 2. Finally, activity classification and 

filtering were performed to independent MEMS and audio data sets. These data sets were limited 

to being less than three minutes long due to Wi-Fi connectivity issues between the mobile device 

on board the heavy equipment and the laptop on site. The classified labels are shown graphically 

in Figures 4.19, 4.21, 4.23, and 4.25. In each figure, the upper plot shows the labels obtained using 

the MEMS data, the middle plot shows the labels obtained using the features extracted using the 

audio data, and the bottom plot shows the observed, correct labels. Major activities are represented 

by a high position and minor activities are represented by a low position.  The MEMS CWT and 

the audio STFT representations of the full data sets are depicted in Figures 4.20, 4.22, 4.24, and 

4.26. A black line depicting major and minor activities was plotted over the figures to provide 

physical significance to the frequency magnitude graphs.  
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The MEMS versus audio comparison graphs for the JCB 3CX backhoe excavator are shown 

in Figures 4.19 and 4.20. Major activities included scooping and dumping soil while the minor 

activity was maneuvering. 

 
Figure 4.19: JCB 3CX – MEMS vs. Audio labeling comparison. 

 
Figure 4.20: JCB 3CX– MEMS CWT 4/48 scalogram vs. Audio STFT spectrogram comprison. 
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The MEMS versus audio comparison graphs for the Komatsu 39PX dozer are shown in Figures 

4.21 and 4.22. The major activity for this machine was pushing soil with blade while minor 

activities were reversing and maneuvering. 

 
Figure 4.21: Komatsu 39PX – MEMS vs. Audio labeling comparison. 

 
Figure 4.22: Komatsu 39PX– MEMS CWT 4/48 scalogram vs. Audio STFT spectrogram comprison. 
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The MEMS versus audio comparison graphs for the CAT 420D backhoe excavator are shown 

in Figures 4.23 and 4.24. Major activities included lifting and handling heavy structures while 

minor activities included maneuvering and idle times. 

 
Figure 4.23: CAT 420D – MEMS vs. Audio labeling comparison. 

 
Figure 4.24: CAT 420D– MEMS CWT 4/48 scalogram vs. Audio STFT spectrogram comprison. 
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The MEMS versus audio comparison graphs for the JD 550J dozer are shown in Figures 4.25 

and 4.26. The major activity for this machine was pushing soil with blade with the minor activity 

was reversing. 

 
Figure 4.25: JD 550J – MEMS vs. Audio labeling comparison. 

 
Figure 4.26: JD 550J– MEMS CWT 4/48 scalogram vs. Audio STFT spectrogram comprison. 
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The confusion matrix true positives for major activities (Act 1) and minor activities (Act 2) are 

summarized in Table 4.3. By careful observation, it becomes clear that processing audio signals is 

better than the MEMS approach.  

Table 4.3: MEMS vs. Audio true positive classification accuracy. 

 MEMS Audio 

 Act 1 Act 2 Act 1 Act 2 

JCB 3CX 91.15% 47.05% 91.39% 92.39% 

Komatsu 39PX 58.08% 95.03% 85.55% 80.66% 

CAT 420D 70.03% 80.73% 87.27% 80.53% 

JD 550J 85.43% 78.62% 88.49% 85.24% 

In cases where activities were fairly simple and vibrations could be easily recognized, as with 

the JD 550J dozer, the accuracy achieved through the MEMS framework was very close to that 

achieved through the audio framework. In that particular case, there was only one activity per 

class, one major activity and one minor activity. In the rest of the cases, classification accuracy for 

the MEMS framework was unbalanced.  

A notable hardware limitation about using MEMS devices connected via Wi-Fi is an apparent 

signal transmission lag that produces an acceleration and time label mismatch. This can be clearly 

observed in Figures 4.22 and 4.26, where frequency features are ahead of correct activity labels. 

This is very likely to be affecting classification accuracy and would be a condition to consider in 

case of considering further research into MEMS devices. 

4.5 Audio Data and Active Sensor Data Integration 

To test the potential of improving classification results by combining audio and MEMS data, 

a data set was processed. Per Table 4.3, major activity (Act 1) and minor activity (Act 2) 

classification accuracy was usually better through audio data. However, for the Komatsu 39PX 
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dozer, the classification accuracy for minor activities is much better using MEMS data than using 

audio data. Thus, such data set was selected for experimentation.  

The results are presented in Figure 4.27 and Table 3.1. By careful observation, it can be noticed 

that a combination of audio and MEMS helps achieve midpoint on major and minor activity 

classification accuracy. The combined classification accuracy for Act 1 was 3.45% lower than 

using audio alone and the combined classification accuracy for Act 2 was 7.37% higher than using 

audio alone. While such results are promising, no clear conclusion can be drawn by processing a 

single data set. 

 
Figure 4.27: JD 550J– MEMS CWT 4/48 scalogram vs. Audio STFT spectrogram comprison. 

Table 4.4: Cycle time estimation accuracy for single day analysis. 

Komatsu 39PX MEMS + Audio 

 Act 1 Act 2 

MEMS Only 58.08% 95.03% 

Audio Only 85.55% 80.66% 

Combination 82.10% 88.03% 
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4.6 Single-Day Cycle Time Forecasting 

To assess the accuracy of the cycle time estimation framework, it was initially tested with 

audio data for five pieces of equipment. For each machine, one audio signal was separated into 

two portions. The first portion was used for SVM framework training and Markov process design 

and an independent portion was used to test the accuracy of cycle time estimation framework. 

Additionally, CWT and STFT time-frequency representations were processed for preliminary 

evaluation. Predicted cycle times and observed cycle times are presented in Table 4.5. There, it 

can be observed that cycle time estimation error using the STFT is less than 7.10% and that error 

using the CWT is less than 5.10%. The average error obtained through the STFT and the CWT 

was 2.88% and 2.98%, respectively. Thus, after applying the Markov filter, the accuracy of both 

approaches is comparable. Nonetheless, calculating the CWT for one minute of audio recording 

takes about three minutes of processing. That is an important inconvenience when considering to 

process 30-minute audio recordings for multiple days of monitoring. Thus, STFT was preferred. 

Table 4.5: Cycle time estimation accuracy for single day analysis. 

Machine Operation Observed cycle 
time 

Predicted cycle 
time (STFT) 

Error 
(STFT) 

Predicted cycle 
time (CWT) 

Error 
(CWT) 

JCB 3CX Clearing 50.77 s 49.70 s 2.11% 49.90 s 1.71% 

CAT 320E Excavating 9.30 s 9.96 s 7.10% 9.02 s 3.01% 

JD 700J Grading 50.22 s 50.56 s 0.68% 52.78 s 5.10% 

CAT 320D Excavating 12.51 s 12.68 s 1.36% 13.10 s 4.72% 

JD 670G Grading 65.47 s 63.39 s 3.18% 65.71 s 0.37% 

An example of labeled audio signal for a John Deere 670G motor grader while leveling 

ground is depicted in Figure 4.28. Given that the STFT was used for multiple-day analysis, it was 

used for generating these labels. The top graph in the figure shows the predicted labels directly 

after the SVM framework, the middle graph in the figure shows the predicted labels after the 

Markov chain filter, and bottom graph shows correct, manually labeled activities. A high position 
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represents a major activity and a low position represents a minor activity. Directly after the SVM 

framework, the predicted cycle time is 0.2 seconds. This is not even close to the observed cycle 

time because of minuscule oscillations that the window filter fails to eliminate. These oscillations 

become even more noticeable when zooming into the image (Figure 4.29). From the predicted 

sequence after the Markov filter, an average cycle time of 65.47 seconds has been estimated. The 

observed average cycle time was 63.39 seconds, which yields an estimation error of 3.18%. Thus, 

the Markov filter generates better higher order labels than window filtering alone. 

 
Figure 4.28: Labeled activities for a JD 670G grader leveling ground. 

 

 
Figure 4.29: Zoom into seconds 120 to 140 of SVM-labeled activities. 
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4.7 Multiple-Day Cycle Time Forecasting 

Typical machine operation is carried under varying work conditions (e.g., location 

accessibility, weather conditions, and operator skill). Thus, additional experimentation was 

performed to evaluate the accuracy of the cycle estimation framework over several days of 

operation. A Komatsu PC200 excavator was monitored during 5 days while crushing and moving 

demolition material (Figure 4.30). For each day, a 12 to 30-minute audio signal was processed and 

the estimated cycle time was compared against the observed cycle time obtained from manually 

labeled activities. The predicted average cycle time and observed average cycle time for each day 

are plotted in Figure 4.31. It can be observed that estimation error only exceeded 10% on day 4, 

as observed in Figure 4.32. For that specific occasion, operation was slightly different. Instead of 

loading the truck on a static position, the operation included maneuvering to carry material. Hence, 

cycle time was greater than usual.  

 
Figure 4.30: Simultaneous audio and video recording. 
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Figure 4.31: Komatsu PC200 - Observed cycle time vs. predicted cycle time. 

 
Figure 4.32: Komatsu PC200 - Cycle time estimation error. 

Additionally, a JD 50G backhoe was monitored during 2 days showing cycle time estimation 

error of less than 10%, as shown in Table 4.6. Thus, it be concluded that a robust cycle time 

estimation model can be achieved through audio signal analysis and the inclusion of statistical 

information. 

Table 4.6: Cycle time estimation accuracy for multiple day analysis. 

Machine/ 

Activity 

Description Day 1 Day 2 Day 3 Day 4 Day 5 

Komatsu PC200/ 

Excavating 

Observed cycle time 33.77 s 32.31 s 30.24 s 44.57 s 27.27 s 

Predicted cycle time 33.37 s 34.38 s 29.71 s 36.18 s 25.13 s 

Error 1.18% 6.41% 1.75% 18.82% 7.85% 

JD 50G Backhoe/ 

Clearing 

Observed cycle time 14.54 s 11.05 s - - - 

Predicted cycle time 14.92 s 10.21 s - - - 

Error 2.61% 7.62% - - - 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusion  

This study served to achieve a milestone toward an automated system for construction heavy 

equipment cycle time estimation while operating on real-world conditions. Accurate cycle time 

estimation is crucial because it is the basis for a real-time productivity estimation system. During 

the process, key hardware and software requirements were compared and the following was 

determined: 

• Regarding audio frequency feature extraction approach for classifier training, better results 

were achieved through the continuous wavelet transform (CWT) employing a bump 

wavelet with 8 octaves and 32 scales per octave than by employing the same wavelet with 

10 octaves and 24 scales per octave. 

• When comparing the short-time Fourier transform versus the CWT for classifier training, 

better accuracy was achieved through the bump CWT with 8 octaves and 32 scales per 

octave. However, the CWT is much more computationally expensive and may become 

impractical for large audio files. 

• Regarding hardware for jobsite data acquisition, better activity classification accuracy was 

achieved through audio signal processing than by active sensor data processing (MEMS 

accelerometers). However, more data sets must be processed to make definitive remarks. 

• Regarding audio and active sensor data combination, there is a potential of improving audio 

labeling accuracy through such approach. However, more experimentation is necessary. 
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• Regarding audio frequency feature extraction approach for cycle time estimation, 

comparable results were achieved using the CWT and the STFT after applying the Markov 

filter. 

Thus, audio signal features were extracted via the STFT and processed through the Markov 

filter for cycle time estimation from on-site recordings. By such method, cycle time was estimated 

for up to five days of single-machine operation with an accuracy over 81%.  

5.2 Recommendations for Future Work 

Future work could aim onto testing and improving the robustness of the current approach by 

focusing on the following aspects: 

• Evaluating the cycle time estimation framework for more construction equipment during 

multiple days of operation. 

• Dividing activities into sub-activities. That would expand the capabilities of the current 

framework, which is limited to monitoring one single action per model (e.g., excavating, 

truck loading, compacting, grading). 

• Evaluating other machine learning algorithms beside support vector machines. 

• Using more capable hardware that would allow for more experimentation with active 

sensors and frequency feature extraction techniques. 

• Adapting the activity identification and cycle time estimation frameworks for real-time 

implementation. 
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