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ABSTRACT

Pattern containment in permutations, as opposed to pattern avoidance, involves two as-

pects. The first is to contain every pattern at least once from a given set, known as finding

superpatterns; while the second is to contain some given pattern as many times as possi-

ble, known as pattern packing. In this thesis, we explore these two questions in circular

permutations and present some interesting observations. We also raise some questions and

propose some directions for future study.
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CHAPTER 1

INTRODUCTION

We begin our discussion with an overview of important terminologies in the field of pattern

containment.

1.1 PATTERNS IN PERMUTATIONS

Note that when we say pattern, we are referring to a permutation that is to be contained

in another permutation. For example, in the permutation 21534, if we delete 2 and 3, we

obtain the sequence 154. However, this is not a permutation, so we call it a subsequence of

21534.

Definition 1.1. Let π = π1π2 . . .πn be a permutation. A sequence formed by πi1πi2 . . .πik ,

with i j < i j+1 for each 1≤ j ≤ k−1, is called a subsequence of π .

This definition allows us to consider an idea of containment. However, since these

subsequences are not necessarily permutations, we need to find some way to relate them

to permutations. In the previous example, where 154 is contained in 21534, notice that

1 < 5, 1 < 4, and 5 > 4. So, in words, the order goes low, high, middle. There is only

one permutation that has the same order, and that is 132. We will say that 154 is order-

isomorphic to 132.

Definition 1.2. Let p = p1 p2 . . . pn and q1q2 . . .qn be sequences of natural numbers. If

pi < qk ⇐⇒ qi < qk, then we say that p and q are order-isomorphic.

We can easily see that for any sequence of non-repetitive natural numbers, there is only

one permutation that is order-isomorphic to it. This allows us to define pattern containment

in a convenient way.

Definition 1.3. Let π and τ be permutations of length n and k, respectively. Let n ≥ k. If

there is a subsequence of π that is order-isomorphic to τ , then we say that π contains τ .

4
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So, in our example of 21534, since 132 is order-isomorphic to 154, which is a subse-

quence of 21534, we can say that 21534 contains 132. Alternatively, we can say that 132

occurs in 21534.

1.2 SUPERPATTERNS

In the study of pattern containment, a natural question might be to find permutations that

contain all patterns of a certain length, say k. Note that there are k! patterns of length

k.Now, we can clearly construct a length k · (k!) permutation by having the first k entries

representing a certain pattern, and so on. This is called a k-superpattern, and it is by no

means the shortest k-superpattern.

Definition 1.4. Let P be a subset of permutations. We say that a permutation π is a P-

superpattern if it contains at least one occurrence of every τ ∈ P. Further, define sp(P) to

be the length of the shortest P-superpattern, i.e.

sp(P) = min{n : there is a P-superpattern of length n}.

In the case that P consists of all permutations of length k, we employ the traditional nota-

tions k-superpattern and sp(k).

As an illustration, suppose we wish to contain all permutations of length 3, i.e. we

want a 3-superpattern. Then, π = 25314 accomplishes this; further, there is no permuta-

tion of length 4 that could possibly contain all permutations of length 3 since it would be

impossible for such a permutation to contain both 123 and 321. Hence, sp(3) = 5.

Much of the research in superpatterns regards finding bounds for sp(k). For cases

k ≤ 3, sp(k) is known. However, for larger values of k, the problem becomes much harder.
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1.3 PATTERN PACKING

Pattern packing refers to containing the most number of copies of a given pattern within a

permutation. For a given pattern, there exists an (not necessarily unique) optimal permuta-

tion of a certain length.

Definition 1.5. For permutations π and τ (of length k), we let f (π,τ) be the number of

occurences of τ in π , and we define

g(n,τ) = max{ f (σ ,τ) : σ is a permutation of length n}.

If π is of length n and f (π,τ) = g(n,τ), then we say that π is τ-optimal. The packing

density of τ is defined by

δ (τ) = lim
n→∞

g(n,τ)(n
k

) .

We can think of packing density as a pattern’s ‘packability.’ As a simple example, for

the pattern τ = 123 and the permutation π = 123456, it is not hard to see that π is τ-optimal

and

g(6,τ) = f (π,τ) =
(

6
3

)
.

In general, if π is the monotone increasing permutation of length n, then π is τ-optimal.

Hence, the packing density of τ is

δ (τ) = lim
n→∞

g(n,τ)(n
3

) = lim
n→∞

(n
3

)(n
3

) = 1.

1.4 PREVIOUS WORK

The systematic study of pattern containment was first proposed by H. Wilf in his 1992

address to the SIAM meeting on Discrete Mathematics [11]. Until then, most research

regarding patterns concerned pattern avoidance. For an excellent introduction into these

results, consult [4].
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Our research considers superpatterns and pattern packing, which can be seen as the

dual problems to pattern avoidance.

In 1999, R. Arratia was the first to publish bounds for sp(k). He found that k2

e2 ≤

sp(k) ≤ k2 [2]. This lower bound is still the best known. In 2007, H. Eriksson et al.

improved Arratia’s upper bound with sp(k)≤ 2k2

3 +O(k3/2(log(k))1/2) [7]. Alison Miller

[12] then showed, in 2010, that sp(k) ≤ k(k+1)
2 , which strongly supports the conjecture by

Eriksson et al that sp(k)∼ k2

2 .

Many results on sp(P) for various sets of permutations P have also been found. As a

brief list, bounds have been found for sp(P) when P has been the set of layered permuta-

tions [8], the set of 321-avoiding permutations [3], the set of m-colored permutations [9],

and the set of words [5]. For these last two items, the concept of pattern containment ex-

tends naturally to m-colored permutations and to the set of words. We will cover m-colored

permutations, as well as the circular analogue, in Chapter 3.

In 1993, W. Stromquist found the packing density of 132 to be 2
√

3−3 [14]. Along

with the packing density of 123 being trivially 1, this closed the length-3 case by symme-

tries (reversals, inverses, and complements of permutations preserve pattern containment).

In 1997, A. Price found the packing densities of 1432, 2143, and 1324 [13]. Since there

are 7 equivalence classes of length-4 patterns, this left 4 unsolved packing densities. In

2002, M. H. Albert et al. found the packing density of 1243 [1]. The remaining three cases

are still unsolved.
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CHAPTER 2

CIRCULAR PERMUTATIONS

2.1 INTRODUCTION

In this chapter, we generalize the study of pattern containment to circular permutations.

We first introduce the related concepts in Section 2.2. In Section 2.3, we discuss circular

superpatterns and R-rev superpatterns in general. We then study packing density in circular

permutations and its R-rev analogue in Section 2.4. We briefly comment on our findings

and raise some questions in Section 2.5.

2.2 CIRCULAR PERMUTATIONS AND NUMBER OF REVOLUTIONS

In order to define the circular analogue of a permutation, we first introduce the circular shift

of a permutation.

Definition 2.1. Let π = π1π2π3 · · ·πn be a permutation of length n. The circular shift of π ,

denoted S(π), is given by

S(π) = πnπ1π2 · · ·πn−1.

For instance, with π = 31524, we have S(π) = 43152, S2(π) = 24315, S3(π) = 52431,

S4(π) = 15243, and S5(π) = 31524 = π .

Definition 2.2. Let π be a permutation of length n. Then, the circular permutation of π ,

denoted πc, is the permutation obtained by wrapping π clockwise around a circle in one

revolution; so for 2 ≤ i ≤ n− 1, we have πi−1, πi, and πi+1 appear in clockwise ordering,

with πn being the counterclockwise neighbor of π1. We say that two permutations are

equivalent if one is the circular shift of the other.

Note that when a circular permutation is considered, circular shift does not change the

permutation. As an example, Figure 2.1 shows the circular versions of a permutation and

its circular shift, which are identical.

8
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2 3
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1 2

3

54

6

Figure 2.1: A circular permutation πc = (123546)c (left) and (S(π))c = πc (right).

Remark 2.3. When considering pattern containment in circular permutations, it is impor-

tant and convenient to note that an occurrence of τ in πc is the same as a linear occurrence

of Si(τ) in π for some i.

Definition 2.4. Let P be a set of permutations. We say that π is a circular P-superpattern

if there is an occurrence of τ in πc for every τ ∈ P. Further, let spc(P) be the length of the

shortest circular P-superpattern.

In the case that P consists of all (regular) permutations of length k, similar to the

traditional notations, we use terms circular k-superpattern and spc(k).

Definition 2.5. For permutations π and τ (of length k), we define fc(π,τ) to be the number

of occurrences of τ in π wrapped around a circle, i.e.

fc(π,τ) = f (π,τ)+ f (π,S(τ))+ f (π,S2(τ))+ · · ·+ f (π,Sk−1(τ)).

Likewise,

gc(n,τ) = max{ fc(σ ,τ) : σ is a permutation of length n}.

If π is of length n and fc(π,τ) = gc(n,τ), then we say that π is circular τ-optimal.

Definition 2.6. Let τ be a permutation of length k. The circular packing density of τ ,

denoted δc(τ), is defined by

δc(τ) = lim
n→∞

gc(n,τ)(n
k

) .
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A circular permutation allows one to travel clockwise along the permutation with any

choice of starting point, stopping our travel before we reach our starting point, i.e. we travel

within one revolution of the circle. It is also interesting to explore the scenario when we

can ‘wrap’ around the circle more than once. For instance, the pattern 321 occurs as 654

in the circular permutation in Figure 2.1, but not the pattern 4321. If we are allowed two

revolutions, then we have 6541 as an occurrence of the pattern 4321.

Definition 2.7. Let π be a permutation of length n, and create a word π(R) by laying out R

copies of π in a line, i.e.

π(R) = π1π2 · · ·πn︸ ︷︷ ︸
R times

.

Select a subsequence of distinct entries of (π(R))c, i.e. wrap π(R) clockwise around a circle

and select a subsequence so that no two entries have the same value. Such a subsequence

will be called an R-revolution subsequence (or just R-rev subsequence) of πc.

Take π = 1234 for example, (π(2))c is simply 12341234 wrapped around a circle.

Then 421 is a 2-rev subsequence of πc, but is clearly not a 1-rev subsequence of πc.

Definition 2.8. Let π and τ be permutations of length n and k, respectively, with n ≥ k,

and let R be a positive integer. We say that there is an R-rev occurrence of τ in π if

there is an R-rev subsequence of entries of πc which is order isomorphic to τ . We may

then analogously define R-rev P-superpattern, R-rev τ-optimal, and R-rev packing density.

Further, let spR(P) be the length of the shortest R-rev P superpattern. It is easy to see that

spc = sp1, δc = δ1, etc.

2.3 CIRCULAR SUPERPATTERNS

We start with some simple observations which bound spc(k).

Theorem 2.9. Given a positive integer k, we have

spc(k)≥ g(k)
k2

e2 ,
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where g(k)→ 1 as k→ ∞.

Proof. Let n = spc(k). Note that the circular shift partitions the set of permutations of

length k into (k−1)! equivalence classes, each of size k. Any circular k-superpattern must

contain at least one representative of each of these equivalence classes. Hence, the number

of subsequences of length k in a circular k-superpattern must be at least (k−1)!. Then,(
n
k

)
≥ (k−1)!.

Notice that nk

k! ≥
(n

k

)
and, by Stirling’s Approximation, k!≥

√
2πk kk

ek . So,

nk ≥ k!(k−1)!

n ≥ k

√
(k!)2

k

≥ k

√
2π · k

2k

e2k

= (2π)1/k k2

e2 .

Letting g(k) = (2π)1/k, we clearly see that g(k)→ 1 as k→∞, which proves our result.

To state our next observation we first recall that the direct sum π⊕π ′ of two permuta-

tions π = π1 . . .π` and π ′ = π ′1 . . .π
′
m is defined as

π1 . . .π`(π
′
1 + `) . . .(π ′m + `).

Theorem 2.10. For any k-superpattern π , (π⊕1)c is a circular (k+1)-superpattern. Con-

sequently

spc(k+1)≤ sp(k)+1

for any k ≥ 1.

Proof. Suppose π = π1 . . .πn, then π⊕1 = π1 . . .πn(n+1). Given any permutation/pattern

τ of length k+1, Si(τ) is of the form τ1 . . .τk(k+1) for some i. If = π is a k-superpattern,
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some subsequence πi1 . . .πik of π is order isomorphic to τ1 . . .τk, then,

π⊕1 = π1 . . .πn(n+1)

contains the subsequence

πi1 . . .πik(n+1)

that is order isomorphic to

τ1 . . .τk(k+1) = Si(τ).

Thus, (π⊕1)c contains τ as a pattern, implying that (π⊕1)c is a circular (k+1)-superpattern.

When allowing extra revolutions, the following result states that every sufficiently

long circular permutation, with enough revolutions allowed, contains every pattern.

Theorem 2.11. Given any k ≥ 2 and R≥ k−1, any permutation of length at least k is an

R-rev k-superpattern.

Proof. It is sufficient to show the statement for R = k−1. We proceed by induction on k.

The initial case is trivial.

Assume now, that any permutation of length at least k is a (k−1)-rev k-superpattern

and let π be a permutation of length at least k+1.

Given any pattern τ of length k+1, we show that there is a k-rev occurrence of some

circular shift of τ in π . Note that some circular shift Si(τ) is of the form τ1 . . .τk(k+ 1).

Let π ′ be the permutation of length at least k obtained by removing the largest entry n

of π . Then π ′ is a (k− 1)-rev k-superpattern by the induction hypothesis. That is, some

subsequence of distinct entries of

π
′ . . .π ′︸ ︷︷ ︸

k−1 times
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is order isomorphic to τ1 . . .τk. This subsequence, with n appended at the end, is order

isomorphic to τ1 . . .τk(k+1) = Si(τ). Such a sequence is a subsequence of distinct entries

of

π . . .π︸ ︷︷ ︸
k times

,

which is to say that there is a k-rev occurrence of Si(τ) in π .

Hence, π is a k-rev (k+1)-superpattern.

Remark 2.12. In some sense Theorem 2.11 is the best possible. For instance, let π =

12 . . .k and τ = k . . .21, indeed it requires k−1 revolutions for τ to occur as a subsequence

of πc.

Since a k-superpattern (regardless of the number of revolutions allowed) has to contain

at least k entries, Theorem 2.11 immediately implies the following.

Corollary 2.13. For any k ≥ 2 and R≥ k−1, spR(k) = k.

2.4 PACKING DENSITY IN CIRCULAR PERMUTATIONS

For regular permutations, it is easy to see that the monotonic patterns are the only ones with

packing density 1, with corresponding optimal permutations being monotonic as well. It

is interesting to see that this is also the case for circular permutations. For brevity, we will

say that a circular pattern τc is monotonic if Si(τ) is monotonic for some i.

Theorem 2.14. The circular packing density of a pattern τ is at most 1, with equality if

and only if τc is monotonic. In this case, the circular τ-optimal permutation must also be

monotonic. Further, if τc is not monotonic, then δc(τ)≤ 2
3 .

Proof. It is obvious that δc(τ) ≤ 1 for any pattern τ . In the case that τ is a monotonic

pattern (say 12 . . .k) and π is a monotonic permutation 12 . . .n of length n, it is easy to see
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that

fc(π,τ) =

(
n
k

)
= gc(n,τ)

and hence δc(τ) = 1. If πc is not monotonic, then some subsequence of length k is not order

isomorphic to τ , hence πc would not be τ-optimal. The case of τ and π being decreasing is

similar.

Suppose, then, that τc is not monotonic. We will show that the number of subse-

quences of length k which are not occurrences of τ in any τ-optimal circular permutation is

relatively large with respect to n, i.e. the probability that a randomly selected subsequence

of length k is not an occurrence of τ is non-zero as n→ ∞.

In τc, there exists a smallest i such that i and i− 1 are not neighbors (where 0 is

equivalent to k). Without loss of generality, suppose that i is clockwise of i−1. Let n >> k

and let π be a circular τ-optimal permutation of length n.

Suppose that T is an occurrence of τ in π with Tr and Ts playing the roles of i−1 and

i, respectively. Notice that if Tr < γ < Ts, then γ cannot play any role in T .

Since either Tr = Ts−1 or Tr < Ts−1, consider two cases:

• Let P be the set of τ-occurrences, T , where Tr = Ts−1.

Clearly, |P| ≤
( n

k−1

)
. Indeed, once we select x to play the role of i− 1 in such a

τ-occurrence, the role of i will automatically be assigned to x+1.

• Let Q be the set of τ-occurrences, T , where Tr < Ts−1.

Let γ = bTr+Ts
2 c, and recall that γ plays no role in T . Let T ′ be obtained from T by

inserting γ into T and removing Ts and let T ′′ be obtained by inserting γ into T and

removing Tr. We will show that at most one of T ′ and T ′′ is a τ-occurrence.

To see this, let T ′ be an occurrence of τ . recall that Tr < γ < Ts with Tr playing the

role of i−1 and Ts playing the role of i. Hence, the only possible role that γ can play
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in T ′ is the role of i. If T ′ is an occurrence of τ , we may further say that γ occupies

the same position in T ′ as Ts did in T .

Hence, the number of entries of T between Tr and Ts (clockwise) is exactly the same

as the number of entries between Tr and γ in T ′, and the number of entries of T

between Ts and Tr in T is exactly the same as the number of entries between γ and Tr

in T ′. Thus, if γ is clockwise (resp. counter-clockwise) of Ts, then there are no entries

of T between Ts and γ (resp. γ and Ts). This means in T ′′, γ and Ts are neighbors.

Since γ is now playing the role of i− 1 (because Tr was removed) and Ts is playing

the role of i, and i and i−1 are not neighbors in τc by assumption, T ′′ cannot be an

occurrence of τ .

Thus, for every occurrence, T , of τ in Q, at least one of T ′ and T ′′ is not an occurrence

of τ . Hence, the number of subsequences of π which are not occurrences of τ is at

least 1
2 |Q|. This is because it is immediately obvious whether the non-occurrence is a

T ′ or a T ′′ since T ′ and T ′′ are identical to T except for the placement of one entry. If

the non-occurrence is a T ′ then Tr and γ are known, and there are only two possible

values of Ts which will give us the same γ; similarly, if it was a T ′′ then Ts and γ

are known, and there are only two possible values of Tr which will give the same γ).

Therefore, each non-occurrence which resulted as a T ′ or a T ′′ is counted at most

twice by members of Q.

Summarizing the above, we have

|P|+ |Q|+ 1
2
|Q| ≤

(
n
k

)
3
2 |Q|(n

k

) ≤ 1

|Q|(n
k

) ≤ 2
3
.
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Also notice that |P|
(n

k)
≤ ( n

k−1)
(n

k)
→ 0 as n→ ∞. Therefore,

δc(τ) = lim
n→∞

g(n,τ)(n
k

) ≤ lim
n→∞

|P|+ |Q|(n
k

) ≤ 2
3
,

which proves the result.

Remark 2.15. As a consequence of Proposition 2.14, noticing that all length 3 patterns are

equivalent to a monotonic pattern through circular shift, we see that all length 3 patterns

have circular packing density 1. This is certainly not the case for the traditional packing

densities.

On the other hand, it is easy to see the following relationship between the packing

density of a pattern τ and the circular packing density of τ .

Proposition 2.16. Let τ be a pattern of any length. Then, δc(τ)≥ δ (Si(τ)) for all i.

Proof. Suppose that τ is of length k, and recall that

gc(n,τ) = max
π∈Sn
{ f (π,τ)+ f (π,S(τ))+ · · ·+Sk−1(τ)}.

Let i be such that g(n,Si(τ))≥ g(n,S j(τ)) for any 0≤ j≤ k−1. Then gc(n,τ)≥ g(n,Si(τ)).

Thus, δc(τ)≥ δ (Si(τ)).

When multiple revolutions are allowed, the situation changes dramatically. For the

sake of our argument, we first introduce another notation.

Definition 2.17. For permutations π and τ , we define fR(π,τ) to be the number of R-rev

occurrences of τ in π . Likewise,

gR(n,τ) = max{ fR(σ ,τ) : σ is a permutation of length n}.

The following is an analogue of Theorem 2.11 in terms of packing density.
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Proposition 2.18. Given k ≥ 2 and R ≥ k− 1, every permutation π of length at least k is

R-rev τ-optimal for any pattern τ of length k.

Proof. We only consider the case R= k−1. Take any k-subsequence of π (of length n≥ k),

say φ . Theorem 2.11 claims that φ is a (k−1)-rev k-superpattern, implying that φ contains

τ as a pattern when k−1 revolutions are allowed. Hence, φ is an occurrence of τ .

Thus, fR(π,τ) =
(n

k

)
= gR(n,τ), showing that π is (k−1)-rev τ-optimal.

2.5 CONCLUDING REMARKS

In this chapter, we generalized the study of pattern containment to circular permutations

where a permutation or pattern is allowed to wrap around a circle one or more times.

We provided some basic observations on the minimum length of a circular superpattern.

Furthermore, we showed that any long enough permutation, when enough revolutions are

allowed, is a superpattern. This also implies that the classic pattern avoidance problem

should not be considered for circular permutations when too many revolutions are allowed.

While there has been some study on pattern avoidance in circular permutations [6], it is not

clear how it plays out when multiple (but not too many) revolutions are allowed. In terms of

packing patterns in a circular permutation, all patterns equivalent to monotonic patterns still

have the highest packing density of 1. By Proposition 2.16, we have that δc(τ)≥ δ (Si(τ))

for any pattern τ and for any i. It is still unknown whether there exists a pattern τ for which

this inequality is strict for all i, however, we make the following conjecture:

Conjecture 2.19. If τ is not a layered pattern, then δc(τ)> δ (τ).

Using brute force, we have found for the pattern τ = 3142, that gc(n,τ)> g(n,τ) for

6≤ n≤ 10. We have outlined our results in the Table 2.1. However, for all layered patterns

of length 3 or 4, we have found no difference between the circular and linear packing

densities. While this is not proof, it does lend some support to Conjecture 2.19.
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Table 2.1: Optimal permutations for 3142 and its circular shifts

Length n=10 n=9 n=8

Circular 3142-optimal permutations 6 7 2 8 3 9 4 5 1 10 4 5 6 1 7 2 8 3 9 5 6 2 7 3 4 1 8

5 6 7 2 8 3 4 1 9

6 7 2 8 3 4 5 1 9

gc(n,3142) 73 45 27

Linear permutations 3142-optimal 6 7 1 8 2 9 3 10 4 5 5 6 1 7 2 8 9 3 4 6 4 1 7 2 8 5 3

6 7 1 8 2 9 3 10 5 4 5 6 1 7 2 8 9 4 3

7 5 1 8 2 9 3 10 6 4 6 4 1 7 2 8 9 5 3

7 6 1 8 2 9 3 10 4 5 6 5 1 7 2 8 9 3 4

7 6 1 8 2 9 3 10 5 4 6 5 1 7 2 8 9 4 3

8 6 4 1 2 9 10 7 5 3 6 7 4 1 2 8 9 5 3

8 6 4 2 1 9 10 7 5 3 6 7 4 2 1 8 9 5 3

8 6 4 1 9 2 10 7 5 3 7 6 4 1 2 8 9 5 3

8 6 4 1 2 10 9 7 5 3 7 6 4 2 1 8 9 5 3

8 6 4 2 1 10 9 7 5 3 6 7 1 2 8 3 9 4 5

6 7 2 1 8 3 9 4 5

6 7 1 2 8 3 9 5 4

6 7 2 1 8 3 9 5 4

6 7 4 1 8 2 9 5 3

7 5 1 2 8 3 9 6 4

7 5 2 1 8 3 9 6 4

7 6 1 2 8 3 9 4 5

7 6 2 1 8 3 9 4 5

7 6 1 2 8 3 9 5 4

7 6 2 1 8 3 9 5 4

7 6 4 1 8 2 9 5 3

5 6 1 7 2 9 8 3 4

5 6 1 7 2 9 8 4 3

6 4 1 7 2 9 8 5 3
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6 5 1 7 2 9 8 3 4

6 5 1 7 2 9 8 4 3

6 7 4 1 2 9 8 5 3

6 7 4 2 1 9 8 5 3

7 6 4 1 2 9 8 5 3

7 6 4 2 1 9 8 5 3

7 5 1 2 8 9 6 3 4

7 5 2 1 8 9 6 3 4

7 5 1 2 8 9 6 4 3

7 5 2 1 8 9 6 4 3

7 5 1 8 2 9 6 3 4

7 5 1 8 2 9 6 4 3

7 5 1 2 9 8 6 3 4

7 5 2 1 9 8 6 3 4

7 5 1 2 9 8 6 4 3

7 5 2 1 9 8 6 4 3

g(n,3142) 41 26 17

Linear permutations 2314-optimal 3 4 5 6 7 2 8 1 9 10 3 4 5 6 2 7 1 8 9 3 4 5 6 1 2 7 8

4 5 6 7 2 3 8 1 9 10 3 4 5 6 7 1 2 8 9 3 4 5 6 2 1 7 8

4 5 6 7 2 8 3 1 9 10 3 4 5 6 7 2 1 8 9 3 4 5 6 1 2 8 7

4 5 6 7 3 8 1 2 9 10 3 4 5 6 2 7 1 9 8 3 4 5 6 2 1 8 7

4 5 6 7 3 8 2 1 9 10 3 4 5 6 7 1 2 9 8

4 5 6 7 8 2 3 1 9 10 3 4 5 6 7 2 1 9 8

3 4 5 6 7 2 8 1 10 9

4 5 6 7 2 3 8 1 10 9

4 5 6 7 2 8 3 1 10 9

4 5 6 7 3 8 1 2 10 9

4 5 6 7 3 8 2 1 10 9

4 5 6 7 8 2 3 1 10 9

g(n,2314) 62 40 24

Linear permutations 4231-optimal 10 8 9 4 5 6 7 2 3 1 8 9 4 5 6 7 2 3 1 7 8 3 4 5 6 1 2
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9 7 8 3 4 5 6 1 2 7 8 3 4 5 6 2 1

9 7 8 3 4 5 6 2 1 8 5 6 7 2 3 4 1

9 8 4 5 6 7 2 3 1 8 7 3 4 5 6 1 2

8 7 3 4 5 6 2 1

g(n,4231) 68 42 24

Linear permutations 1423-optimal 1 2 9 10 3 8 4 5 6 7 1 2 8 9 3 4 5 6 7 1 2 7 8 3 4 5 6

2 1 9 10 3 8 4 5 6 7 2 1 8 9 3 4 5 6 7 2 1 7 8 3 4 5 6

1 2 10 3 8 9 4 5 6 7 1 2 9 3 8 4 5 6 7 1 2 8 7 3 4 5 6

2 1 10 3 8 9 4 5 6 7 2 1 9 3 8 4 5 6 7 2 1 8 7 3 4 5 6

1 2 10 8 3 9 4 5 6 7 1 2 9 8 3 4 5 6 7

2 1 10 8 3 9 4 5 6 7 2 1 9 8 3 4 5 6 7

1 2 10 3 9 4 5 6 7 8

2 1 10 3 9 4 5 6 7 8

1 2 10 8 9 3 4 5 6 7

2 1 10 8 9 3 4 5 6 7

1 2 10 9 3 8 4 5 6 7

2 1 10 9 3 8 4 5 6 7

g(n,1423) 62 40 24

Analogous to the study of superpatterns, we also showed that enough number of rev-

olutions will automatically achieve the maximum packing density. It would also be inter-

esting to continue this study for limited number of revolutions.

In Proposition 2.18, we showed that if R≥ k−1 then every permutation π of length at

least k is R-rev τ-optimal for any pattern τ of length k, without specifically stating the pack-

ing density. Let a(k,R) be the number of R-rev subsequences of length k in a permutation

of length k. Clearly the number of these arrangements does not depend on the permutation

itself. Then, the total number of R-rev subsequences of π of length k is just
(n

k

)
· a(k,R),

and as a consequence

δR(τ) = lim
n→∞

gR(n,τ)(n
k

)
·a(k,R)

= lim
n→∞

(n
k

)(n
k

)
·a(k,R)

=
1

a(k,R)
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for any τ of length k ≤ R+1. It seems to be worthwhile to further study the combinatorics

related to a(k,R), which appears to be interesting in its own right.
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CHAPTER 3

COLORED PERMUTATIONS

3.1 SUPERPATTERNS

We will now turn our attention to the topic of colored permutations. By this, we mean

that each entry will be assigned a color. When considering pattern containment, both the

numerical ordering and the colors will need to match.

For example, let p = 1r3b2r. Here, 1 and 2 are red, and 3 is blue. So, in 1r2b6b5r4r3b,

p only occurs twice, as 1r6b5r and 1r6b4r.

Some results have been obtained in the linear case, and we will attempt to extend those

results to the circular case. We will also note some differences between them. We begin

with some definitions.

• S(k,m) will be used to denote the set of all permutations of length k in m colors.

• NMS(k,m) is the set of nonmonochromatic m-colored patterns of length k, and MS(k,m)

is the set of all monochromatic m-colored patterns of length k.

• We define sp(k,m) to be the length of the shortest S(k,m)-superpattern.

• Similarly, we define nmsp(k,m) to be the length of the shortest NMS(k,m)-superpattern

and msp(k,m) to be the length of the shortest MS(k,m)-superpattern.

We now review some results in the linear case. The first of which provides a link

between colored superpatterns and non-colored superpatterns.

Theorem 3.1 ([9]). For any positive integers k and m, we have

sp(k,m) = m · sp(k).

Because of this result, we can bound sp(k,m) using the bounds for sp(k). Another

interesting relationship between these values is the following.

22
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Theorem 3.2 ([9]).

msp(k,m) = m · sp(k) = sp(k,m)≥ nmsp(k,m)

This statement is quite interesting considering that NMS(k,m) may be much larger

than MS(k,m), as we will see later when we find their cardinalities. We have another result

which allows us to bound nmsp(k,m) from below.

Theorem 3.3 ([9]). For any positive integers k ≥ 2 and m, we have

msp(k−1,m)≤ nmsp(k,m)≤ msp(k,m).

Now we consider the analogous questions in the circular case. We first define the

analogues of msp(k,m) and nmsp(k,m).

• spc(k,m) is defined to be the length of the shortest circular S(k,m)-superpattern.

• mspc(k,m) is defined to be the length of the shortest circular MS(k,m)-superpattern.

• nmspc(k,m) is defined to be the length of the shortest circular NMS(k,m)-superpattern.

Theorem 3.4. For any positive integers k and m, we have that

spc(k,m) = m · spc(k).

Proof. Let p′ be a circular S(k,m)-superpattern. Let p′i be the longest monochromatic

subsequence in p′ in color i. We can see that p′ is then a circular k-superpattern. Thus,

|p′i| ≥ spc(k) for any i. Also,

|p′|=
m

∑
i=1
|p′i| ≥ m · spc(k).

Now, let p be a circular permutation of length spc(k) that contains all noncolored patterns

of length k. Construct circular m-colored permutation p′′ by replacing each 1≤ j ≤ sp(k)

in p by the sequence

s j = [m( j−1)+1]1[m( j−1)+2]2 . . . [m( j−1)+m]m.
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Note that |p′′| = m · |p| = m · spc(k). For any pattern in S(k,m), the noncolored version

is contained in p, and the colored pattern can be found in p′′ by choosing corresponding

digits in s j with the required color. Thus,

spc(k,m)≤ |p′′|= m · spc(k).

This is a very nice result, as we can now use our results from Chapter 2 for spc(k) to

bound spc(k,m). We have

spc(k,m) = m · spc(k)≥ m ·g(k)k2

e2

where g(k)→ 1 as k→ ∞, and

spc(k,m) = m · spc(k)≤ m(sp(k−1)+1)≤ m
(

k(k−1)
2

+1
)
.

Putting these together, we have

m ·g(k)k2

e2 ≤ spc(k,m)≤ m
(

k(k−1)
2

+1
)

where g(k)→ 1 as k→ ∞.

It is a very interesting fact that when considering the color of entries, the bounds for

the size of the smallest circular superpattern grows at the same rate as those of the non-

colored case. Next, we will consider restricting the superpattern to only monochromatic

and nonmonochromatic patterns. First, we note the sizes of MS(k,m) and NMS(k,m), as

in [9].

For any S(k,m)-permutation, each entry can be any one of m colors. Since there are

k! permutations of length k, we have that

|S(k,m)|= mkk!.
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Also, since any MS(k,m)-permutation has all entries simultaneously one of m entries, it is

easy to see that

|MS(k,m)|= m · k!.

Since each colored permutation is either monochromatic or nonmonochromatic, then S(k,m)

is the disjoint union of MS(k,m) and NMS(k,m). So,

|NMS(k,m)|= |S(k,m)|− |MS(k,m)|

= mkk!−m · k!

= (mk−m)k!

= (mk−1−1)m · k!

= (mk−1−1)|MS(k,m)|.

We will use the cardinalities of these sets to provide a bound on nmspc(k,m).

Proposition 3.5. For positive integers k and m,

nmspc(k,m)≥ m ·g(k,m)
k2

e2 ,

where g(k,m)→ 1 as k→ ∞.

Proof. Let n = nmspc(k,m). Each equivalence class of permutations in NMS(k,m) is of

size k, since we may take k− 1 circular shifts of any element and obtain an equivalent

permutation. So, since an NMS-superpattern must include each at least one element from

each equivalence class of NMS(k,m), then(
n
k

)
≥ |NMS(k,m)|

k
=

(mk−m)k!
k

= (mk−m)(k−1)!.
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So, by the fact that nk

k! ≥
(n

k

)
and by Stirling’s approximation, k!≥

√
2πk kk

ek , we have that

nk ≥ (mk−m)k!(k−1)!.

n≥ k

√
(mk−m)

(k!)2

k

≥ k

√
(mk−m)2π

k2k

e2k

= k
√

mk(1−m−1)2π
k2

e2

= m k
√
(1−m−1)2π

k2

e2

= m ·g(k,m)
k2

e2 ,

with g(k,m)→ 1 as k→ ∞.

This gives us a similar lower bound as that for spc(k,m). In order to bound nmspc(k,m)

from above, we first note that nmspc(k,m)≤ spc(k,m). From earlier, we know that spc(k,m)=

m · spc(k). Now, consider a circular MS(k,m)-superpattern. It must have m copies of a cir-

cular k-superpattern, one for each color. Then, m · spc(k) = msp(k,m). Putting this all

together, we have

nmspc(k,m)≤ spc(k,m) = m · spc(k) = mspc(k,m).

This gives us an upper bound for nmspc(k,m). It is very interesting that nmspc(k,m) and

mspc(k,m) are related in this way. Another interesting relation between them is the follow-

ing proposition.

Proposition 3.6. For any positive integers k ≥ 2 and m, we have

mspc(k−1,m)≤ nmspc(k,m)≤ mspc(k,m).

Proof. We already have the second inequality from above. So, it remains to show the first

one. Let q be an m-colored pattern of length k with the last entry being color j, and the
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others being color i. So, q must be contained in all circular NMS(k,m)-superpatterns. Now,

note that the first k− 1 entries form a monochromatic pattern in color i. Since we may

choose any color for these k− 1 entries and we still must have q contained in a circular

NMS-superpattern, then it follows that all length k− 1 monochromatic patterns are also

contained in any circular NMS-superpattern. Thus, mspc(k−1,m)≤ nmspc(k,m).

3.2 PACKING DENSITIES

Now we will discuss optimal permutations for packing colored patterns. We start with a

definition.

Definition 3.7. In a colored permutation π , a colored block is a maximal monochromatic

segment π
(a)
i in which every entry in this segment has color a and every entry not in this

segment is either larger or smaller that each entry in π
(a)
i .

For example, the permutation π = 1r2r6b5b3b4r has four colored blocks. From left to

right, they are π
(r)
1 = 1r2r, π

(b)
2 = 6b5b, π

(b)
3 = 3b, π

(r)
4 = 4r.

When comparing the numerical values between different blocks, we say that π
(r)
i <

π
(b)
j when all entries of π

(r)
i are less than all entries of π

(b)
j .

The linear case when there are 2 or 3 colored blocks has been studied. We will give a

brief review over these results.

In the case of having only 2 colored blocks, we can see that a pattern must be of the

form π = π
(r)
1 π

(b)
2 . Note also that for the purpose of packing patterns, we may assume that

π
(r)
1 < π

(b)
2 .

Theorem 3.8. For a pattern p with two blocks of the form rb with r < b, there is an optimal

length n permutation π of the form RB with R < B.

We will omit the proof, but when we extend this result to the circular case, the proof

is similar. Essentially, taking a permutation and sliding all of its red blocks to the left
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preserves each instance of p.

Now, when we consider patterns with 3 colored blocks, we have two cases to consider.

One is when we have 3 colors, so our pattern will be of the form rbg. The other is when

we still have only 2 colors, so our pattern will be of the form rbb, brb, or bbr.

Theorem 3.9. Given a pattern p of the form rbg, there is an optimal permutation π of the

form RBG with the same numerical ordering as rbg.

The proof goes similarly to that of the previous theorem. Essentially, we may move

all the red blocks to the front, then blue to the middle, then green to the end.

Now, for 3 colored blocks in 2 colors, we note that the rb1b2 case is the same as the

b1b2r case since reversing does not affect optimality. So, there are two cases: rb1b2 and

b1rb2. As expected, both cases yield results similar to the previous two theorems.

For 3 colored blocks in 2 colors, there is an optimal permutation that has the same

arrangement of blocks with the same numerical ordering.

Unfortunately, the proofs require some more work as we consider more blocks. The

cases with four or more blocks are still open.

We will now look at the analogues of these results in the circular case. If there are

only 2 colored blocks, then we note that there is only one case, where p is of the form rb,

r < b.

Theorem 3.10. For a pattern p with two colored blocks of the form rb with r < b, there is

an optimal circular permutation π of the form RB with R < B.

Proof. Let π be a p-optimal permutation of length n with colored block π1π2 . . .πk. We can

assume without loss of generality that π1 is red. Otherwise, we could take some number of

circular shifts of π until it is.

Now, if we take all the red blocks πr1πr2 . . .πrs and blue blocks πb1πb2 . . .πbt , and

we form a new circular permutation π ′ = πr1 . . .πrsπb1 . . .πbt , then we can see that any
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occurrence of p in π is also in π ′. So, fc(π
′, p)≥ fc(π, p).

Now, since p is of the form rb with r < b, then our optimal permutation π ′ must have

that each red entry is less than each blue entry. Then, each red block together form one

block, and each blue block together form one blue block. So, π ′ is of the form RB with

R < B.

Our result in the case with 2 colored blocks is the same as that of the linear case.

However, when considering patterns with 3 blocks in 2 colors, we note a key difference.

That is, for p of the form rb1b2, we may take a circular shift and obtain b2rb1. We also note

that r must be numerically between b1 and b2, otherwise, b1 and b2 forms one blue block.

So, the only case to consider is rb1b2, and we may assume b1 < r < b2.

Theorem 3.11. For a pattern p with three colored blocks of the form rb1b2, there is an op-

timal circular permutation π that is also of the form RB1B2 (or some circular shift thereof).

Also, the numerical ordering of the colored blocks in π is the same as that of the colored

blocks in p.

Proof. If r is not numerically between b1 and b2, then b1 and b2 form one colored block.

Then, we would be in the same case as the previous theorem. So, we must have that r is

between b1 and b2. Without loss of generality, we assume that b1 < r < b2.

Let π be a p-optimal circular permutation of length n with colored blocks π1π2 . . .πk.

First, we will show that we can put all the blue blocks in increasing order. Let πr be the set

of red blocks of π . Fix a red pattern R in π . Let πb<R be the set of all blue blocks less than

R, and let πb>R be the set of all blue blocks greater than R. So, any occurrence of an rb1b2

pattern in these blocks must have the b1 pattern contained in πb<R , and the b2 pattern must

be contained in πb>R . Then, the maximum contribution of this pattern R to fc(π, p) is

f (πb<R,b1) · f (πb>R ,b2).
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This can be achieved by arranging the blue blocks into increasing order. So, let π ′ =

πrπb1 . . .πbt , with πbi < πbi+1 .

Next, we will show that πr must be one block. Consider a ‘cut’ in the blue blocks. Let

πb≥ j be all the blue blocks greater than and including some πb j , and let πb< j be all those

less than πb j . Then, there must exist some j0 that maximizes the occurrences of b1 in πb< j

and b2 in πb≥ j . In other words,

f (πb< j0
,b1) · f (πb≥ j0

,b2)≥ f (πb< j ,b1) · f (πb≥ j ,b2),

for any 1 < j ≤ t. So,

fc(π
′, p)≤ f (πr,r) · f (πb< j0

,b1) · f (πb≥ j0
,b2).

We obtain equality when πb< j0
< πr < πb≥ j0

, which means they are each colored blocks.

Then, we have that π ′ = πrπb< j0
πb≥ j0

, which is of the form RB1B2 with B1 < B2.

For the case when we have 3 colored blocks in 3 colors, we note that we only have

one numerical ordering to consider. To see this, assume that r < b < g. Then, we may take

circular shifts of rbg to obtain grb and bgr. We can reverse each of those to obtain gbr,

brg, and rgb. These give us every numerical ordering possible.

Theorem 3.12. For a pattern p of the form rbg, there is an optimal circular permutation π

of the form RBG. Also, the numerical ordering of the blocks of π is the same as that of the

blocks of p.

Proof. Let π be a p-optimal circular permutation of length n with colored blocks π1π2 . . .πk.

For the reasons noted above, we first assume, without loss of generality, that r < b < g. Let

πR, πB, and πG be the maximum length monochromatic subsequence of color red, blue, and

green in π , respectively. Let π ′ = πrπbπg. Then,

f (π ′, p)≤ f (πr,r) · f (πb,b) · f (πg,g),

with equality when πr < πb < πg.
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The preceding results raise a good question. As asked in [10], is it true that the optimal

colored permutation with respect to a given colored pattern always shares the same number

and arrangement of colored blocks as those of the pattern?

While the answer is unknown in the linear case, we can show an explicit example

where we can find an optimal circular permutation that is not of the same form as the

pattern.

Let p = 1r2b. Then, π = (1r3b2r4b)c is an optimal length-4 circular permutation for

p. Of course, this is not a counterexample for our theorems in this section. There still exists

a p-optimal length-4 permutations of the form RB, R < B, which is π ′ = (1r2r3b4b). The

key fact about our proofs in this section is that, while we were not losing optimality, we

were not necessarily increasing optimality either, as this example showed.
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