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 ABSTRACT 

In order to meet the US Department of Energy projected target of 35% of US energy 

coming from wind by 2050, there is a strong need to study the management and development of 

wind turbine technology and its impact on human health, wildlife and environment. The 

prediction of wind turbine noise and its propagation is very critical to study the impacts of wind 

turbine noise for long term adoption and acceptance by neighboring communities. The prediction 

of wind speed is critical in the assessment of feasibility of a potential wind turbine site. This 

work presents a study on prediction of wind turbine noise and wind speed using a noise 

propagation model and artificial neural network (ANN) methods respectively. The noise 

propagation model utilized Openwind, a software package used for wind project design and 

optimization, to predict a noise map based on inputs acquired from a potential wind energy 

demonstration site in Georgia. The resultant noise of the wind turbines and the ambient 

surroundings were predicted in the neighborhood for different scenarios. The nonlinear 

autoregressive (NAR) neural network and nonlinear autoregressive neural network with 

exogenous inputs (NARX) were used to predict wind speed utilizing one year of hourly weather 

data from four locations around the US to train, validate, and test these networks. This study 

optimized both neural network configurations and it was demonstrated that both models were 

suitable for wind speed prediction. Both models were implemented for single-step and multi-step 

ahead prediction of wind speed for all four locations and results were compared. NARX model 

gave better prediction performance than NAR model and the difference was statistically 

significant.  

 

INDEX WORDS: Artificial neural network, Forecasting, Multi-step ahead, NAR networks, 
NARX networks, Noise maps, Single step ahead, Time series prediction, Wind speed prediction, 
Wind turbine noise prediction 
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CHAPTER 1 

 INTRODUCTION 

 Wind energy has become the world’s fastest growing renewable energy source due to its 

environmentally friendliness and economic viability. However, due to the various conditions at 

locations for wind energy power generation, accurate information of the dynamic nature of 

turbines and the wind that drives these turbines is needed for wind farm siting, as well as 

operations and management of the wind energy conversion systems. Forecasting and prediction 

methods are based on the available information and the application.  

Studies show that the prediction of wind speed, and thus wind power, are critical for the 

operation of a wind energy conversion site in order to operate at optimal levels. A forecast gives 

wind farm management the tools to balance maximum reliability with minimal operating costs. 

Wind forecasting in the order of seconds to minutes are normally applicable to the control of a 

wind turbine. Forecasting in the order of hours addresses the problem of scheduling with a power 

system. Forecasts that predict in the range of days address the problem of maintenance and 

resource planning. 

In order to meet the US Department of Energy projected target of 35% of US energy coming 

from wind by 2050, there is a strong need to look into the aspects of potential environmental 

impacts of wind energy facilities on human health, wildlife and environment (US Department of 

Energy 2015, Saavedra and Samanta 2015). Understanding and managing the impact of wind 

turbine technology on the environment is a critical factor for successful long term adoption and 

acceptance of the technology by the neighboring community and mitigating potential stress on 

impacted wildlife. The issues in wind turbines include environmental impact causing concern for 

humans and wildlife, noise and vibration caused by operation, and visual and aesthetic impacts. 
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Noise generated by turbines can cause annoyance, sleep disturbance, as well as self-reported 

instances of stress and quality of life issues (Health Canada, 2014, Michaud, 2013, Saavedra and 

Samanta 2015).  In the selection of any potential wind energy generation site prediction of 

possible noise generated by wind turbines and noise propagation is very critical to make sure the 

predicted noise levels are within the acceptable levels to avoid any adverse opinion about the 

possible noise effects in the neighboring communities. 

1.1 Time series forecasting 

Time series are a data set with data points indexed in chorological order.  Typically time 

series are taken at equal sequential point in time, known as time steps. Some of examples of time 

series data includes: daily stock values, energy consumptions values, heights of ocean tides, and 

hourly temperature measurements. Time series prediction or forecasting uses a model to predict 

future values from past time series data. A stochastic model will illustrate the fact that data 

points close together will have more of an effect on each other than data points that are far apart. 

Machine learning or computational intelligence have been used in recent years to conduct time 

series forecasting of future data based on historical data (MacKay 2003).   

1.2 Objectives and Scope of Present Work 

There are two main hypotheses in the work performed: (1) if ambient noise was known at a 

certain location, sound levels could be predicted with the presence of wind turbines at various 

distances; and (2) if current and previous wind speed (and temperature) data was available, 

future wind speed values could be predicted, even in a nonlinear form, by using time series 

regression analysis techniques.  
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1.2.1 Wind Turbine Noise Prediction  

A model of noise propagation from wind turbines was created. To test the hypothesis 

presented above ambient noise data was collected from a potential wind energy generation site. 

Using average wind speeds for the area a noise propagation model was applied in order to predict 

noise at various distances from the turbines. The distinct objectives of this part of the study were: 

• Use sound level meters to collect ambient noise data at a potential wind turbine 
installation site. 

• Develop a noise propagation model using open access software like Openwind®. 
 

• Determine if wind turbine noise would be significant enough to disturb nearby 
residents based on measured and potential ambient noise levels 

In this part of the study relevant techniques for noise propagation modeling were reviewed and 

learned using Openwind® software. Next sound level meters were used in order to collect 

ambient noise data. Local wind speed data was used as an input to create an average noise model 

for a potential wind turbine site. The noise model’s data was included with ambient noise data to 

determine if wind turbine noise would become significant in relation to ambient noise and pose 

any noise related disturbance in the neighborhood.  

1.2.2 Wind Speed Prediction 

Two artificial neural networks were used in the prediction of wind speed. To test hypothesis 

presented above, hourly wind speed and temperature data were obtained from a national 

meteorological database and artificial neural network (ANN) prediction methods were applied in 

order to forecast wind speeds in the range of a few hours. The distinct objectives of this part of 

the study were: 

• Develop a nonlinear autoregressive neural network (NAR) model using MATLAB neural 

network toolbox. 
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• Develop a nonlinear autoregressive neural network with exogenous inputs (NARX) model 

using MATLAB neural network toolbox. 

• Develop a methodology to optimize the architecture of the two proposed neural networks. 

• Compare the results of the two optimized neural networks. 

• Implement the two optimized networks by predicting wind speed of several data sets one 

hour and five hours in the future. 

In this part of the study relevant ANN techniques were reviewed and learned using 

MATLAB neural network toolbox. Next the hourly wind speed and temperature data were 

collected and normalized in order to have a fair comparison. The data was then used to optimize 

the two neural networks (NAR and NARX). Multiple runs of the optimization were conducted in 

order to ensure precision and accuracy. The optimized networks were used to predict wind speed 

one hour ahead as well as five hours ahead. The statistical significance of the difference of 

prediction performance of NAR and NARX was investigated. 

1.3 Organization of Thesis 

The rest of this thesis is organized into the following chapters. Chapter 2 includes the 

literature reviewed in the time the study was conducted. The first section contains wind turbine 

noise prediction with sub sections on Openwind®, SPreAD-GIS, calculating noise levels, and 

buildings and vegetation’s effect on noise propagation. The next section presents wind speed 

forecasting time frames with sub sections on classification of the time frames, immediate short 

term forecasting, short term forecasting and long term forecasting. After this forecasting 

methodology for immediate short term forecasting is presented with sub sections of neural 

networks (both biological and artificial) as well as a sub section of various other techniques. The 

final section of chapter 2 recounts various wind speed prediction studies. 
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Chapter 3 includes the research methodologies used in this study as well as the relevant 

data sets. The first section discusses the data sets used in the two parts of the thesis with 

subsection for noise propagation prediction as well as wind speed prediction. The next section 

presents the Openwind® noise propagation simulation with subsections on standards as well as 

the noise model. The final section details wind speed prediction with subsection on the NAR and 

NARX models used in the study.  

Chapter 4 contains the results and discussion of both parts of the study. The first section 

discusses the wind turbine noise propagation prediction results with subsections on the methods 

used as well as the noise maps generated. The next section analyses the wind turbine noise maps 

and combines this with ambient noise data taken from the experimental location. The following 

section details the wind speed prediction results with subsections on the optimization of the 

network as well as implementation of the optimized networks into one-step ahead and multi-step 

ahead prediction. 

Chapter 5 provides the conclusions of both parts of the thesis as well as the scope of 

future work. The objectives of the work and the results are summarized in order to ensure the 

objectives were met. 

Appendix A and B will detail the code used in MATLAB 2014a to generate the NAR and 

NARX networks respectively.  
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CHAPTER 2 

REVIEW OF THE RELATED LITERATURE 

2.1 Wind Turbine Noise Prediction Methodologies 

There are many different methods, approaches and procedures in order to produce a wind 

turbine noise propagation model. An easily understood example of turbine noise propagation can 

be observed in figure 2.1 below (GE 2012). This graphic compares sound levels at different 

distances from a wind turbine and equates them to various appliances, for instance at 100 meters 

wind turbine sound is about as loud as a midsize window air conditioner.  This section gives an 

overview of two open-access software platforms along with the advantages and disadvantages. 

This section also reviews literature in the fields of sound attenuation due to vegetation and urban 

form. 

 

Figure 2.1 Average Turbine Noise levels at various distances (GE 2012) 
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2.1.1 Openwind®  

Openwind® is an open source software package that is used for wind project design and 

optimization. It is a platform that more intuitively integrates GIS-based site information in order 

to promote industry collaboration and research in a flexible wind project design platform. Inputs 

for this software program include site selection and land constraints, wind resource and energy 

production potential, and turbines and operation characteristics. Site selection entails the 

construction of a wind resource grid defined within a GIS framework that will be the basis for 

generating data for the program. Resource and energy potential are based on hub height wind 

speed maps as well as meteorological data. The characteristic parameters of the turbines to be 

constructed are also taken into account in the model (Filippeli 2013, AWS Truepower 2014). The 

noise model in Openwind® is based on ISO 9613-2, which is the international standard for the 

propagation and attenuation of industrial noise (International Organization for Standardization 

1996). The program makes several simplifying assumptions in the generation of a noise map 

including: all noises are treated as point sources, all propagation is assumed to be in the same 

direction as the wind, obstacles and blocking effect of terrain can be ignored due to wind 

turbines being classified as aerial sources (AWS Truepower 2014).  This method of calculation 

results in a fairly conservative picture of wind noise propagation, however could have higher 

accuracy if all types of attenuation where taken into account.  

Openwind® was chosen for this project due to its accessibility, better documentation and 

its flexibility of using publicly available Google Earth GIS data for coastal site at a potential 

wind energy demonstration site in Georgia. 
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2.1.2 SPreAD-GIS 

SPreAD-GIS is an open-access software application and is implemented as a toolbox in 

ArcGIS software, a commercial geographic information system program. The main purpose of 

SPreAD-GIS is to model patterns of noise propagation caused by manmade sources in natural 

outdoor environments. This toolbox uses the data sets on land cover, topography, and weather 

condition from the GIS software to calculate noise propagation and excess noise above ambient 

conditions for the one third octave frequency bands around one or multiple sound sources (Reed 

et al. 2012).  The use of GIS plays an important role in noise mapping as it can greatly improve 

the accuracy of results obtained from noise modeling. In the field of research it will be important 

for standardization in order to optimize quality and efficiency of noise effect studies. 

Standardization will also be important because results of different studies can only be combined 

or compared if the same parameters for noise exposure and the same analysis methods are used 

(Kluijver 2003).  

SPreAD-GIS can be a more accurate program to model noise propagation due to the more 

capable GIS functions embedded within the ArcGIS software. The actual calculation for the 

noise propagation is the same as in Openwind® and uses ISO 9613-2; if elevation data and 

vegetation data can be obtained, it can be more thoroughly integrated with SPreAD-GIS than in 

Openwind® and thus making the model more accurate. SPreAD-GIS was not used in this study 

due to its need of a third party GIS data in order to create the model and a commercial program 

module to run it.  

2.1.3 Calculating Noise Levels (Noise Prediction) 

Noise levels at a receiver point can be calculated as opposed to being measured allowing 

noise models to be created. In some cases calculation is the preferred method even where noise 
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measurement can be conducted. This can occur in cases such as: where levels are contaminated 

by high levels of background noise, where future levels need to be predicted, where noise 

reduction scenarios need to be compared, where noise contour maps need to be produced, and 

where there is limited access to a measurement position (Brüel & Kjær 2000). Outdoor 

environments provide a challenge in terms of noise calculation due to the lack of uniformity. 

Changing meteorological conditions can easily cause fluctuations in sound levels by 10-20 dB 

over time periods as short as a few minutes. The longer the transmission path the larger will be 

the fluctuations. Outdoor sound propagation is affected by many factors including: obstructions, 

terrain type, atmospheric conditions, metrological conditions, and source geometry and type 

(Lamancusa 2009, National Physical Lab 2006, Larrson and Ohlund 20014). 

2.1.4 Vegetation’s Effect on Noise Propagation 

While not considered in the approach taken in this study, vegetation with dense foliage 

can have a major effect on the propagation of sound outdoors. It has been found that ground 

attenuation and scattering accounts for the highest amount of sound reduction from vegetation 

(Aylor 1972).  It has also been observed from studying tree belts effects on point source noise 

propagation, which is a negative logarithmic relationship between relative attenuation and the 

visibility, as well as a positive logarithmic relationship exists between relative attenuation and 

the width, length, or height of the tree belts (Fang and Ling 2003). 

2.1.5 Urban Form’s Effect on Noise Propagation 

Obstructions can attenuate noise greatly from noise generation sources; this can be 

observed by studies done on traffic noise. Barriers can effect sound attenuation based on the 

angle of the obstruction, the change in path length, the observer height, and the source height 

(Pamanikabud and Tansatcha 2003).  It has been found that urban forms in historical areas with 
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narrower roads, complex road networks, and a higher density of intersections lead to lower 

traffic noise and thus lower noise pollution (Tang and Wang 2007). Some urban areas have gone 

so far as to combine barriers with vegetation by introducing greenery on external building 

elements. This has had an even greater attenuating effect on long-distance noise propagation 

(Tang and Wang 2007). 

2.2 Wind Speed Forecasting Time Frames 

There are many studies that have focused on the improvement of wind speed prediction and 

forecasting techniques. A number of models have been employed on wind farms throughout the 

globe. The following section outlines existing methods and tools used in wind speed and wind 

power forecasting and prediction over time. Usually wind forecasting is focused on very short 

term prediction in terms of immediate time frame of minutes, to a short time frame of hours, to 

up to one to two days in the long term. (Wang 2011, Zhao 2011) 

2.2.1 Classification of Wind Forecasting 

 Wind forecasting can be classified according to time scale or the methodology used. 

There are typically three accepted time frames that wind forecasting is attempting to predict.  

 ● The immediate short term (8 hours ahead of present prediction) 

 ● The short term (1 day ahead of present prediction) 

 ● The long term (multiple days ahead of present normally no longer than 48 hours) (Zhao 

2011) 

There are also typically three different accepted methodologies for wind forecasting. 

 ● The physical approach (deterministic) 

The physical method is based on numerical weather prediction (NWP) using 

weather forecast data like temperature, pressure, obstacles, and surface roughness. 
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Generally the wind speeds provided by local meteorological services are used to 

predict the wind speed in the near future for a wind farm that can be converted 

into wind power (Zhao 2011). 

 ● The statistical approach 

The statistical method is based on a large amount of historical weather data 

without considering current meteorological conditions. At its core the statistical 

approach normally employs artificial intelligence (neural networks, neuro-fuzzy 

networks) and time series analysis approaches (Zhao 2011) 

 ● The hybrid approach 

The hybrid approach combines physical methods and statistical method. This 

method is most commonly used in weather forecasts and time series analysis. 

(Zhao 2011) 

2.2.2 Immediate short term forecasting 

 Models for the immediate short term time frame are generally based on statistical 

approaches, particularly ANN, because NWP is time consuming. Wind power management 

systems (WPMS) have been in use by the information and communication technology (ICT) 

environments of different grid operators and curators of large wind farms. WPMS uses an 

artificial neural network (ANN) which trained with a large amount of historical weather data. 

Furthermore, fuzzy logic and adaptive network based fuzzy interference systems (ANFIS) are 

very promising AI methods which each have their own advantages in forecasting wind power 

and speed. (Li Shi 2010, Zhao 2011) 
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2.2.3 Short term forecasting 

Several tools have been developed for the wind speed/power prediction in the short term time 

frame including: WPPT, Prediktor, Zephyr, Ewind, WPFS, AWPPS, etc. These models have also 

been implemented in case studies in Spain, Denmark, Ireland, Greece, Germany, and France (Li 

Shi 2010, Zhao 2011). 

2.2.4 Long term forecasting 

Only a few studies have been done on long-term wind forecasting approaches, thus there are not 

many prediction tools for this time scale. In order to have a forecast that is greater than a few 

days in advance, a more complex model must be used, as simpler models cannot meet these 

requirements. Most wind power prediction tools provide forecasts for a time horizon of several 

days in advance and are typically based on numeric weather prediction. NWP data can be 

provided by national weather services or private weather data collection sites. This sets NWP as 

the main factor for long term forecasting in the future. (Li Shi 2010, Zhao 2011) 

2.3 Immediate Short Term Wind Speed Forecasting Methodologies 

2.3.1 Neural Networks  

Neural networks (NN) are originally associated with human physiology but as time and 

technology has progressed NNs now also refer to something more artificial. Computational 

intelligence in the form of artificial neural networks (ANN) are being used more and more 

frequently in order to predict data through machine learning, similar to how the human mind 

functions (Hagan 1996). In order to understand ANNs biological NNs must be understood. 
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2.3.1.1 Biological Neural Networks 

In the human brain neural networks consist of three basic building blocks: axon, soma, 

and dendrites. Dendrites receive inputs from neighboring neurons and then relay the message to 

soma. The soma congregates and processes the input signals. The axon then processes these 

input signals into output signals that can be relayed to the next neuron via the synapse (Hagan 

1996).  

2.3.1.2 Artificial Neural Networks  

Information technology use neural networks in a system of hardware and/or software 

patterned after the biological counterparts found in the brain. There are a variety of applications 

for ANNs but are typically used for solving intricate signal processing or pattern recognition. 

ANNs have been used for speech to text software, handwriting recognition and classification, 

facial recognition, and weather prediction (MacKay 2003).  

Artificial neural networks typically contain a high number of processors that function if 

parallel to each other and organized in tiers. The first step takes in raw input information which 

could be compared to the eyes and optic nerves in humans each following layer receives an input 

from the output side of the previous tier- similar to how a neuron far away from the optic nerve 

receives signals from neurons close to it. The very last tier in the network produces a final output 

(MacKay 2003).  

Each node of network has its own set of rules that it has been programed with or has 

learned. Each layer or tier is highly connected meaning each node in tier t will be connected to 

many other nodes in tier t-1 (its inputs) as well as nodes in tier t+1 (t provides inputs for t+1). 

There can be multiple nodes in the output layer or just one from which the answer can be read 

(Mackay 2003). 
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ANNs are noteworthy for being adaptive, this refers to their ability to learn from an initial 

training session and as subsequent runs are performed more information is learned. ANNs are 

normally given an initial training on large quantities of data. Training gives the network and 

input and then tells the network what the output should be. The basic and common learning 

method is weighting of the inputs. Weighting the inputs is how a node determines the importance 

of an input from the previous node. If a right answer is obtained that input is weighted higher 

(Mackay 2003). 

Each node makes rules based on its inputs from the previous layer. Neural networks have 

several principles including: fuzzy logic, Bayesian methods, as well as genetic algorithms.  

Nodes can have initial conditioning including basic rules and relationships about the data being 

modeled. Having rules before the training stage can make training faster, however it can also 

create built in assumptions about the problem that may end up being unsupportive and unrelated 

or even inappropriate or incorrect. This makes the decision process of what to include (if 

anything) before training critical. ANNs can be defined by their depth as well, or how many 

layers (referred to as hidden layers) or neurons/nodes (contained in each hidden layer) they have 

between the input and the output (MacKay 2003). 

2.3.2 Various Techniques  

Monafared et al. uses fuzzy logic and artificial neural networks for wind speed 

forecasting and was shown to outperform the previous methods of the time. It was able to do this 

because fuzzy methods do not have as much of a rule based initialization as well as its adaptive 

nature to learn as it is estimating the wind speed. This result was able to outperform with less 

computational time (Monafared et al. 2009).  
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Li and Shi used an ANN model in order to estimate wind speed one hour in advance 

based on wind data from two different locations in North Dakota. This study showed that input 

data, learning rates, and the mechanisms of the model can affect the accuracy of the forecast. 

These methods had performance improvements of about 20% according to some metrics. 

Difficulties arose in this study due to instability problems concerning merging forecasts from 

other ANN models (Li and Shi 2010). ANN models from the MATLAB toolbox were applied by 

Mabel and Fernandez in order to estimate wind data in Muppandal, Tamil, India. This study used 

data from 2002-2005 from seven different locations, and the results were very similar to the 

actual data (Mabel and Fernandez 2008). ANN methods have been employed in Nigeria where 

there were no monitoring systems to great effect as well (Fadare 2010).  

Mohandes et al. employed the ANFIS technique to predict wind speeds at higher 

elevations using data collected from lower elevations. This study was able to obtain mean 

absolute error of 3%, lending to the dependability of the ANFIS technique (Mohandes 2011).  

2.4 Wind Speed Prediction 

Wind energy conversion has been known to be a successful technique in order to generate 

power, particularly for isolated regions. Studies and practice have shown that it is greatly 

beneficial to forecast wind speed, and thus wind power, for the optimal operation of a wind 

turbine that has significant wind activity and penetration. An accurate forecast of wind speed 

allows a balance between maximizing reliability and minimizing operating costs. Wind speed is 

considered one of the most difficult meteorological parameters to forecast because of the 

interactions between other large weather forces such as temperature and pressure differences, 

topological surface conditions, as well as the Earth’s rotation. Wind forecasting in the order of 

seconds to minutes are normally applicable to the control of a wind turbine. Forecasting in the 
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order of hours address the problem of scheduling with a power system. Forecasts that predict in 

the range of days address the problem of maintenance and resource planning. 

Wind speed prediction and forecasting is representative of a time series regression 

problem. Time series regression problems have been researched plentifully, this leads to many 

methods and simulations relating to the field of time series prediction. Nagy (Nagy 2016) 

proposed a generalized additive tree ensemble method in order to predict wind power generation 

along with solar power generation. Camara et al. (Camara et al. 2016) used autoregressive 

moving average model (ARIMA) with neural network models in order to predict energy 

consumption. Torres et al. used the ARIMA model in order to predict hourly average wind 

speeds (Torres 2005). Doucoure et al. employs artificial wavelet neural network and multi 

resolution analysis in order to determine time series predictions using wind speed data 

(Doucoure et al. 2016). Haydari et al. present a time series electric load prediction model using 

neuro-fuzzy techniques (Haydari et al, 2007).  

There have been a number of studies that have reported very good results and success in 

real world applications of using artificial neural networks (ANNs) (Doucoure et al. 2016, Macas 

2016, Kiartzis 1995, Sanchez 2008, Jursa 2007). Experiments comparing ANNs to other 

techniques have shown that ANNs have often yielded superior outcomes (More 2003, Brand 

2002, Fadare 2010, Kariniotakis et al. 1996, Tande and Landberg 1993). A reason that ANNs 

outperform other techniques is their aptitude in modelling non-linear data sets. Additionally 

ANNs, once they have been trained, are able to quickly predict with acceptable performance. 

Welch et al. compared a feedforward and feedback neural network design for short term wind 

speed prediction (Welch 2009). Sfetsos compared a variety of forecasting techniques including 
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ANNs for mean hourly wind time series (Sfetsos 2000). Gonzalez and Zamorreño predict short-

term electricity through employing a feedback ANN.  

There are many non-linear systems that appear in the real world, in other words systems 

that behave dynamically and are dependent on what state they are currently in. Recurrent neural 

networks (RNN), as well as nonlinear autoregressive (NAR) and nonlinear autoregressive neural 

networks with exogenous inputs (NARX) networks can prove useful in predicting this type of 

data (Cao 2012 and Mohanty et al. 2015). These ANNs can use time series data as dynamic input 

sets. Forecasting using ANNs is considered non-parametric, meaning that the way the time series 

is generated cannot be neglected. NAR network uses past data in the time series while RNNs do 

not as it has recurrent connections in its architecture.  

This study is concerned with using NAR and NARX methods in order to predict wind 

speed. The objective of this study is to use a methodology that will optimize these two neural 

networks for the problem at hand, and thus determine if these methods are suitable for wind 

speed prediction. This study then determines if external data can be used to improve 

performance. One year of hourly weather data was used from several locations around the US in 

order to test these networks. 
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CHAPTER 3 

RESEARCH METHODOLOGIES  

3.1 Datasets 

The noise propagation section of the thesis required a wind speed measurement at the 

experimental site as well as ambient noise measurements. The wind speed prediction required a 

data set of hourly average wind speed and dry bulb temperature readings over a year’s time at 

multiple locations.  

3.1.1 Wind Turbine Ambient Noise Dataset 

A relatively less populated area in southern Georgia with the potential of a small wind 

energy demonstration site was chosen for ambient noise measurement. A sound level meter was 

obtained from leading international manufacturer of such systems in the field of vibration and 

noise (Bruel & Kjaer, 2013). The Hand Held Analyzer type 2270 is a “4th generation analyzer 

that has a dual channel measurement capability and performs a frequency analysis based on the 

Fast Fourier Transform (FFT) algorithm. The dual channel capabilities allow for use of both 

channels simultaneously to measure with two microphones, two accelerometers, or one of each.” 

The devices were configured with all necessary software installed and tested. The transducers 

and analyzers were calibrated as per established procedure. The team visited the site and took 

measurements of the ambient noise level using Bruel & Kjaer portable noise level analyzer 

system. Measurements were taken at the proposed locations of wind turbines and the 

meteorological tower.   
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The microphone provided measurements for the ambient 

sounds in dBA. Ten two minute measurements were taken. Five 

locations were designated and two measurements for two minutes 

were taken at each location. The designated locations were 

chosen at the installation points for the meteorological tower and 

four turbines (fig 3.1). 

The first two recordings were taken at the Met Tower 

Location. The second two recordings were taken at the 

Turbine 4 location. The third set of recordings was taken at 

the Turbine 3 location. The fourth set of recordings were taken at the Turbine 2 location. The fifth 

set of recordings were taken at the Turbine 1 location. These locations can be observed in the 

figure above.  

3.1.2 Analysis of Initial Measurement Data 

Five specific locations were chosen for data measurement and recording. The five locations 

are where the meteorological tower and four turbines are to be potentially installed. For each 

location two data sets were taken. Each data set contains 2 minutes of measurement, resulting in 

20 minutes of logged data. Table 3.1 represents the mean value of the two recordings at each 

location, where LAeq is the A-weighted equivalent continuous noise level; LApeak is the A-

weighted equivalent continuous noise level peak. It was a relatively windy day. The average wind 

speed varied in the range of 2.20-4.60 m/s, the minimum was in the range of 0.30-1.60 m/s and 

the maximum was in the range of 5.60-12.10 m/s. The ambient noise level was in the range of 

42.5-52.1 dBA with peak values in the range of 47.1-65.7 dBA.  

 

Figure 3.1 measurement location of the noise dataset 
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Table 3.1 Ambient measurements of installation site 

  
 

To distinguish between the different decibels measurements their definitions are listed as follows: 

• LAeq is the A-weighted equivalent continuous sound level.  

• LApeak is the A-weighted maximum (peak) sound level.  

3.1.3 Wind Speed Prediction Data Set 

Historical weather data from Savannah International Airport (GA), the Bismarck 

Municipal Airport (ND), Logan International Airport (MA), and the John F. Kennedy 

International Airport (NY) were obtained through the National Climatic Data Center climate data 

online (NCDC CDO 2010). The data included hourly mean wind speed in MPH and hourly dry 

bulb temperature in degrees Fahrenheit from January 1st 2010 until December 31st 2010. The 

latter three airports are considered to have some of the worst year round weather according to the 

NCDC. The data was normalized to be in a range between zero and one in order to compare 

results between different data sets and prevent local maxima from skewing results. The data was 

LAeq Avg 
(dBA)

Lapeak Avg 
(dBA)

Site A1 44.5 49
Site A2 44.1 47.1
Site B1 45.3 54.1
Site B2 44.5 53.5
Site C1 42.5 49.6
Site C2 44.2 52.1
Site D1 45.9 51.4
Site D2 45.7 49.8
Site E1 52.1 65.7
Site E2 43.6 52.1
Max 52.1 65.7
Min 42.5 47.1
Average 45.2 52.4
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normalized using the equation 3.1 below. A sample set of the normalized data from Logan 

International Airport in Boston can be seen in figure 3.2 below. 

𝑧𝑧𝑖𝑖 = 𝑥𝑥𝑖𝑖−min (𝑥𝑥)
max(𝑥𝑥)−min (𝑥𝑥)

                                                  (3.1) 

 

 

Figure 3.2 Temperature and wind speed time series over one hour time steps (normalized Boston dataset (NCDC CDO 2010)).  

Using the neural network time series tool in MATLAB mean wind speed was predicted 

one step ahead, meaning the prediction occurred one hour ahead of the current time step. NAR 

and NARX methods were used in order to determine the most accurate method for forecasting 

wind speed. 

Seventy percent of the data was used for training with the Levenberg Marquardt back 

propagation (LMBP) learning algorithm. Fifteen percent of the data was used for validation. 

Validation is used to measure network generalization, and to stop the training when 

generalization does not improve any more. Generalization stops improving as indicated by an 

increase in the mean square error of the validation samples. The remaining fifteen percent is used 
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for testing. Testing has no effect on the training phase and is used to independently evaluate the 

network performance during and after training.  

3.2 Openwind® Noise Propagation Simulation 

3.2.1 Standards 

ISO 9613-2 specifies an engineering method for calculating the attenuation of sound 

during propagation outdoors and is used by Openwind®® to predict the sound propagation of 

wind turbines in terms of simple A-weighted sound pressure levels (AWS TruePower 2014, 

International Organization for Standardization 1996). This is used to predict the levels of 

environmental noise at a distance from a source. The method contained in ISO 9613-2 predicts 

the equivalent continuous A-weighted sound pressure level under metrological conditions 

favorable to propagation.  

Under this standard, several assumptions must be made. All noise sources are treated as 

point sources; all noise propagation is assumed to be in the same direction as the wind; 

atmospheric conditions are assumed favorable to noise propagation; and wind speeds that are 

between 3 and 11 meters above ground level are assumed to be between 1 and 5 m/s.   ISO 9613-

2 considers several types of attenuation including: atmospheric, geometric spreading and ground 

effect (porosity) (International Organization for Standardization, 1996). 

ISO 9613-2 introduces basic equations used by Openwind®® to predict the attenuations 

of noise outdoors in community environments at a distance from a variety of sources of known 

sound emission. These conditions are for downwind sound propagation under moderate ground 

based temperature inversion (temperature rises as altitude increases) such as that occurs at night. 

Temperature inversion over water surfaces will not be considered accurate as it may result in 
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higher sound pressure levels than predicted.   This method is applicable in practice to a great 

variety of noise sources and environments. 

𝐿𝐿𝑓𝑓𝑓𝑓(𝐷𝐷𝐷𝐷) is the equivalent continuous downwind octave-band sound pressure level at a 

receiver location. This is calculated for each point source, and its image sources, and for the 

eight octave bands with nominal midband frequencies from 63 HZ to 8 kHz (International 

Organization for Standardization 1996). 

 

𝐿𝐿𝑓𝑓𝑓𝑓(𝐷𝐷𝐷𝐷) = 𝐿𝐿𝑊𝑊 + 𝐷𝐷𝑐𝑐 − 𝐴𝐴                                             … (3.2) 

Where 

𝐿𝐿𝑊𝑊 is the octave-band sound power level, in decibels, produced by the point source 

relative to a reference sound power of one picowatt (1 pW) 

𝐷𝐷𝑐𝑐 is the directivity correction, in decibel, that describes the extent by which the 

equivalent continuous sound pressure level from the point sound source deviated in a 

specific direction from the level of an omnidirectional point sound source producing 

sound power levels 𝐿𝐿𝑊𝑊; 𝐷𝐷𝑐𝑐 equals the directivity index 𝐷𝐷𝐼𝐼 of the point sound source plus 

an index 𝐷𝐷Ω that accounts for sound propagations into solid angles less than 4π radians; 

for an omnidirectional point sound source radiating into free space, 𝐷𝐷𝑐𝑐 = 0 𝑑𝑑𝑑𝑑 

𝐴𝐴 is the octave band attenuation, in decibels, that occurs during propagation form the 

point sound source to the receiver.  

The attenuation term A in equation 1 is given by equation 3.3 (International Organization for 

Standardization 1996). 

𝐴𝐴 = 𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐴𝐴𝑔𝑔𝑔𝑔 + 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚                                 … (3.3) 

 



35 
 

 

Where  

𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑  is the attenuation due to geometrical divergence  

𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 is the attenuation due to atmospheric absorption 

𝐴𝐴𝑔𝑔𝑔𝑔 is the attenuation due to ground effect  

𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏 is the attenuation due to a barrier  

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the attenuation due to miscellaneous other effects (such as foliage, industrial 

noise, propagation through houses or buildings).   

The equivalent continuous A-weighted downwind sound pressure level 𝐿𝐿𝐴𝐴𝐴𝐴 shall be obtained by 

summing the contributing time-mean-square sound pressures calculated according to equations 

3.2 and 3.3 for each point sound source, for each of their image sources and for each octave 

band, as specified by equation 3.4 (International Organization for Standardization 1996). 

𝐿𝐿𝐴𝐴𝐴𝐴(𝐷𝐷𝐷𝐷) = 10lg {∑ [∑ 100.1[𝐿𝐿𝑓𝑓𝑓𝑓(𝑖𝑖𝑖𝑖) + 𝐴𝐴𝑓𝑓(𝑗𝑗)]} 𝑑𝑑𝑑𝑑 8
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1                         … (3.4) 

Where  

𝑛𝑛 is the number of contributions 𝑖𝑖 (sources and paths) 

𝑗𝑗 is an index indicating the eight standard octave-band midband frequencies from 63 Hz 

to 8kHz 

𝐴𝐴𝑓𝑓 denotes the standard A-weighting 

 To apply this method, parameters such as the geometry of the source and of the environment, 

the ground surface characteristics, and the source must be known. Accuracy limitations for this 

method can include the attenuation of sound propagation outdoors between a fixed source and 

receiver fluctuating due to variations in the metrological conditions along the propagation path 

(AWS Truepower 2014). 
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3.2.2 Noise Model  

A noise model theoretically estimates noise levels within a region of interest under 

specific parameters. It is important to understand that the specific set of conditions for which the 

noise is being modeled will be only a ‘snapshot’ of a certain environment. Physical 

environments, particularly those found outdoors, will not be fixed but have constantly varying 

conditions leading to constantly varying sound fields. Recognizing that modeling is a means of 

estimating noise it is imperative to validate the model predictions with the measured data. 

A noise propagation model for a potential wind energy generation site located in southern 

Georgia was created. The model consisted of four Bergey Excel 10 turbines, with a total sound 

power level of 90.18 dB(A) (Bergey Wind Power 2010) which is representative of 𝐿𝐿𝑊𝑊 in 

equation 3.2 with a noise map generated at an observer height of 1.75m (5.7 ft.) above ground 

level.  The noise analysis was conducted using the single A-weighted sound power level (ISO 

9613-2) noise model in Openwind®.  In this model, total sound power level at source (dB(A)), 

atmospheric attenuation, attenuation due to geometric spreading, ground effect attenuation, and 

site specific temperature and humidity information were all accounted for. A site specific relative 

humidity of 52.2%, a site specific temperature of 33.57° C, and a site specific air density of 

1.139 kg/m3 were used as inputs for 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 in equation 2. Additionally, an observer height of 1.75 

m and a ground porosity of 0.75 were used and is representative of 𝐴𝐴𝑔𝑔𝑔𝑔in equation 3.3. The total 

sound power level of 90.18 dB(A) (𝐿𝐿𝑊𝑊) for the Bergey Excel 10 turbine was taken from 

manufacturer specifications. A correction factor of -10 dB(A) was also used to compensate for 

miscellaneous attenuation and is representative of a negative  𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 term in equation 3.3, this 

equates to some noise amplification from the environment due to echoing and hard packed 

asphalt surfaces (AWS Truepower 2015). This noise model was used to predict sound levels at 
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residences that may be affected by wind turbine noise. These are considered receptors for noise 

calculation purposes (Kwong et al. 2012). 

This model does come with several simplifying assumptions the first being reflections are 

ignored as wind turbines are aerial sources of noise. This sound model is only representative of 

an area of land with flat or constantly sloping terrain. The model does not take into effect terrain 

features such as hills that can act as barriers to the sound propagation. The model also does not 

take other obstacles into account such as vegetation or buildings. In the model ambient noise is 

also ignored.  

3.3 Wind Speed Prediction 

This body of research was established in three different stages: firstly, the data was 

collected as well as pre-processed, secondly, ANN modelling and, finally, the performance was 

analyzed and comparisons were drawn between the two different networks: NAR and NARX 

networks implemented within MATLAB neural network toolbox. 

It has been shown in previous studies that a standard feedforward artificial neural 

network can yield very good results in time series prediction tasks (Haydari 2007, Doucoure et 

al. 2016, Macas et al. 2016, Kiartzis et al. 1995, Cao 2012, Mohanty et al. 2015). Two ANN 

architectures were selected that fit for the purpose of creating prediction models for wind speed. 

One model is called a non-linear autoregressive neural network (NAR). NAR networks are used 

to forecast data from a one –dimensional time series. The other model is called a non-linear 

autoregressive network with exogenous input (NARX). NARX networks forecast data from a 

multidimensional time series using external information to improve forecast performance in a 

time series.  
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NAR and NARX both have pros and cons: the NAR method are simpler than NARX and 

require less data. NARX methods allow the use of more information that corresponds to the data 

set to be predicted. In a wind power generation application meteorological towers at the site 

should generate wind speed data as well as other corresponding weather data such as pressure 

and temperature. The next subsections describe each model and how it can solve the issue of 

wind speed time series regression problem. 

3.3.1 NAR Model 

 In most applications, time series problems have a high degree of transient periods as well 

as great variation or disparity. This is why most time series problems are difficult to approximate 

using a linear model; this is why a non-linear approach is recommended. A nonlinear 

autoregressive neural network (Nyanteh et al. 2013, Kisi 2007, Jursa 2007) that is used for a time 

series regression problem, describes a discrete, non-linear, autoregressive model that can be 

expressed in the equation below (Mathworks 2014). 

𝑦𝑦(𝑡𝑡) = 𝑓𝑓�𝑦𝑦(𝑡𝑡 − 1), … 𝑦𝑦(𝑡𝑡 − 𝑑𝑑)�                                              (3.5)        

Equation 3.5 defines how NAR methods are used to predict the value of a data series y at 

the time t, y(t) using the d past values of the time series. The function f(·) is not known in prior to 

training. During the training stage the NN tries to determine optimal weights and neuron biases 

in order to approximate the function.  

The topology of a NAR network can be seen in figure 3.3 below. The d features  

�𝑦𝑦(𝑡𝑡 − 1), …𝑦𝑦(𝑡𝑡 − 𝑑𝑑)�  are called feedback delays. The number of feedback delays as well as 

the number of neurons per hidden layer is adjustable. The number of feedback delays and 

neurons per hidden layer are optimized through trial-and-error testing in order to obtain the 

network architecture for the greatest performance. It must be noted that increasing the number of 
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neurons in the hidden layer makes a system more complex and decreasing the amount of neurons 

in the hidden layer will lower the computing power and generalization of the ANN.  

 

Figure 3.3 Neural Network setup for an open Nonlinear Autoregressive (NAR) time series problem 

The learning rule used for NAR networks is the Levenberg-Marquardt backpropagation 

procedure (LMBP) (Marquardt 1963, Hagan et al. 1996, Cigizoglu and Kisi 2005).  This training 

function is used the majority of the time because it is usually the fastest back propagation 

method. The LMBP is used in order to calculate the second-order derivative without having to 

calculate the Hessian matrix. This is why LMPB has the fastest training speed. The performance 

function is in the form of a sum of squares as is normal in feed forward network training. This 

performance function allows the Hessian matrix to be calculated (Eq 3.6) and the gradient can be 

approximated (Eq 3.7). 

𝐻𝐻 = 𝐽𝐽𝑇𝑇𝐽𝐽                                                                    (3.6) 

𝑔𝑔 = 𝐽𝐽𝑇𝑇𝑒𝑒                                                                   (3.7) 

In equations (3.6) and (3.7), J is the Jacobian matrix. The Jacobian matrix has the first 

derivatives of the network error with respect the weights and biases. The variable e is a vector of 

the network errors in every training sample. In order to approximate the Jacobian matrix the 

study by (Hagan et al. 1996) uses the typical backpropagation method to estimate the Hessian 

matrix. The Levenberg-Marquardt method uses the following approach to approximate the 

Hessian matrix (Eq 3.8) 
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𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − [𝐽𝐽𝑇𝑇𝐽𝐽 + µ𝐼𝐼]−1𝐽𝐽𝑇𝑇𝑒𝑒                                                  (3.8) 

This method used in this ANN assumes that the performance function is sum of squares 

such as mean square error (MSE) or error sum of squares (SSE) as stated in Equations 3.9 and 

3.10 below. In these two equations 𝑦𝑦𝑖𝑖 stands for the i-th data sample, 𝑦𝑦�𝑖𝑖 represents the data that 

was approximated by the network for 𝑦𝑦𝑖𝑖, and n represents the number of data samples for the 

network training. 

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖) 2𝑛𝑛
𝑖𝑖=1                                                     (3.9) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛

                                                               (3.10) 

In this body of research, the NAR method is used to model a wind speed time series 

regression problem and is planned as such: the network architecture receives one input 

(corresponding to the wind speed at time t-1, y(t-1)), and one output (the following value of the 

series, y(t), to be predicted). The amount of delays and hidden neurons to be used are determined 

experimentally after data is normalized and analyzed.  

After an optimized NAR architecture has been established, the performance of one step 

ahead prediction (Fig 3.4) and multi-step ahead prediction using a closed loop network (Fig 3.5) 

are evaluated. A single step ahead prediction network is created by removing one delay tap so 

that its minimal delay tap is now 0 instead of 1. The new network returns the same outputs as the 

original network, but outputs are shifted one time step. A closed loop network is created by 

replacing the feedback input with a direct connection from the output layer. When using 

multistep prediction the network is simulated in open loop form for as long as there is known 

output data, then it is switched to closed loop form to perform multistep prediction while 

providing only the external input. In this study all but five time steps of the input series and 
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target series (of hourly wind speed) are used to simulate the network in open loop form. This 

produces a forecast five hours ahead of the most recent data collection point.  

 

Figure 3.4 Neural Network setup for an open loop Nonlinear Autoregressive (NAR) time series problem for step ahead prediction 

 

Figure 3.5 Neural Network setup for a closed loop Nonlinear Autoregressive (NAR) time series problem for multistep ahead 
prediction 

3.3.2 NARX Model 

 In many applications time series have important correlations between the time series to 

be modeled as well as additional exogenous data. It is known that wind speeds are highly 

correlated with both temperature and pressure [Lei et al. 2009, Kaminsky et al. 1985]. The usage 

of these additional weather data sets could benefit the forecasting of wind speed in order to 

provide a more accurate prediction [Berge 2002, Benoit and Yu 2002]. 

 Nonlinear autoregressive with exogenous (external) inputs, NARX, is the other model to 

be used in this study, as proposed in [Lin et al. 1996]. NARX methods predict the time series y(t) 

given past values d of series y and another external input series x(t), which can be single or 
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multidimensional inputs. Equation 3.11 models the NARX methods behavior when conducting 

regressive time series forecasting (Mathworks 2014). 

𝑦𝑦(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡 − 1), … ,𝑥𝑥(𝑡𝑡 − 𝑑𝑑),𝑦𝑦(𝑡𝑡 − 1), … ,𝑦𝑦(𝑡𝑡 − 𝑑𝑑))                                     (3.11) 

 The NARX method is a nonlinear model that approximates time step ahead values of a 

time series based on previous outputs and external data. This body of research uses one input for 

the wind speed time series at time t-1, y(t-1),  and an additional external input of dry bulb 

temperature at time t-1, x(t-1) to produce a single output y(t) that corresponds to the value of the 

wind speed at one time step (one hour) forward. Figure 3.6 below shows the topology for the 

NARX network. The learning rule used in training is still the LMBP as explained in the previous 

section. 

 

 

Figure 3.6 Neural Network setup for an open loop Nonlinear Autoregressive with exogenous inputs (NAR) time series problem 

After an optimized NARX architecture is established the performance of one step ahead 

prediction (Fig 3.7) and multi-step ahead prediction using a closed loop network (Fig 3.8) will be 

evaluated. A single step ahead prediction network is created by removing one delay tap so that 

its minimal delay tap is now 0 instead of 1. The new network returns the same outputs as the 

original network, but outputs are shifted one time step. A closed loop network is created by 

replacing the feedback input with a direct connection from the output layer. When using 
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multistep prediction the network is simulated in open loop form for as long as there is known 

output data, then it is switched to closed loop form to perform multistep prediction while 

providing only the external input. In this study all but five time steps of the input series and 

target series are used to simulate the network in open loop form. This produces a forecast five 

hours ahead of the most recent data collection point.  

 

 

 

Figure 3.7 Neural Network setup for an open loop Nonlinear Autoregressive (NARX) time series problem for one step ahead 
prediction 

 

Figure 3.8 Neural Network setup for a closed loop Nonlinear Autoregressive (NARX) time series problem for multistep ahead 
prediction 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Wind Turbine Noise Prediction Results 

4.1.1 Methods 

Google Earth was used to retrieve satellite imagery for the potential wind energy 

demonstration site (Figure 4.1). Polygons of the proposed site were then taken to gain an 

accurate geometric model of the land area with correct coordinates and spatial data (Figure 4.2). 

Points were then used to index the location of the turbines, meteorological tower, and occupied 

residences (Figure 4.3). This spatial data was used to create a shape file (.shp) to represent the 

potential site geometrically (Figure 4.4).  

 

Figure 4.1 Satellite imagery of the potential wind energy demonstration site 
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Figure 4.2 Polygon to represent the potential site in the model 

 

Figure 4.3 Points to represent homes and turbines in the model 
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Figure 4.4 Completed shape file to represent the potential site’s spatial data. 

 

4.1.2 Predicted Noise Maps  

Given the inputs specified above and in section 3.2.2, noise maps were predicted for the 

potential site with one turbine (Figure 4.5), two turbines (Figure 4.6), three turbines (Figure 4.7), 

and four turbines (Figure 4.8). The number of turbines used is representative of n in equation 4.3. 

The models depicted shows isolines of a 5 dB(A) gradation from the turbines in each case.  
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Figure 4.5 Noise map with one turbine 

 

Figure 4.6 Noise map with two turbines 
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Figure 4.7 Noise map with three turbines 

 

Figure 4.8 Noise map with four turbines 
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Table 4.1 depicts the various sound intensity levels at the homes on the map determined by 

observing the isolines at a resolution of one dB(A) per iteration. Table 4.1 also shows the max 

sound intensity level predicted 450 ft. from the turbine layout. These results could vary slightly 

from other future studies due to the lack of land parcel data that would accurately place the property 

lines of the homes in the geometry of the model. The results can also differ slightly due to several 

different site specific ambient conditions chosen including temperature, site specific air density, 

wind speed, and relative humidity. 

Table 4.1 Predicted sound intensity at homes on the potential site 

 

4.2 Analysis 

The ambient sound measurements and the theoretical sound predictions for the turbines 

were taken into account to generate a resultant sound level prediction at the residential locations 

on the potential site.  

4.2.1 Sample Calculation 

The formula for the sum level of sound pressures of n incoherent radiating sources is 
(Sengpiel) 

𝐿𝐿∑ = 10 ∗ log10 �
𝑝𝑝12 + 𝑝𝑝22 + ⋯+ 𝑝𝑝𝑛𝑛2

𝑝𝑝02
� = 10 ∗ log10(�

𝑝𝑝1
𝑝𝑝0
�
2

+ �
𝑝𝑝2
𝑝𝑝0
�
2

+ ⋯+ �
𝑝𝑝𝑛𝑛
𝑝𝑝0
�
2

 (4.1)   
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The reference sound pressure p0 is 20 µPa = 0.00002 Pa = 2 × 10−5 Pa (RMS) ≡ 0 dB. 
  
From the formula of the sound pressure level we find 
 

�𝑝𝑝𝑖𝑖
𝑝𝑝0
�
2

= 10
𝐿𝐿𝑖𝑖
10,    𝑖𝑖 = 1, 2, … , 𝑛𝑛                                         … (4.2) 

 
This inserted in the formula for the sound pressure level to calculate the sum level shows 
(Sengpiel) 
 

𝐿𝐿∑ = 10 ∗ log10 �10
𝐿𝐿1
10 + 10

𝐿𝐿2
10 + ⋯+ 10

𝐿𝐿𝑛𝑛
10�𝑑𝑑𝑑𝑑                     … (4.3) 

   
LΣ = Total level and L1, L2 ... Ln = sound pressure level of the separate sources in dBSPL. 

Incoherent means: lacking cohesion, connection, or harmony. It is not coherent.  

For example, adding of three decibel values, that means levels 94.0 + 96.0 + 98.0: 

𝐿𝐿 = 10 ∗ log10(109.4 + 109.6 + 109.8) = 101.1 𝑑𝑑𝑑𝑑                  … (4.4) 

4.2.2 Predicted Level with Ambient Noise 

Using the method described above the peak predicted sound intensity levels, at a distance 

of 450 ft. from the turbines, were considered along with the peak value measured at the turbine 

locations from Section 3.1.2 (52.10 dB(A)) for the max column. The predicted sound intensity 

levels at the homes were considered along with the average residence values measured (46.57 

dB(A)) for the home columns (Table 4.2).   

Table 4.2 Predicted sound intensity at residences on the potential site summed with measured values 

Sound Intensity in dB(A): Combined noise level of turbines and ambient [46 dB(A)]  

# of turbines 
Max (450 ft. 
from turbine Home 1 Home 2 Home 3 Home 4 Home 5 

1 53.1 46.6 46.6 46.6 46.6 46.6 
2 54.2 46.6 46.6 46.6 46.6 46.6 
3 54.2 46.6 46.6 46.6 46.6 46.6 
4 54.2 46.6 46.6 46.6 46.6 46.6 
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It can be observed from Table 4.2 that the effect of sound propagation from the wind 

turbines in the residential areas is negligible when considered along with the average (46 dB(A)) 

ambient noise measured at the site. Even the worst case scenario of the max value 450 ft. from 

the turbine location would only increase the dB(A) value by 4.2 - 7.1 dB(A). One dB(A) is the 

smallest increment of sound detectable by the human ear so an increase of 4.2-7.1 dB(A) would 

be largely unnoticed by a human observer.  

Table 4.3 Predicted sound intensity at residences on proposed site summed with an estimated 30 dB(A) night ambient noise 

Sound Intensity in dB(A): Combined noise level of turbines and predicted ambient [30 
dB(A)] 

# of turbines 
Max (450 ft. 
from turbine Home 1 Home 2 Home 3 Home 4 Home 5 

1 46.1 30.6 30.1 30.2 30.1 30.1 
2 50.0 31.2 30.6 30.3 30.3 30.3 
3 50.0 32.1 31.2 30.6 30.5 30.4 
4 50.0 32.5 31.5 30.8 30.8 30.6 

 

It can be observed from Table 4.3 that the effect of sound propagation from the wind 

turbines in the residential areas is again negligible when summed with an estimated 30 dB(A) 

ambient noise at night.  The sound intensity levels of the wind turbines are much lower than the 

30 dB(A) ambient noise.  The effect observed at the residences from the noise generated by the 

wind turbines would be an increase in the range of 0.1- 2.5 dB(A) barely noticeable to a human 

observer. 
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Table 4.4 Predicted sound intensity at residences on proposed site summed with an estimated 20 dB(A) night ambient noise 

Sound Intensity in dB(A): Combined noise level of turbines and predicted ambient [20 
dB(A)]  

# of turbines 
Max (450 ft. 
from turbine Home 1 Home 2 Home 3 Home 4 Home 5 

1 46.0 24.1 21.0 21.5 21.2 21.2 
2 50.0 26.2 24.1 22.5 22.1 22.1 
3 50.0 28.6 26.2 24.1 23.5 23.0 
4 50.0 29.5 27.0 24.8 24.8 24.1 

 

It can be observed from Table 4.4 that the effect of sound propagation from the wind 

turbines in the residential areas could be noticeable under these conditions when considered 

along  with an estimated 20 dB ambient noise at night. The sound intensity levels of the wind 

turbines are much closer to the 20 dB(A) ambient noise predicted than in other scenarios.  The 

effect observed at the residences from the noise generated by the wind turbines would be an 

increase in the range of 1- 9.5 dB(A) which could be noticeable to a human observer.  

Table 4.5 Predicted sound intensity at residences on proposed site summed with an estimated 10 dB night prediction 

Sound Intensity in dB(A): Combined noise level of turbines and predicted ambient [10 
dB(A)]  

# of turbines 
Max (450 ft. 
from turbine Home 1 Home 2 Home 3 Home 4 Home 5 

1 46.0 22.3 15.5 17.0 16.2 16.2 
2 50.0 25.1 22.3 19.5 18.6 18.6 
3 50.0 28.1 25.1 22.3 21.3 20.4 
4 50.0 29.1 26.1 23.2 23.2 22.3 

 

It can be observed from Table 4.5 that the effect of sound propagation from the wind 

turbines in the residential areas would be noticeable under these conditions when summed with 

an estimated 10 dB(A) ambient noise at night. The sound intensity levels of the wind turbines are 

higher than the 10 dB(A) ambient noise than in other scenarios.  The effect observed at the 

residences from the noise generated by the wind turbines would be an increase in the range of 
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6.2- 19.1 dB(A) which would be noticeable to a human observer. An increase of this magnitude 

would seem to be 6.2-19.1 times louder in perceived loudness (Brüel & Kjær 2000). 

In conclusion the noise produced by the wind turbines is predicted to be negligible on all 

accounts when observed from the residences unless it is an extremely quiet night (10-20 dB(A) 

or equivalent to the sound of falling leaves to whispering) 1-19 dB(A) range of increase could be 

expected under these conditions which would be perceived as much louder than pure ambient 

noise by a human observer. This would be a very rare occasion for ambient noise to reach these 

very low levels. However the results presented are a conservative estimate of actual sound levels. 

The model does not take into account hills or mountains, vegetation, or other obstacles to sound 

propagation such as buildings and other constructions near the site. 

4.3 Wind Speed Prediction Results 

This section describes all the tests that were performed and the experimental setting used. Figure 

4.9 contains all wind data (NCDC CDO 2010) used in the study but the time steps have been 

increased to every 48 hours to produce a plot with greater legibility. Noting the shape of the 

curves the Logan International Airport and JFK airport seem to have higher variability and 

overall wind speeds while the Bismarck Municipal Airport and Savannah International Airport 

seem to have less variable and overall lower wind speeds.  
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Figure 4.9 Average hourly wind speed data for the four different airports used in the study displayed as time steps of every 48 
hours for legibility (NCDC CDO 2010).  

 

4.4 Optimization of the network architecture 

Each data set does not have a relationship between each other due to the large distances 

between each measuring location. This is why it was important to adjust the delay parameters for 

each data set individually. Delay parameters concern the number of hours the ANN will use to 

execute the prediction. Put simply, the model is trained with the last d time-steps as delays. 

Eighteen different tests were conducted on each data set in order to determine the optimal 

number of delays. The delay values included d=2, d=4, d=8, the last 12 hours d=12, d=16, 

d=20, the last day d=24, d=36, the last two days d=48, d=60, and the last three days d=72. To 

find the best delay, all the parameters were set to a fixed value (hidden neurons set at 10) and the 

delays were modified in a trial and error procedure in order to optimize performance.  
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 Table 4.6 shows the average mean square error of 10 executions for each delay value and 

airport, using the NAR model. The best delay values are marked in bold, for all data sets 2 delays 

resulted in the highest error. The minimum number of delays in order to get the lowest error was 

48 hours for the Bismarck Municipal data set while the highest was 72 hours for the JFK dataset, 

the other two data sets had the best error at the 60 delays. From this information it can be 

determined that a delay parameter between 48-72 previous hours is needed in order to obtain an 

accurate model.  

 Once the optimal amount of delays has been determined that value is used as a fixed 

value for that dataset in the neurons test. The neuron count needed to train the NAR was then 

adjusted. With the fixed delay value determined from each dataset’s lowest MSE value, 10 

different executions for each neuron count were conducted and the average MSE of each setting 

was calculated. Table 4.7 shows a different number of neurons ranging from two to twenty 

contained in the hidden layer. The purpose of this experiment was to determine which network 

architecture could provide the lowest error and therefore best performance. It was found that as 

the neuron count was increased the prediction was worse due to local optimum optimization 

results using the LMBP learning algorithm, as well as overtraining. From table 4.7, it can be 

concluded that the best average MSE values occur at either two or three neurons in the hidden 

layer, depending on which location was being tested.  
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Table 4.6 MSE of the delay parameter obtained with the NAR model. (Bold values: best delay) 

 

 

Table 4.7 MSE of the hidden neurons parameter obtained with the NAR model. (Bold values: best neuron count) 

 

 

 After this experimentation was completed, the best NAR networks for predicted wind 

speed for the four different data sets were determined. Figure 4.10 below illustrates the best and 

worst trained networks for the 365 days for hourly wind speed data for the Bismarck Municipal 

Airport. Figure 4.10a shows validation performance of 0.0012978 and regression values of 

0.989. Figure 4.10b shows the validation performance of 0.00005578 and a regression value of 

0.9994. 

Wind Speed 2 3 4 6 8 10 12 14 16
Boston 1.21E-03 1.09E-03 1.03E-03 1.08E-03 1.00E-03 8.83E-04 9.94E-04 9.14E-04 8.22E-04
BNDA 1.22E-03 1.13E-03 1.25E-03 1.33E-03 1.44E-03 1.54E-03 1.69E-03 1.60E-03 1.98E-03
JFK 1.33E-03 1.13E-03 1.08E-03 1.24E-03 1.21E-03 1.14E-03 1.28E-03 1.55E-03 9.86E-04
SIA 1.29E-03 1.20E-03 1.04E-03 1.18E-03 1.95E-03 2.04E-03 2.29E-03 1.50E-03 1.76E-03

MEAN 1.26E-03 1.14E-03 1.10E-03 1.21E-03 1.40E-03 1.40E-03 1.57E-03 1.39E-03 1.39E-03
Wind Speed 18 20 24 26 28 36 48 60 72
Boston 5.52E-04 5.46E-04 1.50E-04 7.46E-05 7.29E-05 7.10E-05 7.12E-05 6.93E-05 7.05E-05
BNDA 1.34E-03 1.03E-03 1.33E-04 6.36E-05 6.49E-05 6.52E-05 6.33E-05 6.68E-05 6.37E-05
JFK 8.97E-04 9.33E-04 1.29E-04 6.42E-05 6.39E-05 6.15E-05 6.44E-05 5.90E-05 5.87E-05
SIA 1.22E-03 7.75E-04 1.58E-04 6.26E-05 6.31E-05 6.35E-05 6.64E-05 5.98E-05 6.22E-05

MEAN 1.00E-03 8.20E-04 1.42E-04 6.63E-05 6.62E-05 6.53E-05 6.63E-05 6.37E-05 6.38E-05

NAR Delays

Wind Speed 2 3 4 6 8 10 12 14 16 18 20
Boston 6.91E-05 5.81E-05 7.11E-05 7.22E-05 7.59E-05 7.37E-05 7.66E-05 7.48E-05 7.95E-05 7.94E-05 8.38E-05
BNDA 5.88E-05 6.01E-05 6.16E-05 6.43E-05 6.73E-05 6.76E-05 7.81E-05 7.36E-05 7.98E-05 8.02E-05 8.35E-05
JFK 5.84E-05 6.22E-05 5.85E-05 6.21E-05 6.06E-05 6.06E-05 6.82E-05 7.46E-05 6.61E-05 7.19E-05 6.14E-05
SIA 5.07E-05 5.19E-05 5.69E-05 6.22E-05 6.46E-05 7.36E-05 8.36E-05 9.15E-05 7.76E-05 9.87E-05 1.06E-04

MEAN 5.92E-05 5.81E-05 6.20E-05 6.52E-05 6.71E-05 6.89E-05 7.66E-05 7.86E-05 7.58E-05 8.26E-05 8.36E-05

Number of Neurons in the Hidden Layer NAR
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(a) 

 

  

 

Figure 4.10 (a) Validation performance and Regression Values for the Worst MSE (b) Validation performance and Regression 
Values for the Best MSE for the normalized data of BNDA using the NAR model 
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 The NARX model was tested in a similar fashion however extra information was used 

that could be useful to prediction. In this experiment dry bulb temperature in Fahrenheit was 

used as an exogenous input variable. Table 4.8 below illustrates the results pertaining to the 

amount of delays required to obtain the best model. With the NARX network the best delays 

were between 28-48 hours while the worst delays were generally under 18 hours. 

Table 4.8 MSE of the delay parameter obtained with the NARX model. (bold values: best delay) 

  

As was done for the NAR model table 4.9 illustrates the neuron values the corresponded 

to the best MSE for that dataset. The best results were achieved between three to six neurons 

with the average neuron count being three. 

Table 4.9 MSE of the hidden neurons parameter obtained with the NARX model. (Bold values: best neuron count in the hidden 
layer) 

 

 After this experimentation was completed, the best NARX networks for predicted wind 

speed for the four different data sets were determined. Figure 4.11 below illustrates the best and 

worst trained networks for the 365 days for hourly wind speed data for the Bismarck Municipal 

Wind Speed 2 3 4 6 8 10 12 14 16
Boston 7.66E-04 8.10E-04 7.38E-04 7.81E-04 9.95E-04 9.94E-04 1.11E-03 1.06E-03 1.08E-03
BNDA 1.05E-03 7.64E-04 8.65E-04 1.23E-03 1.32E-03 1.01E-03 8.13E-04 9.42E-04 9.73E-04
JFK 9.80E-04 8.34E-04 8.95E-04 8.92E-04 6.69E-04 7.83E-04 9.13E-04 8.01E-04 9.42E-04
SIA 9.80E-04 8.34E-04 8.95E-04 8.92E-04 6.69E-04 7.83E-04 9.13E-04 8.01E-04 9.42E-04

MEAN 9.45E-04 8.10E-04 8.48E-04 9.49E-04 9.13E-04 8.93E-04 9.37E-04 9.01E-04 9.84E-04
Wind Speed 18 20 24 26 28 36 48 60 72
Boston 6.72E-04 6.58E-04 1.54E-04 8.17E-05 7.53E-05 7.99E-05 7.88E-05 7.68E-05 8.13E-05
BNDA 1.11E-03 1.12E-03 1.77E-04 6.68E-05 6.53E-05 6.72E-05 7.58E-05 7.39E-05 7.50E-05
JFK 1.05E-03 8.70E-04 1.37E-04 6.98E-05 6.62E-05 6.78E-05 6.28E-05 6.76E-05 6.76E-05
SIA 1.05E-03 8.70E-04 1.37E-04 6.98E-05 6.62E-05 6.78E-05 6.28E-05 6.76E-05 6.76E-05

MEAN 9.73E-04 8.80E-04 1.51E-04 7.20E-05 6.82E-05 7.06E-05 7.01E-05 7.15E-05 7.29E-05

NARX Delays

Wind Speed 2 3 4 6 8 10 12 14 16 18 20
Boston 7.06E-05 5.61E-05 7.08E-05 7.07E-05 6.83E-05 7.44E-05 7.26E-05 7.23E-05 7.18E-05 7.23E-05 7.26E-05
BNDA 5.71E-05 5.64E-05 5.84E-05 6.29E-05 6.55E-05 6.47E-05 6.66E-05 6.48E-05 6.77E-05 6.95E-05 6.46E-05
JFK 6.04E-05 6.16E-05 5.96E-05 6.15E-05 6.11E-05 6.26E-05 6.38E-05 6.14E-05 6.33E-05 6.33E-05 6.49E-05
SIA 5.41E-05 5.04E-05 5.06E-05 4.99E-05 5.17E-05 5.57E-05 5.19E-05 5.15E-05 5.49E-05 5.16E-05 5.43E-05

MEAN 6.06E-05 5.61E-05 5.98E-05 6.13E-05 6.16E-05 6.44E-05 6.37E-05 6.25E-05 6.44E-05 6.42E-05 6.41E-05

Number of Neurons in the Hidden Layer NARX
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Airport. Figure 4.11a shows validation performance of 0.00065897 and regression values of 

0.99394. Figure 4.11b shows the validation performance of 0.000054767 and a regression value 

of 0.99917. 

 

(a) 

  

(b) 

Figure 4.11 (a) Validation performance and Regression Values for the Worst MSE (b) Validation performance and Regression 
Values for the Best MSE for the normalized data of BNDA using the NARX model 
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According to this information it can be concluded that using a NARX network may 

reduce the amount of previous data points needed to get an accurate prediction however neuron 

counts must be increased yielding a more complex model. A summary of these results can be 

found in table 4.10 below 

Table 4.10 Number of neurons and delays corresponding to the lowest MSE values for both NAR and NARX methods 

 

 Figure 4.12 below shows a comparison between the means obtained from the NAR and 

NARX methods in respect to the models number of delays and number neurons. Both of these 

plots show that the NARX’s results have lower error and therefore better performance for 

predicting wind speed. The NARX’s MSE curves are much lower than the NAR curves when the 

network complexity is simpler.  

 

(a) 

Wind Speed NAR NARX Wind Speed NAR NARX
Boston 3 3 Boston 60 28
BNDA 2 3 BNDA 48 28
JFK 2 4 JFK 72 48
SIA 2 6 SIA 60 48
MEAN 2 4 MEAN 60 38

Number of Neurons Number of Delays
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(b) 

Figure 4.12 (a) Comparison of average MSE in respect to the delay parameter (b) Comparison of the average MSE in respect to 
the network complexity (number of neurons) 

 

4.5 Implementation of optimized networks into step ahead and multi-step ahead 

prediction 

After the network architecture had been optimized the NAR and NARX networks were 

subjected to one step ahead and multi-step ahead prediction. A single step ahead prediction 

network is created by removing one delay tap so that its minimal delay tap is now 0 instead of 1, 

see figure 4.13. The new network returns the same outputs as the original network, but outputs 

are shifted one time step thus each forecasted time step is occurring at. A closed loop network is 

created by replacing the feedback input with a direct connection from the output layer. When 

using multistep prediction the network is simulated in open loop form for as long as there is 

known output data, then it is switched to closed loop form to perform multistep prediction while 

providing only the external input this can be noted in figure. In this study all but 5 time steps of 
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the input series and target series are used to simulate the network in open loop form. This 

produces a forecast five hours ahead of the most recent data collection point. 

 

 

 

Figure 4.13 Single step ahead prediction using NARX Network with 27 delays and a delay tap of zero (0:27 as opposed to 1:28 in 
the normal configuration) 

Table 4.11 below shows a comparison between the means obtained from the ten trials of 

the NAR and NARX methods for single step ahead and multi-step ahead prediction. The table 

displays information illustrating that the NARX’s results have lower error and therefore better 

performance for predicting wind speed for single step ahead prediction. The multistep ahead 

prediction was much better with the NARX network with two orders of magnitude less error 

when predicting wind speed five hour in advance with the addition of the exogenous data. Tables 

4.12 and 4.13 display the results of paired t test results for both single step ahead and multi-step 

ahead prediction. The paired t-test confirmed that the difference of prediction results of the NAR 

and NARX implementation for each case were statistically significant. 
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Table 4.11 Single step ahead and multi-step ahead MSE values for both NAR and NARX methods and all datasets 

 

 

 

 

Table 4.12 Summary of paired t-test results for single-step-ahead prediction of wind speed 
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Table 4.13 Summary of paired t-test results for multi-step-ahead prediction of wind speed 

 

Figures 4.14-4.21 below displays plots of the normalized target values compared with the 

predicted values corresponding to the NAR and NARX networks for each data set. Figure 4.14 

show the NAR and NARX network results for the Boston data set for single step ahead 

prediction. Figure 4.15 illustrates the NAR and NARX results for the Boston data set for multi-

step ahead prediction. Figures 4.16-4.21 follow the same pattern for the Bismarck Municipal 

Airport, JFK Airport, and Savannah International Airport respectively. While hourly predictions 

were made, these plots are displayed in time steps of 48 hours to improve legibility of the plots.  
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a 

 

b  

Figure 4.14 Single step ahead comparison of target values vs predicted in the Boston (Logan International) data set (a) NAR 
Network (b) NARX Network (48 hour time steps) 
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a 

 

b 

Figure 4.15 Multi-Step ahead prediction comparison of target values vs predicted in the Boston (Logan International) data set (a) 
NAR Network (b) NARX Network (48 hour time steps) 
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a 

 

b 

Figure 4.16 Single step ahead comparison of target values vs predicted in the Bismarck Municipal Airport data set (a) NAR 
Network (b) NARX Network (48 hour time steps) 
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a 

 

b 

Figure 4.17 Multi-Step ahead prediction comparison of target values vs predicted in the Bismarck Municipal Airport data set (a) 
NAR Network (b) NARX Network (48 hour time steps) 
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a 

 

b 

Figure 4.18 Single step ahead comparison of target values vs predicted in the JFK Airport data set (a) NAR Network (b) NARX 
Network (48 hour time steps) 
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a 

 

b 

Figure 4.19 Multi-Step ahead prediction comparison of target values vs predicted in the JFK Airport data set (a) NAR Network 
(b) NARX Network (48 hour time steps) 



71 
 

 

 

a 

 

b 

Figure 4.20 Single step ahead comparison of target values vs predicted in the Savannah International Airport data set (a) NAR 
Network (b) NARX Network (48 hour time steps) 
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a 

 

b 

Figure 4.21 Multi-Step ahead prediction comparison of target values vs predicted in the Savannah International Airport data set 
(a) NAR Network (b) NARX Network (48 hour time steps) 
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4.6 Discussion 

4.6.1 Wind Turbine Noise Discussion 

 This experimentation began with ambient sound measurements at the potential site. Table 

3.1 in section 3.1.2 summarizes the data obtained in the data collection stage. The data was 

comprised of ten two minute measurements of ambient noise data as well as wind speed acquired 

at the locations for potential wind turbines.  The average wind speed varied in the range of 2.20-

4.60 m/s, the minimum was in the range of 0.30-1.60 m/s and the maximum was in the range of 

5.60-12.10 m/s. The ambient noise level was in the range of 42.5-52.1 dB(A) with peak values in 

the range of 47.1-65.7 dB(A). This data is significant because the noise data was during a time of 

acceptable wind levels for power generation. 

 The noise model was based off of four Bergey Excel 10 turbines with other inputs as 

specified in section 3.2.2. The noise model included simplifying assumptions as follows: does 

not account for terrain features and assume ground is flat or constantly sloping, does not take 

into account vegetation or buildings, and reflections of noise are ignored. Section 4.1.2 present 

the results of the noise model with table summarizing the results of the model. The model stated 

that the homes in the area would all receive noise propagation less than 30 dB(A). The max value 

of noise was calculated at 450 ft. from the turbine and was no greater than 50 dB(A) similar to 

the ambient noise levels recorded at the site with only ambient noise sources. 

 Section 4.2 implements a summation of the ambient noise values as well as the predicted 

noise values. It was noted that when the measured ambient noise levels were summed with the 

expected noise values of the turbine the increase in loudness was negligible. A worst case 

scenario 450 ft. away from the turbine with the highest peak ambient noise measurements 

resulted in an increase of 6.5 - 7.6 dB(A) which would be noticed by a human observer. It was 
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further investigated that in the event of a quiet night in the range of 10-30 dB(A) how would that 

affect the noise levels. It was found that an extremely quiet night between 10-20 dB(A) 

(equivalent to the sound of falling leaves to whispering) would produce the right conditions for 

the wind turbines to be noticed by the observer at the location. Considering vegetation, hills, 

buildings and other obstacles, it is still unlikely that the noise created by the turbines would 

disturb residents close in the area of a potential wind farm. 

 The max wind turbine noise determined by the noise map generated by Openwind was 

about 50 dB(A) at a distance of 450 ft. (137 m). The GE global study discussed in the literature 

review presented the illustration seen in figure 2.1. Similar to this study, at a range between 

100m-400m they determined an average wind turbine noise levels to be between 50-40 dB(a). 

After 400 m the wind turbine noise would have been unnoticed by a neighboring observer as the 

ambient noise recorded at the site was too great. This GE study helps give some validation to the 

wind turbine section of this study. 

4.6.2 Wind Speed Prediction Discussion 

This experimentation has concentrated on the comparison of prediction performances of  

NAR and NARX network models for wind speed forecasting, these networks consider cases 

where exogenous data is available and when there is not. The first issue to be confronted when 

selecting the model to be used is the availability of data when trying to perform prediction. Most 

wind generation efforts will include a meteorological tower that will collect wind speed data as 

well other categories of data useful for wind speed prediction.  

 When observing the architecture optimization section of the study it is important to note 

the importance of the number of delays chosen when optimizing this type of model. Tables 4.6 

and 4.8 show that each data set had a different optimized delay parameter and its value cannot be 
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generalized for all datasets. The delay parameter is important as each data set has its own 

characteristics and behavior as seen in figure 4.10 it was found that the use of external data such 

a temperature can lower the amount of delays needed to get accurate predictions in every case 

observed. NARX requires fewer past values and thus NARX prediction models will be simpler.  

 NAR methods were determined to be useful if only wind speed information was 

available, and can provide accurate midterm predictions.  This simpler alternative to the NARX 

method can be used with a simple dataset only containing wind speed data. Table 4.6 shows that 

a NAR model with little information, such as only 2 hours of delay, is not an adequate amount of 

information to model the data and provides poor results when compared to higher delays. The 

highest accuracy for the NAR model was averaged at 60 hours of previous data. A higher 

amount of delays than 28 may be not necessary as the accuracy is basically stabilized at this 

point as seen in figure 4.10a.  

 It was determined that a less complex model in regards to the number of neurons in the 

hidden layer yielded a time series that modeled that target time series well, a large number of 

neurons in the hidden layer was determined to provide inaccurate results due to the local optima 

in the network parameters’ optimization process during the training stage. Suitable prediction 

where obtained as seen in figure 4.10b. 

 NARX methods have illustrated that the inclusion of another simple time series, such as 

temperature, can help explain anomalies and sudden changes in wind speed and, thus, create a 

more accurate time series forecast. For example, it can be seen in figure 3.2 that temperature and 

wind speed have a somewhat inverse relationship. If the temperature were to fluctuate suddenly 

preemptively to a wind speed change the model would be able to take this into account and thus 

give a more accurate prediction.  
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 Due to this extra time series the NARX methods tend to need less data in order to get a 

reasonable prediction. As seen in table 4.8 each dataset required a different delay parameter in 

order to get optimal results. The average delay for best results was 28 hours of previous data and 

this is where the data stabilized as seen in figure 4.11a it can also be observed from this figure 

that when less than 28 hours of data is given in the delays the NARX network performs much 

better.  

 The number of neurons present in the NARX network was on average best at three with 

the Savannah International Airport dataset having the lowest MSE values with six neurons as 

seen in table 4.9. Network complexity is about the same for both NARX and NAR networks. 

NARX networks require less historical data to get a more accurate prediction as displayed in 

figure 4.11b. This shows that the model was able to adjust itself very well to the curve of real 

data, a better fit than the NAR data. 

 To summarize the optimization portion of the study figure 4.12 provide a clear graphical 

representation of the models. NAR methods are good if only wind speed data is available. NAR 

methods work with a simpler dataset, however more of the historic data is needed to have a good 

forecast. Conversely, NARX models work with exogenous data, this allows the model to have 

simpler predictors by imputing additional data. Figure 4.12b illustrates the final results of neuron 

optimization in the NAR and NARX networks. This figure shows that the NARX network 

improves upon the NAR network, actually the worst result obtained by the NARX network are 

still better than the best NAR errors in most cases.  

 When the optimized networks were implemented in a single step and multi-step ahead 

prediction model the differences continued to grow. When observing the single step ahead MSE 

values (table 4.11) it can be seen that the NAR network had values averaging at 6.1994E-04 
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while the NARX networks had values averaging at 5.561E-05 a difference in another order of 

magnitude. The NARX network was able to outperform the NAR network when predicting one 

hour in advance. When observing the Multistep ahead predictions from the same table NAR 

averaged 3.850E-02 while NARX averaged at 1.043E-04 a difference of two orders of 

magnitude. 

 The NARX network significantly outperformed the NAR network when predicting five 

time steps in advance. This furthers the conclusion that NARX networks require less data in 

order to get a more accurate prediction that is able to adjust itself very well to the curve of real 

data, a much better fit than the NAR network. This comparison can be noted graphically in 

figures 4.6-4.13. The NARX networks are seen to outperform the NAR networks in single step 

ahead prediction in all locations. This effect is compounded when observing the multistep ahead 

prediction for all four locations. The NARX network greatly outperformed the NAR network in a 

five hour ahead prediction.  

  



78 
 

 

CHAPTER 5 

CONCLUSION 

5.1 Summary of Present Work 

5.1.1 Wind Turbine Noise Prediction 

This experiment collected ambient noise data from a potential wind energy generation 

site as well as created a noise propagation model for wind turbines at that location. It was found 

that during a period of time where wind levels were appropriate for power generation the noise 

generated by the turbines would be outweighed by the ambient noise present at residences close 

to the site. The noise produced by the wind turbines was predicted to be negligible on all 

accounts when observed from the residences unless it is an extremely quiet night (10-20 dB(A) 

or equivalent to the sound of falling leaves to whispering). A 1-19 dB(A) range of increase could 

be expected under these conditions which would be perceived as much louder than pure ambient 

noise by a human observer. This is would be a very rare occasion for ambient noise to reach such 

low levels. However the results presented are a conservative estimate of actual sound levels. The 

model does not take into account hills or mountains, vegetation, or other obstacles to sound 

propagation such as buildings and other constructions near the site. 

5.1.2 Wind Speed Prediction 

This body of work provided a methodology that could be used to forecast wind speed 

using artificial neural networks. This method collected one year’s worth of hourly wind data in 

MPH and dry bulb temperature data in degrees Fahrenheit from 4 different locations in the US. 

The data was then normalized to be in a range between zero and one in order to compare results 

between different data sets and prevent local maxima from skewing results. After this two 
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different prediction models from the ANN area were chosen for study: NAR and NARX. Both 

time series prediction models were able to provide suitable results, however it was found that 

NARX networks where able to predict the time series regression problem more accurately due to 

the addition of external data. NARX also had the advantage of using less delays meaning less 

historical data were used in forecasting. When implementing the two networks into forecasting 

further in the future the NARX network was much more accurate and difference was found to be 

statistically significant. When forecasting one hour ahead the NARX network had error less than 

the NAR network in the scale of one magnitude. When forecasting five hours ahead the NARX 

network had error less than the NAR network in the scale of two magnitudes. This furthers the 

conclusion that NARX networks require less data in order to get a more accurate prediction that 

is able to adjust itself very well to the curve of real data, a much better fit than the NAR network.  

5.2 Scope of Future Work 

 In regards to the noise propagation section of the study there are several areas of 

improvement. The primary improvement would be employing more comprehensive software, 

such as SPreAD-GIS, in order to produce a more comprehensive noise model, however this 

comes with increased costs. Secondarily more ambient noise data and weather data could be 

collected at various different times in order to get a more accurate data set to test. Another major 

improvement to the study would be to obtain wind turbine sound propagation data, using the 

sound level meter, in order to compare it to the predicted values. This would allow one to truly 

determine the accuracy of the model. 
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The wind speed prediction could potentially be improved by employing different NN 

techniques. Incorporating numerical weather prediction algorithms could potentially increase the 

time frame these models are able to predict accurately as well. It would be interesting to include 

more exogenous data into the model in order to determine if this would increase the accuracy of 

the current model. 
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APPENDICES  

Appendix A 

Software Implementation of NAR Network in MATLAB 2014a 

% Solve an Autoregression Time-Series Problem with a NAR Neural Network 
% Script generated by Neural Time Series app 
% 
% This script assumes this variable is defined: 
% 
%   NormSIAWS - feedback time series. 
  
T = tonndata(NormBNDAWS,false,false); 
  
% Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. NTSTOOL falls back to this in low memory 
situations. 
trainFcn = 'trainlm';  % Levenberg-Marquardt 
  
% Create a Nonlinear Autoregressive Network 
feedbackDelays = 1:2; 
hiddenLayerSize = 2; 
net = narnet(feedbackDelays,hiddenLayerSize,'open',trainFcn); 
  
% Choose Feedback Pre/Post-Processing Functions 
% Settings for feedback input are automatically applied to feedback output 
% For a list of all processing functions type: help nnprocess 
net.input.processFcns = {'removeconstantrows','mapminmax'}; 
  
% Prepare the Data for Training and Simulation 
% The function PREPARETS prepares timeseries data for a particular network, 
% shifting time by the minimum amount to fill input states and layer states. 
% Using PREPARETS allows you to keep your original time series data 
unchanged, while 
% easily customizing it for networks with differing numbers of delays, with 
% open loop or closed loop feedback modes. 
[x,xi,ai,t] = preparets(net,{},{},T); 
  
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivide 
net.divideFcn = 'divideblock';  % Divide data randomly 
net.divideMode = 'time';  % Divide up every value 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
  
  
% Choose a Performance Function 
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% For a list of all performance functions type: help nnperformance 
net.performFcn = 'mse';  % Root Mean squared error 
  
% Choose Plot Functions 
% For a list of all plot functions type: help nnplot 
net.plotFcns = {'plotperform','plottrainstate','plotresponse', ... 
  'ploterrcorr', 'plotinerrcorr'}; 
  
  
% Train the Network 
[net,tr] = train(net,x,t,xi,ai); 
  
% Test the Network 
y = net(x,xi,ai); 
e = gsubtract(t,y); 
performance = perform(net,t,y); 
  
% Recalculate Training, Validation and Test Performance 
trainTargets = gmultiply(t,tr.trainMask); 
valTargets = gmultiply(t,tr.valMask); 
testTargets = gmultiply(t,tr.testMask); 
trainPerformance = perform(net,trainTargets,y); 
valPerformance = perform(net,valTargets,y); 
testPerformance = perform(net,testTargets,y); 
  
  
  
% % % %  
% % % % % View the Network 
%  view(net) 
% % % %  
% % % % % Plots 
% % % % % Uncomment these lines to enable various plots. 
% figure, plotperform(tr) 
% figure, plotregression(t,y) 
  
% % % % %figure, plottrainstate(tr) 
%figure, plotresponse(t,y) 
%figure, ploterrcorr(e) 
%figure, plotinerrcorr(x,e) 
% % % %  
% Closed Loop Network 
% Use this network to do multi-step prediction. 
% The function CLOSELOOP replaces the feedback input with a direct 
% connection from the outout layer. 
netc = closeloop(net); 
[xc,xic,aic,tc] = preparets(netc,{},{},T); 
yc = netc(xc,xic,aic); 
perfc = perform(net,tc,yc); 
% view(netc) 
% Multi-step Prediction 
% Sometimes it is useful to simulate a network in open-loop form for as 
% long as there is known data T, and then switch to closed-loop to perform 
% multistep prediction. Here The open-loop network is simulated on the known 
% output series, then the network and its final delay states are converted 
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% to closed-loop form to produce predictions for 5 more timesteps. 
[x1,xio,aio,t] = preparets(net,{},{},T); 
[y1,xfo,afo] = net(x1,xio,aio); 
[netc,xic,aic] = closeloop(net,xfo,afo); 
[y2,xfc,afc] = netc(cell(0,5),xic,aic); 
  multiStepPerformance = perform(net,T(1,predictOutputTimesteps),y2) 
% Further predictions can be made by continuing simulation starting with 
% the final input and layer delay states, xfc and afc. 
  
  
% Step-Ahead Prediction Network 
% For some applications it helps to get the prediction a timestep early. 
% The original network returns predicted y(t+1) at the same time it is given 
y(t+1). 
% For some applications such as decision making, it would help to have 
predicted 
% y(t+1) once y(t) is available, but before the actual y(t+1) occurs. 
% The network can be made to return its output a timestep early by removing 
one delay 
% so that its minimal tap delay is now 0 instead of 1.  The new network 
returns the 
% same outputs as the original network, but outputs are shifted left one 
timestep. 
nets = removedelay(net); 
[xs,xis,ais,ts] = preparets(nets,{},{},T); 
ys = nets(xs,xis,ais); 
stepAheadPerformance = perform(net,ts,ys) 
% view(nets) 
% Deployment 
% Change the (false) values to (true) to enable the following code blocks. 
% See the help for each generation function for more information. 
if (false) 
  % Generate MATLAB function for neural network for application deployment 
  % in MATLAB scripts or with MATLAB Compiler and Builder tools, or simply 
  % to examine the calculations your trained neural network performs. 
  genFunction(net,'myNeuralNetworkFunction'); 
  y = myNeuralNetworkFunction(x,xi,ai); 
end 
if (false) 
  % Generate a matrix-only MATLAB function for neural network code 
  % generation with MATLAB Coder tools. 
  genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 
  x1 = cell2mat(x(1,:)); 
  xi1 = cell2mat(xi(1,:)); 
  y = myNeuralNetworkFunction(x1,xi1); 
end 
if (false) 
  % Generate a Simulink diagram for simulation or deployment with. 
  % Simulink Coder tools. 
  gensim(net); 
end 
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Appendix B 

Software Implementation of NARX Network in MATLAB 2014a 

 

% Solve an Autoregression Problem with External Input with a NARX Neural 
Network 
% Script generated by Neural Time Series app 
% 
% This script assumes these variables are defined: 
% 
%   NormBNDATemp - input time series. 
%   NormBNDAWS - feedback time series. 
  
X = tonndata(NormJFKTemp,false,false); 
T = tonndata(NormJFKWS,false,false); 
  
% Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. NTSTOOL falls back to this in low memory 
situations. 
trainFcn = 'trainlm';  % Levenberg-Marquardt 
  
% Create a Nonlinear Autoregressive Network with External Input 
inputDelays = 1:28; 
feedbackDelays = 1:28; 
hiddenLayerSize = 2; 
  
net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize,'open',trainFcn); 
  
% Choose Input and Feedback Pre/Post-Processing Functions 
% Settings for feedback input are automatically applied to feedback output 
% For a list of all processing functions type: help nnprocess 
% Customize input parameters at: net.inputs{i}.processParam 
% Customize output parameters at: net.outputs{i}.processParam 
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 
net.inputs{2}.processFcns = {'removeconstantrows','mapminmax'}; 
  
% Prepare the Data for Training and Simulation 
% The function PREPARETS prepares timeseries data for a particular network, 
% shifting time by the minimum amount to fill input states and layer states. 
% Using PREPARETS allows you to keep your original time series data 
unchanged, while 
% easily customizing it for networks with differing numbers of delays, with 
% open loop or closed loop feedback modes. 
[x,xi,ai,t] = preparets(net,X,{},T); 
  
% Setup Division of Data for Training, Validation, Testing 
% The function DIVIDERAND randomly assigns target values to training, 
% validation and test sets during training. 
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% For a list of all data division functions type: help nndivide 
net.divideFcn = 'divideblock';  % Divide data sequentially 
% The property DIVIDEMODE set to TIMESTEP means that targets are divided 
% into training, validation and test sets according to timesteps. 
% For a list of data division modes type: help nntype_data_division_mode 
net.divideMode = 'value';  % Divide up every value 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
  
% Choose a Performance Function 
% For a list of all performance functions type: help nnperformance 
% Customize performance parameters at: net.performParam 
net.performFcn = 'mse';  % Mean squared error 
  
% Choose Plot Functions 
% For a list of all plot functions type: help nnplot 
% Customize plot parameters at: net.plotParam 
net.plotFcns = {'plotperform','plottrainstate','plotresponse', ... 
  'ploterrcorr', 'plotinerrcorr'}; 
  
% Train the Network 
[net,tr] = train(net,x,t,xi,ai); 
  
% Test the Network 
y = net(x,xi,ai); 
e = gsubtract(t,y); 
performance = perform(net,t,y); 
  
  
% Recalculate Training, Validation and Test Performance 
trainTargets = gmultiply(t,tr.trainMask); 
valTargets = gmultiply(t,tr.valMask); 
testTargets = gmultiply(t,tr.testMask); 
trainPerformance = perform(net,trainTargets,y); 
valPerformance = perform(net,valTargets,y); 
testPerformance = perform(net,testTargets,y); 
% % %  
% % %         % View the Network 
%      view(net) 
% % %  
% % %         % Plots 
% % %         % Uncomment these lines to enable various plots. 
% figure, plotperform(tr) 
% % % %         %figure, plottrainstate(tr) 
% figure, plotregression(t,y) 
% % %         %figure, plotresponse(t,y) 
% % %         %figure, ploterrcorr(e) 
% % %         %figure, plotinerrcorr(x,e) 
% % %  
        % Closed Loop Network 
        % Use this network to do multi-step prediction. 
        % The function CLOSELOOP replaces the feedback input with a direct 
        % connection from the outout layer. 
        netc = closeloop(net); 
        netc.name = [net.name ' - Closed Loop']; 
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%          view(netc) 
        [xc,xic,aic,tc] = preparets(netc,X,{},T); 
        yc = netc(xc,xic,aic); 
        closedLoopPerformance = perform(netc,tc,yc) 
        % Multi-step Prediction 
        % Sometimes it is useful to simulate a network in open-loop form for 
as 
        % long as there is known output data, and then switch to closed-loop 
form 
        % to perform multistep prediction while providing only the external 
input. 
        % Here all but 5 timesteps of the input series and target series are 
used to 
        % simulate the network in open-loop form, taking advantage of the 
higher 
        % accuracy that providing the target series produces: 
        numTimesteps = size(x,2); 
        knownOutputTimesteps = 1:(numTimesteps-5); 
        predictOutputTimesteps = (numTimesteps-4):numTimesteps; 
        X1 = X(:,knownOutputTimesteps); 
        T1 = T(:,knownOutputTimesteps); 
        [x1,xio,aio] = preparets(net,X1,{},T1); 
        [y1,xfo,afo] = net(x1,xio,aio); 
        % Next the network and its final states will be converted to closed-
loop 
        % form to make five predictions with only the five inputs provided. 
        x2 = X(1,predictOutputTimesteps); 
        [netc,xic,aic] = closeloop(net,xfo,afo); 
        [y2,xfc,afc] = netc(x2,xic,aic); 
        multiStepPerformance = perform(net,T(1,predictOutputTimesteps),y2) 
        % Alternate predictions can be made for different values of x2, or 
further 
        % predictions can be made by continuing simulation with additional 
external 
        % inputs and the last closed-loop states xfc and afc. 
  
  
        % Step-Ahead Prediction Network 
        % For some applications it helps to get the prediction a timestep 
early. 
        % The original network returns predicted y(t+1) at the same time it 
is given y(t+1). 
        % For some applications such as decision making, it would help to 
have predicted 
        % y(t+1) once y(t) is available, but before the actual y(t+1) occurs. 
        % The network can be made to return its output a timestep early by 
removing one delay 
        % so that its minimal tap delay is now 0 instead of 1.  The new 
network returns the 
        % same outputs as the original network, but outputs are shifted left 
one timestep. 
        nets = removedelay(net); 
        nets.name = [net.name ' - Predict One Step Ahead']; 
%          view(nets) 
        [xs,xis,ais,ts] = preparets(nets,X,{},T); 
        ys = nets(xs,xis,ais); 
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        stepAheadPerformance = perform(nets,ts,ys) 
  
%         % Deployment 
%         % Change the (false) values to (true) to enable the following code 
blocks. 
%         % See the help for each generation function for more information. 
%         if (false) 
%           % Generate MATLAB function for neural network for application 
deployment 
%           % in MATLAB scripts or with MATLAB Compiler and Builder tools, or 
simply 
%           % to examine the calculations your trained neural network 
performs. 
%           genFunction(net,'myNeuralNetworkFunction'); 
%           y = myNeuralNetworkFunction(x,xi,ai); 
%         end 
%         if (false) 
%           % Generate a matrix-only MATLAB function for neural network code 
%           % generation with MATLAB Coder tools. 
%           genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 
%           x1 = cell2mat(x(1,:)); 
%           x2 = cell2mat(x(2,:)); 
%           xi1 = cell2mat(xi(1,:)); 
%           xi2 = cell2mat(xi(2,:)); 
%           y = myNeuralNetworkFunction(x1,x2,xi1,xi2); 
%         end 
%         if (false) 
%           % Generate a Simulink diagram for simulation or deployment with. 
%           % Simulink Coder tools. 
%           gensim(net); 
%         end 
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