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ABSTRACT

In this thesis, we study the stability of Active Disturbance Rejection Control (ADRC) ap-

plied to controlling the Lorenz system. The Lorenz system is a nonlinear dynamical system

that we attempt to control. In fact, the system is used to model convection flow such as that

found in thermosyphons, electric circuits, and lasers. We are stabilizing the Lorenz system

along with a few disturbances. Thus, to stabilize this chaotic system, a robust controller

is required. The ADRC system is known as as effective method to stabilize a dynamical

system. With the help of the Extended State Observer (ESO), the system can be stabilized

with the least information about the disturbances. In particular, when the model of the

plant is given the system converges asymptotically. Since most physical plants are highly

uncertain in the real world, we also establish a second case. When the dynamics of the

plant is largely unknown, the errors of the ADRC Controlled Lorenz system is bounded by

the observer gains and feedback control gains, which is Lyapunov stable.
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CHAPTER 1

INTRODUCTION

A butterfly flapping its wings in Brazil can cause a tornado in Texas. We have heard this

phrase before, and in fact this is some of the chaotic behavior we deal with in real life. It

describes a small change to the initial state in a nonlinear system could lead to a significant

variation in the state over time. In some applications, it is important to control these behav-

iors in certain way to mitigate the effects. The field of research that deals with managing

the behavior of dynamical systems is called control theory. Dynamical systems are math-

ematical objects used to model physical phenomena whose state changes over time. See

Chen, [6].

1.1 PRELIMINARIES

The focus of this paper is to control the chaotic behavior of dynamical systems using a field

of research called control theory. A dynamical system is given by

ẋ = f (x(t), t), x ∈ Rn, f : Rn×R+→ Rn.

The dot is the derivative with respect to time, where x is a function of time with an initial

point x0. Assume that the system is chaotic. Before we continue, we shall first give several

important definitions.

Definition 1.1. An n×n constant matrix A is a Hurwitz matrix if all its eigenvalues lie in

the left half of the complex plane.

One objective to stabilize a system could be that, we want our solution to be closer to

the equilibrium point.

Definition 1.2. Let ẋ = f (x) where x ∈ Rn. Then a point x∗ ∈ Rn is an equilibrium point

of the system if f (x∗) = 0.
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Our goal for this thesis is to stabilize a given system. Thus, we should define the term

stability.

Definition 1.3. A solution x̄(t) of ẋ = f (x, t) is stable if for each ε > 0 and t0 ∈ R there

exists δ = f (ε, t0) > 0 such that if x(t) is a solution of ẋ = f (x, t) and |x(t0)− x̄(t0)| < δ

then |x(t)− x̄(t)|< ε for all t ≥ t0.

There are different types of stability for a system at the equilibrium point. One of

them is called asymptotic stability.

Definition 1.4. A dynamical system is said to be asymptotically stable about its equilibrium

point x∗, if it is stable and there exists a δ > 0, such that ||x− x∗|| < δ implies lim
t→∞
||x(t)−

x∗||= 0.

It is not easy to show the stability of a system at a point through the definition. An-

other method, called the Lyapunov directed method is often used to determine asymptotic

stability.

Definition 1.5. Let ẋ = f (x) where x ∈ Rn. Then the trivial equilibrium point x = 0 is

Lyapunov stable if there exists a scalar function V (x) : Rn → R such that the following

conditions hold

1. V (x) = 0 if and only if x = 0

2. V (x)> 0 if and only if x 6= 0

3. V̇ (x)< 0 for x 6= 0

Proof. See Hokayem, [10].

In the next section, we will provide some background information of the Lorenz sys-

tem and the origin of disturbances that should be considered when designing controllers.
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1.2 THE LORENZ SYSTEM

We will be using the Lorenz system as an example to explain how to control a chaotic

dynamical system. Therefore, before we stabilize the system, we must first introduce the

Lorenz system. The Lorenz system was originally used to model the fluid flow of the

atmosphere. In fact, the convection flow in thermosyphons and nuclear reactors are mod-

eled using the Lorenz system. However, the Lorenz system was formed from the basis of

another set of equations.

Claude-Louis Navier and George Gabriel Stokes developed the Navier-Stokes equa-

tion which describes the motion of viscous fluid substances. The natural convection in

closed loops can be described by a two-dimensional pipe loop filled with a fluid in a two-

dimensional cell being heated from below and cooled from above. See Ehrhard, [11]. The

resulting convection motion is modeled by a partial differential equation as follows,

1
l

∂u
∂ϕ

= 0

ρ0

(
∂u
∂ t

)
=−1

l
∂ p
∂ϕ
−ρT gsin(ϕ)− fW

ρcp

(
∂T
∂ t

+
u
l

∂T
∂ϕ

)
= hW [TW (ϕ)−T ]

(1.1)

where u = u(t) and T = T (ϕ, t) are the the cross-sectionally averaged velocity and tem-

perature respectively. See Ehrhard, [11]. In these equations; cp is the heat capacity of the

fluid, fW is the friction force at the pipe wall, hW is the coefficient of heat transfer at the

pipe wall, l is the radius of the loop of pipe, p is the total temperature, g is the gravitation

constant, TW (ϕ) is the pipe wall temperature of the loop, ϕ is the position coordinate, and

ρ0 is the average density of fluid.

The partial differential equations (1.1) are then transformed into a system of ordinary

differential equations using the Fourier series expansion,

T (ϕ, t) = T0 +
∞

∑
n=1

[Sn(t)sin(nϕ)+Cn(t)cos(nϕ)]
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where S j and C j are the sine and cosine coefficients of the temperature in the loop. We

have now obtained a dimensionless set of ordinary differential equations in time,

ẋ1 = α(x2− x1)

ẋ2 = βx1− x1x3− x2

ẋ3 = x1x2−bx3

where x1 is the velocity and x2,x3 are the leading coefficients of the temperature. The

three coupled nonlinear partial differential equations, in fact describe the flow in the ther-

mosyphon. See Bourroughs, [4]. For this reason, the Lorenz system can be constructed as

the following,

ẋ = p(y− x)

ẏ = Rx− y− xz

ż = xy−bz

(1.2)

See Singer, [9]. The variables x, y, and z are the three states and are functions of the

time variable. The remaining p, R, and b are dimensionless positive parameters known

respectively as the Prandtl number, the Rayleigh number, and a geometric factor. If the

Rayleigh number gets high enough it will cause the system to become chaotic therefore it

is known as one of the most influential parameters. The Rayleigh number for the instability

of steady convection is the following:

R =
p(p+b+3)
(p−b−1)

If p < b+1, no positive value of R satisfies this equation, and steady convection is stable.

But if p > b+1, steady convection is unstable. Since we are trying to stabilize the chaotic

behavior, we therefore will focus on the second case.

Let us now assume that the system is chaotic. There are three equilibrium points in

Lorenz system. The first will be the origin (0,0,0). The other two points are (±
√

b(R−1),
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±
√

b(R−1),R−1). See Tran, [1]. In this paper we shall only focus on stabilizing at the

origin, however, instead of just the original Lorenz system, we will include an external

disturbance on both the y- and z-state. Under these conditions, control methods will be

used to stabilize the system since having these external disturbances will affect the system

to behave outside the structure of the original model. The new Lorenz system, possibly

with multiple sources of disturbance, can be formed. Those possible sources are the higher-

order terms from the Fourier series being dropped and the disturbance due to heat source

and ambient condition. The following is the new Lorenz system,

ẋ = p(y− x)

ẏ = Rx− y− xz+w1

ż = xy−bz+w2

(1.3)

where x is analogous to velocity, y is the difference in temperature between ascending

and descending currents, and z is proportional to the distortion of the vertical temperature,

based on the modeling of a single-loop thermosyphon system. See Lorenz, [5]. The two

unknowns, w1 and w2, are used to represent disturbances which include the un-modeled

components of a physical system due to approximation or idealization.

1.3 EXTENDED STATE OBSERVER

Note that our goal is to control a chaotic system with at least one disturbance. However we

might not be able to model or write the disturbance in a mathematical expression. There-

fore, we need a mechanism to track a disturbance that cannot be modeled. For the last

couple of decades, there were several approaches to estimate disturbances, including the

unknown input observer, the disturbance observer, the perturbation observer, the equiv-

alent input disturbance based estimation,and the extended state observer, which shall be

referred to as ESO for the remainder of this paper. In fact, ESO required the least informa-
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tion about the disturbance to still track the disturbance. Thus, ESO became the best method

to track the disturbance.

The extended state observer (ESO) is a method to estimate any disturbances by treat-

ing them as state variables. The main advantage in using ESO, as stated above, is that it

does not require an accurate plant model. An ESO can easily estimate several disturbances

without changing the observer’s structure and parameters. Later in this paper, we will use

ESO with a controller to stabilize the given system in Lorenz equations.

Now, let us take a look at an ESO along with a given general nth order dynamical

system. First, let w(t) be a external disturbance and u(t) be a controller dependent on t, the

time variable.

y(n)(t) = f (y(n−1),y(n−2), . . . ,y,w(t))+u(t) (1.4)

Rewriting (1.4) as a first order differential equation we have the actual dynamical system,

ẏ1 = y2

ẏ2 = y3

...

ẏn−1 = yn

ẏn = yn+1 +u(t)

ẏn+1 = h(y,w(t))

y = y1

(1.5)

See Guo, [3]. Note that we do not have enough information about the disturbance. Thus,

we will take resort to the ESO.

Let us now build the ESO for (1.5) while assuming some information about the dis-

turbance is given. Assume f (ŷ,w) to be the given disturbance, then the ESO will be the
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following,

˙̂y1 = ŷ2 + l1(y1− ŷ1)

...

˙̂yn−1 = ŷn + ln−1(y1− ŷ1)

˙̂yn = ŷn+1 + ln(y1− ŷ1)+u(t)

˙̂yn+1 = ln+1(y1− ŷ1)

(1.6)

where [ŷ1, ŷ2, . . . , ŷn+1] ∈ Rn+1 and [l1, l2, . . . , ln+1] ∈ Rn+1 being the observer gain param-

eter. See Zheng, [13]. We have just established the ESO form (1.6) for an nth order

dynamical system.

1.4 ACTIVE DISTURBANCE REJECTION CONTROL

We have just learned that ESO is an effective method used to estimate the unknown dis-

turbance because of the low amount of information required. However, we still have not

controlled the chaotic dynamical system. Now, we need a controller to manage this sys-

tem. The controller we will be using is called the Active Disturbance Rejection Control

(ADRC).

The ADRC was first introduced by J.Han who used the information and underlying

ideas of proportional-integral-derivative (PID). See Tian, [7]. This method estimates the

internal and external disturbances and treats the system as a simpler model. Thus, without

a complete and precise description of the system, we can still assume that the unknown

parts of dynamics are part of the disturbance. Therefore, it again brings ESO forward as

one of the best methods to estimate the disturbance.

After ADRC was introduced, it became a vastly popular method. Unlike PID, ADRC

not only tracks the disturbance using ESO, but it cancels the disturbance as well making the

system stabilize at the equilibrium point. See Espe, [15]. Additionally, ADRC was proven
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to have a higher accuracy and efficiency than PID.

In this paper, the controller will be denoted as u1(t) and u2(t). These are our ADRC

controller that will be applied in the system. Recall the Lorenz system, (1.3), with the

unknown controllers added in,

ẋ = p(y− x)

ẏ = Rx− y− xz+w1 +u1

ż = xy−bz+w2 +u2

(1.7)

In the Lorenz system, we controlled the input u1(t), u2(t) also called the state feedback

control. Unlike the Lorenz system, the u1(t), u2(t) of the first order dynamical system of

ADRC Controller can be written as the following,

u1(t) =−ŷ2 + k(r1(t)− ŷ1) (1.8)

where r1(t) is the reference signal and k > 0 is the feedback gain parameter. Refer to

Zheng, [12]. The first term −ŷ2 in (1.8), will cancel out the disturbance. The second term

k(r1(t)− ŷ1), is the state feedback term to make ŷ1 track the reference signal. The reference

signal, u2(t), has a similar solution.

Furthermore, this paper will use ESO and ADRC to stabilize the Lorenz system. It is

discussed in this chapter, stabilizing the system without disturbance is not too difficult. Re-

ality, however, include disturbances that result from information loss due to simplification

of high-order terms and disturbances that can not be modeled. Therefore, there are two as-

pects of the system that need to be stabilized. First, the strong result where the disturbance

is known. The second case is the weak result where the disturbance is unknown.

1.5 THE MATRIX EXPONENTIAL

In order to derive the equation in the previous page, a brief introduction of the matrix

exponential is needed. But, before we go on we should understand when this method is
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needed.

Let ẋ = Ax+ f be given where, x(0) = x0. Then for x0, f , x ∈ Rn, and A ∈ Rn×n we

have the following equation,

x = eAtx0 +
∫ t

0
eA(t−τ) f (τ)dτ.

Now the question is how do we compute eAt , the natural exponent raised to a matrix power

or matrix exponential.

The matrix exponential is defined as the following

eA = I +A+
1
2!

A2 +
1
3!

A3 + · · ·+ 1
k!

Ak + · · ·

This can also be written in series notation,

eA =
∞

∑
k=0

1
k!

Ak

where A is an n× n real or complex matrix. As mentioned earlier in the paper, we are

working with the variable t in the matrix exponential. Therefore, it can be written as

eAt = I +At +
1
2!

A2t2 +
1
3!

A3t3 + · · ·+ 1
k!

Aktk + · · ·=
∞

∑
k=0

1
k!

Aktk

Before continuing, we should note that the eigenvalues of the Hurwitz matrix do not need

to be distinct. The eigenvalues could repeat more than once or be complex. There is a

theorem that gives a method for constructing the matrix exponential from the solutions of

a differential equation. Refer to Leonard, [8].

Theorem 1.6. Let A be a constant n×n matrix with characteristic polynomial

p(λ ) = det(λ I−A) = λ
n +Cn−1λ

n−1 + · · ·+ c1λ + c0;

then

eAt = x1(t)I + x2(t)A+ x3(A)2 + · · ·+ xn(t)An−1
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where the xk(t), 1≤ k ≤ n, are the solutions to the nth order scalar differential equation

x(n)+ cn−1x(n−1)+ · · ·+ c1x
′
+ c0x = 0

satisfying the following initial conditions:

x1(0) = 1

x′1(0) = 0
...

x(n−1)
1 (0) = 0



x2(0) = 0

x′2(0) = 1
...

x(n−1)
2 (0) = 0


· · ·

xn(0) = 0

x′n(0) = 0
...

x(n−1)
n (0) = 1


Proof. Let

p(λ ) = det(λ I−A) = λ
n +Cn−1λ

n−1 + · · ·+ c1λ + c0

be a characteristic polynomial, and let A be a constant n×n matrix. Define

Φ(t) = x1(t)I + x2(t)A+ x3(t)A2 + · · ·+ xn(t)An−1

where the xk(t), 1 ≤ k ≤ n, are the unique solutions to the nth order scalar differential

equation

x(n)+ cn−1x(n−1)+ · · ·+ c1x
′
+ c0x = 0

satisfying the initial conditions written in the theorem. Now, let Φ(t) have an mth order

derivative. Then for all 1≤ m≤ n,

Φ
(m)(t) = x(m)

1 (t)I + x(m)
2 (t)A+ x(m)

3 (t)A2 + · · ·+ x(m)
n (t)An−1.

Therefore,

Φ
(n)+ cn−1Φ

(n−1)+ · · ·+ c1Φ
′
+ c0Φ = I(x(n)1 + cn−1x(n−1)

1 + · · ·+ c1x
′
1 + c0x1)

+A(x(n)1 + cn−1x(n−1)
2 + · · ·+ c1x

′
2 + c0x2)

...

+An−1(x(n)n + cn−1x(n−1)
n + · · ·+ c1x

′
n + c0xn)

= 0I +0A+ · · ·+0An−1

= 0
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Therefore,

Φ
(n)(t)+ cn−1Φ

(n−1)(t)+ · · ·+ c1Φ
′
(t)+ c0Φ(t) = 0

for all t ∈ R, and by the initial conditions

Φ(0) = x1(0)I + x2(0)A+ · · ·+ xn(0)An−1 = I

Φ
′
(0) = x

′
1(0)I + x

′
2(0)A+ · · ·+ x

′
n(0)A

n−1 = A

...

Φ
(n−1)(0) = x(n−1)

1 (0)I + x(n−1)
2 (0)A+ · · ·+ x(n−1)

n (0)An−1 = A(n−1)

(1.9)

Thus,

Φ(t) = x1(t)I + x2(t)A+ x3(t)A2 + · · ·+ xn(t)An−1

satisfies the initial value problem

Φ
(n)(t)+ cn−1Φ

(n−1)(t)+ · · ·+ c1Φ
′
(t)+ c0Φ(t) = 0,

Φ(0) = I, Φ
′
(0) = A, Φ”(0) = A2,. . . ,Φ(n−1)(0) = An−1 We concluded that there exists a

unique solution that satisfies the initial value problem, Φ(t) = eAt . Therefore for all t ∈ R,

eAt = x1(t)I + x2(t)A+ x3(t)A2 + · · ·+ xn(t)An−1.

We now know the method on calculating the exponential matrix, eAt . This theorem

will be used extensively in the stability studies.
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CHAPTER 2

ESO ERROR DYNAMICS

In this chapter, the extended state observer (ESO) for the two single-input-single-output

(SISO) system will be determined. This system will be based on the modeling of a single-

loop thermosyphon system. Recall the ADRC Controlled Lorenz system from Chapter 1

(1.7),

ẋ = p(y− x)

ẏ = Rx− y− xz+w1 +u1

ż = xy−bz+w2 +u2

where x,y,z are the three states, w1, w2 are the external disturbances as well as unincluded

components of the physical system due to approximation or idealization, and u1, u2 are the

ADRC controllers.

Let y1 = y, y2 =w1−xz+Rx ∆
= f1, z1 = z, z2 =w2+xy ∆

= f2, ḟ1 = g1, and ḟ2 = g2. The

design of the two SISO ADRC systems combined to form a multiple-input-multiple-output

(MIMO) system is as follows:

ẏ1 =−y1 + y2 +u1

ẏ2 = g1

(2.1)

and

ż1 =−bz1 + z2 +u2

ż2 = g2

(2.2)

2.1 ESO FOR THE GIVEN MODEL OF THE PLANT

Let us consider the case where the disturbance in chaos dynamical system is known. That

is when the ESO has enough information about the disturbance. Once again, our goal is to
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stabilize the Lorenz system. First, we will find the ESO of (2.1). Let,

˙̄y = Aȳ+Eg1 +Bu1

y1 =Cȳ
(2.3)

where ȳ =
[

y1 y2

]T

, A =

−1 1

0 0

, E =

0

1

, B =

1

0

, and C =

[
1 0

]
.

The ESO for (2.3) is then designed as

˙̂y1 =−ŷ1 + ŷ2 +u1 + l1(y1− ŷ1)

˙̂y2 = g1(ŷ)+ l2(y1− ŷ1)

(2.4)

where l1, l2 are observer gain parameters, and l1 > 0, l2 > 0. In matrix form,

˙̄̂y = A ˆ̄y+Bu1 +LC(ȳ− ˆ̄y)

ŷ1 =C ˆ̄y.
(2.5)

The tracking error dynamics is governed by the error system ˙̃y = Acỹ+E[g1(ȳ)− g1( ˆ̄y)],

where Ac = A−LC and ỹ = ȳ− ˆ̄y. It can be obtained by subtracting (2.5) from (2.3),

(ȳ− ˆ̄y) = A(ȳ− ˆ̄y)+E[g1(ȳ)−g1( ˆ̄y)]−LC(ȳ− ˆ̄y).

The close-loop matrix is,

Ac = A−LC =

−1 1

0 0

−
l1

l2

[1 0

]

=

−1− l1 1

−l2 0

 .
(2.6)

Now, we need to find l1, l2 so that the eigenvalues of Ac are in the left of the complex

plane. That is, for this system, we want Ac to be Hurwitz. Let p(λ ) be the characteristic

polynomial of Ac. Then the p(λ ) of (2.4) is

p(λ ) = (λ +ω0)
2 (2.7)
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and ω0, the observer gain, becomes the only tuning parameter. From (2.6) and (2.7),

l1 = 2ω0−1 and l2 = ω2
0 . Now, let

∼
y = ȳ− ˆ̄y,

∼
y =

∼y1

∼
y2

 then the error system between the

original y-system and (2.4) is

∼̇
y1 =−2ω0

∼
y1 +

∼
y2

∼̇
y2 =−ω

2
0
∼
y1 +g1(ȳ)−g1( ˆ̄y)

(2.8)

The equation can be transformed by using change of variable. Let, ėy1 =
∼̇
y1 and ėy2 =

∼̇
y2
ω0

.

Then,

ėy1 =−2ω0ey1 + ey2ω0

ėy2 =−ω0ey1 +
g1(ȳ)−g1( ˆ̄y)

ω0
.

Let ey =

ey1

ey2

 then (2.8) can be written as

ėy = ω0Ayey +E(
g1(ȳ)−g1( ˆ̄y)

ω0
) (2.9)

where Ay =

−2 1

−1 0

 and E =

0

1

.

Theorem 2.1. Suppose g1 in (2.8) is globally Lipschitz. Then the error system is asymp-

totically stable if ω0 > c where c > 0.

Proof. From (2.9), Ay is Hurwitz. Therefore there exists a unique positive definite matrix

P, such that AT
y P+PAy =−I. Let the Lyapunov function be v = eT

y Pey. Hence,

v̇ = ėT
y Pey + eT

y Pėy (2.10)
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Let h = (g1(ȳ)−g1( ˆ̄y))/(ω0) is now,

v̇ =
(
eT

y AT
y ω0 +ET h

)
Pey + eT

y P(ω0Ayey +Eh)

= eT
y ω0AT

y Pey +ET hPey + eT
y ω0PAyey + eT

y PEh

= eT
y ω0

(
AT

y P+PAy
)

ey +2ET hPey

=−ω0
∣∣∣∣eT

y
∣∣∣∣2 +2ET hPey

=−ω0
∣∣∣∣eT

y
∣∣∣∣2 +2hET Pey

=−ω0
∣∣∣∣eT

y
∣∣∣∣2 +2

(
g1(ȳ)−g1( ˆ̄y)

ω0

)
ET Pey

≤−ω0
∣∣∣∣eT

y
∣∣∣∣2 + 2

ω0

∣∣g1(ȳ)−g1( ˆ̄y)
∣∣ ∣∣ET Pey

∣∣
Since g1 is globally Lipschitz, there exists a constant kg > 0 such that |g1(ȳ)− g1( ˆ̄y)| ≤

kg
∣∣∣∣ȳ− ˆ̄y

∣∣∣∣. Thus,

−ω0
∣∣∣∣eT

y
∣∣∣∣2 + 2

ω0

∣∣g1(ȳ)−g1( ˆ̄y)
∣∣ ∣∣ET Pey

∣∣≤−ω0
∣∣∣∣eT

y
∣∣∣∣2 +2kg

∣∣∣∣ȳ− ˆ̄y
∣∣∣∣

ω0

∣∣ET Pey
∣∣

By the Cauchy-Schwarz Inequality,

−ω0
∣∣∣∣eT

y
∣∣∣∣2 +2kg

∣∣∣∣ȳ− ˆ̄y
∣∣∣∣

ω0

∣∣ET Pey
∣∣≤−ω0

∣∣∣∣eT
y
∣∣∣∣2 +2kg

∣∣∣∣ȳ− ˆ̄y
∣∣∣∣

ω0

∣∣∣∣ET ∣∣∣∣ ∣∣∣∣Pey
∣∣∣∣

≤−ω0
∣∣∣∣eT

y
∣∣∣∣2 +2kg

∣∣∣∣ȳ− ˆ̄y
∣∣∣∣

ω0
||P||

∣∣∣∣ey
∣∣∣∣

=−ω0
∣∣∣∣eT

y
∣∣∣∣2 +2kg

√
(y1− ŷ1)2 +(y2− ŷ2)2

ω0
||P||

∣∣∣∣ey
∣∣∣∣

We know that y1− ŷ1 = ey1 and y2− ŷ2 = ω0ey2, thus

=−ω0
∣∣∣∣eT

y
∣∣∣∣2 +2kg

√
(ey1)2 +(ω0ey2)2

ω0
||P||

∣∣∣∣ey
∣∣∣∣

<−ω0
∣∣∣∣eT

y
∣∣∣∣2 +2kg ||P||

∣∣∣∣ey
∣∣∣∣2

=−(ω0−2kg ||P||)
∣∣∣∣ey
∣∣∣∣2

Thus, ω0 ≥ 1. Let c = max{1,2kg ||P||}. If ω0 > c, then v̇ < 0. Therefore, limt→∞ ey(t) = 0

for all ω0 > c.
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Similar to the y-equation, ESO for the z-equation is the following,

˙̂z1 =−bẑ1 + ẑ2 +u2 + l3(z1− ẑ1)

˙̂z2 = g2 + l4(z1− ẑ1).

The close-loop matrix then is,

Ac =

−b− l3 1

−l4 0

 .
By (2.7), l3 = 2ω0−b and l4 = ω2

0 . Hence, the error system is

∼̇
z1 =−2ω0

∼
z1 +

∼
z2

∼̇
z2 =−ω

2
0
∼
z1 +g2(z̄)−g2( ˆ̄z)

(2.11)

Let ėz1 =
∼
z1, ėz2 =

∼̇
z2/ω0, and ez =

ez1

ez2

 then, (2.11) can be simplified to

ėz = ω0Azez +E
(

g2(z̄)−g2( ˆ̄z)
ω0

)

where Az =

−2 1

−1 0

 and E =

0

1

.

Theorem 2.2. Suppose g2 in (2.11) is globally Lipschitz. Then, there exists a constant

cz > 0, such that the error system is asymptotically stable.

Proof. The proof is similar to Theorem 2.1. Thus, limt→∞ez(t) = 0 for ω0 > cz.

It has been proven that the error system of the ESO is asymptotically stable when the

model of the plant is given. That is, limt→∞ ey(t) = 0 and limt→∞ ez(t) = 0. In here, we

observed the accuracy of the ESO tracking the disturbances in the y and z states. We will

now analyze the stability of the error system of the ESO when the dynamics of the plant is

largely unknown. That is, the disturbances in the system is unknown.
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2.2 ESO FOR THE DYNAMICS OF THE PLANT UNKNOWN

In the real world scenarios, the plant dynamics are mostly unknown. See Guo, [2]. In this

case, the ESO takes the form of

˙̂y1 =−ŷ1 + ŷ2 +u1 + l1(y1− ŷ1)

˙̂y2 = l2(y1− ŷ1).

(2.12)

˙̂z1 =−bẑ1 + ẑ2 +u1 + l3(z1− ẑ1)

˙̂z2 = l4(z1− ẑ1).

(2.13)

The only difference from the form of known disturbance is the existence of g1, g2. As it

was defined earlier, l1 = 2ω0− 1, l2 = ω2
0 , l3 = 2ω0− b, and l4 = ω2

0 . Then the observer

estimation error for (2.12) and (2.13) could be written as,

∼̇
y1 =−2ω0

∼
y1 +

∼
y2

∼̇
y2 =−ω

2
0
∼
y1 +g1

(2.14)

∼̇
z1 =−2ω0

∼
z1 +

∼
z2

∼̇
z2 =−ω

2
0
∼
z1 +g2

(2.15)

where
∼
y = ȳ− ˆ̄y,

∼
y =

∼y1
∼
y2

, and
∼
z = z̄− ˆ̄z,

∼
z =

∼z1

∼
z2

, respectively.

The equations (2.14) can be transformed through a use of change of variables into,

ėy1 =
∼̇
y1 and ėy2 =

∼̇
y2/ω0. Similarly let ėz1 =

∼̇
z1 and ėz2 =

∼̇
z2/ω0. Thus,

ėy1 =−2ω0ey1 + ey2ω0

ėy2 =−ω0ey1 +
g1

ω0

ėz1 =−2ω0ez1 + ez2ω0

ėz2 =−ω0ez1 +
g2

ω0
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Let ey =

ey1

ey2

 and ez =

ez1

ez2

 then,

ėy = ω0Aey +E
(

g1

ω0

)

ėz = ω0Aez +E
(

g2

ω0

)

where A =

−2 1

−1 0

 and E =

0

1

.

Up to now the solution looks similar to the ESO part in Chapter 2, however, instead

of using Lyapunov function we will continue the process with the use of the matrix expo-

nential method,

ey = eω0Atey(0)+
∫ t

0
eω0A(t−τ)E

g1

ω0
dτ (2.16)

ez = eω0Atez(0)+
∫ t

0
eω0A(t−τ)E

g2

ω0
dτ (2.17)

Theorem 2.3. Suppose g1 in (2.14) is bounded. Then, the error system (2.14) is stable if

the observer gain ω0 is sufficiently large.

Proof. Let g1 in (2.14) be bounded. By using Theorem 1.4 from the matrix exponential

method, we can compute eAt . The matrix A for the equation (2.16) is 2× 2, therefore,

p(λ ) = λ 2 + 2λ + 1. Since λ = −1, therefore, x(t) = c1e−t + c2te−t . Note that eAt =

x1I + x2A and the initial condition is the following,

x1(0) = 1

x′1 = 0

 x2(0) = 0

x′2 = 1


Then by calculus, x1(t) = e−t + te−t and x2(t) = te−t . As a result,

eAt =

e−t− te−t te−t

−te−t e−t + te−t

 (2.18)
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Now we need to solve for (2.16) by replacing eAt by (2.18).

eω0At =

e−ω0t−ω0te−ω0t ω0te−ω0t

−ω0te−ω0t e−ω0t +ω0te−ω0t

 (2.19)

Note that for the known disturbance we showed that limt→∞ ey = 0 when ω0 > c. Now,

for the unknown disturbance we cannot show that limt→∞ ey = 0, instead we can construct,

||ey|| < ε(1/ω0) where ε depends on 1/ω0. This shows that the bigger the ω0 the smaller

the error.

By the definition of infinite norm which is ||x||∞ = max{|xi|}n
i=1, we get

||ey||∞ =

∣∣∣∣∣∣∣∣eω0Atey(0)+
∫ t

0
eω0A(t−τ)E

g1

ω0
dτ

∣∣∣∣∣∣∣∣
∞

By the triangle inequality we get the following,

||ey||∞ ≤ ||eω0Atey(0)||∞ +

∣∣∣∣∣∣∣∣∫ t

0
eω0A(t−τ)E

g1

ω0
dτ

∣∣∣∣∣∣∣∣
∞

(2.20)

Consider the first term in the right hand side of (2.20). From (2.19), we obtained

eω0Atey(0) =

 e−ω0t(1−ω0t)e1(0)+ω0te−ω0te2(0)

−ω0te−ω0te1(0)+ e−ω0t(1+ω0t)e2(0)


Hence,

||eω0Atey(0)||∞ = max{|e−ω0t(1−ω0t)e1(0)+ω0te−ω0te2(0)|, (2.21)

|−ω0te−ω0te1(0)+ e−ω0t(1+ω0t)e2(0)|}

Let us look at the first term in the right hand side of (2.21). By the triangle inequality,

|e−ω0t(1−ω0t)e1(0)+ω0te−ω0te2(0)| ≤ |e−ω0t(1−ω0t)||e1(0)|+ |ω0te−ω0t ||e2(0)|

Now, let m = max{|e1(0)|, |e2(0)|}. Thus,

|e−ω0t(1−ω0t)||e1(0)|+ |ω0te−ω0t ||e2(0)| ≤ m|e−ω0t(1−ω0t)|+m|ω0te−ω0t |
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Since e−ω0t(1−ω0t) and ω0te−ω0t are both positive we can simplify to,

m|e−ω0t(1−ω0t)|+m|ω0te−ω0t |= m(2ω0t−1)e−ω0t

Similarly the second term in the right hand side of (2.21) follows,

|−ω0te−ω0te1(0)+ e−ω0t(1+ω0t)e2(0)| ≤ m(2ω0t +1)e−ω0t

By the definition of infinity norm, we get

||eω0Atey(0)||∞ ≤ m
(2ωot +1)

eω0t (2.22)

From (2.22), we can use L’Hopital’s rule and get,

lim
t→∞

2ω0t +1
ew0t = lim

t→∞

2ω0

ω0ew0t = lim
t→∞

2
ew0t = 0

Note that limt→∞ f (t) = 0 for all ε > 0, there exists N = N(ε) such that if t > N, then

| f (t)−0|< ε .

Thus, there exists 1/(mω2
0 ) and T1 > 0, such that

2ω0t +1
eω0t <

1
mω2

0

when t > T1 Therefore,

||eω0Atey(0)||∞ <
1

ω2
0
. (2.23)

We have just concluded the first term of (2.20). Now, let us look at the second term.∣∣∣∣∣∣∣∣∫ t

0
eωA(t−τ)E

g1

ω0
dτ

∣∣∣∣∣∣∣∣
∞

(2.24)

By looking at this equation, τ < t. Without the integration, (2.24) can be written as,

eω0A(t−τ)E
g1

ω0
=

 g1(t− τ)e−ω0(t−τ)

g1(1+ω0(t−τ))e−ω0(t−τ)

ω0

 (2.25)
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Hence in infinity norm,∣∣∣∣∣∣∣∣eω0A(t−τ)E
g1

ω0

∣∣∣∣∣∣∣∣
∞

= max

{∣∣∣g1(t− τ)e−ω0(t−τ)
∣∣∣ , ∣∣∣∣∣g1(1+ω0(t− τ))e−ω0(t−τ)

ω0

∣∣∣∣∣
}

(2.26)

The first term in the right hand side of (2.26), (t− τ)e−ω0(t−τ) is positive, therefore,

|g1(t− τ)e−ω0(t−τ)|= |g1|(t− τ)e−ω0(t−τ)

Let |g1| ≤M1, then we have

|g1|(t− τ)e−ω0(t−τ) ≤M1(t− τ)e−ω0(t−τ) (2.27)

By the Cauchy-Schwarz inequality (2.27) is now,

∫ t

0
|g1(t− τ)e−ω0(t−τ)|dτ ≤M1

∫ t

0
(t− τ)e−ω0(t−τ)dτ

Using integration by parts, we obtain

=
M1

ω2
0
(1− e−ω0t)−M1

ω0
te−ω0t

Similarly for the second term in the right hand side of (2.26),∣∣∣∣∣g1(1+ω0(t− τ))e−ω0(t−τ)

ω0

∣∣∣∣∣≤ M1

ω0
(1+ω0(t− τ))e−ω0(t−τ)

=
2M1

ω2
0
(1− e−ω0t)−M1

ω0
te−ω0t

Let q(t) = (2M1/ω2
0 )(1− e−ω0t)− (M1/ω0)te−ω0t . By l’hopital’s rule,

lim
t→∞

q(t) =
2M1

ω2
0

Therefore, for all ε > 0, there exists T2 > 0, such that
∣∣q(t)−2M1/ω2

0

∣∣ < ε when t > T2.

Let ε = M1/ω2
0 then,

q(t)<
3M1

ω2
0
.
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Therefore, ∣∣∣∣∣∣∣∣∫ t

0
eωA(t−τ)E

g1

ω0
dτ

∣∣∣∣∣∣∣∣
∞

<
3M1

ω2
0

(2.28)

By (2.23) and (2.28) we have concluded,

||ey||∞ ≤ ||eω0Atey(0)||∞ +

∣∣∣∣∣∣∣∣∫ t

0
eω0A(t−τ)E

g1

ω0
dτ

∣∣∣∣∣∣∣∣
∞

There exist T = max{T1,T2} where t > T , such that

||eω0Atey(0)||∞ +

∣∣∣∣∣∣∣∣∫ t

0
eω0A(t−τ)E

g1

ω0
dτ

∣∣∣∣∣∣∣∣
∞

≤ 1
ω2

0
+

3M1

ω2
0

Therefore,

||ey||∞ <
1+3M1

ω2
0

(2.29)

Theorem 2.4. Suppose g2 in (2.15) is bounded. Then, the error system (2.15) is stable if

the observer gain ω0 is sufficiently large.

Proof. The proof is similar to Theorem 2.3.

We have just discovered that the error system of the ESO can be controlled by increas-

ing the observer gain parameter. In practical application, increasing the observer gain is not

the prefered method. This is due to the high cost required to pump the state observer.

In summary, it has been proven that when the plant model is given, the error system

of the ESO is asymptotically stable; and when the plant dynamics are largely unknown, the

error system of the ESO is bounded and stable for sufficiently large ωo. In the next chapter,

the stability of the ADRC will be analyzed.
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CHAPTER 3

STABILITY ANALYSIS OF ADRC

In Chapter 1, we briefly introduced the ADRC system. Recall the ADRC controlled Lorenz

system from (1.7),

ẋ = p(y− x)

ẏ = Rx− y− xz+w1 +u1

ż = xy−bz+w2 +u2

where w1, w2 are the external disturbances. In here, u1, u2 are the so-called ADRC con-

trollers. Earlier in Chapter 2, we saw that the ESO tracked the state variables y, z and the

disturbances f1, f2, where f1 = Rx− xz+w1 and f2 = xy+w2, respectively. Now, we will

determine the ADRC controllers to stabilize the given Lorenz system. Let us first solve for

y-equation. In general, for r1 = r1(t), u1 is written as

u1 = ωc(r1− ŷ1)− ŷ2 + ṙ1 (3.1)

where r is the reference signal and ωc is the controller gain parameter. The equation (3.1)

cannot be used in the ESO system, however, it can be used in the original equation. Recall

the y-equation from (1.7) with the substitution of (3.1),

ẏ =−y+ f1 +ωc(r− ŷ1)− ŷ2 + ṙ1

where f1 = Rx− xz+w1. We proved in Theorem 2.1 that y2→ ŷ2 and y2 = f1, thus

˙(y− r) =−y+( f1− ŷ2)+ωc(r1− ŷ1). (3.2)

Before continuing, modification of (3.1) is needed in order to cancel out the remaining y

term in (3.2). That is, to stabilize the system, the equation for the ADRC controller should

be modified so that it can cancel out the disturbance. Thus, equation for u1 is now,

u1 = ωc(r1− ŷ1)− ŷ2 + ṙ1 + r1. (3.3)
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Hence,

˙(y− r1) = (r1− y)+( f1− ŷ2)+ωc(r1− y)+ωc(y− ŷ1) (3.4)

Let er = y− r1, then (3.4) can be written as

ėr =−er(ωc +1)+( f1− ŷ2)+ωc(y− ŷ1).

Let k = ωc +1, then we obtain

ėr =−ker +( f1− ŷ2)+ωc(y− ŷ1). (3.5)

Similar to the y-equation, for r2 = r2(t), u2 is written as

u2 =
∼
ωc(r2− ẑ1)− ẑ2 + ṙ2 +br2 (3.6)

where r2 is the reference signal and
∼
ωc is the controller gain parameter. Recall (1.7) with

the substitution of (3.6), then we obtain

( ˙z− r2) = (br2−bz)+( f2− ẑ2)+
∼
ωc(r2− z)+

∼
ωc(z− ẑ1). (3.7)

Let erz = z− r2 and kz =
∼
ωc +b, then (3.7) can be written as

ėrz =−kzerz +( f2− ẑ2)+
∼
ωc(z− ẑ1)

3.1 ADRC FOR THE GIVEN MODEL OF THE PLANT

Consider the case where the model of the plant is given. Note that in Chapter 2, we have

determined that the error system of the ESO is stable. Now our goal is to build the ADRC

Controller in such way so that it can track the disturbances. Before the stability of the

ADRC is analyzed, the following lemma is constructed.

Lemma 3.1. Let η̇ =−µη+g for all µ > 0 and limt→∞ |g(t)|= 0. Then, limt→∞ |η(t)|= 0.
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Proof. Since limt→∞ |g(t)|= 0, η̇ =−µη +g can be written as

η(t) = e−µt
η(0)+

∫ t

0
e−µ(t−τ)g(τ)d(τ) (3.8)

Because limt→∞ e−µt = 0, therefore, for all ε > 0, there exists T1 such that |e−µter(0)|< ε/3

when t > T1. Let B= 2k/9. Since limt→∞g(t)= 0, thus, there exists T2 such that |g(t)|< βε

when t > T2. Hence we have,

|η | ≤ |e−µt
η(0)|+

∣∣∣∣∫ T2

0
e−µ(t−τ)g(τ)dτ +

∫ t

T2

e−µ(t−τ)g(τ)dτ

∣∣∣∣
≤ |e−µt

η(0)|+
∣∣∣∣∫ T2

0
e−µ(t−τ)g(τ)dτ

∣∣∣∣+ ∣∣∣∣∫ t

T2

e−µ(t−τ)g(τ)dτ

∣∣∣∣ (3.9)

Let us now look at the second term in the right hand side of (3.9).∣∣∣∣∫ T2

0
e−µ(t−τ)g(τ)dτ

∣∣∣∣≤ ∫ T2

0
e−µ(t−τ)|g(τ)|dτ

Let |g|< Mg, then

∫ T2

0
e−µ(t−τ)|g(τ)|dτ < Mg

∫ T2

0
e−µ(t−τ)dτ

=
Mg

µ
(e−µ(t−T2)− e−µt)

Since limt→∞ e−µ(t−T2) = 0 and limt→∞ e−µt = 0, therefore, there exists T3, such that

Mg

µ
(e−µ(t−T2)− e−µt)<

ε

3
(3.10)

where t > T3. Similar to the second term in (3.9), looking at the third term we obtain,∣∣∣∣∫ t

T2

e−µ(t−τ)g(τ)dτ

∣∣∣∣≤ ∫ t

T2

e−µ(t−τ)|g(τ)|dτ

< βε

∫ t

T2

e−µ(t−τ)dτ

Simplifying and substituting β we get,

βε

∫ t

T2

e−µ(t−τ)dτ =
2ε

9
(1− e−µ(t−T2))
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Since limt→∞(1− e−µ(t−T2)) = 1, therefore, there exist T4, such that 1− e−µ(t−T2) < 3/2

when t < T4. Thus, ∣∣∣∣∫ t

T2

e−µ(t−τ)g(τ)dτ

∣∣∣∣< ε

3
. (3.11)

when t > T4. Let T = max{T1,T2,T3,T4} then, |η |< ε for all t > T .

Using Lemma 3.1 we can construct two theorems, first for the y-equation and second

for the z-equation.

Theorem 3.2. The ADRC system is ėr = −ker +( f1− ŷ2)+ωc(y− ŷ1). Let g1 = ḟ1, and

g1 is known as well as globally lipschitz, then the system is asymptotically stable.

Proof. Let er = y−r1 and h= f1− ŷ2+ωc(y− ŷ1). According to Theorem 2.1, limt→∞||h(t)||=

0 if g1 is globally Lipschitz. Then by (3.8) from Lemma 3.1, ėr =−ker+( f1− ŷ2)+ωc(y−

ŷ1) can be written as

er(t) = e−kter(0)+
∫ t

0
e−k(t−τ)h(τ)d(τ). (3.12)

Since A is Hurwitz from (2.9), according to Theorem 2.1 and Lemma 3.1, it can be con-

cluded that there exist constants ω0 > 0 and ωc > 0 such that limt→∞ er(t) = 0. In other

words, the system is asymptotically stable.

Theorem 3.3. The ADRC system is ėrz =−kzerz +( f2− ẑ2)+
∼
ωc(z− ẑ1). Let g2 = ḟ2, and

g2 is known as well as globally Lipschitz, then the system is asymptotically stable.

Proof. The proof is similar to Theorem 3.2.

We have just stabilized the ADRC Controlled Lorenz system for the y-, and z-equations.

In the next section, we will determine the convergence of the ADRC with plant dynamics

largely unknown.
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3.2 ADRC FOR THE DYNAMICS OF THE PLANT UNKNOWN

Now we consider the case where the dynamics of the plant are largely unknown. Since we

have proven the stability of the error system, we now can construct two theorems that prove

the stability of the ADRC Controlled Lorenz system for the y-, and z-equations.

Theorem 3.4. The ADRC system is ėr = −ker +( f1− ŷ2)+ωc(y− ŷ1). Let g1 = ḟ1, and

|g1| ≤M1. Then, there exists εΣ > 0 when t > T . Then, the system is stable.

Proof. Recall from the previous section, the ADRC system is given as,

ėr =−ker +( f1− ŷ2)+ωc(y− ŷ1)

where k =ωc+1. Similar to the (3.8) from the known disturbance, the er(t) for this ADRC

system is,

er(t) = e−kter(0)+
∫ t

0
e−k(t−τ)[( f1− ŷ2)+ωc(y− ŷ1)]dτ (3.13)

Since g1 is bounded, (3.13) is now,

|er(t)| ≤ |e−kter(0)|+
∫ t

0
e−k(t−τ)(| f1− ŷ2|+ωc|y− ŷ1|)dτ (3.14)

According to Theorem 2.3, there exists a finite time T1 such that

| f1− ŷ2| ≤
1+3M1

ω2
0

and

|y− ŷ1| ≤
1+3M1

ω2
0

for all t > T1. Therefore, by the property of definite integral (3.14) is now,

|er(t)| ≤|e−kter(0)|+
∫ T1

0
e−k(t−τ)(| f1− ŷ2|+ωc|y− ŷ1|)dτ

+
∫ t

T1

e−k(t−τ)(| f1− ŷ2|+ωc|y− ŷ1|)dτ
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Then | f1− ŷ2|+ωc|y− ŷ1| is continuous over [0,T1]. Thus, there exists M2 > 0, such that

| f1− ŷ2|+ωc|y− ŷ1| ≤M2. Hence

|er(t)| ≤ |e−kter(0)|+M2

∫ T1

0
e−k(t−τ)dτ +(1+ωc)

(
1+3M1

ω2
0

)∫ t

T1

e−k(t−τ)dτ

= |e−kter(0)|+
M2

k
[e−k(t−τ)− e−kt ]+

1+3M1

ω2
0

[1− e−k(t−T1)]

(3.15)

Note that limt→∞ e−kt = 0 as well as limt→∞ e−k(t−T1)− e−kt = 0 and limt→∞ e−k(t−T1) = 0.

From limt→∞ e−kt = 0, there exists 1/(k|er(0)|)> 0 and a finite time T2 > 0 such that

e−kt <
1

k|er(0)|

for all t > T2. Therefore,

|e−kter(0)|<
1
k

(3.16)

for all t > T2. From limt→∞ e−k(t−T1)− e−kt = 0 there exists 1/M2 > 0 and a finite time

T3 > 0 such that,

e−k(t−T1)− e−kt <
1

M2

for all t > T3. Therefore,
M2

k
[e−k(t−T1)− e−kt ]<

1
k

(3.17)

for all t > T3. From limt→∞ 1− e−k(t−T1) = 1 there exists a finite time T4 > 0 such that

1− e−k(t−T1) <
3
2
.

Therefore,
1+3M1

ω2
0

[1− e−k(t−T1)]<
3(1+3M1)

2ω2
0

. (3.18)

Now, let T = max{T1,T2,T3,T4}, then we obtain

|er(t)| ≤
1
k
+

1
k
+

3(1+3M1)

2ω2
0

=
2
k
+

3(1+3M1)

2ω2
0

(3.19)

Denote (3.19) as εΣ. Thus the system is stable.
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Similarly, we can construct the theorem for the z-equation.

Theorem 3.5. The ADRC system is ėrz =−kzerz +( f2− ẑ2)+
∼
ωc(z− ẑ1). Let g2 = ḟ2, and

|g2| ≤M2. Then, there exists εΣ > 0 when t > T . Then, the system is stable.

Proof. The proof is similar to Theorem 3.4.

From Theorem 3.4 and Theorem 3.5, the system is bounded by the reciprocal of k and

ω0, where k is the feedback control gains parameter and ω0 is the observer gains parameter.

That is, to stabilize the system, we can increase both the k and ω0.

In summary, it has been determined that with the plant model given, the ADRC system

is asymptotically stable; and when the plant dynamics are unknown, the error system is

stable when observer gains and feedback control gains are sufficiently large. In the next

section, the stability of the ADRC controlled Lorenz system will be analyzed.
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CHAPTER 4

STABILITY OF THE ADRC CONTROLLED LORENZ SYSTEM AT THE ORIGIN

In previous section, we have proven that the given ADRC system is stable. Now, we need

to show that the ADRC controlled Lorenz system is stable at the given equilibrium point.

In the following results, we have chosen r1(t) = 0, r2(t) = 0. Thus, we will stabilize the

Lorenz system at the origin, which is one of the equilibrium points. Two theorems are then

constructed; first, when the model of the plant is known and the second with the dynamics

of the plant largely unknown.

Theorem 4.1. Assume g1 and g2 are globally Lipschitz and the ESOs of the y, z subsystems

are asymptotically stable. Then, the ADRC controlled Lorenz system is asymptotically

stable at the origin.

Proof. According to Theorem 3 and Theorem 7, limt→∞ y(t) = 0 and limt→∞ z(t) = 0. Then

by Lemma 1, limt→∞ x(t) = 0. Therefore, the ADRC controlled Lorenz system is asymp-

totically stable.

Theorem 4.2. Assume g1 and g2 are bounded and the ESOs of the y, z subsystems are

stable. Then, the ADRC controlled Lorenz system is stable for sufficiently large observer

gains and feedback control gains.

Proof. According to Theorem 4 and Theorem 8 for sufficiently large observer gains and

feedback control gains, the y, z subsystems are stable. For all ε > 0, let |y(t)|< ε/3, where

t > T1. From our original Lorenz system, ẋ can be rewritten as,

ẋ =−px+ py.

Thus,

x = e−ptx(0)+ p
∫ t

0
e−p(t−τ)y(τ)dτ

= e−ptx(0)+ p
∫ T1

0
e−p(t−τ)y(τ)dτ + p

∫ t

T1

e−p(t−τ)y(τ)dτ
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Therefore,

|x| ≤ e−pt |x(0)|+ p
∫ T1

0
e−p(t−τ)|y(τ)|dτ + p

∫ t

T1

e−p(t−τ)|y(τ)|dτ

Let |y(τ)|< M over [0,T1]. Hence,

|x| ≤ e−pt |x(0)|+M(e−p(t−T1)− e−pt)+
ε

3
(1− e−pt)

= e−pt(|x(0)|−M− ε

3
)+Me−p(t−T1)+

ε

3

≤ e−pt |x(0)|+Me−p(t−T1)+
ε

3
. (4.1)

Then, there exists T2 such that e−pt |x(0)| < ε/3 and T3 such that Me−p(t−T1) < ε/3. The

inequality (4.1) is now,

|x| ≤ ε. (4.2)
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CHAPTER 5

NUMERICAL RESULTS

We have just established the stability of the ADRC Controlled Lorenz system. Now, the

system will be simulated visually in MATLAB. Our goal here is to verify the analytical

results in a numerical representation. We will consider two cases. First, we will show the

stability of the system when r1 = 0, r2 = 0; next, when at least one of the reference signal

is not zero. For example, when reference signal for y-equation is r1 = 0, then the reference

signal for z-equation is r2(t) 6= 0. Note that we are only working with a chaotic system,

thus, the Rayleigh number should be large enough as mentioned in Chapter 1.

We will begin by setting the parameters to be R = 50, b = 8/3, and p = 10 where

R is the Rayleigh number, b is the geometric factor, and p is the Prandtl number, respec-

tively. From the analytical results, we have proved that, when the observer bandwidth is big

enough, the ESO system is stable. Thus, let ω0 = 60 and k = 20 where ω0 is the observer

bandwidth and k is the feedback gain. Moreover, the ADRC Controller is set to activate

when t = 20.

Let us first consider the case where the reference signal for the y- and z-equations are

r1 = 0 and r2 = 0. For the disturbances, we will choose sinusoids since they are bounded

and close to practical situation. Thus, the disturbances are chosen as follows

w1(t) = 10cos(4t)

w2(t) = sin(3t)2.

(5.1)
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Figure 5.1: ADRC Controlled Lorenz system when r1 = 0, r2 = 0.

From Figure 5.1, we can see the chaotic system from t = 0 to t = 20. However, when

the ADRC Controllers track the disturbances, the system is close to the reference signals.

Now, let us look at the ESO for the y- and z-equation.

Figure 5.2: ESO for the y-state when r1 = 0, r2 = 0.
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Figure 5.3: ESO for the z-state when r1 = 0, r2 = 0.

From Figure 5.2, when the ESO tracks the disturbance, the system behaves more like

a sinusoid. On the other hand, Figure 5.3 shows the system near the origin when the ESO

becomes active. Earlier in the analytical result, we discovered that the accuracy of the ESO

tracking the system highly depends on the observer bandwidth. Thus, changing the w0 can

give a slightly different result.

Instead of stabilizing the Lorenz system with disturbances to the origin, we can also

tackle it differently. Let’s say that we want the system to look more periodic. Hence, we

examine two cases; first, when r1(t) 6= 0, r2(t) 6= 0, second, when only one of the reference

signals of either the y or z state is zero. This allows us to observe how the states interfere

with each other.

Let us consider the case where the reference signals for both y- and z-equations are

sinusoids. Thus, we will let

r1(t) = 5cos(3t)

r2(t) = 5sin(4t)2

for (5.1). Then, when ADRC Controller begins to track the disturbances, the system looks
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more like the periodic wave shown in Figure 5.4.

Figure 5.4: ADRC Controlled Lorenz system when r1(t) 6= 0, r2(t) 6= 0.

Finally, let us consider the case where the reference signal for one of the states is zero

while the other one is not. For example, let r1(t) = 0 and r2(t) = 5sin(4t)2 for (5.1). In

this case, we want the y state to be stabilized near the origin and z state to be near the given

r2(t). As we expected, the result looks like the Figure 5.5.
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Figure 5.5: ADRC Controlled Lorenz system when r1(t) = 0 and r2(t) = 5sin(4t)2.

Instead of having the reference signal a sinusoid, we can let it be a constant number.

For example, let u1 = 0 and u2 = 8. Thus, the result looks like the Figure 5.6.

Figure 5.6: ADRC Controlled Lorenz system when u1 = 0 and u2 = 8.

We have just shown two cases to test the stability of the ADRC Controlled Lorenz

system. However, instead of playing with the reference signal, we can also modify the
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disturbance as described earlier. For example, let

w1(t) = zsin(10t)

w2(t) = zysin(3t)2

with r1 = 0, r2 = 0. Then the result looks like the following Figure 5.7.

Figure 5.7: ADRC Controlled Lorenz system with w1(t) = zsin(10t) and w2(t) =

zysin(3t)2 when r1 = 0, r2 = 0.
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CHAPTER 6

CONCLUSION

In reality, there are dynamics or disturbances that cannot be modeled and must be omitted

during the modeling process. Thus, we used a robust controller called ADRC to stabilize

the nonlinear dynamical system with disturbances. Not only have we used the ADRC but

also the ESO to track the three states and disturbances in the system. As a result, we

have successfully stabilized a system in two cases. The system is asymptotically stabilized

when the model of the plant is given. When the disturbance is totally unknown, the state

trajectories are bounded by the feedback control gains and the observer gains. We we have

found that increasing the two gains will stabilize the system with unknown disturbances.

In this paper, we have designed a MIMO ADRC system from two SISO ADRC sys-

tems. See Wenchao, [14]. The two disturbances are w1, w2 in y- and z-equations, respec-

tively. However, with the same system we used, we can build a MIMO system instead of a

combination of two SISO systems. Recall (1.7),

ẋ = p(y− x)

ẏ = Rx− y− xz+w1 +u1

ż = xy−bz+w2 +u2

where x, y, z are three states, w1, w2 are the disturbances, and u1, u2 are the ADRC con-

trollers. Instead f1 = Rx− xz+w1, we will let f1 = −xz+w1 = x4. Moreover, x1 = x,

x2 = y, x3 = z, x5 = w2 + xy = f2. Now, the (1.7) can be written as

ẋ1 = p(x2− x1)

ẋ2 = Rx1− x2 + x4 +u1

ẋ3 =−bx3 + x5 +u2

ẋ4 = ḟ1

ẋ5 = ḟ2
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Now the system is associated with 5× 5 matrix. Thus, the characteristic polynomial for

this matrix is p(λ ) = (λ +ω0)
5. There will be ten observer gains we need to find and the

system equations are nonlinear which is challenging to solve.
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