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A COMPREHENSIVE ANALYSIS ON EEG SIGNAL CLASSIFICATION USING

ADVANCED COMPUTATIONAL ANALYSIS

by

KAUSHIK BHIMRAJ

(Under the Direction of Rami J. Haddad)

ABSTRACT

Electroencephalogram (EEG) has been used in a wide array of applications to study mental

disorders. Due to its non-invasive and low-cost features, EEG has become a viable in-

strument in Brain-Computer Interfaces (BCI). These BCI systems integrate user’s neural

features with robotic machines to perform tasks. An important application of this tech-

nology is to help facilitate the lives of the tetraplegic through assimilating human brain

impulses and converting them into mechanical motion. However, due to EEG signals being

highly dynamic in nature, BCI systems are still unstable and prone to unanticipated noise

interference. In the initial work, a novel classifier structure is proposed to classify differ-

ent types of imaginary motions (left hand, right hand, and imagination of words starting

with the same letter) across multiple sessions using an optimized set of electrodes for each

user. The proposed technique uses raw brain signals obtained utilizing 32 electrodes and

classifies the imaginary motions using Artificial Neural Networks (ANN). To enhance the

classification rate and optimize the set of electrodes of each subject, a majority voting

system combining a set of simple ANNs is used. This electrode optimization technique

achieved classification accuracies of 69.83%, 94.04% and 84.56% respectively for the three

subjects considered in this work. In the second work, the signal variations are studied in

detail for a large EEG dataset. Using the Independent Component Analysis (ICA) with a

dynamic threshold model, noise features were filtered. The data was classified to a high



precision of more than 94% using artificial neural networks. A decrease of variance in

classification accuracies validated, both, the effectiveness of the proposed dynamic thresh-

old systems and the presence of higher concentrations of noise in data for specific subjects.

Nonetheless, based on the variance and classification, subjects were further categorized

into two groups. The lower accuracy group was found to have an increased variance in

classification accuracies. To confirm these results, a Kaiser windowing technique was used

to compute the signal-to-noise ratio (SNR) for all subjects and a low SNR was obtained

for all EEG signals pertaining to the group with the poor data classification. This study

not only establishes a direct relationship between high signal variance, low SNR, and poor

signal classification but also presents classification results that are significantly higher than

the accuracies reported by prior studies for the same EEG user dataset.

Index Words: Electroencephalogram, Brain Computer Interface, Independent Component

Analysis, Artificial Neural Network
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CHAPTER 1

INTRODUCTION

Non-invasive and cost-effective nature of electroencephalography (EEG) renders it suitable

for detecting epilepsy, sleep disorders, brain tumors, and other brain-related conditions.

Previous studies have modeled EEG data in brain-computer interface (BCI) systems to

perform mechanical motion [1, 2]. Interfacing machines with human cognition provides

essential assistance for physically impaired individuals [3]. According to a survey conducted

by the Center of Disease Control and Prevention (CDC), 6% of females and 3.5% of males

above the age of 18 in the United States suffer from serious physical disability [4]. Amongst

these people, some suffer debilitating physical disabilities. Noninvasive Brain Computer

Interfacing (BCI) systems have potential as a practical solution to help facilitate these

individuals’ lives. These systems interface the non-muscular brain signals with a computing

machine to process and identify a user’s intentions and finally convert them to a controlled

artificial motion. But brain signals tend to be dynamic and vary across individuals. This

hinders the application of BCI systems for assimilating data and recognizing the user’s

intended motion becomes a complex task. Using Electroencephalography (EEG), studies

have developed interesting methods to test the permanence of identifying people across

multiple time-spaced sessions through a comparative analysis using data from multiple

classifiers [5]. To recognize and learn such complex patterns of brain activity, a robust

classification system is needed.

In 2004, a BCI system was implemented for users to control and guide a mobile

robot through a maze using EEG signals [6]. The study outlined a brain-machine interface

for future studies and implemented a non-invasive EEG system. The concept of BCI was

further explored and used for medical applications wherein a user could control a wheelchair

system [7]. The signals were filtered using a bandpass filter and noise was identified to

be concentrated below 1 Hz. However, noise was still reported to be persistent within the
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signals. BCI systems are relatively easy to implement conceptually, but, when implemented

they suffer from low accuracy, high muscle contamination, and noise interference that limit

their reliability [8].

Classifiers in BCI bolster user’s safety and system reliability through quick and robust

classification of data for different neural tasks [9]. Four classifiers namely, support vector

machines (SVM), linear discriminant analysis (LDA), statistical classifier (SC), and artificial

neural networks (ANN) have proven to be good EEG feature selectors [10]. SVM and LDA

classifiers were used with a 10-fold cross validation to classify data from two datasets and

resulted in high accuracies with SVM having a higher rate of classification [11]. Here the

issue of signal correlation among channels is highlighted which will be further examined

in this work. In another study, ANN classification was used along with a fuzzy particle

swarm optimization training function to classify EEG signals for 10 subject sample, with 5

subjects being able bodied and the other five suffering tetraplegia [12]. The study provides

a comparative analysis for five classifiers and reports its ANN model to have the highest

classification accuracy. However, the eye movements were kept to a minimum which does

not replicate real world application. In these studies, techniques to classifymultidimensional

EEG data for BCI systems were explored. However, the scope of these studies have been

limited to a few subjects and failed to provide a good reference for reasonable stability in a

large scale sample set.

In the initial work, a majority-vote system was implemented to a network of artificial

neural networks (ANN) to optimally classify imaginary motions performed by subjects for

multiple sessions. The proposed technique optimizes the electrodes used for individual user

classification by ranking each electrode’s data based on its individual classification accuracy.

The best performing electrodes are identified with a rank-based statistical analysis. In the

second work, the use of an automatic feature extracting independent component analysis

(ICA) system with an ANN classifier that uses the Levenburg-Marquardt training function
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to classify a large scale dataset of 105 subjects is proposed. The work validates the

relationship between signal to noise ratio (SNR), signal variance across multiple sessions,

and signal classification accuracy. The dataset considered for this work was acquired

from PhysionNet and consists of both imagined and actual movements performed by 105

subjects [13, 14]. In a different study, wavelet transform features were extracted from the

EEG Movement/Imagery dataset and an ANN was used for classification [15]. This study

reported a maximum classification accuracy of 68.21%. A phase locking value system

(PLV) was used for the same dataset to classify the β (12-30 Hz) and µ (8-12 Hz) rythms

for actual movements (78.95% & 63.73%) and imagery tasks (71.55% & 65.55%) in [16].

Another study using two feature selection processes (ICA and frequency band selection),

classified the data using an SVM classifier with a Gaussian kernel and reported a high

average accuracy of 69% [17]. The average classification accuracy reported is 11% higher

than the highest accuracy reported in all previous studies pertaining to the same dataset.

However, in this work, details are presented about the data that has not been presented

before and propose a robust system that automatically extracts task features using an ICA

and classifies them using an ANN classifier.

The remainder of this paper is organized as follows. Chapter 2 provides the literature

review for the thesis and introduces key concepts of research. Chapter 3 presents the

proposed majority voting technique and provides results from genetic algorithm. Chapter 4

proposes two autonomous noise removal techniques for ICA components and uses an ANN

to validate the techniques. Finally, Chapter 5 concludes the paper with a summary of the

proposed classification models and future works.
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CHAPTER 2

LITERATURE REVIEW

2.1 General Concentrations & Divisions of The Human Brain

The human brain is a vital organ that assists in processing information in order to perform

complex day-to-day physical and mental tasks. It is protected within a bone cavity called the

cranium. The craniumhas several bones that are connected along the suture lines. Pertaining

to these suture topographies, the brain regions within the cranium are also classified. The

fissures on the grey matter, as shown in Fig 2.1, are divided into several regions, i.e, Frontal

lobe, Parietal lobe, Temporal lobe and the Occipital lobe [18]. When observed from the top,

Parietal Bone

Occipital Bone

Temporal Bone

Frontal Bone

(a)

Frontal Lobe
Parietal Lobe

Occipital Lobe

Temporal Lobe

(b)

Figure 2.1: a. Bones of the cranium and their suture topography b. Regions of brain

pertaining to cranium topography.

the brain seems to be partitioned into left and right hemispheres and the partitioning fissure

is called the Great Longitudinal Fissure. The two hemispheres of the brain tend to mirror

each other in patterns with little variation but they are still regarded as distinct regions that

process information differently [19]. Furthermore, specific regions in the Frontal lobe have

been observed to specialize in speech processing, movements of hand, limb, ocular, facial
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and body related movements. Regions in the parietal lobe have been observed to integrate

sensory inputs with visual information. The temporal region houses the auditory area that

processes signals from the ear into meaningful units of information. Lastly, the occipital

region is primarly known to process visual information from the optical nerves [20]. Such

localizations in the frontal cortex which are responsible for movement of hand and legs

are situated in the region between the frontal and parietal region. The region preceding

the motor cortex lies within the parietal cortex and is known as the somatosensory region.

These regions together process the pressure and intensity of the movement to coordinate

movement-related tasks. In such manner, various regions of the brain seamlessly coordinate

to provide complex and calculated responses. In Fig 2.3, the motor, somatosenzsory and

occipital regions of the brain are shown with emphasis on the visual cortex. To study

such co-ordinations across the regions of the brain, researchers have started analyzing data

recorded for performed imagery tasks.

Chapter 51 The Eye: III. Central Neurophysiology of Vision 641

one another in the paired layers, and similar parallel
transmission is preserved all the way to the visual
cortex.

The second major function of the dorsal lateral
geniculate nucleus is to “gate” the transmission of
signals to the visual cortex—that is, to control how
much of the signal is allowed to pass to the cortex. The
nucleus receives gating control signals from two major
sources: (1) corticofugal fibers returning in a backward
direction from the primary visual cortex to the lateral
geniculate nucleus, and (2) reticular areas of the mes-
encephalon. Both of these are inhibitory and, when
stimulated, can turn off transmission through selected
portions of the dorsal lateral geniculate nucleus. It is
assumed that both of these gating circuits help high-
light the visual information that is allowed to pass.

Finally, the dorsal lateral geniculate nucleus is
divided in another way: (1) Layers I and II are called
magnocellular layers because they contain large
neurons.These receive their input almost entirely from
the large type Y retinal ganglion cells. This magnocel-
lular system provides a rapidly conducting pathway to
the visual cortex. However, this system is color blind,
transmitting only black-and-white information. Also,
its point-to-point transmission is poor because there
are not many Y ganglion cells, and their dendrites
spread widely in the retina. (2) Layers III through VI
are called parvocellular layers because they contain
large numbers of small to medium-sized neurons.
These neurons receive their input almost entirely from
the type X retinal ganglion cells that transmit color
and convey accurate point-to-point spatial informa-
tion, but at only a moderate velocity of conduction
rather than at high velocity.

Organization and Function 
of the Visual Cortex

Figures 51–2 and 51–3 show the visual cortex located
primarily on the medial aspect of the occipital lobes.
Like the cortical representations of the other sensory
systems, the visual cortex is divided into a primary
visual cortex and secondary visual areas.

Primary Visual Cortex. The primary visual cortex (see
Figure 51–2) lies in the calcarine fissure area, extend-
ing forward from the occipital pole on the medial

Optic radiation Optic chiasm
Optic tract

Optic nerve

Left eye

Right eye

Visual cortex

Lateral geniculate body

Superior
colliculus

Figure 51–1

Principal visual pathways from the eyes to the visual cortex. (Mod-
ified from Polyak SL: The Retina. Chicago: University of Chicago,
1941.)

Macula

Secondary
visual areas

Calcarine fissure

Primary
visual cortex

20∞ 60∞ 90∞

Figure 51–2

Visual cortex in the calcarine fissure area of the medial occipital
cortex.

Motor cortex Somatosensory area I

Form,
3-D position,
motion

18

17

Primary
visual
cortex

Secondary
visual
cortex

Visual
detail,
color

Figure 51–3

Transmission of visual signals from the primary visual cortex into
secondary visual areas on the lateral surfaces of the occipital and
parietal cortices. Note that the signals representing form, third-
dimensional position, and motion are transmitted mainly into the
superior portions of the occipital lobe and posterior portions of the
parietal lobe. By contrast, the signals for visual detail and color
are transmitted mainly into the anteroventral portion of the occip-
ital lobe and the ventral portion of the posterior temporal lobe.

Figure 2.2: Lateral view of the Motor, Somatosensory and Occipital areas of the brain

Using fMRI imaging procedures, data pertaining to constructing and deconstructing

mental images were recorded for 15 subjects [21]. The study not only affirms the active

involvement of the visual cortex in constructing complex mental images but it also confirms
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the co-ordination of other regions of brain in the process. The fMRI results are shown in

Fig 2.3. In accordance to the results of this study, this research focuses on analyzing the

EEG recordings based on motor imagery.

four conditions. However, because we hypothesized that visual
cortex plays a role in mediating operations on visual imagery, we
included an anatomically defined occipital mask in our set of
ROIs. Thus we had 12 ROIs to investigate for informational
content relevant to the mental operations.
We then attempted to decode the particular mental operations

performed by participants based on spatiotemporal patterns of
BOLD responses in each of these 12 ROIs. We carried out
a multivariate pattern-classification analysis (5) within each ROI.
In this analysis, a classifier algorithm first is trained by providing
it with a set of BOLD response patterns from the ROI along with
the mental operation associated with each pattern. Then
a holdout pattern not involved in the training is used to test the
classifier. If the classifier can predict above chance the mental
operation associated with the holdout pattern, the ROI contains
information specific to that particular mental operation and
likely is involved in mediating that operation. We carried out
two-way classifications in each ROI between construct-parts and
deconstruct-figure conditions and between maintain-parts and
maintain-figure conditions, with results shown in Fig. 3A. To
evaluate the informational content of each ROI in a single
analysis, we constructed the model confusion matrix that would
be expected for regions that mediated the mental operations
(Fig. 3B). A confusion matrix indicates the similarity between
patterns from different conditions; if patterns are more similar,
the classifier will be more likely to confuse them. In this case, we
expected high similarity between patterns from the same condi-
tion, moderate similarity when both patterns were from either
two manipulation or two maintenance conditions, and low sim-
ilarity when one pattern was from a manipulation condition and
the other was from a maintenance condition. We then carried

out correlation analyses between this model and the actual
confusion matrix in each ROI derived from four-way classi-
fications among the conditions (Fig. 3C). These analyses iden-
tified a subset of the ROIs, consisting of occipital cortex,
posterior parietal cortex (PPC), precuneus, posterior inferior
temporal cortex, dorsolateral prefrontal cortex (DLPFC), and
frontal eye fields, in which we could decode the specific mental
operations from patterns of neural activity. Additional control
analyses confirmed that our results were not affected by ROI size
or differences in response times between conditions (Fig. S1 and
Table S1).
Each of the four operations followed a three-stage temporal

sequence in which participants encoded an input into a mental
representation, performed a mental operation (construct, de-
construct, or maintain) on that representation, and produced an
output mental representation. Each of these stages entailed
a unique relationship among the mental states associated with
the four conditions (Fig. 4A). For example, the inputs to the
construct-parts condition were similar to those of the maintain-
parts condition, the operation performed during the construct-
parts condition was similar to that of the deconstruct-figure
condition, and the outputs from the construct-parts condition
were similar to those of the maintain-figure condition. Thus, the
relationship among the conditions evolved throughout the trial
and provided a means of further exploring the informational
content of the mental workspace. To do so, we carried out
a four-way classification among the conditions at each time point
and correlated the resulting confusion matrices with each of the
three model similarity structures in Fig. 4A. High correlation
between a confusion matrix and one of the model structures
would indicate that a particular region was carrying out the
corresponding stage of processing at that time. Fig. 4B shows the
time course of correlations with each model in occipital cortex.
In Fig. 4C, we report peak correlation times in each of the 12
ROIs. In the four regions with highest classification accuracies in
Fig. 3A, correlation peaks progressed from input through oper-
ation to output, providing strong evidence that these four areas
directly mediated the mental operations as they unfolded over
time. It should be noted that the differences between test stimuli
could have affected the output correlation time course (orange
trace in Fig. 4B) because the output mental representations were
similar to the stimuli presented during the test phase. Our ex-
perimental design did not allow us to evaluate the relative con-
tributions of the output mental representations and of the test
stimuli to the output correlation time course.
The above analyses show that a subset of ROIs supports the

temporal evolution of information necessary to carry out
particular mental operations. However, they do not provide

Fig. 1. Experimental design. (A) Parts could be constructed into 2 × 2 fig-
ures, and figures could be deconstructed into parts. (B) Participants per-
formed four mental operations on stimuli: construct parts into figure,
deconstruct figure into parts, maintain parts, or maintain figure. (C) The
stimulus set of 100 abstract parts, ordered from simple to complex. (D) Ex-
ample of figures. Parts and figures ranged from simple to complex according
to an index, d. This index allowed the difficulty of the task to be equated
across conditions. (E) Trial schematic. Trials begin with a figure and four
unrelated parts presented for 2 s, followed by a task prompt for 1 s con-
sisting of an arrow indicating the figure or the parts and a letter indicating
the task. In this case, the participant is instructed to maintain the figure in
memory. The task prompt is followed by a 5-s delay period during which no
stimulus is shown and the participant performs the indicated operation. Fi-
nally, a test screen appears for 2.5 s. Depending on the task, four figures or
four sets of parts are presented, and the participant indicates the correct
output of the operation.

Fig. 2. Eleven ROIs showing differential activity levels in manipulation and
maintenance conditions. An additional occipital cortex ROI was defined
anatomically. CERE, cerebellum; DLPFC, dorsolateral prefrontal cortex; FEF,
frontal eye fields; FO, frontal operculum; MFC, medial frontal cortex; MTL,
medial temporal lobe; OCC, occipital cortex; PCU, precuneus; PITC, posterior
inferior temporal cortex; PPC,: posterior parietal cortex; SEF, supplementary
eye field; THA, thalamus.
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Figure 2.3: fMRI images from a study conducted by researchers are Dartmouth University

of the brain when performing imagery tasks [21].

2.2 Electroencephalography

Electroencephalography has been used to study brain functioning by recording electrical

activity of the neural tissue. The electrical impulses generated by the neurons in the brain,

permeate the bone tissue to the scalp. These low amplitude signals across the scalp are

recorded at specific sampling frequencies of 160 - 512 Hz [22]. Numerous electrodes are

placed at specific locations on the scalp based on 10-10 and 10-20 placement systems.

The number of electrodes can range anywhere from 1 to 128 electrodes. But most studies

use a 32 or 64 electrode setup for study. In Fig 2.4, a 64 electrode EEG setup is shown

where the electrodes are placed on scalp using a 10-10 positioning system. EEG signals

are used to detect mental abnormalities such as sleep disorders, epilepsy, and paralysis.

Due to its noninvasive and cost effective features, EEG has been used in Brain Computer
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Interface (BCI) systems. Neural signals recorded by EEG are not only used to detect mental

abnormalities but are now being used to transfer human thought into computer enabled

action [23].

T9T10

Fpz

Cz

Iz

(a)

Fpz

Cz

(b)

Figure 2.4: EEG electrode setup using 10-10 standard system a. Anterior view b. Lateral

view

Signals acquired using EEG can also be represented in the frequency domain within

four bandwidths. These bandwidths are categorized as alpha, beta, theta and delta. The

alpha waves are rhythmic waves that exist between 8 to 13 Hz. These waves originate

mostly in adults while awake and in resting state. The waves are mainly concentrated in the

occipital region. At normal and attentive state, the beta waves are generated at frequencies

between 14 - 80 Hz. These waves predominantly originate in the frontal and parietal

regions of the brain. Theta waves are generated during emotional stress, disappointment

and frustration. They also occur between 4 - 7 Hz among people suffering from degenerative

brain disorders. Lastly, delta waves are generated during deep-sleep state and infancy at 3.5

Hz. These frequency bandwidths are also used to study and analyze the brain.
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2.3 Applications of Brain Computer Interface

Brian computer interface (BCI), is an interface that extracts, detects, and translates specific

neural generated impulses from the brain into machine defined as actions. BCI systems

generally consist of three sections, acquisitioning system, feature extraction system, and

signal classification system. This outline of a standard BCI system is shown in Fig 2.5.

Within these three sections of the BCI system, EEG has become an effective tool to acquire

brain signals from the scalp. In the second section, specific neural features that were

performed by the subject triggered by specific visual or vocal queues are identified using

feature extraction techniques. Some of the feature extraction techniques transform time

based EEG signals to the frequency domain. And data at specific frequencies is extracted

and re-transformed back into the time domain.

1034 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 6, JUNE 2004

BCI2000: A General-Purpose Brain-Computer
Interface (BCI) System

Gerwin Schalk*, Member, IEEE, Dennis J. McFarland, Thilo Hinterberger, Niels Birbaumer, and Jonathan R. Wolpaw

Abstract—Many laboratories have begun to develop brain-com-
puter interface (BCI) systems that provide communication and
control capabilities to people with severe motor disabilities. Fur-
ther progress and realization of practical applications depends on
systematic evaluations and comparisons of different brain signals,
recording methods, processing algorithms, output formats, and
operating protocols. However, the typical BCI system is designed
specifically for one particular BCI method and is, therefore, not
suited to the systematic studies that are essential for continued
progress. In response to this problem, we have developed a
documented general-purpose BCI research and development
platform called BCI2000. BCI2000 can incorporate alone or
in combination any brain signals, signal processing methods,
output devices, and operating protocols. This report is intended
to describe to investigators, biomedical engineers, and computer
scientists the concepts that the BCI2000 system is based upon
and gives examples of successful BCI implementations using this
system. To date, we have used BCI2000 to create BCI systems for
a variety of brain signals, processing methods, and applications.
The data show that these systems function well in online operation
and that BCI2000 satisfies the stringent real-time requirements of
BCI systems. By substantially reducing labor and cost, BCI2000
facilitates the implementation of different BCI systems and
other psychophysiological experiments. It is available with full
documentation and free of charge for research or educational
purposes and is currently being used in a variety of studies by
many research groups.

Index Terms—Assistive devices, augmentative communication,
brain-computer interface (BCI), ECoG, electroencephalography
(EEG), psychophysiology, rehabilitation.

Manuscript received June 25, 2003; revised February 15, 2004. This work
was supported in part by the National Center for Medical Rehabilitation Re-
search, National Institute of Child Health and Human Development, National
Institutes of Health (NIH) under Grant HD30146, and in part by the National
Institute of Biomedical Imaging and Bioengineering and the National Institute
of Neurological Disorders and Stroke, NIH, under Grant EB00856, and in part
by the Deutsche Forschungsgemeinschaft (DFG) and the Federal Ministry of
Education and Research (BMBF). Asterisk indicates corresponding author.

*G. Schalk is with the Laboratory of Nervous System Disorders, Wadsworth
Center, New York State Department of Health, Albany, NY 12201-0509 USA
(e-mail: schalk@wadsworth.org).

D. J. McFarland is with the Laboratory of Nervous System Disorders,
Wadsworth Center, New York State Department of Health, Albany, NY
12201-0509 USA.

T. Hinterberger is with the Institute of Medical Psychology and Behavioral
Neurobiology, Eberhard-Karls-University of Tübingen, D-72074 Tübingen,
Germany.

N. Birbaumer is with the the Institute of Medical Psychology and Behavioral
Neurobiology, Eberhard-Karls-University of Tübingen, D-72074 Tübingen,
Germany, and also with the Center for Cognitive Neuroscience, University of
Trento, 38100 Trento, Italy.

J. R. Wolpaw is with the Laboratory of Nervous System Disorders,
Wadsworth Center, New York State Department of Health, Albany, NY
12201-0509 USA, and also with the State University of New York, Albany,
NY 12222 USA.

Digital Object Identifier 10.1109/TBME.2004.827072

Fig. 1. Basic design and operation of any BCI system. Signals from the brain
are acquired by electrodes on the scalp, the cortical surface, or from within
the brain and are processed to extract specific signal features (e.g., amplitudes
of evoked potentials or sensorimotor cortex rhythms, firing rates of cortical
neurons) that reflect the user’s intent. Features are translated into commands
that operate a device (e.g., a simple word processing program, a wheelchair, or
a neuroprosthesis).

I. INTRODUCTION

A. Brain-Computer Interface (BCI) Technology

MANY people with severe motor disabilities need aug-
mentative communication technology. Those who are

totally paralyzed, or “locked-in,” cannot use conventional aug-
mentative technologies, all of which require some measure of
muscle control. Over the past two decades, a variety of studies
has evaluated the possibility that brain signals recorded from the
scalp or from within the brain could provide new augmentative
technology that does not require muscle control (e.g., [1]–[8]);
see [9] for a comprehensive review. These BCI systems mea-
sure specific features of brain activity and translate them into
device control signals (see Fig. 1, modified from [9]). The fea-
tures used in studies to date include slow cortical potentials,
P300 evoked potentials, sensorimotor rhythms recorded from
the scalp, event-related potentials recorded on the cortex, and
neuronal action potentials recorded within the cortex.

These studies show that nonmuscular communication and
control is possible and might serve useful purposes for those
who cannot use conventional technologies. To people who are
locked-in (e.g., by end-stage amyotrophic lateral sclerosis,
brainstem stroke, or severe polyneuropathy) or lack any useful
muscle control (e.g., due to severe cerebral palsy), a BCI system

0018-9294/04$20.00 © 2004 IEEE

Figure 2.5: Outline of a brain computed interface system with its three main components.

To mitigate noise issues, BCI systems use digital filters or feature selection techniques

to remove unwanted artifacts from the EEG data. Sole use of low-pass or band-pass filters,

do not remove eye and muscle related contamination present in the signal. However in

some EEG recordings for BCI system, users were asked to restrict their eye movements to

minimize contamination. This approach is impractical for real world BCI applications. To
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remove noise artifacts, blind source separation (BSS) models can be effective. Independent

component analysis (ICA) is one such technique which has been successfully used to extract

neural related features from contaminated signals [24, 25].

2.4 Artificial Neural Networks

Artificial neural network (ANN) are computation models that mimic the workings of the

brain. These models were widely studied in the early eighties and nineties. However, until

recently, implementation of this concept had remained a challenge due its computational

cost. The ANN models work well for machine learning problems and are better adept to

learning and classifying data with complex variations consisting of a large feature sets. The

human brain does a marvelous job in learning new things through processing various inputs

such as speaking, movement, hearing, sense of touch, sight, listening and complex motor

imagery. Scientists hypothesize that brain is highly flexible and can adapt to a new input.

In a study, the neural connections between the auditory nerve and the auditory cortex were

severed and the optic nerve of the eye was connected to the auditory cortex. Remarkably,

the auditory cortex learned to see. In another study, the somatosensroy cortex of the brain

which processes the sense of touch was re-wired to receive visual inputs from the optic

nerve. The somatosensroy cortex had learned to process the visual signals. These re-wiring

experiments establish, that any part of the brain can be used process and learn any kind of

input. This encourages researcher to explore a single computational model that can replicate

brain’s processing capabilities. On a computer, accomplishing such flexibility in learning

can seem challenging and to mimic the brain it is essential to introduce the neuron.
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2.4.1 Structure of Neuron

The neuron is the main processing unit of brain and there are approximately three trillion

neurons in the human brain. The structure of the neuron can be categorized into three parts,

the axon, dentrites and the cell body as shown in Fig 2.6. The dentrites connect the cell

Figure 2.6: Proposed Classification System Model

body to other neurons. There can be numerous dentrites to a neuron and can extend upto

0.5 meters in length. Through dentrites signals are carried into the neuron. The axon is

another extension of the cell body that is coated with a protein insulation called the Myelin

Sheath. The axon is a longer extension and can measure upto one meters in length. The

elongation carries signals out of the cell to the axon terminal.

2.4.2 Brief Overview of Neural Networks

Using the structure of neuron, the computational model of the artificial neural network was

designed. In 1943, Warren McCulloch and Walter Pitts created a computational model of

the neural network [26]. Backpropagation models were later proposed as addtions to the

neural network model in 1975 [27]. Within the ANN, the neuron has one output and one

input. In the neuron, the input is multiplied to a weight and fed into a transfer function.

Three transfer functions are mainly used in NN systems, i.e, the hard-limit transfer function,

linear transfer function and log-sigmoid transfer function. The hard-limit transfer function
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Neuron Model

2-3

All of the neurons in this toolbox have provision for a bias, and a bias is used 
in many of our examples and will be assumed in most of this toolbox. However, 
you may omit a bias in a neuron if you want.

As previously noted, the bias b is an adjustable (scalar) parameter of the 
neuron. It is not an input. However, the constant 1 that drives the bias is an 
input and must be treated as such when considering the linear dependence of 
input vectors in Chapter 4, “Linear Filters.”

Transfer Functions 
Many transfer functions are included in this toolbox. A complete list of them 
can be found in “Transfer Function Graphs” in Chapter 14. Three of the most 
commonly used functions are shown below.

The hard-limit transfer function shown above limits the output of the neuron 
to either 0, if the net input argument n is less than 0; or 1, if n is greater than 
or equal to 0. We will use this function in Chapter 3 “Perceptrons” to create 
neurons that make classification decisions.

The toolbox has a function, hardlim, to realize the mathematical hard-limit 
transfer function shown above. Try the code shown below.

n = -5:0.1:5;
plot(n,hardlim(n),'c+:');

It produces a plot of the function hardlim over the range -5 to +5.

All of the mathematical transfer functions in the toolbox can be realized with 
a function having the same name.

The linear transfer function is shown below.

a = hardlim(n)

Hard-Limit Transfer Function

-1

n
0

+1
a

(a) Hard-Limit

2 Neuron Model and Network Architectures

2-4

Neurons of this type are used as linear approximators in “Linear Filters” in 
Chapter 4.

The sigmoid transfer function shown below takes the input, which may have 
any value between plus and minus infinity, and squashes the output into the 
range 0 to 1.

This transfer function is commonly used in backpropagation networks, in part 
because it is differentiable.

The symbol in the square to the right of each transfer function graph shown 
above represents the associated transfer function. These icons will replace the 
general f in the boxes of network diagrams to show the particular transfer 
function being used.

For a complete listing of transfer functions and their icons, see the “Transfer 
Function Graphs” in Chapter 14. You can also specify your own transfer 
functions. You are not limited to the transfer functions listed in Chapter 14. 
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Log-Sigmoid Transfer Function
a = logsig(n)
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Figure 2.7: Types of transfer functions used in a neuron [28].

outputs is ’0’ when the input is less that zero and outputs a ’1’ when the input is greater

than one. Neurons using a linear transfer function use linear approximations or linear filters

to provide outputs. Finally, the log-sigmoid transfer function in neurons, takes input values

between -∞ and +∞ and provides outputs in a range between 0 and 1. The sigmoid function

is frequently used in backpropagation networks due to the differential properties. The

outputs for these functions are shown in Fig 2.7. In the figure, the pre-defined MATLAB

functions are also shown. Using these functions the neuron computes its output and feeds it

forward to the next neuron. Along with inputs and weights, the neuron can also have a bias

associated to it. The bias parameter is used to add further emphasis to the neuron’s output.

The structure of a neuron is shown in Fig 2.8.

Input

bias

weight
H(x)  

A = f(Input * weight + Bias)

x1

x1

x1

a1

a2

a3

x

H(x)

Θ2 

Θ1 

x0 a0

Bias Terms
Figure 2.8: Structure of Neuron in an ANN
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2.4.3 Feed Forward Network

Basic ANN architecture mainly consists of three types of layers, i.e, input layer, hidden

layer and the output layer. As seen in Fig 2.9, a simple ANN consists of three types of layers

with several nodes, each designated to a neuron. The computation of in each layer can be

Input

bias

weight
H(x)  

A = f(Input * weight + Bias)

x1

x2

x3

a1

a2

a3

x

H(x)

Θ2 

Θ1 

x0 a0

Bias Terms

Figure 2.9: Feed Forward Neural Network

mathematically represented as follows.

a1 = g(θ1
10x0 + θ

1
11x1 + θ

1
12x2 + θ

1
12x3)

a2 = g(θ1
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1
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1
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1
23x3)

a3 = g(θ1
30x0 + θ

1
31x1 + θ

1
32x2 + θ

1
33x3)

H(x) = g(θ2
10a0 + θ

2
11a1 + θ

2
12a2 + θ

2
13a3)

where x0 and a0 are bias parameters and g(x) is the transfer function. Size of the weight

matrix of the layer Θ1 consists of Sj+1 x (Sj + 1) values. Here j is the number of layers

in the ANN architecture. The weight matrix changes for each layer. In Fig 2.9, the

input layer consists of inputs X = {x0, x1, x2, x3}, the hidden layer nodes are denoted as

A = {a0, a1, a2, a3} and lastly the output layer consists of a single output node with H(x) as
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the output. In Eq 2.1, the above equations can be represented a vectorized form,

Z = Θ1 ∗ X (2.1)

where Θ1 is the weight matrix for the hidden layer and X is the matrix containing the input

values. Each of the nodes in the hidden layer compute an output using a transfer function

g(x) as shown in Eq 2.2,

A = g(Z) (2.2)

where A consists output values from all the nodes of the hidden layer. The final output H(x)

is computed in Eq 2.3,

H(x) = Θ2 ∗ A (2.3)

where Θ2 is the weight matrix for the output layer.

2.4.4 Cost Function & Backpropagation

While the feed forward networks contain neurons that calculate outputs based on the given

input, weight and bias parameters, the backpropagation model in the neural networks

optimizes a cost function and updates the weights in each layer of the neural network.

Before the process of backpropagation is explained, it is necessary to introduce the cost

function of a neural network model. The function is similar to the cost function of a logistic

regression classifier but the cost J(Θ) in NN models is calculated for all the layers. In

Eq 2.4, the cost function is defined as,

J(Θ) = −1
n

©«
n∑

i=1

T∑
j=1

yi
j log(H(x

i)) j + (1 − yi
j)log(1 − H(xi)) jª®¬ (2.4)

where n is the number of nodes in a layer, T is the number of layers, yi
j is the expected

output of j th node in the ith layer and H(xi) is the acquired output of the j th node in the ith

layer. Using the above cost function, the backpropagation model seek to optimize weights

by minimizing J(Θ).
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Figure 2.10: Backpropagation in a Feed Forward NN

In Eq 2.5, using the cost function an error δi
j in each layer is calculated as,

δi
j = ai

j − yi
j (2.5)

where ai
j is the computed output, yi

j is the expected output at j th node in the ith layer.

The error in each layer is summed for all the nodes and then multiplied to the error of the

previous layer. The errors are from the output layer to the input layer in a backward direction

as shown in Fig 2.10. For such network, the backpropagation process is shown in as,

δ3
j = δ

i
j = a4

j − y j

δ2
j = (Θ2δ3

j ) ∗ a2
j (1 − a2

j )

Using the computed errors the cost J(Θ) is minimized by,

δJ(Θ)
δΘ

= an
Tδ

n
T (2.6)

The key computational aspects of the research have been explained in this chapter. The

proposed techniques using EEG, augmented BCI with ANN classification is explored in the

next chapters.
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CHAPTER 3

OPTIMIZATION OF EEG-BASED IMAGINARY MOTION CLASSIFICATION USING

MAJORITY-VOTING

3.1 Overview

In this chapter, a majority-vote system was added to a network of artificial neural networks

(ANN) to optimally classify imaginarymotions performed by subjects for multiple sessions.

The proposed technique optimizes the electrodes used for individual user classification by

ranking each electrode’s data based on its individual classification accuracy. The best

performing electrodes are identified with a rank-based statistical analysis. The remainder

of this chapter is organized as follows. Section 3.2 discusses the EEG data used in the

experiments conducted to validate the proposedmethod. Section 3.3 illustrates the proposed

method. Section 3.4 reports the results of the proposed method. Section 3.5 introduces the

genetic algorithm to optimize electrodes and seeks to further improve classfication accuracy,

the findings are also compared for improvements. Finally, the results and findings obtained

from these experiments are summarized in the conclusion in section 3.6.

3.2 Dataset Description

Dataset V from the BCI Competition III was used for validation. The data was recorded

by the Istituto Dalle Molle di Intelligenza Artificiale Percettiva (IDIAP) research institute

in Switzerland [29]. The dataset consists of brain activity pertaining to three specific tasks

from three healthy male subjects. These brain signals were recorded in repeated sessions

over a course of a single day and the subject’s imagination of three types of exercises

included - left hand movement, right hand movement, and imagination of words starting

with the same letter. Each of these three sessions lasted for 4 minutes with brief intervals

ranging between 5-10 minutes. During each session, the subjects imagined a specific task
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Table 3.1: Electrodes & Their Alloted Channel Numbers

Channels Electrode Channels Electrode

1 FP1 17 O2

2 AF3 18 PO4

3 F7 19 P4

4 F3 20 T6

5 FC1 21 CP6

6 FC5 22 CP2

7 T3 23 C4

8 C3 24 T4

9 CP1 25 FC6

10 CP5 26 FC2

11 T5 27 F4

12 P3 28 F8

13 PZ 29 AF4

14 PO3 30 FP2

15 O1 31 FZ

16 OZ 32 CZ

for a time period of 15 seconds and tasks were changed as indicated by the operator. The

voltages across the scalp were measured using the Biosemi portable EEG machine with

a sampling frequency of 512 Hz. Thirty two electrodes were used to acquire data and

electrodes were placed at specific locations on the scalp using the IEEE 10-20 standard

system. Electrodes were assigned a number for ease of reference and the numbers relating

to the electrode names are listed in Table 4.2. The raw data from these 3 subjects over the

3 sessions comprise of 3 × 3 × 32 = 288 total data channels.

3.3 ANN Structure & Majority Voting System

The prime focus of this research is to implement aMajority Voting (MV) system to optimize

the classification accuracy for each subject. It’smain contribution lies in the unique structure



25

for this classifier that utilizes a network of relatively simple ANNs with a majority vote

circuit. Instead of using a single complicated ANN with 32 inputs, using majority vote

simplified the ANN structure. Before the voting system is explained, it is essential to first

describe the system structure. The EEG recordings for each of the three subjects contain

columns of data acquired from each of the 32 channels. The data from each column is input

into an artificial neural network (ANN). These neural networks use back propagation to

train, test, and validate the data. In this experiment, 70% of the data was used for training,

and 30% was used for testing and validation. The ANN structure has a single neuron

assigned for input, while the hidden layer consists of 10 neurons in its first layer and 20

neurons in the second. The output layer was allotted 3 neurons. The outputs acquired from

the neural networks were categorized by the MV system into 3 imaginary task categories

i.e, class 7, class 2, and class 3.

The process is visually illustrated in Figure 3.1. The acquired ANN data is split into

three columns for each of the 32 channels. Across each row of the three columns, the

maximum value is replaced with a ’1’, and the rest are changed to ’0’. Next, these binary

values are added to the binary values acquired from other channel’s ANN outputs. This

process repeated for each row results in a single output that consists of the majority voted

data from all of the specified channels.

Majority
Vote Output

..

.
..
.

Figure 3.1: Proposed Classification System Model



26

Algorithm 1Majority-Vote Model of ANN Outputs.
Precondition: For each subject, {x1, x2, ...xn} is data from n channels.

1: function Majority Vote(x1, x2, ..., xn)

2: for k ← 1 to n do . Number of iterations

3: [Ak, yk] ← ANN(xk)

4: end for . Y contains yk outputs and A contains Ak classification accuracies from

ANN.

5: {z1, z2, ...zn} ← rank(Y ) based on An. . Z has zn ranked channels.

6: for i ← 1 to N do . N ranked outputs considered.

7: zi ← {ai, bi, ci}

8: {{ai, bi, ci} are 3 imaginary tasks contained in zi.}

9: [rows, columns] ← size(zi)

10: for j ← 1 to rows do

11: z∗i ← max({ai j, bi j, ci j}) = 1 and

12: z∗i ← nonmax({ai, bi, ci}) = 0

13: {Row max for 3 tasks replaced with 1, others with 0.}

14: end for

15: δi ← sum(z∗i )

16: end for

17: δ← {δ1, δ2, ..., δN }

18: for m← 1 to N do

19: Ma jorityVoted← max(δm) = 1 and

20: Ma jorityVoted← nonmax(δm) = 0

21: end for

22: end function
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Using the MV system, the overall aggregated classification accuracy of all 32 channels

was evaluated to obtain a baseline accuracy. Next, all 32 channels were ranked based on

their individual classification accuracies and then sorted in a descending order. By using

the obtained ranked and sorted sequence, the channels were majority voted in an iterative

process starting from the most to the least accurate channel. This process of majority voting

is detailed in Algorithm 1. The process continues until the overall aggregated classification

accuracy of the majority vote is optimized.

Using this process, the set of electrodes used to generate the maximum classification

accuracy was considered as the optimal set for that user. To quantify the effectiveness of the

proposed approach, the classification accuracies of the optimized set of electrodes for each

user and the overall classification accuracy across all users were obtained and analyzed in

Section 3.4.

3.4 Results & Data Analysis

Data for each subject contains 3 sessions of repeated imaginary tasks. Using the major-

ity voting system, channel data for each session was ranked and sorted according to the

individual ANN channel accuracies. In the channel optimization process, the majority

voting process was used twice. The first time, channel optimization was performed for

each session separately. Using this method, wide variations were noticed across the three

sessions among the optimized channel sets for each subject. This was due to the presence

of time and magnitude related variance in the input data itself. The MV accuracies across

the 32 iterations are presented in Figures 3.2-(a,b,c) for all three subjects in the dataset. In

these plots, the x-axis does not represent 32 separate channels but rather 32 iterations of

sequential majority voting of ranked channels based on their accuracies.

In order to mitigate the fluctuations across the subject sessions and stabilize the op-

timization process, the majority voting process was used again. However, this time the
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Figure 3.2: Accuracies for Sequential Majority Voted Channel Combinations based on

Ranked Individual Channel Accuracies for each of the three Sessions.

individual channel accuracies for each session were averaged and then sorted in decreasing

order. The channel sequence obtained was input into the majority voting system. The aver-

aged ANN accuracies for each channel is shown in Figures 3.3-(a,b,c) for the three subjects.

Their ranks are also specified in the figure. Using these ranks, the MV system evaluated

the classification accuracies for each session. The resulting MV accuracies from the 32

iterations were averaged to get the final individual accuracies for each of the subjects. The
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Figure 3.3: Individual Channel Classification Accuracy Averaged Across all 3 Sessions for

each Subject and their Respective Rank.

highest accuracy value was considered and the channel combination sequence associated

with that accuracy was considered as the optimized channel set for the specific subject.

Using the above process, optimized channel sets were obtained for all three subjects.

In Figure 3.4, the highest accuracy can be observed at the 20th iteration, and at this

iteration, the first 20 channels among the ranked channels were deemed optimal based

on their individual classification accuracies. The classification accuracy of 69.83% was
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Figure 3.4: Subject Optimized Channel Accuracies over 32 Iterations

(a) Subject 1 (b) Subject 2 (c) Subject 3

Figure 3.5: Optimized electrode sets for each subject

achieved. However for Subject 2, a single electrode (C3) was deduced as optimal by the

MV system to perform all three tasks and the classification accuracy was 94.04%. This was

due to a significantly higher individual channel classification accuracy for that particular

channel. Finally, electrodes for subject 3 were optimized to a set consisting of 14 electrodes

with a classification accuracy of 84.56%. Table 3.2 summarizes the optimized classification

accuracies of the three subjects. The reported overall accuracy calculated by averaging the

classification accuracy of all subjects was 82.81%which is higher than the 79.96% accuracy

obtained by optimizing a set of electrodes for multiusers [30].
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Table 3.2: Electrode Optimization

Subject Classification Accuracy

1 69.83%

2 94.04%

3 84.56%

Average 82.81%

Figures 3.5-(a,b,c) illustrate the placement of these optimized electrodes for subject

1, subject 2, and subject 3, respectively. It is obvious from these results, that each subject

utilized a different set of electrodes to obtain the optimal classification accuracy. For subjects

1 and 3, both sides of the brain worked together through corpus callosum with a certain

side of the brain being more dominant than the other, while subject 2 was left lateralized.

Based on these results, it is evident that subject 1 has prominent activity in the right side

of the brain while subject 3 has shown more activity in the left part. Therefore, it can be

concluded that people with certain hand affinity have elevated activity in respective brain

regions. Figures 3.5-(a,c) illustrate the left-hand dominance and right-hand dominance for

subject 1 and subject 3, respectively.

3.5 Further Optimization Using Genetic Algorithm

The genetic algorithm (GA) is a computational model that seeks to find a global minimum of

complex functionwith given parameters and a user-defined cost function. Genetic algorithm

has been used in a wide array of applications. In a study genetic algorithm has been used

to extract complex features from EEG for BCI application and two classifier were used to

classify the data to validate the effectiveness of feature extraction [31]. Features of five

mental tasks extracted in this study. In another study, epileptic seizures in EEG signals

were classified using wavelet transform and genetic algorithm [32]. They acquired a high
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classification accuracy of 94.3% and 98% for normal and epileptic features respectively.

Using genetic algorithm in optimizing EEG related data classification has always provided

higher classification. To further enhance the classification accuracy of this study, the genetic

algorithm was employed to the majority voting procedure. Before the process is explain in

much detail, the parameters of the genetic algorithm need to be introduced.

Table 3.3: Genetic Algorithm Parameters

GA Options Description Values

Creation Function Creates the initial population. In this case, a random 32-bit [0,1]

was created that was used as initial chromosomes.

Crossover Fraction Fraction by which the population characteristics are carried 0.8

to the next generation.

Crossover Function Used to create new chromosomes from the parent chromosomes Default

for each generation.

Elite Count Positive integer value that guarantees the amount of chromosomes 0.05

survive to the next generation

Max Generations Maximum number of generations the GA can run 30

Population Size Size of the population 64

Mutation Function This function adds mutations for the GA to come out of local Default

minima

The parameters in in Table 3.3, the parameters that were focused are listed along with

their description. The algorithm had a creation function that created 64-bit long strings of

rendom ’0’ and ’1’. Thirty strings were created for the initial population. These strings

were used to choose the electrode data to be used in the majority voting procedure. The

majority-voting was used as a cost function. Based on the output accuracy of the majority

vote, the chromosomes in the GA were chosen in each generation. The genetic algorithm

was set to stall after 30 generations. In this manner, the genetic algorithm was used to

optimize the data for all the three subjects in the dataset. From the acquired results of the

output, it was noticed that the GA was able to reduce number of electrodes required for
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computation by more than 50% in subject 2 and 3. The optimized electrode positions are

shown in Fig 3.6 for all the three subjects.

(a) Subject 1 (b) Subject 2 (c) Subject 3

Figure 3.6: Optimized electrode sets for each subject

For subject 1, electrodes were reduced by 50% and classification accuracy was im-

proved by an average of 2.51% across all three sessions. Electrode for subject 2, were also

reduced by 65.62%. This percent was computed based on the 32 electrodes and not on

the results acquired through majority voted results. Accuracy was improved by 0.218%

across all the three sessions. Finally for subject 3, the electrodes were optimized to a

total of 12 electrodes which is a 62.50% reduction in the number of electrodes used. The

classification accuracy was improve by an average of 1.9%. The optimized electrode sets

and classification accuracies for each subject can be seen in Table 3.4.

Table 3.4: Weight Factors & Overall Classification Accuracy of the High & Low Groups

Optimized Electrode GA - Optimized Majority-Vote Improvement Channel

Set Accuracy (%) Accuracy (%) (%) Reduction

Subject 1 1 2 5 7 10 13 18 19 20 21 23 24 25 29 30 31 72.35% 69.83% 2.51% 20%

Subject 2 1 4 5 8 10 18 22 23 29 30 32 94.25% 94.04% 0.218% -9.09%

Subject 3 1 2 9 10 13 14 17 23 24 29 30 31 86.414% 84.56% 1.9% 40%

Average 84.34% 82.81% 1.56%
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3.6 Summary

In this chapter, majority vote system was applied to a system of neural networks in order

to optimally classify three imaginary tasks performed by three subjects. This proposed

approach optimized the electrodes for each individual user by ranking the electrodes based

on their individual classification accuracies. Averaging the electrode accuracies reduced

the variance across the sessions and by implementing the majority vote the best performing

electrodes are shortlisted for each user. It was observed that using a network of simple

neural networks along with the majority vote system improved the classification accuracy

of each subject significantly. In addition, the averaged overall classification accuracy of all

three subjects increased from 79.96% to 82.81%. Using the genetic algorithm, the acquired

accruacy from the majority vote was further optimized to 84.34% which is 1.56% greater.

The number of electrodes used in the computation was also reduced by more than 50%

with this process. In this work it can concluded that not only accuracy was improved but

also the computation time was effective reduced through electrode optimization by using

majority voting and genetic algorithm. By this it is evident that classification accuracy is

user-dependent and hence each user has a different set of optimal electrodes. To further

validate and investigate this technique, the majority voting system should be tested on a

much larger EEG dataset.
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CHAPTER 4

A COMPREHENSIVE STUDY OF MOTOR IMAGERY EEG-BASED

CLASSIFICATION USING INDEPENDENT COMPONENT ANALYSIS AND

ARTIFICIAL NEURAL NETWORKS

4.1 Overview

In this chapter, robust technique is proposed that combines the use of an automatic feature

extracting independent component analysis (ICA) system with an ANN classifier that uses

the Levenburg-Marquardt training function to classify a large scale dataset of 105 subjects.

The work validates the relationship between signal to noise ratio (SNR), signal variance

across multiple sessions, and signal classification accuracy. The dataset considered for this

work was acquired from PhysionNet and consists of both imagined and actual movements

performed by 105 subjects. In a different study, wavelet transform features were extracted

from the EEG Movement/Imagery dataset and an ANN was used for classification. This

study reported a maximum classification accuracy of 68.21%. A phase locking value

system (PLV) was used for the same dataset to classify the β (12-30 Hz) and µ (8-12 Hz)

rythms for actual movements (78.95% & 63.73%) and imagery tasks (71.55% & 65.55%).

Another study using two feature selection processes (ICA and frequency band selection),

classified the data using an SVM classifier with a Gaussian kernel and reported a high

average accuracy of 69%. The average classification accuracy reported is 11% higher

than the highest accuracy reported in all previous studies pertaining to the same dataset.

However, in this work, details are presented about the data that has not been presented

before and propose a robust system that automatically extracts task features using an ICA

and classifies them using an ANN classifier. The remainder of this chapter is organized

as follows. Section 4.2 details of the dataset. Section 4.3 presents the feature extraction

technique and the ANN architecture. Section 4.5 presents the experimental results and
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findings of this work. Finally, Section 4.6 concludes the chapter with a summary of the

proposed classification method and findings.

4.2 Dataset Description

The EEG Motor Movement/Imagery dataset acquired from PhysioNet website consisted

data obtained from 109 subjects. This data was acquired at a sampling frequency of 160

Hz. Sixty-four electrodes were arranged based on the international 10-10 standard system

as shown in Figure 4.1-(a,b). Subjects performed two tasks during each recording and

the recordings comprised of actual movement of a task along with its imaginary motion.

The tasks performed were opening and closing of left fist, opening and closing of right

fist, opening and closing of both fists, and opening and closing of both feet. These tasks

were performed in 3 sessions that were recorded during the same day. Two of the four

tasks were performed in each recording with intermittent resting in between each task.

The tasks were performed for 4 seconds and the total duration of the entire recording was

about 2 minutes. The actual motions for these tasks were first recorded then followed by

the imaginary motions. The data was provided with event related annotations. However,

information regarding age, gender, and handedness for the subjects was not available. For

this work, the 4 tasks including the brain rest state were arranged into two separate sets

(Set 1 & Set 2) as shown in Table 4.1. Set 1 contained data pertaining to imagined opening

and closing left fist and opening and closing right fist respectively. Set 2 contained data

pertaining to imagined opening and closing both fists and onset of motion of both feet. The

focus of this work is to only classify imaginary motion, actual movements performed were

ignored. Also, data from 4 subjects among the 109 subjects had data sampled at a different

frequency (128 Hz) and were not considered as well. Information regarding age, gender,

and handedness for the subjects was acquired from Dr. Peter Brunner at Albany Medical

College, Department of Neurology. Among the 105 subjects, 99 had their gender specified
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Figure 4.1: Arrangement of 64 electrodes on a simulated human scalp using the 10-10

international system.

Table 4.1: Imagery Task Categorization & Subject Details for Dataset

Task 1 Task 2 Task 3

Set 1 Rest Left Fist Right Fist

Set 2 Rest Both Fists Both Feet

Gender Age Handedness

40 Male 19-67 6 Left 34 Right

59 Female 19-58 4 Left 55 Right

6 Unknown – –

of which 40 were male and 59 were female. The age group considered was widespread

and consistent among both genders. The handedness among the subjects was mostly right

handed with only 10 subjects being left handed. In each session, almost half of the recording

contained data pertaining to mental resting while the other half was divided between two

tasks. Before using this dataset, it was first pre-processed to remove noise artifacts.



38

Table 4.2: Electrodes & Their Alloted Channel Numbers

Channels Electrode Channels Electrode Channels Electrode Channels Electrode

1 FC5 17 CP1 33 F1 49 P3

2 FC3 18 CPz 34 Fz 50 P1

3 FC1 19 CP2 35 F2 51 Pz

4 FCz 20 CP4 36 F4 52 P2

5 FC2 21 CP6 37 F6 53 P4

6 FC4 22 FP1 38 F8 54 P6

7 FC6 23 FPz 39 FT7 55 P8

8 C5 24 FP2 40 FT8 56 PO7

9 C3 25 AF7 41 T7 57 PO3

10 C1 26 AF3 42 T8 58 POz

11 Cz 27 AFz 43 T9 59 PO4

12 C2 28 AF4 44 T10 60 PO6

13 C4 29 AF8 45 TP7 61 O1

14 C6 30 F7 46 TP8 62 Oz

15 CP5 31 F5 47 P7 63 O2

16 CP3 32 F3 48 P5 64 Iz

4.3 Proposed Noise Extraction Model using Fixed/Variable ICA

Thresholding

The data acquired from each subject was pre-processed using independent component

analysis (ICA). The algorithm is closely related to the blind source separation (BSS) model

and has been examined in detail in [24,25]. In ICA, the input signals are reconstructed into

statistically independent components (ICs), wherein neural source signals are highlighted

and noise features such as electrooculographic (EOG), electromyography (EMG) and other

such bodily interferences are supressed. Each IC needs to be visually inspected and the

noise features need to be filtered manually. In a study, ICA was used to extract eye

related noise artifacts using heuristic techniques that identified blink related components

and contamination were validated using scalp topographies [33]. These heuristic techniques
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require prior knowledge about the noise related signal patterns. This renders the use of

ICA as impractical for BCI systems. To circumvent the issue of filtering the signals using

a manual procedure, various autonomous techniques have been proposed to automate the

detection of specific contamination within the ICA reconstructed EEG signal. One such

method uses the spectral gradient of data. The gradient is calculated from the power

spectral density estimate for the ICs [34]. The slope is observed on a log-log scale and

a threshold parameter is used to eliminate heavily contaminated data. This technique is

simple to implement and remove high muscular contamination. Another method uses the

local maxima of the ICs and zeroes the entire width of artifacts that are higher than the

computed threshold parameter. The method was validated across two datasets [35]. These

studies perceive noise to be specific to a certain contamination and propose techniques to

filter them out. This is prevalent, as characteristics of noise generated from eye andmuscular

movements are peculiar in signal shape. It requires experience and prior knowledge of the

property of noise to recognize and filter out such artifacts. Autonomous techniques focused

on filtering noise from sources, such as, eye, muscular and other related interference have not

yet been effective to drastically mitigate such interference. So in this study, an autonomous

extraction model is proposed that computes a dynamic threshold to compensate for noise

contamination from all interference and filter them out.

4.3.1 Proposed ICA Model

The data acquired from each subject was pre-processed using independent component

analysis (ICA). The algorithm is closely related to the blind source separation (BSS) model

and has been examined in detail in [24,25]. In ICA, the input signals are reconstructed into

statistically independent components (ICs), wherein neural source signals are highlighted

and noise features such as electrooculographic (EOG), electromyography (EMG) and other

such bodily interferences are supressed. Each IC needs to be visually inspected and the
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noise features need to be filtered manually. In a study, ICA was used to extract eye

related noise artifacts using heuristic techniques that identified blink related components

and contamination were validated using scalp topographies [33]. These heuristic techniques

require prior knowledge about the noise related signal patterns. This renders the use of

ICA as impractical for BCI systems. To circumvent the issue of filtering the signals using

a manual procedure, various autonomous techniques have been proposed to automate the

detection of specific contamination within the ICA reconstructed EEG signal. One such

method uses the spectral gradient of data. The gradient is calculated from the power

spectral density estimate for the ICs [34]. The slope is observed on a log-log scale and

a threshold parameter is used to eliminate heavily contaminated data. This technique is

simple to implement and remove high muscular contamination. Another method uses the

local maxima of the ICs and zeroes the entire width of artifacts that are higher than the

computed threshold parameter. The method was validated across two datasets [35]. These

studies perceive noise to be specific to a certain contamination and propose techniques to

filter them out. This is prevalent, as characteristics of noise generated from eye andmuscular

movements are peculiar in signal shape. It requires experience and prior knowledge of the

property of noise to recognize and filter out such artifacts. Autonomous techniques focused

on filtering noise from sources, such as, eye, muscular and other related interference have not

yet been effective to drastically mitigate such interference. So in this study, an autonomous

extraction model is proposed that computes a dynamic threshold to compensate for noise

contamination from all interference and filter them out.

4.3.2 Proposed Autonomous ICA Model

In data, 64 electrodes positioned using the 10-10 system provide potentials attributing to

specific tasks. However, these electrodes tend to record data from other regions of the brain,

resulting in added interference and noise artifacts in the signal. This attributes associate
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to the cocktail party problem. The ICA algorithm, with no advance knowledge regarding

signal sources, finds a matrix that untangles the 64 signals into independent components

which would reflect the original source data.

Let Z be the input matrix containing subject related EEG data in a [p x q] arrangement,

p and q be the number of channels and the number of samples, respectively. The average

of channel p, µp, is evaluated as follows:

µp =
1
q

q∑
j=1

Zpj (4.1)

Let µ be a vector of all channel averages [µ1, µ2, ..., µp], J1,q be a vector [1, 1, ..., 1]

of size (1xq). To zero-mean the channel data, a centered input matrix, Zc, is generated as

follows:

Zc = Z − µT
p J1,q (4.2)

The centered input matrix, Zc, is used to evaluate the covariance matrix, ξ, as follows:

ξ =
(Zc)(Zc)T

q − 1
(4.3)

The singular value decomposition (SVD) is used to decompose the covariance matrix

ξ into three separate matrices as follows:

ξ = UDVT (4.4)

where U and V are orthonormal matrices that are mutually orthogonal. The columns

of matrices U and V are referred to as the left and right singular values, respectively. The

left and right singular values represent the eigenvectors of ξξT and ξTξ, respectively. D is

a diagonal matrix of singular values σi j = 0 except if i = j which results in σ11 ≥ σ22 ≥

· · · ≥ 0. The squares of D′s diagonal singular values (σ2
ii) represent the eigenvalues of ξξ

T

and ξTξ which are organized in a descending order starting with the most dominant singular

values.
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Before applying the ICA algorithm, the centered input matrix, Zc, is whitened or

decorrelated by using the eigen-value decomposition (EVD) of the covariance matrix. The

whitening process transforms the originalmatrix into a newmatrix Zc
w that all its components

are uncorrelated and have a variance equal to 1. The whitened matrix Zc
w is evaluated as

follows:

Zc
w = U

1
√

D
UT Zc (4.5)

where 1√
D
is basically evaluated by taking square-root of the inverse of each element

in the D diagonal matrix.

To apply the ICA algorithm, the Gaussian neg-entropy model is used. This model

seeks to minimize the Gaussianity of the signal through maximizing the distance between

a Gaussian function with an exact variance and Zc
w. The Gaussian function is defined as

follows:

G = kZc
we−0.5(kZc

w)2 (4.6)

where k is the weight which is updated based on the departure measure from Gaussian

entropy. Using Eq. (4.8), the weights for the model are updated as follows:

k =
1
q

q∑
j=1

GZc
w +

©«1
q

q∑
j=1

kZc
wGª®¬ kL (4.7)

where kL contains weight values from the previous iteration. The weight matrix k

contains weights of all the input samples. The SVD is also used to decompose the weight

matrix into three separate matrices as follows:

k = QSRT (4.8)

where Q and R represent the left and right singular values, respectively. S is the



43

diagonal matrix of singular values. After the SVD, the weight matrix k is whitened or

decorrelated by using EVD as follows:

kD = Q
1
√

S
QT k (4.9)

where the weight matrix kD contains the decorrelated values. To generate a stopping

criteria ε for the weights, a minimizing error function is used as follows:

ε = max(1 − 〈kD, kL〉) ≤ εth, ε ε [0 1] (4.10)

The weights are updated across multiple iterations till the maximum error value is

minimized to a threshold value εth. In Eq. (4.11), the weights with the minimized error is

multiplied with the centered and whitened input matrix Zc
w,

ZICA = kDZc
w (4.11)

where ZICA contains reconstructed independent components associated with their

source EEG signals. Using the above algorithm, the source signals obtained from the

electrodes were reconstructed to emphasize the neural activities of the imaginary motions

and suppressed the noise features. In order to extract noise related features from ZICA,

an autonomous threshold algorithm was used where the local maxima for IC signals from

ZICA were recorded. Noise within data manifests as voltage spikes created through linear

combinations of imaginarymotion datawith unwanted eye, muscle and or other noise related

artifacts. Using the recorded local threshold values, the highest and the lowest maxima for

each IC are recognized. These maximum and minimum values are averaged across all the

ICs and are used as limits to compute the threshold parameter. Using Eq. (4.12), threshold

J th is calculated as follows:

J th = ĥ − η(ĥ − l̂) η ε [0 1] (4.12)
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where ĥ and l̂ are the averages of the highest and lowest local maxima across all

ICs. Between these two values, the threshold parameter is controlled using η. After a

thorough investigation, it was determined that η=0.5 was an optimal value for the threshold

to effectively filter noise features. The computed threshold value varied for each subject

across ICs. However, this threshold model does not account for fluctuations in the noise

contamination across individual ICs. Therefore, a novel autonomous threshold parameter

model is proposed. This model adds a variable scaling factor ρk to increase the threshold

versatility. The autonomous threshold J th
k is calculated in Eq. 4.13 as follows:

J th
k = ĥ − ρkη(ĥ − l̂) η ε [0 1] (4.13)

where ρk is a variable scaling factor for the k t h IC which is a ratio between average of

all samples of the k t h IC and the average of all samples from all the ICs. This parameter

indicates the degree of contamination within a specific IC in comparison with the overall

contamination across all other ICs. The ratio for ρk is defined as follows:

ρk = N

n∑
j=1

uk j

N∑
i=1

(
n∑

j=1
ui j

) (4.14)

where uk j is the k th IC samples while ui j is the ith IC samples. N and n represent

the number of ICs and the number of samples in each IC, respectively. The noise features

were extracted using both thresholds (J th & J th
k ) and the data for both the processes were

recorded for further analysis. The EEG data, using both thresholding (fixed and variable)

techniques was filtered for noise features and the results acquired from both techniques

were saved for comparison. Filtered data from both processes was compared and validated

using classification accuracies from an artificial neural network. Classification accuracy

was considered as the main criteria of improvement. The thresholding process for both
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Figure 4.2: Autonomous noise artifact filtering for EEG signals a) Threshold is computed

to be 2.85µV for data from electrode at P5. b) Signal above the threshold J th is zeroed c)

Threshold J th
k is computed to be 2.80µV. d) All values above the threshold are zeroed.

techniques is shown in Figure 4.2, for single IC channel named P5 which was chosen from

one of the three sessions for a single subject. For this signal, the threshold was computed

to be 2.85µV. In Figure 4.2-b, the voltage spikes in the EEG signal exceeding the threshold

value were removed by zeroing them out. This process was implemented for all the ICs

across 105 subjects. However, due to threshold values being constant across all the ICs for

a subject, the threshold was not able to compensate for variations in noise contamination in

some ICs. Few ICs contained high concentrations of noise while few had very low amounts

of visually noticeable noise fluctuations and using a fixed threshold was not adequate. To

mitigate the issue, a variable threshold was implemented that changed in accordance with
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the noise level for each of the ICs. This was realized by adding another tuning factor ρk

to change Eq. (4.12) and make the threshold value tunable. In Figure 4.2-c, the same EEG

channel named P5 is plotted with the new threshold at 2.80µV and values above J th
k were

zeroed as shown in Figure 4.2-d. The EEG data, using both thresholding (fixed and variable)

techniques was filtered for noise features and the results acquired from both techniques were

saved for comparison. Filtered data from both processes was compared and validated using

classification accuracies from an artificial neural network. Classification accuracy was

considered as the main criteria of improvement.

4.3.3 Preliminary Results

Among the 105 subjects, 15 males and 15 females were randomly chosen for analysis. The

chosen male subjects varied in age from 19 to 67 years and females subjects varied in age

from 22 to 58 years respectively. The handedness for the subject sample size comprised of

6 left handed and 24 right handed subjects. In this study, the subjects that did not have any

genders specified (6 unknowns) were not considered in the random selection process.

For these selected subjects, the ICA algorithm along with the autonomous noise

extracting model were used to acquire ICs with removed noise artifacts. These ICs are

input into a neural network structure for classification. The classification was performed

using a three layered neural network containing input, hidden and output layers. The input

layer consisted 64 neurons for 64 inputs. The hidden layer for the system consisted of 10

neurons and used a tan-sigmoid transfer function. Finally, the output layer was assigned one

neuron and used a linear transfer function. Half of the data was used for training while the

other half was used for validation and testing. In this neural network, Levenburg-Marquardt

(LM) optimization was used as training function. The reasons behind choosing the LM

optimization will expliained in the following subsection.

Subjects performed six imagery tasks and the data was recorded over three sessions
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within the time span of a single day. The six imagery tasks were categorized into two

sets and Eq. (4.10-4.11) were used separately to extract noise artifacts from data. This

validation process seeks to highlight differences between the two equations wherein the

process involves the use of a fixed threshold technique called fixed threshold and an adaptive

threshold technique called variable threshold technique. The fixed threshold technique

calculates the threshold using local maxima from all ICs for a subject. In the technique,

the threshold remains unchanged when removing noise artifacts. The variable threshold

technique considers the threshold acquired using the fixed threshold technique and adjusts

it based the noise variations in the ICs. In this technique, every IC uses a distinct threshold

to filter noise variations and results in better noise artifact removal. Data from both sets

were input into the ANN and their classification accuracies were saved and averaged among

three sessions. Accuracies from the ANN were noticed to be significantly higher than

reported in previous studies that used the same dataset. Analysis in this work reports an

11.79% improvement in classification accuracy from latest results reported in [36]. Even

without using autonomous noise extraction systems with ICA, high classification accuracies

were achieved. Baseline overall accuracies of 91.30% and 91.24% for data from Set 1 and

Set 2 were acquired. To improve this accuracy further, autonomous noise feature removal

techniques were used. Accuracies obtained using fixed threshold data were subtracted

from the baseline accuracies to quantify the improvement. The same process was repeated

for data acquired using the variable threshold. In Figure 4.3-(a,b), accuracies for Set 1

and Set 2 were acquired using both noise extraction techniques are plotted with baseline

accuracy values. The improvements in classification per-subject are highlighted in the upper

graphs of the figure. Using the fixed threshold, an overall improvement compared to baseline

classificationwas observed to be 0.46% and 0.47% for Set 1 and Set 2 respectively. Similarly

using variable threshold technique for Set 1 and Set 2, a slightly higher improvements were

observed at 0.82% and 0.76% respectively.
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Figure 4.3: Difference in ANN accuracy for fixed threshold and variable threshold tech-

niques. a) Classification results of data from Set 1 for 30 subjects. b) Classification results

of data from Set 2 for 30 subjects.

In Table 4.3, subject related information is highlighted along with overall classification

accuracies of Set 1 and Set 2 data. The accuracies are reported for data acquired using

no threshold, fixed threshold, and variable threshold. There was a slight improvement in

classification when using both autonomous noise extracting features. For the 30 subjects,
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Table 4.3: Classification Results of the Neural Network

Male Female Male Female Handedness Method Set Task 1 Task 2 Task 3 Overall Variance ∆ w.r.t

(Age) (Age) (avg) (avg) (avg) (avg) (σ2) No Threshold

15 15 19-67 22-58

No Threshold
Set 1 95.01% 87.39% 87.63% 91.30% 2.51 –

Set 2 94.90% 87.07% 87.87% 91.24% 2.16 –

6 Left,
Fixed Threshold

Set 1 95.38% 88.07% 87.99% 91.76% 2.07 0.46%

24 Right Set 2 95.23% 87.81% 88.42% 91.71% 1.86 0.47%

Variable Threshold
Set 1 95.52% 88.65% 88.60% 92.11% 2.32 0.81%

Set 2 95.36% 88.19% 88.93% 91.99% 1.49 0.75%

the average accuracy for each specific single task, the overall average accuracies, and the

variance of the overall accuracies for each set using all three methods no threshold, fixed

threshold, and variable threshold are listed in Table 4.5. The variances listed in table are

the averaged variances of accuracies across the 3 sessions for all the subjects. Also, the

average difference in the accuracy using the fixed threshold and variable threshold technique

is presented. Across both sets, differences were relatively higher and mostly positive for the

variable threshold data.

4.4 Various Training Functions and ANN Architecture

ANN has been used to effectively classify real world applications concerning biological

data [37, 38]. Figure 4.4 illustrates a typical artificial neural network structure. ANN

models are used to learn and classify mental abnormalities, speech and face patterns [39].

Neural networks are used to model non-linear data and tends to provide predictions or

classification outputs with reduced error rates. However, ANNs have their own challenges.

Prior to implementation, numerous parameters require tuning and the networks are prone to

over-fitting problems. Also, neural networks are computationally expensive. Despite all this,

ANN models show great potential especially when efficient training algorithms are used.

Among the different types of training functions for ANN classifiers, some high performing

algorithms were identified. These algorithms are classified into two categories. The first
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utilizes heuristic techniques and the other uses numerical optimization techniques [28].

In this study, one heuristic technique and seven numerical optimization techniques were

investigated during initial experimentation. The classifiers were tested using data from a

session recorded for a single subject performing three tasks. The accuracy, time, mean

squared error (MSE), gradient factor, and the number of epochs were observed and listed

in Table 4.4. The Polak-Ribiere conjugate gradient, BFGS Quasi-Newton, and the
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Figure 4.4: ANN Architecture

Scaled conjugate gradient classifiers provided high classification accuracies. However,

their training functions resulted in longer training period and required high number of

epochs to converge. The variable learning rate technique using the heuristic technique

provided the lowest classification accuracy (60.41%) while still converging relatively fast.

In addition, its mean-squared error (MSE) and gradient descent were also observed to be

the highest. Finally, the Levenberg-Marquardt (LM) within the ANN classifier provided

the highest classification accuracy with a relatively fast classification time of 117 seconds

and was also able to reduce the MSE error significantly. The LM-ANN classifier uses the

Levenberg-Marquardt optimization to update weights and biases for the neural network.

The optimization minimizes the least square problem which is shown in Eq. (4.15). In this
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Table 4.4: Back-Propagation Perceptron Classifiers and Classification Information.

Training functions used in the Accuracy Time Minimized Gradient Epochs
neural network (%) (sec) MSE (max 1000)

Conjugate Gradient with Beale-Powell Restarts 80.61 60 0.115 0.009 175

BFGS Quasi-Newton 88.43 141 0.078 0.005 480

Resilient Back-propagation 80.20 306 0.115 0.01 1000

Scaled Conjugate Gradient 88.39 191 0.076 0.004 617

Fletcher-Powell Conjugate Gradient 80.32 85 0.109 0.012 248

Polak-Ribiere Conjugate Gradient 88.92 246 0.079 0.008 697

One Step Secant 75.45 50 0.130 0.023 146

Variable Learning Rate Back-propagation 60.41 52 0.173 0.116 166

Levenberg Marquardt 93.46 117 0.057 0.014 59

work, Y is considered to be the least squared error and is defined as:

Y =
n∑

i=1
(yi − f (xi, α))2 (4.15)

where n is number of data points, xi is the input value and yi is output value and f (xi, α)

is the prediction function. The LM algorithm optimizes the weights to minimize Y and

has been previously used in research studies for signal classification. The LM based neural

network classifier was used to classify thumb, index and middle finger movements which

was used to control a bionic arm very effectively [40]. Another study used the LM-ANN

in combination with the genetic algorithm to optimize weights to improve classification

accuracy and classification time for a quicker detection of hypoglycemia [41]. In this study,

LM-ANN is used to classify data from 105 subjects that had performed six different tasks.

The neural network architecture used in this study composed of 64 neurons assigned to

the input layer. Ten neurons were assigned to the hidden layer that used a tan-sigmoid

transfer function. Three neurons were assigned to the output layer that used a linear transfer

function. 50% of the data was used for training, 25% was used for validation, and the

remainder 25% was used for testing purposes.
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4.5 Data Classification Results & Analysis

After preliminary results were studied closely, the threshold techniques were tested for all

105 subjects. To test these techniques, data were first filtered using both thresholds and then

classified using the ANN. The three recording sessions were classified for Set 1 and Set 2

imaginary motions. The resulting classification accuracies for these sessions were averaged

for each user. Variance of the classification accuracies across these sessions were also

recorded. To visualize the data classification improvement using the proposed technique, the

classification accuracies of the datasetwithout using a threshold (baseline), with using afixed

threshold, andwith using an variable thresholdwere plotted in Figures 4.5-(a,b) for both sets.

These figures indicate that, in general, using a fixed threshold improves the classification

accuracy compared to not using a threshold. However, using the variable threshold provided

the highest classification accuracy. Figures 4.5-(c,d) illustrate the improvements of the

classification accuracies of both fixed threshold and variable threshold compared to not

using any threshold or any noise extraction technique. To quantify the overall improvement

due to pre-processing (de-noising) the independent components using threshold techniques,

the overall mean of the sessions’ averaged accuracies of both noise filtering techniques

were computed. An overall improvement of 0.43% and 0.42% was observed for Set 1 and

Set 2 pre-processed using fixed threshold. The accuracies were further improved using

the variable threshold with an overall improvement of 0.75% and 0.65% for Set 1 and

Set 2 respectively. Accuracy for each specific task was calculated using the ratio number

of samples accurately classified and the total number of samples in for the task. In this

study this ratio is referred to as the weight factor. By multiplying these weight factors with

their respective task-specific accuracies and summing the product, the overall weighted

classification accuracy is acquired.

Task accuracies, weight factors, and the overall classification accuracies using both

(fixed threshold & variable threshold) techniques along with results for no threshold data
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Figure 4.5: Comparative performance analysis of no, fixed, and variable threshold tech-

niques, a) Classification accuracies of Set 1 tasks, b) Improvement of classification ac-

curacies of Set 1 tasks, c) Classification accuracies of Set 2 tasks, d) Improvement of

classification accuracies of Set 2 tasks.
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are presented in Table 4.5. In addition to the classification accuracies, the variance of the

classification accuracies were quantified. It was noticed that classifications with low accu-

racies resulted in higher variance across their different sessions compared to classifications

with high accuracies. This relation between high variance and low classification accuracy

was further explored for data acquired using the variable threshold technique as illustrated

in Figure 4.6.

Figures 4.6-(a,b) highlight the classification accuracies variance of Set 1 and Set

2 for all the 105 subjects using the LM-ANN classifier with variable threshold. The

corresponding classification accuracies of Set 1 and Set 2 for all the 105 subjects are

presented in Figures 4.6-(c,d). It can be depicted from these figures that the low classification

accuracies, in general, have a corresponding high variance. Among all the 105 subjects,

31 are identified to have a low classification accuracy with a corresponding high variance.

Therefore, the subjects were categorized into two groups, the low and high accuracy groups.

The low accuracy group had 31 subjects while the rest were categorized as the high accuracy

group.

Table 4.5: Task-Specific Classification Results for Fixed Threshold & Variable Threshold

Thresholding Set Task 1 Weight Task 2 Weight Task 3 Weight Overall Variance ∆ w.r.t

Method (avg) Fac 1 (avg) Fac 2 (avg) Fac 3 (avg) (σ2) No Threshold

Non
Set 1 94.03% 0.502 83.18% 0.251 83.42% 0.246 88.73% 3.03 –

Set 2 94.02% 0.502 83.26% 0.249 83.87% 0.249 88.85% 3.71 –

Fixed
Set 1 94.26% 0.502 84.13% 0.251 83.70% 0.246 89.16% 2.95 0.43%

Set 2 94.27% 0.502 83.94% 0.249 84.35% 0.249 89.27% 3.33 0.42%

Variable
Set 1 94.49% 0.502 84.62% 0.251 84.08% 0.246 89.48% 2.73 0.75%

Set 2 94.44% 0.502 84.21% 0.249 84.69% 0.249 89.50% 3.15 0.65%

In Table 4.6, the breakdown of the accuracies based on the task performed for the two

subject groups are presented along with gender, age, and hand dominance information. For

the high accuracy group, Task 1 was classified at an average overall accuracy of 97.54% and
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Figure 4.6: Imaginary tasks classification of 105 subjects using the LM-ANN classifier

using variable threshold, a) Variance of classification accuracies of Set 1 tasks, b) Classi-

fication accuracies of Set 1 tasks, c) Variance of classification accuracies of Set 2 task, d)

Classification accuracies of Set 2 tasks.
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97.41% for Set 1 and Set 2 respectively. Task 2 and Task 3 from both sets were classified

with accuracies greater than 94%. For the low accuracy group, Task 1 was classified at an

average overall accuracy of 87.19% and 87.34% for Set 1 and Set 2 respectively. Task 2

and Task 3 were classified at a relatively lower classification that didn’t exceed 62%. Task

1, which represented 50% of entire dataset (brain rest state), was classified with relatively

high accuracy in both sets. However, Tasks 2 and 3 accuracies were more than 30% lower

in the low accuracy group compared to the high accuracy group.

Since the tasks are not equally distributed, weight factors are used to evaluate the

overall accuracy as listed in Table 4.7. In the table, the overall accuracies along with their

corresponding variances are also specified for the two groups. The overall accuracy for

the high accuracy group was above 95% and classification for the lower accuracy group

was below 75%. Also from Table 4.7, it evident that the variance is in fact higher for data

classified at a lower accuracy.

Table 4.6: Categorized High & Low Groups and their Averaged Classification Accuracies

for Performed Tasks

Groups Male Female Unknown Male Female Handedness Set Task 1 Task 2 Task 3

(Gender) (Age) (Age) (avg) (avg) (avg)

High
27 41 6 19-67 22-58 6 Left 62 Right

Set 1 97.54% 94.89% 94.56%

Accuracy Set 2 97.41% 94.36% 94.40%

Low
13 18

–
20-59 20-51 4 Left 27 Right

Set 1 87.19% 60.11% 59.07%

Accuracy Set 2 87.34% 59.98% 61.51%

For the 31 subjects that were classified at a lower accuracy, certain factors were

identified to be potential leading causes for such low classification accuracy. The source of

these signals predominantly corresponds to the motor cortex regions and the somatosensory

cortex regions in the parietal lobe. These regions are responsible for processing and

coordinatingmotormovements [42]. Low accuracies are usually attributed to low frequency
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Table 4.7: Weight Factors & Overall Classification Accuracy of the High & Low Groups

Groups Set Weight Weight Weight Overall Variance

factor 1 factor 2 factor 3 (avg) (σ2)

High Set 1 0.502 0.252 0.245 96.16% 0.93

Accuracy Set 2 0.502 0.249 0.249 95.92% 1.19

Low Set 1 0.501 0.250 0.249 73.54% 7.03

Accuracy Set 2 0.501 0.250 0.248 74.18% 7.82

noise artifacts below 9 Hz caused by impedance variations due to movement of electrodes

specifically near the parietal region [43]. Therefore, to clarify that the underlying issue was

indeed caused due to unanticipated interference, the signal-to-noise ratio (SNR) for each of

the channels was calculated using an estimated power spectral density (PSD) created using

a Kaiser windowing technique. The windowing technique uses a modified Bessel function

of the first kind ζv(x) that is defined as follows:

ζv(x) =
(
1
2

x
)v q∑

k=1

(14 x2)k

k!Γ(v + k + 1) (4.16)

where q is the number of samples, v is the degree of the function, Γ(x) is the gamma

function. For the zeroth order Bessel function, ζ0(x), Eq. (4.16) is modified as follows:

ζ0(x) =
q∑

k=1

(14 x2)k

k!
(4.17)

This zeroth order Bessel function is used in the Kaiser windowing technique. The

Kaiser window, w[n], is defined as follows:

w[n] =


ζ0

(
πβ

√
1−( 2n

N−1−1)2
)

ζ0(πβ) , 0 < n ≤ N − 1

0, otherwise.

(4.18)

where N is the window size, β is a non negative real number that determines the shape

of the window.
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Figure 4.7: Signal-to-noise ratio and overall classification accuracy from 105 subjects

where, a) SNR values are plotted for data pertaining to Set 1 tasks, b) Classification

accuracies of Set 1 tasks, c) SNR values are plotted for data pertaining to Set 2 tasks, d)

Classification accuracies of Set 2 tasks.
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To calculate the SNR of EEG signals, a modified periodogram was generated using

the Kaiser windowing function in Eq. (4.18) with β = 38. The generated periodogram was

used to compute the SNR values. From the periodogram, the power of the fundamental

frequency represented the desired signal while the rest of the periodogram excluding the

first 6 harmonics represented the undesired noise. These SNR values were averaged across

all the 64 channels for each subject. The average SNR values were observed to be consistent

across the 3 sessions for both Set 1 and Set 2. The subjects within the low classification

accuracy group, obtained SNR values that are lower compared to the high classification

accuracy group. The average SNR of both the low and high classification accuracy groups

were -2.81dB and -1.8dB respectively. In a recent study, lower classifications of EEG

signals were associated with lower SNR and high variance across the channel sets [44]. The

SNR values were compared with the averaged overall accuracies for all the 105 subjects.

In Figure 4.7-(a,b), the overall classification accuracies for all the subjects are compared

to their respective SNR values in both sets. From this figure, it is noticed that the SNR

values are higher for subjects with high data classification, which validates the increase in

the noise variance among the low accuracy groups.

The findings establish that high variance and low SNR can be used to gauge the noise

level in EEG signals, which affects the classification accuracies. However, without prior

knowledge, identifying the true source of these noise features would be extremely difficult.

Therefore, the speculated sources of noise are categorized as noise artifacts created due to

movement of body, uncertainty in electrode placement, facial and ocular movements, tense

body posture, anxieties, etc. Nevertheless, these circumstances resemble real-world settings

and the findings of this study would greatly assist in providing direction to future studies.
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4.6 Summary

In this paper, using two automated feature extraction procedures, the data was extracted.

With artificial neural networks, data acquired from each extraction procedure was classified.

The classification accuracies for each subject was compared for both extraction techniques

and it was found that variable threshold technique was able to compensate more effectively

to changing noise concentrations within the EEG signal. This resulted in further increase in

classification by an average of 0.75% and 0.65% for data in both sets. It was also noticed that

the average variance across the data decreased with increase in classification accuracy. The

next step involved focusing on the variance in data and establishing a correlation between

classification and variance. The variance in classification accuracies among three sessions

was plotted for each subject in comparison to their respective classification accuracies. Users

with higher accuracies had an average variance of 0.93 and 1.19 for both sets respectively.

Users with lower accuracies had an average variance of 7.03 and 7.82 for both sets. So users

with low classification had a relatively higher variance, which confirmed that users with

poor classification had a higher variance. Reasons for poor classification among users were

still unclear and further analysis was needed. The signal to noise ratio was computed for

each subject using the Kaiser windowing technique and the SNR results showed a higher

signal to noise ratio of -6.64dB for subjects with high classification accuracies. Users with

low accuracies were observed to lower SNR of -8.97dB. This procedure clearly validated

a wide presence of high noise levels in EEG signals pertaining to specific subjects. These

findings provide a good understanding about poor classification, high variance and low

SNR. Speculating a few reasons for high noise interference in specific user data, this work

seeks to motivate more research to find reasons for such noise.
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CHAPTER 5

CONCLUSION & FUTURE WORK

The majority voting system was applied to a system of neural networks in order to opti-

mally classify three imaginary tasks performed by three subjects. This proposed approach

optimized the electrodes for each individual user by ranking the electrodes based on their in-

dividual classification accuracies. Averaging the electrode accuracies reduced the variance

across the sessions and by implementing the majority vote the best performing electrodes

were shortlisted for each user. It was observed that using a network of simple neural net-

works along with the majority vote system improved the classification accuracy of each

subject significantly. In addition, the averaged overall classification accuracy of all three

subjects increased from 79.96% to 82.81%. Using the genetic algorithm, the acquired

accruacy from the majority vote was further optimized to 84.34% which is 1.56% greater.

The number of electrodes used in the computation was also reduced by more than 50% with

this process. Therefore, it is concluded that classification accuracy is user-dependent and

hence each user has a different set of optimal electrodes. To further validate and investigate

this technique, the majority voting system should be tested on a much larger EEG dataset.

In the following work, using two automated feature extraction procedures, large scale data

was extracted. With artificial neural networks, data acquired from each extraction proce-

dure was classified. The classification accuracies for each subject was compared for both

extraction techniques and it was found that Variable-ICA technique was able to compensate

more effectively to changing noise concentrations within the EEG signal. This resulted in

further increase in classification by an average of 0.75% and 0.65% for data in both sets. It

was also noticed that the average variance across the data decreased with increase in classi-

fication accuracy. The next step involved focusing on the variance in data and establishing

a correlation between classification and variance. The variance in classification accuracies

among three sessions was plotted for each subject in comparison to their respective clas-



62

sification accuracies. Users with higher accuracies had an average variance of 0.93 and

1.19 for both sets respectively. Users with lower accuracies had an average variance of 7.03

and 7.82 for both sets. So users with low classification had a relatively higher variance,

which confirmed that users with poor classification had a higher variance. Reasons for

poor classification among users were still unclear and further analysis was needed. The

signal to noise ratio was computed for each subject using the Kaiser windowing technique

and the SNR results showed a higher signal to noise ratio of -6.64dB for subjects with

high classification accuracies. Users with low accuracies were observed to lower SNR of

-8.97dB. This procedure clearly validated a wide presence of high noise levels in EEG

signals pertaining to specific subjects. These findings provide a good understanding about

poor classification, high variance and low SNR. Speculating a few reasons for high noise

interference in specific user data, this work seeks to motivate more research to find reasons

for such noise. In future work, the genetic algorithm will be used to optimize the electrodes

of the ANN results. This analysis is underway and the research will be updated with results

in the neat future.
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