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CHAPTER 1

INTRODUCTION

In 1893, the mathematician Percy Alexander MacMahon was one of the first to publish any

work on the subject of integer compositions. He introduced integer compositions, or simply

compositions, in the context of integer partitions. Simply put, a composition is a list of

positive integers in any order that sum to a given positive integer [5, pg.1-2]. Here, we study

the cyclic and colored generalizations of this concept and related enumerative problems.

1.1 Compositions

Definition 1. (Composition) A composition of a positive integer ` is the sequence σ =

σ1,σ2, . . . ,σk such that
k
∑

i=1
σi = `, where σi ∈ Z+ for all 1≤ i≤ k.

Each σi is called a part in the composition, and it is important to note that, unlike partitions,

the ordering of the parts in a composition of ` matters. As examples, the compositions for

the positive integers 3 and 4 are given below:

Example 1.1.

All the compositions of `= 3 are

3 1,2 2,1 1,1,1.

Example 1.2.

All the compositions of `= 4 are

4 3,1 1,3 2,2 2,1,1 1,2,1 1,1,2 1,1,1,1.

Let C` be the set of all compositions of `, and let |C`| be the number of all such compositions

of `. Figure 1.1 gives |C`| for each ` from 1 to 8.
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Figure 1.1: Number of Compositions for 1≥ `≥ 8

` |C`|

1 1

2 2

3 4

4 8

5 16

6 32

7 64

8 128

We can see from Figure 1.1 that for any given positive integer `, the number of

compositions of ` seems to be 2`−1. This is indeed the case and is well known, and for

completeness we give a short proof of this fact below.

Fact 1.3. The number of compositions of a given positive integer ` is 2`−1.

Proof. Consider the positive integer ` on a number line with tick marks at every positive

integer between 0 and `. Note there exists `−1 possible tick marks that could be used as a

marker to break the distance between 0 and ` into smaller, nonzero parts. This is because

parts of size zero are not considered in compositions. Since each of the `−1 tick marks is

either a marker or not a marker, the number of possible ways to create different combinations

of markers on a number line from 0 to ` is 2 ·2 · · · · ·2︸ ︷︷ ︸
`−1 times

. Because the different markers on the

number line refer to different possible integer compositions of `, it follows that the number

of integer compositions of ` is 2`−1.
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1.2 Color Compositions

A colored analogue of compositions, called n-color compositions, may have first been

introduced in [1]. This type of integer composition adds a color component to each part of a

composition.

Definition 2. (n-Color Composition) An n-color composition of a positive integer ` is a

composition of ` where each part of size n has n possible colors.

For instance, given the composition 1,2, the part of size 1 has one possible color, which we

label 11. Also the part of size 2 has two possible colors, which label as 21 and 22. Using

this notation, we give all the n-color compositions of 3 and 4 in the following examples:

Example 1.4.

All the n-color compositions of `= 3 are

31 32 33 11,21 11,22 21,11 22,11 11,11,11.

Example 1.5.

All the n-color compositions of `= 4 are

41, 42, 43, 44, 31,11, 32,11, 33,11, 11,31, 11,32, 11,33, 21,21,

22,21, 21,22, 22,22, 21,11,11, 22,11,11, 11,21,11, 11,22,11,

11,11,21, 11,11,22, 11,11,11,11.

In general, we will use N C ` to denote the set of all n-color compositions of `. Using

the notation |N C `| for the total number of n-color compositions of `, we recall the fact

below.
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Fact 1.6.

|N C `|= τ
`+σ

`,

where τ = 2
3−
√

5
and σ = 1

τ
= 2

3+
√

5
(OEIS A088305).

This fact stems from the asymptotic formula that can be developed for the total number of

n-color compositions. It is interesting to note that (τ)2 = ϕ , where ϕ is the of the golden

ratio ϕ = 1+
√

5
2 . This also implies that 1+ϕ = τ and 1

1+ϕ
= σ . We will use this fact later

in our exploration of different types n-color compositions. Using methods found in [6], we

can also represent these compositions as tiles with spots used to mark the color of each part.

In any given tile the bold lines represent the separation between parts. The non-bold lines

divide a part of size n into n different colors, and a black dot is used to mark the color of the

part in the given composition. In Figure 1.2, the eight n-color compositions of 3 are given in

spotted tiling representation.

←→ 11,11,11

←→11,21

←→11,22

←→21,11

←→22,11

←→ 31

←→ 32

←→ 33

Figure 1.2: n-color compositions of 3.
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Following [1], another series of studies on n-color compositions develop various bijections

that establish the combinatorial connection between n-color compositions and other objects

[2, 6].

1.3 Generating Functions

Within the study of compositions, it is important to identify the positive integers that form

the counting sequence for the number of compositions, or parts of compositions, in question.

In order to obtain such a sequence, we often use generating functions.

Definition 3. (Generating Function) A generating function is a formal power series ∑
∞
n=0 Anxn

whose coefficients An form an integer sequence for n≥ 0.

First, as an example, we will construct the generating function for the number of composi-

tions of `.

Example 1.7.

Consider the series (x+x2+x3+ · · ·+xm+ . . .). Since
∞

∑
i=0

xi = (1+x+x2+x3+ . . .) = 1
1−x

for |x|< 1, by the properties of geometric series we observe that

(x+ x2 + x3 + · · ·+ xm + . . .) =
x

1− x
,

where we assume that the conditions on x that are necessary for convergence are met.

Because the composition of ` can be of any length, we consider the sum of this generating

function from 1 to infinity in order to account for every possible composition of `. Thus the

generating function for the number of compositions of `, denoted C(x), is given by

C(x) =
∞

∑
k=1

(
x

1− x

)k

=
x

1−x

1− x
1−x

=
x

1−2x
.
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Next, we will construct the generating function for the number of parts in all composi-

tions of ` that are divisible by m ∈ Z+. In order to develop this generating function, we first

introduce a little more notation. Let P be a condition that restricts either the composition

type or the parts of the composition in some way. In this case let P ↔ (≡ 0 (mod m)).

Then cpP(`) denotes the number of parts in the compositions of ` that are divisible by m.

Using this notation, we will construct the generating function CPP(x).

Example 1.8.

Consider the series (x+ x2 + x3 + · · ·+ yxm + · · ·+ yx2m + . . .), where the variable y is

inserted to mark all the parts divisible by m. Since
∞

∑
i=0

xi = (1+ x+ x2 + x3 + . . .) = 1
1−x and x+ x2 + . . .xm−1 = x−xm

1−x , observe that

(x+ x2 · · ·+ yxm + . . .) = (x1 + xm+1 + x2m+1 + . . .) +(x2 + xm+2 ++x2m+2 + . . .)

+ · · ·+ y(xm + xm+m + x2m+m + . . .),

=
x

1− xm +
x2

1− xm + · · ·+ yxm

1− xm

=
x+ x2 + · · ·+ xm−1

1− xm +
yxm

1− xm

=
x−xm

1−x

1− xm +
yxm

1− xm

=
x(1− xm−1)+ yxm(1− x)

(1− x)(1− xm)

Thus
∞

∑
k=1

(
x(1−xm−1)+yxm(1−x)

(1−x)(1−xm)

)k
is a bivariate generating function of the composition of `

with parts divisible by m labeled by y,and

∞

∑
k=1

(
x(1−xm−1)+yxm(1−x)

(1−x)(1−xm)

)k
=

x(1−xm−1)+yxm(1−x)
(1−x)(1−xm)

1− x(1−xm−1)+yxm(1−x)
(1−x)(1−xm)

=
x− xm + yxm− yxm+1

1−2x+ xm+1− yxm + yxm+1 ,
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where the coefficient x`ys gives the number of compositions of ` with s parts divisible by

m. By taking the partial derivative with respect to y and then setting y = 1, we find that the

generating function for the number of parts of the compositions of ` divisible by m, which is

denoted using the statement P , is

CPP(x) =
∂

∂y

( x− xm + yxm− yxm+1

1−2x+ xm+1− yxm + yxm+1

)
y=1

=
(1−2x− xm +2xm+1)(xm− xm+1)

(1−2x− xm +2xm+1)2 − (x− xm+1)(−xm + xm+1)

(1−2x− xm +2xm+1)2

=
(xm−2xm+1 + xm+2− x2m +2x2m+1− x2m+2)

((1− xm)(1−2x))2

=
xm(1− x)2

(1− xm)(1−2x)2 .

Generating functions and their many uses are examined thoroughly from a discrete and

analytic perspective in [16]. Following the strategy outlined in [3], we focus our atten-

tion on constructing generating functions in order to identify the counting sequences for

compositions or for the number of parts.

1.4 Primitive Compositions

Primitive compositions first appear in [11] and are used in [3] for constructing generating

functions of certain compositions. These types of compositions further deconstruct any

given composition into smaller, nonrepeating sections of parts.

Definition 4. (Primitive Compositions) A primitive composition of a positive integer ` is a

composition of ` that is not composed of repeated copies of shorter compositions.

For instance, consider the n-color compositions of 4 broken up into primitive and nonprimi-

tive n-color compositions.

Example 1.9.
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Primitive n-Color Compositions of 4:

41 42 43 44 31,11 32,11 33,11 11,31 11,32 11,33 22,21

21,22 21,11,11 22,11,11 11,21,11 11,22,11

11,11,21 11,11,22.

Nonprimitive n-Color Compositions of 4:

21,21 22,22, 11,11,11,11.

Note that every composition type is composed of d copies of a primitive n-color composition

in that same type for some d ∈ Z+. Following [3], the process of representing a composition

as repeated copies of its primitive components will be used frequently in this thesis when

constructing generating functions for cyclic compositions.

1.5 Cyclic Compositions

Cyclic compositions were first considered in [14] and enumerated via generating functions

in [3]. In a sense they are the same as normal compositions except for their orientation,

which is about a circle as opposed to a line in the case of normal compositions.

Definition 5. (Cyclic Compositions) Cyclic compositions form a set of equivalence classes

of compositions in which any cyclic shift of a composition is considered to be the same

cyclic composition.

Consider, for example, a cyclic composition of 10 corresponding to the given equivalence

class and pictured in Figure 1.3.
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Example 1.10.

The cyclic composition of 10 = 2,2,1,2,2,1 = 2,1,2,2,1,2 = 1,2,2,1,2,2 is portrayed in

Figure 1.3.

2 2

1

22

1

Figure 1.3: A cyclic composition of 10.

As one would imagine, the enumeration of various objects in cyclic compositions dramati-

cally differs from that in compositions. For the remainder of this thesis we let C C ` denote

the set of cyclic compositions of `, and we use cc(`) and CC(x) to denote its corresponding

cardinality and generating function. Some interesting properties of cyclic compositions

were discussed in [10].

1.6 n-Color Cyclic Compositions

Another composition type that is used extensively in this thesis is n-color cyclic compositions.

These compositions are a combination of the unique properties that define both cyclic

compositions and n-color compositions. They are the same in their structure as regular

n-color compositions, but their orientation is about a circle.

Definition 6. (n-Color Cyclic Compositions) The set of n-color cyclic compositions contains

the equivalence classes of n-color compositions in which any cyclic shift of a composition

is considered to be the same n-color cyclic composition.

As an example, we will develop a n-color cyclic composition of 15 where the color of each

part is represented as a known color.
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Example 1.11.

Consider the following n-color cyclic composition of 15:

11,22,33,44,55

= 55,11,22,33,44

= 44,55,11,22,33

= 33,44,55,11,22

= 22,33,44,55,11.

Let the color type 1 be associated with the color blue, the color type 2 be associated with

green, the color type 3 be associated with red, the color type 4 be associated with orange,

and the color type 5 be associated with purple. It follows that

15 = 1,2,3,4,5 = 5,1,2,3,4 = 4,5,1,2,3 = 3,4,5,1,2 = 2,3,4,5,1,

and is portrayed in Figure 1.4.

2 3

4

5

1

Figure 1.4: An n-color cyclic composition of 15.

It is important to note that the parts of an n-color cyclic composition of size n still have n

possible colors. We let N C C ` denote the set of n-color cyclic compositions of `, and we

use ncc(`) and NCC(x) to denote its cardinality and generating function.

1.7 Our Results

For the rest of this thesis, we will focus on and explain various results involving cyclic

compositions and n-color cyclic compositions. Below is a chapter-by-chapter breakdown of
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our work.

• Integer compositions and related enumeration problems have been extensively studied.

The cyclic analogues of such questions, however, have significantly fewer results. In

Chapter 2, we follow the cyclic construction found in [3] to obtain generating functions

of parts under modular conditions in cyclic compositions. Recall from Section 1.2 that

the set containing cyclic compositions is C C `. Thus CCPi,m(x) and ccp(i;m;`) are

used to denote the generating function and its corresponding cardinality. Using other

generating functions related to cyclic compositions, we present some statistics and

asymptotic formulas for the parts in cyclic compositions. A combinatorial observation

of this enumerative question is also provided.

• In Chapter 3, we explore the combinatorics of n-color cyclic compositions, a type of

composition that has received significantly less attention than its linear counterpart.

Using methods found in [3], we construct generating functions for the total number

of n-color cyclic compositions and for the total number of parts in all n-color cyclic

compositions. We then present various bijections, asymptotic formulas related to the

number of such compositions, and/or combinatorial arguments for these generating

functions.

• In Chapter 4, we continue to focus on n-color cyclic compositions and, using similar

methods to those found in Chapter 2 and Chapter 3, we construct the generating

function for the total number of parts under modular, (≡ i (mod m)), conditions in

all n-color cyclic compositions. Our notation for this section will follow the pattern

used in the preceding chapters. The set containing these types of compositions is

denoted as N C C P`(i;m), where NCCPi,m(x) and nccp(i;m;`) are used to denote

the generating function and its corresponding cardinality. We then give the proof for

this generating function, construct a table from its corresponding integer sequence,
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and give a combinatorial argument for properties observed within the table.

• In Chapter 5, we further restrict the parts of n-color cyclic compositions and con-

sider the number of compositions given two different restrictions on the parts. These

restrictions include “parts no greater than h” and “parts divisible by j”. In order to

simplify notation, we choose to define the given restriction to be the condition P .

Then we denote the set containing that type of composition as N C C PP`, where

NCCPP(x) and nccpP(`) are used to denote the generating function and its corre-

sponding cardinality. We then give the generating functions for these compositions,

present asymptotic formulas related to the number of compositions, construct a table

corresponding to the integer sequence of each composition, and explore patterns found

within the table.
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CHAPTER 2

RESTRICTED PARTS IN CYCLIC COMPOSITIONS

2.1 Introduction

This chapter is based on [8], which has been submitted for publication. Cyclic compositions

were first considered in [14], and enumerated via generating functions in [3]. Although sim-

ilar in nature, the enumeration of various objects in cyclic compositions differs substantially

from that in compositions.

As a concept in Combinatorial Number Theory, compositions have been extensively

studied by both Combinatorialists and Number Theorists. Much of such work focuses on

the enumeration of parts or sub-word patterns under various restrictions. A nice summary

of known results can be found in [5] and the references therein. In the recent work [7],

the number of parts under modular conditions in all compositions of ` was studied, and

interesting combinatorial relations with the number of sub-word patterns in all compositions

of ` were found. Among other observations, the following was presented as a consequence

of previously known results. Recall from Section 1.1 that C` is the set containing all

compositions of `, and recall from Section 1.3 that P denotes any given condition that

restricts either the composition type or the parts of the composition in some way. In this

case we let P be the statement “parts equal to k.” Then cpP(`) denotes the number of parts

equal to k in all compositions of `.

Theorem 2.1 ([7]).

cpP(`) =


(`− k+3)2`−k−2 if ` > k,

1 if `= k.

The number of parts j such that j ≡ i mod m in all compositions of ` follows from

Theorem 2.1 above and is denoted by cp(i;m;`) for i = 1, . . . ,m. It is important to note that

when dealing with congruence classes, we will use m instead of 0 for the corresponding
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congruent class.

Theorem 2.2 ([7]).

cp(i;m;`) =

2`+m−i−2
(
(`− i+3)(2m−1)−m

)
(2m−1)2

 ,
where bxe is the integer nearest to x .

It is a known result that 2`−2(`+1) is the number of parts in all compositions of ` [15,

p. 120, Ex. 23]. Theorem 2.2 provides a direct tool to study the statistics of the parts under

modular conditions.

Unlike regular compositions, there has been surprisingly little work done to answer

similar questions regarding cyclic compositions. We make some modest progress towards

filling this gap in this chapter. The tool that is critical to our study is developed in [3], where

the construction of cycles of combinatorial structures is examined analytically.

Recall from Section 1.5 that C C ` denotes the set of cyclic compositions of `. Also

let TCCP(x) denote the generating function for the number of parts in all compositions in

C C `, where tccp(`) is its corresponding cardinality for each `. Direct application of the

cyclic construction in [3] yields the bivariate generating function for cyclic compositions

CC(x,u) = ∑
s≥1

ϕ(s)
s

log

(
1

1−us xs

1−xs

)
, (2.1)

where the coefficient of x`uk gives the number of cyclic compositions of ` with k parts

with ϕ representing the Euler totient function. Hence the generating function for tccp(`) is

TCCP(x) =
∂

∂u
CC(x,u)

∣∣∣∣
u=1

= ϕ(s) ∑
s≥1

xs

1−2xs .

Consequently we have the following.



24

Proposition 2.3.

tccp(`) =
1
2 ∑

s|`
ϕ(s)2`/s.

Let ccp(i;m;`) (1≤ i≤ m) denote the number of parts j such that j ≡ i mod m in all

compositions in C C `. Examining ccp(i;m;`) and the corresponding generating function is

a bit more involved. In this chapter we show that the generating function for the number of

parts in all cyclic compositions that are congruent to (i mod m) is

CCPi;m(x) = ∑
s≥1

(
ϕ(s)

xsi(1− xs)

(1−2xs)(1− xsm)

)
, (2.2)

and we provide a detailed study of Equation (2.2) in Section 2.2. Based on our findings,

some statistical behaviors of the parts in all compositions in C C ` are presented and justified

in Section 2.3. In Section 2.4, we comment on an interesting combinatorial observation

which arises from our study.

2.2 Construction of the generating function of ccp(i;m;`)

Recall from Section 1.7 that C C ` is the set of cyclic compositions of `, and ccp(i;m;`) and

CCi;m(x) are the corresponding cardinality and generating function for the number of parts

in all cyclic compositions congruent to i mod m. The generating function,

CCPi;m(x) = ∑
s≥1

(
ϕ(s)

xsi(1− xs)

(1−2xs)(1− xsm)

)
,

which is given in (2.2), is constructed directly through the “cycle construction” shown in [3].

In this section we summarize the formation of Equation (2.2).

First consider the series x+x2+x3+ . . . which is the generating function for the number

of regular compositions. Multiplying each part by y that is congruent to i mod m yields

x+ x2 + · · ·+ yxi + xi+1 + · · ·+ yxi+m + . . . .
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This forms the generating function for the total number of compositions, where parts

congruent to i mod m (that is, parts in the same equivalence class as i) are labeled using the

variable y. Further multiplying each term by u to mark all the parts gives us

ux+ux2 + · · ·+ yuxi +uxi+1 + · · ·+ yuxi+m + . . .

=u(x+ x2 + . . .)+u(y−1)
(
xi + xi+m + . . .

)
=

ux
1− x

+
(y−1)uxi

1− xm .

Consequently we have the multivariable generating function of compositions

C(x,u,y) =
∞

∑
k=1

( ux
1− x

+
(y−1)uxi

1− xm

)k

=
ux

1−x +
(y−1)uxi

1−xm

1− ux
1−x +

(y−1)uxi

1−xm

=
ux(1− xm)+uxi(y−1)(1− x)

(1− x)(1− xm)− (ux(1− xm)+uxi(y−1)(1− x))
,

where the coefficient of x`uryt is the number of compositions of ` with r parts, t of which

are congruent to i mod m.

Recall from Section 1.4 that a primitive composition is a composition that is not

composed of repeated copies of shorter compositions. Since every composition is composed

of d copies of a primitive composition for some d ∈ Z+, we can construct the generating

function for the total number of primitive compositions by using the multivariate generating

function for compositions. Let

PC(x,u,y) = ∑
n,r,t

pc(`,r, t)x`uryt

denote the generating function for primitive compositions, where the coefficient pc(`,r, t) is

the number of primitive compositions of ` with r parts, t of which are congruent to i mod m.

Using the relationship between compositions and primitive compositions, we have

C(x,u,y) = ∑
d≥1

PC(xd,ud,yd).
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We derive PC(x,u,y) implicitly using a Möbius inversion to yield

PC(x,u,y) = ∑
k≥1

µ(d)C(xd,ud,yd)

where µ(d) is the Möbius µ function. We now let

PCC(x,u,y) = ∑
n,r,t

pcc(`,r, t)x`uryt

denote the generating function for primitive cyclic compositions, where the coefficient

pcc(`,r, t) is the number of primitive cyclic compositions of ` with r parts, t of which are

congruent to i mod m. First note that each primitive cyclic composition with r parts has r

unique primitive composition representations. Thus, there is a one-to-r relationship between

primitive cyclic compositions and primitive compositions. Consequently

pcc(`,r, t)x`uryt =
pc(`,r, t)

r
x`uryt =

∫ u

0
pc(n,r, t)x`wr−1ytdw,

and we have

PCC(x,u,y) =
u∫

0

PC(x,w,y)
w

dw

=

u∫
0

1
w ∑

d≥1
µ(d) C(xd,wd,yd) dw

=

u∫
0

1
w ∑

d≥1
µ(d)

wdxd(1− xmd)+wdxdi(yd−1)(1− xd)

(1− xd)(1− xmd)− (wdxd(1− xmd)+wdxdi(yd−1)(1− xd))
dw

= ∑
d≥1

µ(d)
u∫

0

wd−1(xd(1− xmd)+ xdi(yd−1)(1− xd))

(1− xd)(1− xmd)−wd(xd(1− xmd)+ xdi(yd−1)(1− xd))
dw.

Integrating through substitution with

β = (1− xd)(1− xmd)−wd(xd(1− xmd)+ xdi(yd−1)(1− xd)),

and

dβ =−wd−1(xd(1− xmd)+ xdi(yd−1)(1− xd)) dw
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and setting u = 1, we have

PCC(x,y) = PCC(x,u,y)
∣∣∣∣
u=1

=

 u∫
0

PC(x,w,y)
w

dw

∣∣∣∣
u=1

=

(
∑
d≥1

µ(d)
d

log
(

(1− xd)(1− xmd)

(1− xd)(1− xmd)−ud(xd(1− xmd)+ xdi(yd−1)(1− xd))

))∣∣∣∣
u=1

= ∑
d≥1

µ(d)
d

log
(

(1− xd)(1− xmd)

(1− xd)(1− xmd)− (xd(1− xmd)+ xdi(yd−1)(1− xd))

)
.

Since every Cyclic Composition is composed of q adjacent copies of primitive compositions

for some q ∈ Z+, the bivariate generating functions for cyclic compositions, which is

denoted by CC(x,y), is

CC(x,y) = ∑
q≥1

PCC(xq,yq)

= ∑
q≥1

∑
d≥1

µ(d)
d

log
(

(1− xqd)(1− xmqd)

(1− xqd)(1− xmqd)− (xd(1− xmqd)+ xdi(yqd−1)(1− xqd))

)
.

Using the variable substitution, s = qd and given the identity ∑d|s
µ(d)

d = ϕ(s)
s , where ϕ(s)

is the Euler totient function, CC(x,y) becomes

CC(x,y) = PCC(xq,yq)

= ∑
s≥1

∑
d|s

µ(d)
d

log
(

(1− xqd)(1− xmqd)

(1− xqd)(1− xmqd)− (xd(1− xmqd)+ xdi(yqd−1)(1− xqd))

)
= ∑

s≥1

ϕ(s)
s

log
(

(1− xs)(1− xsm)

(1− xs)(1− xsm)− (xs(1− xsm)+ xsi(ys−1)(1− xs))

)
.

Here the coefficient of x`yt is the number of cyclic compositions of ` with t parts that are

congruent to i mod m. Taking the partial derivative of CC(x,y) with respect to y and setting

y = 1 yields the generating function, denoted CCPi;m(x), for the number of parts congruent
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to i mod m in all cyclic compositions in C C `.

CCPi;m(x) =
∂

∂y

(
CC(x,y)

)∣∣∣∣
y=1

=∑
s≥1

ϕ(s)
s

(
∂

∂y

(
log
(

(1− xs)(1− xsm)

(1− xs)(1− xsm)− (xs(1− xsm)+ xsi(ys−1)(1− xs))

)))∣∣∣∣
y=1

=∑
s≥1

(
ϕ(s)

xsi(1− xs)

(1−2xs)(1− xsm)

)
,

which is the generating function given in (2.2).

2.3 Some statistics of the parts in C C `

Evaluating Equation (2.2) at m = 10 with 1≤ i≤ 10 yields the following Table 4.1 of values

for ccp(i;m;`):

A number of interesting observations immediately follow:

• As `→ ∞,
ccp(i;m;`+1)

ccp(i;m;`)
→ 2.

That is, going down a column in the table by one step doubles the value of the next

entry.

• As `→ ∞,
ccp(i+1;m;`)

ccp(i;m;`)
→ 1

2
.

That is, moving right in a row in the table by one step halves the value of the next

entry.

• As `→ ∞,
ccp(i+1;m;`+1)

ccp(i;m;`)
→ 1.

That is, the values along the diagonal or sub-diagonals are asymptotically the same.

To see the reasoning behind these observations, we start with the following formula for

cc(i;m;`).
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`

i
1 2 3 4 5 6 7 8 9 10=m

1 1 0 0 0 0 0 0 0 0 0

2 2 1 0 0 0 0 0 0 0 0

3 4 1 1 0 0 0 0 0 0 0

4 7 3 1 1 0 0 0 0 0 0

5 12 4 2 1 1 0 0 0 0 0

6 22 11 5 2 1 1 0 0 0 0

7 38 16 8 4 2 1 1 0 0 0

8 74 36 17 9 4 2 1 1 0 0

9 138 66 34 16 8 4 2 1 1 0

10 272 136 66 33 17 8 4 2 1 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

50 2.81 ·

1014

1.41 ·

1014

7.03 ·

1013

3.52 ·

1013

1.76 ·

1013

8.79 ·

1012

4.39 ·

1012

2.20 ·

1012

1.10 ·

1012

5.49 ·

1011

51 5.62 ·

1014

2.81 ·

1014

1.41 ·

1014

7.03 ·

1013

3.52 ·

1013

1.76 ·

1013

8.79 ·

1012

4.39 ·

1012

2.20 ·

1012

1.10 ·

1012

52 1.12 ·

1015

5.62 ·

1014

2.81 ·

1014

1.41 ·

1014

7.03 ·

1013

3.52 ·

1013

1.76 ·

1013

8.79 ·

1012

4.39 ·

1012

2.20 ·

1012

53 2.25 ·

1015

1.12 ·

1015

5.62 ·

1014

2.81 ·

1014

1.41 ·

1014

7.03 ·

1013

3.52 ·

1013

1.76 ·

1013

8.79 ·

1012

4.39 ·

1012

54 4.50 ·

1015

2.25 ·

1015

1.12 ·

1015

5.62 ·

1014

2.81 ·

1014

1.41 ·

1014

7.03 ·

1013

3.52 ·

1013

1.76 ·

1013

8.79 ·

1012

Table 2.1: Values of ccp(i;m;`) for m = 10.

Theorem 2.4.

ccp(i;m;`)→ 2`+m−i−1

2m−1

as `→ ∞.

Proof. First rewrite (2.2) as CCPi;m(x) = ∑s≥1 ϕ(s)A(xs), where

A(x) = xi · 1− x
(1−2x)(1− xm)

.

Next, we will consider the partial fraction decomposition of 1−x
(1−2x)(1−xm) . Observe that

1− x
(1−2x)(1− xm)

=
1

(1−2x)(1+ x+ . . .+ xm−1)
=

a0

1−2x
+

m−1

∑
j=1

a j

x−w j
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with constants a0,a1, . . . ,am−1, where w j for 1 ≤ j ≤ m− 1 are the complex roots of

xm = 1. Through solving the partial fraction decomposition by multiplying both sides by

(1−2x)(1− xm) and plugging in x = 1
2 , we have

1− 1
2
= a0

(
1−
(

1
2

)m)
1
2 = a0

(
2m−1

2m

)
a0 =

(
1
2

)(
2m

2m−1

)
a0 =

2m−1

2m−1
.

Since x = 1
2 is a distinct root of the denominator of smallest magnitude, it follows that the

coefficient of x` in A(x) is asymptotically 2`+m−i−1

2m−1 (contributed from xi · a0
1−2x ) as n→ ∞.

Thus considering ccp(i;m;`), the coefficient of x` in ∑s≥1 ϕ(s)A(xs), we have

ccp(i;m;`)∼ 1
2m−1

(
∑
s|`

ϕ(s)2
`
s+m−i−1

)
. (2.3)

By considering the s = 1 term of ∑s≥1 ϕ(s)A(xs), we see that

1
2m−1

(
∑
s|`

φ(s)2
`
s+m−i−1

)
≥ 2`+m−i−1

2m−1
.

However, we also know that

1
2m−1

(
∑
s|`

φ(s)2
`
s+m−i−1

)
= ∑

s|n
φ(s)

2m−i−1

2m−1
2

`
s

=
2m−i−1

2m−1 ∑
s|`

φ(s)2
`
s

=
2m−i−1

2m−1

(
2`+ ∑

s|`,s 6=1
φ(s)2

`
s

)

≤ 2m−i−1

2m−1

(
2`+(`−1)2

`
2

)
→ 2`+m−i−1

2m−1
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for large `. Thus by definition, 1
2m−1

(
∑s|`φ(s)2

`
s+m−i−1

)
→ 2`+m−i−1

2m−1 . Therefore, it follows

that

ccp(i;m;`)→ 2`+m−i−1

2m−1

as `→ ∞.

Similarly, it is easy to see from Proposition 2.3 in the introduction, that

tccp(`)∼ 2`−1 as `→ ∞. Consequently we have

Corollary 2.5.
ccp(i;m;`)

t pcc(`)
→ 2m−i

2m−1

as `→ ∞.

Among other things, Theorem 2.4 and Corollary 2.5 imply that for large `:

• ccp(i;m;`+1)→ 2ccp(i;m;`);

• ccp(i+1;m;`)→ 1
2ccp(i;m;`);

• ccp(i+1;m;`+1)→ ccp(i;m;`).

These observations are somewhat surprising, but they follow directly from the generating

function.

2.4 A combinatorial observation

We conclude this chapter by exploring an interesting observation related to CCPi;m(x). Recall

that

CCPi;m(x) = ∑
s≥1

ϕ(s)A(xs), (2.4)

where

A(x) = xi · 1− x
(1−2x)(1− xm)

.

First, we make the following claim:
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Proposition 2.6. The function

A(x) = xi · 1− x
(1−2x)(1− xm)

is the generating function for the number of compositions with last part congruent to i

mod m.

Proof. Let A` denote the set of compositions of ` with last part congruent to i mod m. We

will show that

|A`|=
m

∑
j=1
|A`− j|+ |A`−m|.

The generating function as claimed immediately follows from combining the above generat-

ing functions on the right.

Consider the compositions of ` with last part congruent to i mod m in the following different

cases and apply the corresponding operations:

1) If the last part x is greater than m, we simply replace x with x−m yielding a composi-

tion in A`−m.

2) If the last part x is exactly i, consider the second to last part y ≡ j mod m for

j = 1,2, . . . ,m. In this case replacing x and y with the single part y− j+ i, where k is

a positive integer, yields a composition in A`− j.

It is not hard to see that this map is a bijection between An and
(
∪m

j=1An− j

)
∪A′n−m, where

A′n−m and An−m are two copies of the same set. Thus the generating function An is equivalent

to the generating function for
(
∪m

j=1An− j

)
∪An−m, which means

|A`|=
m

∑
j=1
|A`− j|+ |A`−m|.
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This fact inspires a combinatorial argument that establishes CCi;m(x) directly from

A(x). We will briefly discuss the justification for this idea in the rest of this section.

For a cyclic composition with some part congruent to i mod m, “cutting” the compo-

sition right after this part and orienting this new composition on a line instead of a circle

produces a composition with the last part congruent to i mod m. Such regular compositions

are counted by the generating function A(x), by the previous proposition. Now we consider

all the regular compositions of ` of length k formed from cutting cyclic compositions at

every part congruent to i mod m. This process of “cutting” can be broken down into the

following cases:

• If every regular composition, with its corresponding last part congruent to i mod m,

corresponds to at least one such “cutting” of some cyclic composition, then it is

counted by the s = 1 term of (2.4).

• If the result of the first “cutting” yields a regular, nonprimitive composition composed

of two identical copies of compositions of length k
2 , then further cutting this composi-

tion right after the part congruent to i mod m, which is located in the middle of this

composition, yields two compositions of length k
2 . However, since the compositions

in exactly one of these groups of compositions was already counted by the first case,

this second case is counted with only one copy of the generating function A(x2),

which is the s = 2 term of (2.4) and it counts a pair of compositions ending with parts

congruent to i mod m.

• If the resulting regular composition is made of three identical copies of compositions

of length k
3 , then further cutting this composition at the parts congruent to i mod m

yields three compositions of length k
3 . However, since the compositions in exactly

one of these groups was already counted by the first case, only two of the groups of

compositions with last part congruent to i mod m need to be counted. Thus this case
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is counted by two copies of the generating function A(x3), which is the s = 3 term of

(2.4) and it counts a triple of compositions ending with parts congruent to i mod m.

• If the resulting regular composition is made of four identical copies of compositions of

length k
4 , then further cutting this composition at the parts congruent to i mod m yields

four compositions of length k
4 . However exactly two of these groups of compositions

with last part congruent to i mod m have already been counted; one group was

counted by the first case and another group was counted by the second case. Therefore

this case, is counted by two copies of the generating function A(x4), which is the s = 4

term of (2.4) and it counts such a 4-tuple of compositions ending with parts congruent

to i mod m.

• In general, if the resulting regular composition is made of s identical copies of

compositions of length k
s , then further cutting this composition at the parts congruent

to i mod m yields s compositions of length k
s . Among these s parts congruent to i

mod m, s−ϕ(s) are already counted in previous cases. The other ϕ(s) such groups

of compositions, each of which have a last part congruent to i mod m, are counted by

ϕ(s) copies of the generating function A(xs), which is the sth term of (2.4).

The above explanation presents the following idea. Consider any cyclic composition of n

of length k, made up of d copies of a primitive composition containing p parts congruent

to i mod m for some d, p ∈ Z+. Then there are d · p total parts congruent to i mod m. Of

the k
d compositions corresponding to this one cyclic composition, p of them have last part

congruent to i mod m. For any divisor s of d, consider the composition formed by s copies

of the primitive composition to be the cyclic composition in question ending in one of the p

parts congruent to i mod m. Each of these compositions will be counted by A(xs). Now

summing over all these compositions and multiplying by ϕ(s) for those counted in A(xs),
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we obtain

∑
s|d

ϕ(s)p = d · p,

which is exactly the number of parts congruent to i mod m in this composition. Thus

summing over all cyclic compositions of ` we see the relationship between GPCC(x) and

A(x).

Example 2.7.

Consider `= 6, i = 1 and m = 3. For the purpose of illustration, we will use subscripts to

denote the location of an entry in a cyclic composition. That is, a cyclic composition of

6 with all parts of size 1 can be “cut” into a composition 111213141516 or 161112131415

depending on the location of the cut. Also, for each case the corresponding figures will

denote the number of cuts by s, and the specific cuts the generating function counts by a

blue oval.

For each part j in a cyclic composition of 6 such that j ≡ 1 mod 3, “cutting” all the

cyclic compositions of 6 at each part j yields the following compositions of 6:

(a) 111213141516, 161112131415, 151611121314, 141516111213, 131415161112, 121314151611

(b) 11121, 11211, 12111, 21111, 2211, 1221, 1131, 1311, 3111, 231, 321, 411, 141, 114,

24

(c) 212214, 214212

• All the compositions of case (b), together with 111213141516 and 212214, provide us

exactly the set of compositions of 6 that ends with one (s = 1) part that is in the same

equivalence class as 1. They are counted by the coefficient of x6 in ϕ(1)A(x), which

is 1 ·17 = 17.
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s = 1
=⇒ : A(x)

Figure 2.1: Compositions with circled cuts counted by A(x)

• Since 2121 and 111111 can both be considered as repeating two (s = 2) copies of

compositions of 3 (i.e., 21 and 111), they can be further cut in the middle, yielding

21;21 and 111;111 and counting 214212 and 141516111213. This is the coefficient of

x6 in ϕ(2)A(x2), which is 1 ·2 = 2.

s = 2
=⇒ : A(x2)

Figure 2.2: Compositions with circled cuts counted by A(x2)

• Furthermore, 111111 can also be considered as repeating three (s = 6) copies of

compositions of 2 (i.e, 11). Thus it can be further cut to obtain 11;11;11, which

produces the cuts 151611121314 and 131415161112. This repeated cutting is counted

through the coefficient of x6 in ϕ(3)A(x3), which is 2 ·1 = 2.
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s = 3
=⇒ : 2 ·A(x3)

Figure 2.3: Compositions with circled cuts counted by A(x3)

• Lastly, 111111 can be considered as repeating six (s = 6) copies of compositions of

1, it can be further cut to obtain 1;1;1;1;1;1, which produces the cuts 161112131415

and 121314151611. The results are counted through the coefficient of x6 in ϕ(6)A(x6),

which is 2 ·1 = 2

s = 6
=⇒ : 2 ·A(x6)

Figure 2.4: Compositions with circled cuts counted by A(x6)

Thus

CCPi;m(x) = [x6]

(
∑
s|6

ϕ(s)A(xs)

)
= 17+2+2+2 = 23,

which is exactly the number of parts that are congruent to 1 mod 3 in all cyclic compositions

of 6.



38

CHAPTER 3

N-COLOR CYCLIC COMPOSITIONS

3.1 Introduction

This chapter is based on [4]. Following [1], a series of studies have been presented on

n-color compositions, including various connections between the counting sequences for

n-color compositions other integer sequences [2, 6]. Much of the study on compositions

focuses on the enumeration of compositions, parts, or sub-word patterns under various

restrictions. A nice summary of known results can be found in [5] and the references therein.

In this chapter we introduce and explore such questions for n-color cyclic compositions.

Let N C C ` and N C C P` be, respectively, the set of n-color cyclic compositions of `

and the set of all parts in each n-color cyclic composition of `. We use ncc(`), nccp(`),

NCC(x), and NCCP(x) to denote the corresponding cardinalities and generating functions.

For instance, ncc(`) is the total number of n-color compositions of ` and

NCC(x) = ∑
`≥0

ncc(`) · x`.

Essentially following the analytic tools developed in [3], we find that the generating

functions NCC(x) and NCCP(x), whose proofs we postpone to Section 3.5, are

NCC(x) = ∑
s≥1

ϕ(s)
s

log
(

(1− xs)2

(1−3xs + x2s)

)
, (3.1)

and

NCCP(x) = ∑
s≥1

ϕ(s)
(

xs

1−3xs + x2s

)
, (3.2)

where ϕ(s) is the Euler totient function. From these generating functions, we obtain patterns

and discuss the combinatorics associated with these enumeration problems. In Section 3.2

we first note a formula of ncc(`), which leads to interesting connections to the alternate Lucas

numbers and the number of states in a dynamic storage allocation system. Combinatorial

proofs are presented for these observations. In Section 3.4 we consider nccp(`). In addition



39

to providing its formula, we explore its connection to regular n-color compositions using

combinatorial methods. In Section 3.5, we summarize the proof of (3.1). Then we briefly

discuss the how to obtain (3.2) through the same approach.

3.2 Alternate Lucas numbers and n-color cyclic compositions

The sequence ncc(`) generates 1,3,6,13,25,58,121,283, . . . , which is the sequence A032198

from the Online Encyclopedia of Integer Sequences (OEIS) [13]. In fact, the formula

ncc(`) =
1
` ∑

d|`
ϕ

(
`

d

)
·Ad (3.3)

where {Ad}n, given by A004146 in OEIS, is the sequence for the alternate Lucas numbers

that enumerates the number of spanning subtrees of wheel graphs or d-helm graphs with

d +1 vertices citeoeis. We examine this observation and prove (3.3) combinatorially in this

section.

Before examining the combinatorial connections between the alternate Lucas numbers

and ncc(`), we first take a closer look at Ad and the combinatorial objects that Ad enumerates.

As listed in A004146, Ad is the number of spanning trees of a wheel Wd on d +1 vertices or

a d-helm graph on d +1 vertices. Note that the wheel Wd is formed by taking a cycle Cd

with a vertex in the center that connects to every vertex on the cycle. A d-helm graph is

then simply a Wd with an additional pendant edge at each of the d vertices on the cycle. See

Figure 3.1 for an example of the wheel and a d-helm graph, pictured from left to right.
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Example 3.1.

Figure 3.1: The wheel W6 and the 6-helm graph on 7 vertices

A spanning tree of a graph G is a connected, acyclic subgraph of G that contains every

vertex of G. Because of this, a bijection between the spanning trees of Wd and the spanning

trees of d-helm graphs can be readily established through adding d pendant edges to any

given wheel Wd . In the rest of this section, we will focus our attention on the wheel and its

connection to ncc(`). For our purposes the wheels on 2 and 3 vertices are specially depicted

in Figure 3.2 from left to right.

Figure 3.2: The wheel graphs on 2 and 3 vertices

In a wheel we call all the edges containing the center vertex spokes and the other

edges arcs. It is easy to see that every spanning tree of the wheel Wd contains at least one

spoke. We now describe a function f that maps each spanning tree of Wd to a n-color cyclic

composition of d using the following conditions:

• Choose a spanning tree containing s spokes e1, e2, e3, . . . , es with a clockwise ordering,

and let ai be the number of arcs between ei and ei+1, with es+1 = e1.
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• The spanning tree, as a subgraph, must contain exactly ai−1 arcs between ei and ei+1

for each i. This is because the graph can have at most one arc missing in order for the

subgraph to be connected and spanning, but at least one arc must be missing for the

subgraph to be acyclic.

• For any i, let the cth
i arc be missing from the spanning tree, where ci is the ith arc

between ei and ei+1 when counting in the clockwise direction. Then our n-color cyclic

composition is

(a1)c1 +(a2)c2 + . . .+(as)cs

wrapped around a circle.

The process of relating this type of spanning tree to an n-color cyclic composition using the

function f is given in the following example:

Example 3.2.

Consider a spanning tree T (bold faced edges) of W6 mapped to the corresponding n-color

cyclic composition in Figure 3.3.

e1

e2e3

Figure 3.3: A spanning tree T such that f (T ): 22 +32 +11 = 6.

Remark 3.3. It is easy to see that the function described above is not a bijection. In fact,

exactly d spanning trees (generated from rotating the current spanning tree) of Wd are

mapped to the same n-color cyclic composition of d.
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We are now ready to further explore the combinatorial relationship between the n-color

cyclic compositions and spanning trees of wheels with a proof of Equation 3.3.

Theorem 3.4. For a positive integer `, we have

ncc(`) =
1
` ∑

d|`
ϕ

(
`

d

)
Ad. (3.4)

Proof. Recall that N C C ` is the set of all n-color cyclic compositions of `. For each d

dividing `, let Ad be the set of spanning trees of Wd with d +1 vertices, and let Bd be the

set of those subtrees where all of the edges are identically colored by color 1, color 2, . . . ,

or color ϕ( `d ). By letting Ad = |Ad| and Bd = |Bd|, we have Bd = ϕ( `d )Ad . Define a map

g :
⋃
d|`

Bd −→N C C ` in the following way:

• Let T ∈Bd such that T has s spokes.

• First generate f (T ), an n-color cyclic composition of d of the following form:

(a1)c1 +(a2)c2 + . . .+(as)cs.

• Then, g(T ) is the n-color cyclic composition with sn
d parts that occur f (T ) `

d times.

It is easy to see that g, like f , is a well defined map that maps multiple spanning trees to

the same n-color cyclic composition, as we saw as an example in Figure 3.3. Therefore, we

introduce notation that allows us to identify this property for all T ∈Bd .

• For a tree T ∈Bd , let R(T ) be the rotation of the tree T by 2π

d . Note that g(Ri(T )) =

g(T ) for all positive integers i.

• Recall for an n-color cyclic composition C, if r is the smallest positive integer such that

C is just `
r copies of those first r parts, then C is composed of primitive compositions

of length r. Then Rr(T ) = T and Ri(T ) 6= T for any 1≤ i < r, since we suppose r to

be the length for the smallest pattern contained in C.
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Since r|`, for any T such that g(T ) =C, there must be some s such that T ∈Brs. Now note

that each such tree T can be colored one of ϕ( `
rs) colors in

⋃
rs|`

Brs, and the same is true for

R(T ), R2(T ), . . . , Rr−1(T ). Thus, for each s such that (rs)|`, there are rϕ( `
rs) trees that are

mapped to C. We then have

|g−1(C)|= ∑
rs|`

rϕ

(
`

rs

)
= r∑

s| `r

ϕ

((
`
r

)
s

)
= r

`

r
= `.

In other words, there are always exactly ` unique spanning subtrees in
⋃

d|`Bd which map

to C given any n-color cyclic composition C in N C C `. Thus,

` ·ncc` =

∣∣∣∣∣∣⋃d|`Bd

∣∣∣∣∣∣= ∑
d|`

Bd = ∑
d|`

ϕ

(
`

d

)
Ad.

Dividing through by ` yields

ncc(`) =
1
` ∑

d|`
ϕ

(
`

d

)
Ad.

3.3 Dynamic storage allocation systems and n-color cyclic compositions

Using OEIS, we found that A032198 also appears to be exactly one less than A005594,

which counts the number of states of a dynamic storage allocation system in circular arenas

[12, 13]. This type of storage system partitions a storage space into cells, each of which can

be either busy or idle. Several consecutive cells can form a block to be used for storage,

which in turn defines such cells as busy. It is only free cells that have the potential to be

idle because they are single-cell blocks, not blocks containing two or more cells. However

single-cell blocks can be designated as busy also. For these types of systems contained

within circular arenas, each state corresponds to an allocation system composed of a certain

number of cells on a circle such that there can be both busy blocks of any size and idle

blocks only of size 1. In mathematical terms, A005594 enumerates the number of cyclic
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compositions with two colors for parts of size 1 and one color for all other parts. We provide

a combinatorial proof for this connection in this section.

First, let a busy storage block of size k ≥ 1 be denoted by k, and let an idle block

be denoted by 1′. Consider the following example of all such states of a dynamic storage

allocation system for `= 3 not including the identical copies of each state produced when

the allocation system is rotated.

Example 3.5.

All unique states of such an allocation system with 3 cells are

1′1′1′, 11′1′, 111′, 111, 21′, 21, 3.

These expressions can be easily interpreted as colored cyclic compositions where parts

of size 1 have two possible colors, either 1 or 1′ as busy or idle respectively, and parts of

size greater than 1 have only one color, busy. Let DC C ` be the set of such n-color cyclic

compositions of `, and let dcc(`) be its cardinality. We will provide a combinatorial proof

to the following theorem by establishing a bijection between N C C ` and

DC C `−

1′1′ . . .1′︸ ︷︷ ︸
` 1′s

 .

Theorem 3.6. For any positive `, we have

ncc(`) = dcc(`)−1.

Proof. With the understanding that all compositions under consideration are n-color cyclic

compositions, we present our bijective map through a recursive manner that considers one

part a time. Given a part in a composition in N C C `, we consider the following options:

1) If the part is 11, then it is mapped to a 1 as part of a composition in DC C `. This 1

corresponds to a busy storage block of size 1 in the dynamical storage system;
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2) If the part is kk, then it is mapped to k as a part of a composition in DC C `, where kk

corresponds a busy storage block of size k in the dynamical storage system;

3) If the part is kk−i for some 1 ≤ i ≤ k−1, then it is mapped to a part k− i followed

by 1′ . . .1′︸ ︷︷ ︸
i 1′s

, which corresponds to a busy storage block of size k− i followed by i idle

storage cells in the dynamical storage system.

This process is illustrated in Figure 3.4

. . . 7−→ 1 . . .

. . . . . .

k cells

7−→ k . . .

. . . . . . . . .

k cells

i cells

7−→ (k− i)1′1′1′1′ . . .1′

i1’s

Figure 3.4: Outline of Bijection Construction

Notice that the state of a dynamical storage system in which all n spaces are both of size 1 and

idle does not have a corresponding n-colored composition of `. Under this construction, this

type of storage space would be analogous to a composition of zero, which, by the convention

we use here, is not counted. Thus, no composition from N C C ` will be mapped to 1′1′ . . .1′︸ ︷︷ ︸
` 1′s

as the image of any part will always generate at least one busy block. We finish the proof by

defining the inverse of our map. Starting from a composition in DC C `−

1′1′ . . .1′︸ ︷︷ ︸
` 1′s

, we

pick such a part m in the state that is not an idle block since we are guaranteed to have at

least one busy block (i.e., not all cells are 1′s). Note that the part m will serve as the “start”

of the state and every element that may have come before it is now shifted, following the

pattern of cyclic compositions, until m is the first component of the state.

• If the part following m (clockwise to the right) is not a 1′, then map it to a part mm.
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• If m is followed by some 1′s, let k be the number of 1′s before there is another part j.

Then m1′1′ . . .1′︸ ︷︷ ︸
k 1′s

is mapped to (m+ k)m.

In order to illustrate this bijection, we will display n-color cyclic compositions according

to the method used in [5], which represents n-color compositions as a series of spotted

tilings. Recall from Section 1.2 that this method of illustration places each part of a color

composition on a tile with bold lines to separate the different tiles and dots in the middle

of the tiles to mark the specific color for each part. Figure 3.5 presents an n-color cyclic

composition of 10, namely 22321141, first represented using spotted tilings and subsequently

mapped to a state of a dynamic storage allocation system with 10 cells.

Example 3.7.

22321141 7−→ 7−→ 221′111′1′1′

Figure 3.5: Bijection between 22321141 and 221′111′1′1′.

From this example, we see the parts from the n-color cyclic composition 22321141

correspond to the blocks in the state 221′111′1′1′ in the following way:

• 22 is mapped to 2;

• 32 is mapped to 21′;

• 11 is mapped to 1;

• 41 is mapped to 11′1′1′.

Similarly, using the construction for the inverse of the bijection outlined in the proof, we

give the following example of the same state in Figure 3.5 mapped to the same n-color cyclic

composition.



47

Example 3.8.

221′111′1′1′ 7−→ 22(2+1)211(1+3)1 7−→ 22321141

Figure 3.6: Bijection between 22321141 and 221′111′1′1′.

It is important to note that the state 221′111′1′1′ has 8 cyclic shifts that comprise the same

state. However, according to the parameters of our bijection, since the states cannot begin

with a 1′, there are only 4 cyclic shifts that must be considered. It is these four cyclic shifts of

the state 221′111′1′1′ that correspond uniquely to one of the four cyclic shifts of 22321141.

3.4 Parts in n-Color Cyclic Compositions

Through (3.2) it is easy to verify that

nccp(`) = ∑
s|`

ϕ(s)[τ`/s +σ
`/s] (3.5)

where τ = 2
3−
√

5
and σ = 1

τ
= 2

3+
√

5
. Recall from Fact (1.6), given in Section 1.2, that

{τm +σ
m}m ,

listed as A088305 in OEIS, is exactly the counting sequence of the non-cyclic n-color

compositions [13]. We now provide a combinatorial proof for Equation (3.5) that also

explains this interesting connection.

Theorem 3.9. For positive integer `, we have

nccp(`) = ∑
s|`

ϕ(s)[τ`/s +σ
`/s],

where τ = 2
3−
√

5
and σ = 1

τ
= 2

3+
√

5
.
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Proof. Note that the number of non-cyclic n-color compositions of m, which is given by the

sequence A088305 in OEIS, is a(m) = τm +σm [13]. We will show that

nccp(`) = ∑
s|`

ϕ(s) ·a
(
`

s

)
.

For the rest of this proof, the weight of a composition w will be denoted weight(w) while

the number of parts of w will be denoted |w|, where weight(w) is the sum of the parts in a

composition of w .

First, we make the following observation. For s|`, note that a(`/s) counts the number

of (non-cyclic) n-color compositions, which consist of s copies of a composition of weight

`
s . Let (w)d be a n-color cyclic composition with d copies of the primitive root w and with

weight(wd) = ` for some d ∈ Z+. Then, there are |w| non-cyclic n-color compositions

which, when wrapped around a circle, give you (w)d , since every cyclic shift of w will yield

a new non-cyclic n-color composition. Thus, the number of non-cyclic n-color compositions

which map to (w)d and are counted by a(`) is just |w|, because the number of parts in w is

the only thing that determines the number of non-cyclic n-color compositions, not the d

copies of w.

Note that weight(w) = `
d since there are d copies of (w)d with weight(w)d = `. Con-

sider s such that s| `d . Similarly, because the number of parts in w is the only thing that

contributes to the number of non-cyclic n-color compositions, there are only |w| such non-

cyclic n-color compositions of (w)s counted by a( `s). Hence, in ∑s|`ϕ(s)a
(
`
s

)
, the number

of non-cyclic n-color compositions which map to (w)d is

∑
s| `d

ϕ(s)a
(
`

s

)
= ∑

s| `d

ϕ(s)|w|= |w|∑
s| `d

ϕ(s) = |w| `
d
.

This is exactly the number of parts in (w)d . Then for all compositions µ of `, this means that

nccp(`) = |µ| `
d
= |µ|∑

s| `d

ϕ(s) = ∑
s| `d

ϕ(s)a
(
`

s

)
.
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3.5 Generating functions

Recall that N C C ` is the set of n-color cyclic compositions of `, and ncc(`) and NCC(x)

are the corresponding cardinality and generating function. The generating function

NCC(x) = ∑
s≥1

ϕ(s)
s

log
(

(1− xs)2

(1−3xs + x2s)

)
,

which is also given in Equation (3.1), can be derived directly through the “cycle construction”

shown in [3]. In this section we first summarize the proof of Equation (3.1). Then we discuss

how to obtain Equation (3.2) through the same approach.

First consider the series

x+2x2 +3x3 + . . .

for the number of ways to have a part of each size in the set of n-color compositions.

Multiplying each term by u to mark all the parts, we have

u(x+2x2 + · · ·+ ixi + . . .)

=ux
d
dx

(x+ x2 + · · ·+ xi + . . .)

=ux
d
dx

(
x

1− x

)
=

(
ux

(1− x)2

)
.
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Consequently we have the bivariate generating function for n-color compositions

NC(x,u) =
∞

∑
k=1

(
ux

(1− x)2

)k

=

ux
(1−x)2

1− ux
(1−x)2

=
ux

(1− x)2−ux
,

where the coefficient of x`ur is the number of n-color compositions of ` with r parts. Note

that every n-color composition is composed of d copies of a primitive n-color composition

for some d ∈ Z+. By letting

PNC(x,u) = ∑
`,r

pnc(`,r)x`ur

denote the generating function for primitive n-color compositions we have

NC(x,u) = ∑
d≥1

PNC(xd,ud).

Note that the coefficient pnc(`,r) is the number of primitive n-color compositions of ` with

r parts. Then, using Möbius inversion, we implicitly find PNC(x,u) to be

PNC(x,u) = ∑
t≥1

µ(t)NC(xt ,ut),

where µ(t) is the Möbius µ function. We now let

PNCC(x,u) = ∑
`,r

pncc(`,r)x`ur

denote the generating function for primitive n-color cyclic compositions, where the coef-

ficient pncc(`,r) is the number of primitive n-color cyclic compositions of ` with r parts.

First note that each composition in PN C C ` with r parts has r unique primitive n-color
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composition representations. Thus, there is a one-to-r relationship between primitive n-color

cyclic compositions and primitive n-color compositions. Consequently,

pncc(`,r)x`ur =
pnc(`,r)

r
x`ur =

∫ u

0
pnc(`,r)x`wr−1dw,

which means that

PNCC(x,u) =

 u∫
0

PNC(x,w)
w

dw


=

 u∫
0

1
w ∑

t≥1
µ(t) NC(xt ,wt) dw


=

∑
t≥1

u∫
0

wt−1xt

(1− xt)2−wtxt dw

 .

Integrating through substitution with

β = (1− xt)2−wtxt , and dβ =−twt−1xt dw

yields

PNCC(x,u) =

∑
t≥1

u∫
0

wt−1xt

(1− xt)2−wtxt


=∑

t≥1

µ(t)
t

[
− log

(
(1− xt)2−wtxt)]∣∣∣∣u

0

=∑
t≥1

µ(t)
t

log
(

(1− xt)2

(1− xt)2−utxt

)
.

Since every n-color cyclic composition is composed of q adjacent copies of n-color cyclic

primitive compositions, the bivariate generating function for n-color cyclic compositions,

which we denote NCC(x,u), can be constructed using PNCC(xq,uq). Given the identity

∑t|s
µ(t)

t = ϕ(s)
s and using the variable substitution s = qt, we have the bivariate generating
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function for n-color cyclic compositions as

NCC(x,u) = ∑
q≥1

PNCC(xq,uq)

= ∑
q≥1

(
∑
t≥1

µ(t)
t

log
(

(1− xqt)2

(1− xqt)2−uqtxqt

))

= ∑
s≥1

∑
t|s

µ(t)
t

log
(

(1− xqt)2

(1− xqt)2−uqtxqt

)
= ∑

s≥1

ϕ(s)
s

log
(

(1− xs)2

1−2xs + x2s−usxs

)
.

Here, the coefficient of x`ur is the number of n-color cyclic compositions of ` with r parts.

Letting u = 1 leads to Equation (3.1).

From the above discussion we can see that taking the partial derivative of the bivariate

generating function NCC(x,u) and then setting u = 1 will yield the generating function for

the total number of parts in all n-color cyclic compositions of `. Therefore

NCCP(x) =
∂

∂u

(
NCC(x,u)

)∣∣∣∣
u=1

= ∑
s≥1

ϕ(s)
s

(
∂

∂u
log
(

(1− xs)2

(1− xs)2−usxs

))∣∣∣∣
u=1

= ∑
s≥1

ϕ(s)
(

xs

1−3xs + x2s

)
,

which is the same as the generating function in Equation (3.2).
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CHAPTER 4

PARTS UNDER MODULAR RESTRICTIONS

4.1 Introduction

This chapter is based on [4]. One focus within the study on compositions is the enumeration

of parts and sub-word patterns under various restrictions. A summary of current results

is contained in [5] and its references. In this chapter we consider the enumeration of

parts under modular conditions in n-color cyclic compositions. Recall from Section 1.7 that

N C C P`(i,m) is the set of parts j such that j≡ i mod m in all n-color cyclic compositions

of `, and nccp(i;m;`) and NCCPi,m(x) denote the corresponding cardinality and generating

function. Following the analytic tools developed in [3], we have that the generating function

for nccp(i;m;`) is

NCCPi,m(x) = ∑
s≥1

ϕ(s)
(
(xsi(1− xs)2)(i+(m− i)xsm)

(1−3xs + x2s)(1− xsm)2

)
, (4.1)

where ϕ(s) is the Euler totient function.

The formula for nccp(i;m;`) is studied in Section 4.2, where some interesting observa-

tions on the statistical behavior of this counting sequence are presented. We then conclude

this chapter by giving a brief overview of the method used to construct NCCPi,m(x) in

Section 4.3.

4.2 Parts Under Modular Restrictions in n-Color Cyclic Compositions

Counting the number of parts under certain equivalence classes has proven to be an inter-

esting topic that relates to other combinatorial objects, such as subword patterns. From

Equation (4.1) we generate Table 4.1, which contains values of nccp(i,m;`) for m = 10.
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`

i
1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0

2 2 2 0 0 0 0 0 0 0 0

3 6 2 3 0 0 0 0 0 0 0

4 11 8 3 4 0 0 0 0 0 0

5 25 16 9 4 5 0 0 0 0 0

6 62 48 27 12 5 6 0 0 0 0

7 150 110 63 32 15 6 7 0 0 0

8 391 298 168 88 40 18 7 8 0 0

9 999 758 438 220 105 48 21 8 9 0

10 2613 1998 1140 580 280 126 56 24 9 10

11 6786 5168 2961 1508 720 330 147 64 27 10

12 17805 13604 7788 3968 1890 870 385 168 72 30

13 46413 35434 20308 10336 4935 2262 1008 440 189 80

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

50 1.35 ·1020 1.03 ·1020 5.92 ·1019 3.02 ·

1019

1.44 ·

1019

6.60 ·

1018

2.94 ·

1018

1.28 ·

1018

5.52 ·

1017

2.34 ·

1017

51 3.54 ·1020 2.71 ·1020 1.55 ·1020 7.90 ·

1019

3.77 ·

1019

1.73 ·

1019

7.70 ·

1018

3.36 ·

1018

1.44 ·

1018

6.13 ·

1017

52 9.28 ·1020 7.09 ·1020 2.07 ·1020 2.08 ·

1020

9.87 ·

1019

4.52 ·

1019

2.02 ·

1019

8.80 ·

1018

3.78 ·

1018

1.61 ·

1018

53 2.43 ·1021 1.86 ·1021 1.06 ·1021 5.41 ·

1020

2.58 ·

1020

1.18 ·

1020

5.28 ·

1019

2.30 ·

1019

9.90 ·

1018

4.20 ·

1018

54 6.36 ·1021 4.86 ·1021 2.78 ·1021 1.42 ·

1021

6.77 ·

1020

3.10 ·

1020

1.38 ·

1020

6.03 ·

1019

2.59 ·

1019

1.10 ·

1019

Table 4.1: Values of nccp(i;m;`) for m = 10.

From studying Table 4.1, an interesting patterns arises. The sequence along the

diagonals behaves like an arithmetic progression. That is,

nccp(i+1;m;`+1)−nccp(i;m;`)∼ nccp(i;m;`)−nccp(i−1;m;`−1)

as `→∞. For justification of this observation, we provide the following combinatorial proof

for the proposition below.
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Proposition 4.1. For given i and (large) m, as `→ ∞,

nccp(i+1;m;`+1)
nccp(i;m;`)

→ i+1
i

.

Proof. First, note that there is a simple bijection that maps each part of size k in a composi-

tion of ` to a part of size k+1 in some composition of `+1. This means that

ncp(k+1;`+1)
ncp(k;`)

→ k+1
k

,

as `→ ∞, where ncp(k;`) denotes the number of parts of size k in all compositions of `.

This bijection extends naturally to the cyclic case. For n-color cyclic compositions, each

part of size k has k colors and each part of size k+1 has k+1 colors. Consequently, for

large enough m, it follows that k of such parts of size k in N C C P`(i,m) are mapped to

k+ 1 of such parts of size k+ 1 in N C C P`+1(i+ 1,m), where k ≡ i (mod m). Using

the same reasoning found in Theorem 2.2, we form the asymptotic formula for NCCPi,m(x)

by letting s = 1. This means that the majority of the parts counted by nccp(i;m;`) are of

size i, and not a multiple of m added to i. It follows for n-color cyclic compositions, i of

such parts of size i in N C C P`(i,m) are mapped to i+ 1 of such parts of size i+ 1 in

N C C P`+1(i+1,m) when m is large. We therefore conclude that

nccp(i+1;m;`+1)
nccp(i;m;`)

→ i+1
i

,

as `→ ∞.

4.3 Proof of NCCPi;m(x)

Recall that N C C P`(i,m) is the set of all parts j in n-color cyclic compositions of ` with

the condition that j ≡ i mod m, where nccp(i;m;`) and NCCPi,m(x) are the corresponding

cardinality and generating function for the set. The generating function

NCCPi,m(x) = ∑
s≥1

ϕ(s)
(
(xsi(1− xs)2)(i+(m− i)xsm)

(1−3xs + x2s)(1− xsm)2 ,

)
,
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given in Equation (4.1), can also be derived directly through the “cycle construction” shown

in [3].

First consider the series

x+2x2 +3x3 + . . .

that generates the number of ways to have a part of each size in the set of n-color com-

positions. Multiplying each term that is congruent to i mod m by a y to mark those parts

yields

x+2x2 + · · ·+ iyxi +(i+1)xi+1 + · · ·+(i+m)yxi+m + . . . .

This can also be written as,

(x+2x2 + · · ·+ ixi + . . .)+(i(y−1)xi +(i+m)(y−1)xi+m + . . .).

Further multiplying each term by u to mark all the parts, we have

u(x+2x2 + · · ·+ ixi + . . .)+u(i(y−1)xi +(m+ i)(y−1)xm+i + . . .)

=u[x(1+2x+ · · ·+ ixi−1 + . . .)+(y−1)x(ixi−1 +(m+ i)xm+i−1 + . . .)]

=u
[

x
d
dx

(
x

1− x

)
+(y−1)x

d
dx

(
xi

1− xm

)]
=u
[(

x
(1− x)2

)
+(y−1)x

(
ixi−1− ixm+i−1 +mxm+i−1

(1− xm)2

)]
=

ux
(1− x)2 +

ui(y−1)xi +u(m− i)(y−1)xm+i

(1− xm)2 .

Consequently we have the multivariable generating function of n-color compositions

NC(x,u,y) =
∞

∑
k=1

(
ux

(1− x)2 +
ui(y−1)xi +u(m− i)(y−1)xm+i

(1− xm)2

)k

=

ux
(1−x)2 +

ui(y−1)xi+u(m−i)(y−1)xm+i

(1−xm)2

1−
(

ux
(1−x)2 +

ui(y−1)xi+u(m−i)(y−1)xm+i

(1−xm)2

)
=

ux(1− xm)2 +(ui(y−1)xi +u(m− i)(y−1)xm+i)(1− x)2

(1− x)2(1− xm)2− (ux(1− xm)2 +(ui(y−1)xi +u(m− i)(y−1)xm+i)(1− x)2)
,

where the coefficient of x`usyt is the number of n-color compositions of ` with s parts, t of

which are congruent to i mod m. Recall from Section 1.4 that every n-color composition is
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composed of d copies, for some d ∈ Z+, of a primitive n-color composition. By letting

PNC(x,u) = ∑
`,r

pnc(`,r)x`ur

denote the generating function for primitive n-color compositions (where the coefficient

pnc(`,r) is the number of primitive n-color compositions of ` with r parts), we have

NC(x,u,y) = ∑
d≥1

PNC(xd,ud,yd).

Then PNC(x,u,y) can be implicitly derived using Möbius inversion so that

PNC(x,u,y) = ∑
d≥1

µ(d)NC(xd,ud,yd)

where µ(d) is the Möbius µ function.

We now let

PNCC(x,u,y) = ∑
n,r,t

pncc(`,r, t)x`uryt

denote the generating function for primitive n-color cyclic compositions, where the coeffi-

cient pncc(`,r, t) is the number of primitive n-color cyclic compositions of ` with r parts, t

of which are congruent to i mod m. Recall N C C ` is the set containing all n-color cyclic

compositions of `. First note that each composition in N C C ` with r parts has r unique

primitive n-color composition representations. Thus there is a one-to-r relationship between

primitive cyclic n-color compositions and primitive n-color compositions. Consequently

pncc(`,r, t)x`uryt =
pnc(`,r, t)

r
x`uryt =

∫ u

0
pnc(`,r, t)xnwr−1ytdw,

and we have

PNCC(x,u,y) =
u∫

0

PNC(x,w,y)
w

dw

=

u∫
0

1
w ∑

d≥1
µ(d) NC(xd ,wd ,yd) dw

=

u∫
0

∑
d≥1

µ(d) wd−1[xd(1− xmd)2 +(i(yd −1)xid +(m− i)(yd −1)x(m+i)d)(1− xd)2] dw
(1− xd)2(1− xmd)2−wdxd(1− xmd)2−wd(i(yd −1)xid −wd(m− i)(yd −1)x(m+i)d)(1− xd)2

= ∑
d≥1

u∫
0

µ(d) wd−1[xd(1− xmd)2 +(i(yd −1)xid +(m− i)(yd −1)x(m+i)d)(1− xd)2] dw
(1− xd)2(1− xmd)2−wd [xd(1− xmd)2 +(i(yd −1)xid +(m− i)(yd −1)x(m+i)d)(1− xd)2]

.
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Integrating through substitution with

β = (1− xd)2(1− xmd)2−wd [xd(1− xmd)2 +(i(yd−1)xid +(m− i)(yd−1)x(m+i)d)(1− xd)2],

and
dβ

dw
=−dwd−1[xd(1− xmd)2 +(i(yd−1)xid +(m− i)(yd−1)x(m+i)d)(1− xd)2],

and evaluating u at 1, we have

PNCC(x,y) = PNCC(x,u,y)
∣∣∣∣
u=1

=

 u∫
0

PNC(x,w,y)
w

dw

∣∣∣∣
u=1

= ∑
d≥1

µ(d)
d

log
(

(1− xd)2(1− xmd)2

(1− xd)2(1− xmd)2−ud [xd(1− xmd)2 +(i(yd −1)xid +(m− i)(yd −1)x(m+i)d)(1− xd)2]

)∣∣∣∣∣
u=1

= ∑
d≥1

µ(d)
d

log
(

(1− xd)2(1− xmd)2

(1− xd)2(1− xmd)2− [xd(1− xmd)2 +(i(yd −1)xid +(m− i)(yd −1)x(m+i)d)(1− xd)2]

)
.

Since every n-color cyclic composition is composed of q adjacent copies, for some q ∈ Z+,
of n-color cyclic primitive compositions, the bivariate generating functions for n-color cyclic
compositions, which we denote NCC(x,y), can be constructed using PNCC(xq,yq). Given
the identity ∑d|s

µ(d)
d = ϕ(s)

s and using the variable substitution s = qd, we have the bivariate
generating function for cyclic compositions as

NCC(x,y) = ∑
q≥1

PNCC(xq,yq)

= ∑
s≥1

∑
d|s

µ(d)
d

log
(

(1− xqd)2(1− xmqd)2

(1− xqd)2(1− xmqd)2− [xqd(1− xmqd)2 +(i(yqd −1)xiqd +(m− i)(yqd −1)x(m+i)qd)(1− xqd)2]

)

= ∑
s≥1

ϕ(s)
s

log
(

(1− xs)2(1− xsm)2

(1− xs)2(1− xsm)2− [xs(1− xsm)2 +(i(ys−1)xsi +(m− i)(ys−1)x(m+i)s)(1− xs)2]

)
.

Here the coefficient of x`yt is the number of n-color cyclic compositions of ` with t parts
that are congruent to i mod m. By taking the partial derivative of NCC(x,y) with respect to
y and then setting y = 1, we have that the generating function for the total number of parts
congruent to i mod m in all n-color cyclic compositions, denoted NCCP(x), is

NCCP(x) =
∂

∂y

(
NCC(x,y)

)∣∣∣∣
y=1

= ∑
s≥1

ϕ(s)
s

(
∂

∂y

(
log

(1− xs)2(1− xsm)2

(1− xs)2(1− xsm)2− [xs(1− xsm)2 +(i(ys−1)xsi +(m− i)(ys−1)x(m+i)s)(1− xs)2]

))∣∣∣∣
y=1

= ∑
s≥1

ϕ(s)
s

(
(sys−1xsi(1− xs)2)(i+(m− i)xsm)

(1− xs)2(1− xsm)2− [xs(1− xsm)2 +(i(ys−1)xsi +(m− i)(ys−1)x(m+i)s)(1− xs)2]

)∣∣∣∣
y=1

= ∑
s≥1

ϕ(s)
s

(
(sxsi(1− xs)2)(i+(m− i)xsm)

(1− xs)2(1− xsm)2− xs(1− xsm)2

)

= ∑
s≥1

ϕ(s)
(
(xsi(1− xs)2)(i+(m− i)xsm)

(1−3xs + x2s)(1− xsm)2

)
,

which is exactly Equation (4.1).
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CHAPTER 5

N-COLOR CYCLIC COMPOSITIONS: FURTHER RESTRICTIONS ON PARTS

5.1 Introduction

This chapter is based on [4]. In this last chapter, we examine observations resulting from

the generating functions for the number of n-color cyclic compositions with two different

types of restrictions on parts, namely with parts no greater than a certain size (h) and with

parts that are multiples of a given number ( j). We first present the generating functions that

quantify these restrictions and discuss related consequences and observations in Sections

5.2 and 5.3. Lastly, in Section 5.4, we summarize the proof of Equation (5.1). Then we

briefly discuss how to obtain Equation (5.2) through the same approach.

For clarity’s sake, we use the notation previously introduced in Section 1.3 to better

present the generating functions for the two different types of restrictions we explore on the

parts of N C C `. Just as in Section 1.3, let P denote a general condition that is imposed

upon the parts of the n-color cyclic compositions, with P ↔ (≤ h) denoting the constraint

that there are no parts of size larger than h and P↔ (≡ 0 (mod j)) denoting the constraint

that each part has to be divisible by j. Using methods similar to those used previously in

Section 4.3, we find that the generating functions for the number of such constrained n-color

cyclic compositions are

NCC(≤h)(x) = ∑
s≥1

ϕ(s)
s

log
(

(1− xs)2

(1− xs)2− xs(1− xhs−hxhs(1− xs))

)
, (5.1)

and

NCC(≡0 (mod j))(x) = ∑
s≥1

ϕ(s)
s

log
(

(1− x js)2

1− (2+ j)x js + x2 js

)
. (5.2)

Note that the coefficient of x` in Equation (5.1) is the number of n-color cyclic compositions

of ` with part size at most h, which we will denote by ncc(≤h)(`). Also, the coefficient of

x` in Equation (5.2) is the number of n-color cyclic compositions of ` with parts divisible

by j, which we denote by ncc(≡0 (mod j))(`). Similar to the results given in Chapter 4, the
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generating functions given in this section provide us with interesting information on these

counting sequences, leading to some intriguing observations.

5.2 n-color cyclic compositions with parts at most h

By definition of Equation (3.1) and (5.1), we have

ncc(≤h)(`)→ ncc(`)

as h→ ∞. Recall from Equation (5.1) we know that as `→ ∞

ncc(`) =Θ

(
1
`

(
2

3−
√

5

)`−1
)
.

We will show, in what follows, that (5.1) also leads to the same conclusion.

Proposition 5.1. For large ` we have

lim
h→∞

ncc(≤h)(`) =Θ

(
1
`

(
2

3−
√

5

)`−1
)
.

Proof. Let F(x) = NCC(≤h)(x) and f` = ncc(≤h)(`). Consider

F ′(x) =: G(x) = ∑
`≥0

g`x`.

Then

g` = (`+1) f`+1. (5.3)

We now examine the exponential growth rate of the sequence {g`}. From the way F(x) and

G(x) were defined above, we have that

F(x) = ∑
s≥1

ϕ(s)
s

log
(

(1− xs)2

(1− xs)2− xs(1− xhs−hxs(1− xs))

)
,

G(x) = ∑
s≥1

ϕ(s)
xs−1((2h2 +2h−1)x(h+1)s−h2x(h+2)s− (h+1)xhs + xs +1)

(1− xs)((h+1)x(h+1)s−hx(h+2)s + x2s−3xs +1)
.
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Thus, G(x) is the sum of rational functions. Let

A(x) = (1− x)((h+1)x(h+1)−hx(h+2)+ x2−3x+1),

and note that A(xi) would be the denominator for the s = i term in G(x). The exponential

growth rate of the coefficients of G(x) are completely determined by the roots closest to

zero for the various A(xs). So for each s:

• We have B(xs) = limh→∞ A(xs) = (1− xs)(x2s−3xs +1)

for all complex x with |x|< 1
2 .

• The roots of B(xs) are xs = 1 and xs = 3±
√

5
2 .

• Thus, the roots closest to zero are the solutions to xs = 3−
√

5
2 .

Therefore, letting τ = 2
3−
√

5
and for some constants c0 ≤ c1 ≤ ·· · ≤ cm, we have

lim
h→∞

g` =Θ

(
∑
s|`

c`/sτ
`/s

)
.

Note by the definition of τ and c` that the sequence {c`τ`,c`/2τ`/2,c`/3τ`/3, . . .} forms a

decreasing sequence as s increases. Using similar arguments to those used in Theorem 2.4,

we know the term that results from s = 1 is the dominant term in the sum above. Therefore

it follows that g` =Θ
(
τ`
)
. Hence

lim
h→∞

ncc(≤h)(`) = lim
h→∞

f` =Θ

(
τ`−1

`

)
=Θ

(
1
`

(
2

3−
√

5

)`−1
)
,

by (5.3).
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As an example of the results that are produced from (5.1), we have Table 5.1, which gives

values for ncc(≤h)(`) with 1≤ h≤ 12.

`

h
1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 3 3 3 3 3 3 3 3 3 3 3

3 1 3 6 6 6 6 6 6 6 6 6 6

4 1 6 9 13 13 13 13 13 13 13 13 13

5 1 7 16 20 25 25 25 25 25 25 25 25

6 1 14 35 47 52 58 58 58 58 58 58 58

7 1 19 61 93 108 114 121 121 121 121 121 121

8 1 36 132 210 250 268 275 283 283 283 283 283

9 1 59 271 455 560 608 629 637 646 646 646 646

10 1 108 579 1037 1302 1428 1484 1508 1517 1527 1527 1527

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

50 1 2.25 ·

1013

1.20 ·

1017

2.26 ·

1018

7.06 ·

1018

1.13 ·

1019

1.37 ·

1019

1.49 ·

1019

1.54 ·

1019

1.57 ·

1019

1.58 ·

1019

1.58 ·

1019

51 1 4.42 ·

1013

2.79 ·

1017

5.57 ·

1018

1.78 ·

1019

2.87 ·

1019

3.51 ·

1019

3.82 ·

1019

3.96 ·

1019

4.02 ·

1019

4.05 ·

1019

4.06 ·

1019

52 1 8.66 ·

1013

6.50 ·

1017

1.38 ·

1019

4.50 ·

1019

7.32 ·

1019

8.99 ·

1019

9.80 ·

1019

1.02 ·

1020

1.03 ·

1020

1.04 ·

1020

1.04 ·

1020

53 1 1.70 ·

1014

1.51 ·

1018

3.40 ·

1019

1.14 ·

1020

1.87 ·

1020

2.30 ·

1020

2.51 ·

1020

2.61 ·

1020

2.65 ·

1020

2.67 ·

1020

2.68 ·

1020

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

500 1 6.55 ·

10147

1.20 ·

10185

6.74 ·

10197

5.97 ·

10202

6.42 ·

10204

4.59 ·

10205

1.06 ·

10206

1.51 ·

10206

1.75 ·

10206

1.86 ·

10206

1.91 ·

10206

501 1 1.31 ·

10148

2.85 ·

10185

1.69 ·

10198

1.53 ·

10203

1.67 ·

10205

1.20 ·

10206

2.76 ·

10206

3.93 ·

10206

4.57 ·

10206

4.86 ·

10206

4.98 ·

10206

502 1 2.61 ·

10148

6.75 ·

10185

4.26 ·

10198

3.94 ·

10203

4.32 ·

10205

3.12 ·

10206

7.21 ·

10206

1.03 ·

10207

1.19 ·

10207

1.27 ·

10207

1.30 ·

10207

503 1 5.21 ·

10148

1.60 ·

10186

1.07 ·

10199

1.01 ·

10204

1.12 ·

10206

8.13 ·

10206

1.88 ·

10207

2.68 ·

10207

3.12 ·

10207

3.32 ·

10207

3.40 ·

10207

Table 5.1: Values of ncc(≤h)(`)
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One of the interesting observations that can be made from Table 5.1 is ncc(≤h)` converges

quickly to ncc(`) as h→ ∞ even when ` is large.

5.3 n-color cyclic compositions with parts divisible by j

Similarly, from (5.2) we generate Table 5.2, which gives values for ncc(≡0 (mod j))(`) for

1≤ j ≤ 10.

`

j
1 2 3 4 5 6 7 8 9 10

1 · j 1 1 1 1 1 1 1 1 1 1

2 · j 3 7 12 18 25 33 42 52 63 75

3 · j 6 18 38 68 110 166 238 328 438 570

4 · j 13 52 138 298 565 978 1582 2428 3573 5080

5 · j 25 146 507 1348 3029 6054 11095 19016 30897 48058

6 · j 58 463 2042 6578 17350 39793 82278 1.57 ·105 2.81 ·105 4.77 ·105

7 · j 121 1442 8283 32644 1.02 ·105 2.68 ·105 6.26 ·105 1.33 ·106 2.63 ·106 4.87 ·106

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

50 · j 1.58 ·

1019

7.91 ·

1026

2.11 ·

1032

3.79 ·

1036

1.25 ·

1040

1.28 ·

1043

5.49 ·

1045

1.20 ·

1048

1.55 ·

1050

1.28 ·

1052

51 · j 4.06 ·

1019

2.90 ·

1027

9.90 ·

1032

2.17 ·

1037

8.43 ·

1040

9.90 ·

1043

4.79 ·

1046

1.17 ·

1049

1.65 ·

1051

1.50 ·

1053

52 · j 1.04 ·

1020

1.06 ·

1028

4.65 ·

1033

1.24 ·

1038

5.67 ·

1041

7.64 ·

1044

4.17 ·

1047

1.13 ·

1050

1.77 ·

1052

1.75 ·

1054

53 · j 2.68 ·

1020

3.88 ·

1028

2.19 ·

1034

7.07 ·

1038

3.81 ·

1042

5.90 ·

1045

3.64 ·

1048

1.10 ·

1051

1.89 ·

1053

2.05 ·

1055

Table 5.2: Values of ncc(≡0 (mod j))(`)

To introduce an interesting observation from Table 5.2, we first want to recall the

notation for the difference operator on integer sequences, which is denoted as ∆ . More

nformation regarding difference operators can be found in [9]. If A = {an}n is an infinite

sequence of positive integers, then ∆(A) = {∆(an)}n is defined by

∆(an) = an+1−an.
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For instance, a sequence A is a constant sequence if ∆(A) is the zero sequence, and a

sequence B is an arithmetic sequence if ∆ 2(B) is the zero sequence.

Now let ai, j = ncc(≡0 (mod j))(i · j) and let Ai be the sequence {ai, j} j, where j ∈ Z+.

From Tabel 5.2 we see that

{0} j = ∆
3(A2) = ∆

4(A3) = ∆
5(A4) = ∆

6(A5) = . . . .

In general we will show the following.

Theorem 5.2. Letting Ai = {ncc(≡0 (mod j))(i · j)} j, we have

∆
i+1(Ai) = {0} j.

In fact, this interesting observation also holds for non-cyclic n-color compositions.

This means it is the n-color condition that results in the above conclusion, not the cyclic

condition. To present the proof for this theorem we first let ai, j (ai, j,v) denote the number of

n-color cyclic compositions of i · j (with v parts), where each part is divisible by j. Similarly

bi, j (bi, j,v) denotes the number of n-color non-cyclic compositions of i · j (with v parts),

where each part is divisible by j. First, consider the following lemma:

Lemma 5.3. For any positive integer r, and for any sequence {ci, j} j we have

∆
r(bi, j,v) =

r

∑
k=0

(
r
k

)
(−1)r−kbi, j+k,v,

∆
r(bi, j) =

r

∑
k=0

(
r
k

)
(−1)r−kbi, j+k,

and

∆
r(bi, j + ci, j) = ∆

r(bi, j)+∆
r(ci, j).

Proof. First, note that the third equation follows from the fact that ∆ is a linear transfor-

mation. Next we will prove the second equation, and proof for the first equation can be

constructed similarly.
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We will derive a proof by induction on r. First consider the case r = 1. Note

∆
1(bi, j) =

1

∑
k=0

(
1
k

)
(−1)1−kbi, j+k =

1

∑
k=0

(
1
k

)
(−1)1−kbi, j+k = bi, j+1−bi, j,

which holds by the definition of ∆ . Next we consider our inductive step. Suppose the result

holds true for up to r−1, that is

∆
r−1(bi, j) =

r−1

∑
k=0

(
r−1

k

)
(−1)r−1−kbi, j+k.

Then

∆
r(bi, j) = ∆(∆ r−1(bi, j))

= ∆

(
r−1

∑
k=0

(
r−1

k

)
(−1)r−1−kbi, j+k

)

=
r−1

∑
k=0

(
r−1

k

)
(−1)r−1−k(bi, j+k+1−bi, j+k)

=
r−1

∑
k=0

(
r−1

k

)
(−1)r−1−kbi, j+k+1−

r−1

∑
k=0

(
r−1

k

)
(−1)r−1−kbi, j+k

= bi, j+r +

(
r−1

∑
k=1

(
r−1
k−1

)
(−1)r−kbi, j+k +

r−1

∑
k=1

(
r−1

k

)
(−1)r−kbi, j+k

)
+(−1)rbi, j

= bi, j+r +

(
r−1

∑
k=1

[(
r−1
k−1

)
+

(
r−1

k

)]
(−1)r−kbi, j+k

)
+(−1)rbi, j.

By noting
(r

k

)
=
(r−1

k−1

)
+
(r−1

k

)
, we have

∆
r(bi, j) = bi, j+r +

(
r−1

∑
k=1

(
r
k

)
(−1)r−kbi, j+k

)
+(−1)rbi, j

=
r

∑
k=0

(
r
k

)
(−1)r−kbi, j+k,

as desired.

The next Lemma states that ai, j,v can be written as a linear combination of bi′, j′,v′’s.

The proof, which we skip, follows the same idea as the cyclic construction of generating

functions.
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Lemma 5.4. For all positive integers i, j, and v, we have

ai, j,v = ∑
d|(i,v)

d
v ∑

sd|(i,v)
µ(s)bi/(sd), j,v/(sd)

where µ(·) is the number-theoretic mobius function.

Next, we will now show that

∆
i+1(bi, j,v) = 0. (5.4)

Although the above identity can be shown through induction and some algebra, we provide

a combinatorial proof as follows:

Proof of (5.4). We first claim that
bi, j′,v

bi, j,v
=

j′v

jv

for any j and j′. This is because, given any composition of i · j with v parts of the form

i j = x1 j+x2 j+ . . .+xv j, the sum i j′ = x1 j′+x2 j′+ . . .+xv j′ is a composition of i · j′ with

v parts. It is easy to see that there exists a bijection between such compositions of i · j (where

all v parts are divisible by j), and compositions of i · j′ (where all v parts are divisible by

j′). When n-color compositions are considered, each composition of i · j corresponds to

∏
v
s=1(xs · j) many n-color compositions, due to the number of choices of colors. Similarly,

the composition of i · j′ also corresponds to ∏
v
s=1(xs · j′) many n-color compositions. Thus

every ∏
v
s=1(xs · j) n-color compositions of i · j are mapped to their corresponding n-color

composition of the ∏
v
s=1(xs · j′) n-color compositions of i · j′. Since bi, j,v denotes the number

of n-color compositions of i · j with v parts, it follows that

bi, j′,v

bi, j,v
=

∏
v
s=1(xs · j′)

∏
v
s=1(xs · j)

=
( j′)v(x1 · · · · · xv)

jv(x1 · · · · · xv)
=

j′v

jv .
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Now by the above claim and by Lemma 5.3, we know

∆
i+1(bi, j,v) =

i+1

∑
k=0

(
i+1

k

)
(−1)i+1−kbi, j+k,v

=
i+1

∑
k=0

(
i+1

k

)
(−1)i+1−kbi, j,v ·

( j+ k)v

jv

=
bi, j,v

jv

i+1

∑
k=0

(
i+1

k

)
(−1)i+1−k( j+ k)v.

To prove (5.4) it suffices to show

i+1

∑
k=0

(
i+1

k

)
(−1)i+1−k( j+ k)v = 0,

which is equivalent to
N

∑
s=0

(
N
s

)
(−1)s( j+(N− s))v = 0 (5.5)

by letting N = i+1 and s = N− k. It is important to note that N > i by definition of N.

We now show (5.5) by considering the following scenario: A group of j+N students, j

male and N female, pick a leader each day for v days. The number of ways to do this such

that at most N− s female students are picked as leaders is(
N
s

)
( j+(N− s))v,

since this is equivalent to at least s female students never being picked as leaders. Hence,

by the inclusion-exclusion principle, the number of ways to pick leaders for v days so that

every female student is picked as the leader at least once is

N

∑
s=0

(
N
s

)
(−1)s( j+(N− s))v.

But for every female student to serve as leader at least once is impossible since the number

of days v is at most i and N = i+1 > i≥ v. This means there are more female students than

there are number of days to be the leader. Hence

N

∑
s=0

(
N
s

)
(−1)s( j+(N− s))v = 0,
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which implies that

0 =
bi, j,v

jv

i+1

∑
k=0

(
i+1

k

)
(−1)i+1−k( j+ k)v = ∆

i+1(bi, j,v).

Consequently by Lemma 5.4 and since ∆ is a linear transformation, we have that

0 = ∆ i+1(ai, j,v). Taking the sum over all possible v we have ∆ i+1(bi, j) = 0 which implies

∆
i+1(ai, j) = 0,

proving Theorem 5.2.

5.4 Summary of Generating functions

Recall that N C C ` is the set of n-color cyclic compositions of `, and ncc(`) and NCC(x)

are its corresponding cardinality and generating function. When we restrict the parts of

the compositions to be no greater than h, we denote such a subset of N C C ` as N C C P`,

where in this case the condition P is defined as P ↔ (≤ h). In this section, we summarize

the construction for the generating function 5.1, which we will denote using the condition P .

This means that NCCP(x) and nccP(`) will denote the corresponding generating function

and cardinality for N C C P`.

Let P be the conditional statement such that P ↔ (≤ h). Then consider the series

x+2x2 +3x3 + . . .+hxh,

which generates the parts for such compositions with parts no greater than h. Further

multiplying each term by u to mark all the parts yields

ux+2ux2 +3ux3 + · · ·+uhxh = u
[

x
d
dx

(
x+ x2 + x3 + · · ·+ xh

)]
.
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Since the sum of a finite geometric series is
n
∑

i=1
aixi = a(1−xn)

1−x , it follows that

u
[

x
d
dx

(
x+ x2 + x3 + · · ·+ xh

)]
=u
[

x
d
dx

(
x(1− xh)

1− x

)]
=u
[

x ·
(

1− xh−hxh(1− x)
(1− x)2

)]
=

ux(1− xh−hxh(1− x))
(1− x)2

Consequently the multivariable generating function of n-color compositions of ` with parts

of size at most h is

NCP(x,u) =
∞

∑
k=1

(
ux(1− xh−hxh(1− x))

(1− x)2

)k

=

ux(1−xh−hxh(1−x))
(1−x)2

1− ux(1−xh−hxh(1−x))
(1−x)2

=
ux(1− xh−hxh(1− x))

(1− x)2−ux(1− xh−hxh(1− x))
.

where the coefficient of x`ur is the number of n-color compositions of ` with r parts, each

being no larger than h. Recall from Section 1.4 that a primitive composition is a composition

that is not composed of repeated copies of shorter compositions. Also recall that all n-color

compositions are comprised of d copies of primitive n-color compositions, for some d ∈ Z+.

By letting

PNCP(x,u) = ∑
`,r,t

pncP(`,r)x`ur

denote the generating function for primitive n-color compositions, where the coefficient



70

pncP(`,r) is the number of primitive n-color compositions of ` with r parts, we have

NCP(x,u) = ∑
d≥1

PNCP(xd,ud).

Then PNCP(x,u) can be implicitly derived using Möebius inversion as

PNCP(x,u) = ∑
d≥1

µ(d)NCP(xd,ud),

where µ(d) is the Möebius µ function.

Now let

PNCCP(x,u) = ∑
`,r

pnccP(`,r)x`ur

denote the generating function for primitive n-color cyclic compositions, where the coef-

ficient pccn(`,r) is the number of primitive n-color cyclic compositions of n with r parts.

Note that each composition in N C C P with r parts has r unique primitive n-color compo-

sition representations. Thus there is a one-to-r relationship between primitive n-color cyclic

compositions and primitive n-color compositions. Consequently

pnccP(`,r, t)x`ur =
pncP(`,r)

r
x`ur =

∫ u

0
pncP(`,r)x`wr−1 dw,

and we have

PNCCP(x,u) =
u∫

0

PNCP(x,w)
w

dw

=

u∫
0

1
w ∑

d≥1
µ(d) NC≤h(xd,wd) dw

=

u∫
0

∑
d≥1

µ(d)
wd−1xd(1− xhd−hxhd(1− xd))

(1− xd)2−wdxd(1− xhd−hxhd(1− xd))
dw

Integrating through substitution with

β = (1− xd)2−wdxd(1− xhd−hxhd(1− xd)),
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and
dβ

dw
=−d wd−1xd(1− xhd−hxhd(1− xd)),

and evaluating u at 1, we have

PNCCP(x) = PNCCP(x,u)
∣∣∣∣
u=1

=

 u∫
0

PNCP(x,w)
w

dw

∣∣∣∣
u=1

=

(
∑
d≥1

µ(d)
d

[
− log

(
(1− xd)2−wdxd(1− xhd−hxhd(1− xd))

)]∣∣∣∣u
0

)∣∣∣∣
u=1

=

(
∑
d≥1

µ(d)
d

log
(

(1− xd)2

(1− xd)2−udxd(1− xhd−hxhd(1− xd))

))∣∣∣∣
u=1

= ∑
d≥1

µ(d)
d

log
(

(1− xd)2

(1− xd)2− xd(1− xhd−hxhd(1− xd))

)
.

Since every cyclic n-color composition is composed of q adjacent copies of cyclic n-color

primitive compositions, for some q ∈ Z+, the generating function for all cyclic compositions

in N C C P is

NCCP(x) = ∑
q≥1

PNCCP(xq)

= ∑
q≥1

∑
d≥1

µ(d)
d

log
(

(1− xqd)2

(1− xqd)2− xd(1− xhqd−hxhqd(1− xqd))

)
.

Using the variable substitution, s = qd and given the identity ∑d|s
µ(d)

d = ϕ(s)
s , we have that

the generating function for cyclic compositions with parts no greater than h is

NCCP(x) = ∑
s≥1

∑
d|s

µ(d)
d

log
(

(1− xdq)2

(1− xdq)2− xdq(1− xqhd−hxqhd(1− xdq))

)

= ∑
s≥1

ϕ(s)
s

log
(

(1− xs)2

(1− xs)2− xs(1− xhs−hxhs(1− xs))

)
.
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Next let P be the conditional statement such that P↔ (≡ 0 (mod j)). Then consider

the series

jx j +2 jx2 j +3 jx3 j + . . . ,

which generates the parts for n-color compositions with parts divisible by j. Note that this

initial series differs slightly from that given earlier because the part size is unbounded as

long as each part size is divisible by j. Further multiplying each term in the generating

function by u to mark all the parts results in

u[( jx j +2 jx2 j +3 jx3 j + . . .)]

=ux
[

d
dx

(
x j

1− x j

)]
=ux

[(
( jx j−1− jx2 j−1)+ jx2 j−1

(1− x j)2

)]
=

u jx j

(1− x j)2 .

Consequently we have the multivariable generating function of n-color compositions of `

with parts divisible by j as .

NCP(x,u) =
∞

∑
k=1

(
u jx j

(1− x j)2

)k

=

u jx j

(1−x j)2

1− u jx j

(1−x j)2

=
u jx j

(1− x j)2−u jx j

where the coefficient of x`ur is the number of n-color compositions of ` with r parts.
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From this point, we can see that the process for determining (5.2) would be essentially

the same as the process for determining (5.1). Through the same argument, we see that the

generating function for the number of compositions with part sizes divisible by j is indeed

(5.2).
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CHAPTER 6

CONCLUDING REMARKS

In this thesis, we first studied the total number of parts congruent to i mod m in all cyclic

compositions of `. This was done by following the cyclic construction of the generating

function illustrated in general by [3]. From the generating function we provided justification

for some interesting behaviors of the asymptotic values of this counting sequence. We

noted an intriguing relation between our generating function NCCPi;m(x) and the generating

function of the number of compositions that end with a part congruent to i mod m. Then

we presented combinatorial reasoning for this observation, which is interesting in its own

right as it provides a direct and combinatorial way of constructing the cyclic version of the

generating function NCCPi;m(x).

After our discussion of parts of cyclic compositions, we began our inquiries into the

structure of n-color cyclic compositions. The first two generating functions we constructed

were the number of n-color cyclic compositions and the number of total parts of n-color

cyclic compositions. Surprisingly, the generating function NCC(x) was shown to relate

to two combinatorial objects, namely, the number of spanning subtrees of a wheel graph

and the number of states of a dynamic storage allocation system. Certain bijections and

combinatorial arguments followed these observations. We also presented the asymptotic

formula for nccp(`). The presentation of these generating functions was followed by a brief

explanation of their cyclic construction using methods from [3].

We then turned our attention again to a generating function for the number of parts

under modular restrictions. Only this time, the parts under consideration were from the

n-color cyclic compositions of `. This generating function was followed by an example of

its values given in table format. The distribution of numbers within the table gave way to

interesting observations which were supported by asymptotic formulas and combinatorial

arguments.
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Lastly, we constructed two different generating functions for the number of n-color

cyclic compositions of `. The only difference between these two generating functions

was the specific restriction imposed on the parts of these compositions. Similarly to other

generating functions previously constructed, we gave, as an example, a table of values

from each generating function. From the patterns within the table, we proposed certain

conjectures and developed asymptotic formulas as a result of these patterns.



76

REFERENCES

[1] A. K. Agarwal, n-Colour Compositions, Indian J. Pure Appl. Math., 31(11) (2000),
1421–1437.

[2] A. Collins, C. Dedrickson, H. Wang, Binary words, n-Color Compositions and Bisection
of the Fibonacci Numbers, Fibonacci Quart., 51 (2013), 130–136.

[3] P. Flajolet, M. Soria, The cycle construction, SIAM J. Disc. Math., 4 (1991), 58–60.

[4] M.M. Gibson, D. Gray, H. Wang, Combinatorics of n-Color Cyclic Compositions,
preprint.

[5] S. Heubach, T. Mansour, Combinatorics of Compositions and Words, CRC Press,
(2009).

[6] B. Hopkins, Spotted Tilings and n-Color Compositions, Integers, 12B (2012/13), A6.

[7] B. Hopkins, M. Shattuck, A.V. Sills, T. Thanatipanonda, H. Wang, Parts and Subword
Patterns in Compositions, preprint.

[8] M.M. Gibson, M. Just, H. Wang, Note on Restricted Parts in Cyclic Compositions,
preprint.

[9] W.G. Kelly, A.C. Peterson, Difference Equations: An Introduction with Applications,
2nd ed., Academic Press, (2001).

[10] A. Knopfmacher, N. Robbins, Some Properties of Cyclic Compositions, Fibonacci
Quart. 48 (2010), 249–255.

[11] M. Lothaire, Combinatorics on Words Encyclopedia of Mathematics and Its Applica-
tions, Academic Press, 17 (1983).

[12] M.D. McIlroy, The Number of States of a Dynamic Storage Allocation System, The
Computer journal, 25 (1982), 388–392.

[13] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.



77

[14] D.M.Y. Sommerville, On Certain Periodic Properties of Cyclic Compositions of
Numbers, Proc. London Math. Soc., s2-7(1) (1909), 263–313.

[15] R.P. Stanley, Enumerative Combinatorics, Volume 1. 2nd ed., Cambridge University
Press, (2011).

[16] H.S. Wilf, Generatingfunctionology, 3rd ed., A K Peters Ltd., (2006).


	Combinatorics of Compositions
	Recommended Citation

	Dedication
	Acknowledgments
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Compositions
	Color Compositions
	Generating Functions
	Primitive Compositions
	Cyclic Compositions
	n-Color Cyclic Compositions
	Our Results

	Restricted parts in Cyclic Compositions
	Introduction
	Construction of the generating function of ccp(i;m;)
	Some statistics of the parts in CC
	A combinatorial observation

	n-Color Cyclic Compositions
	Introduction
	Alternate Lucas numbers and n-color cyclic compositions
	Dynamic storage allocation systems and n-color cyclic compositions
	Parts in n-Color Cyclic Compositions
	Generating functions

	Parts Under Modular Restrictions
	Introduction
	Parts Under Modular Restrictions in n-Color Cyclic Compositions
	Proof of NCCPi;m(x)

	n-Color Cyclic Compositions: Further Restrictions on Parts
	Introduction
	n-color cyclic compositions with parts at most h
	n-color cyclic compositions with parts divisible by j
	Summary of Generating functions

	Concluding Remarks
	REFERENCES

