
Georgia Southern University

Georgia Southern Commons

Electronic Theses and Dissertations Jack N. Averitt College of Graduate Studies

Spring 2017

A Markov Decision Process Approach to Adaptive
Contact Strategies
Artur Grygorian

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

 Part of the Applied Statistics Commons, Control Theory Commons, Design of
Experiments and Sample Surveys Commons, Dynamic Systems Commons, and the
Statistical Models Commons

Recommended Citation
Grygorian, Artur, "A Markov Decision Process Approach to Adaptive Contact Strategies"
(2017). Electronic Theses and Dissertations. 1542.
https://digitalcommons.georgiasouthern.edu/etd/1542

This thesis (open access) is brought to you for free and open access by the Jack N. Averitt College
of Graduate Studies at Georgia Southern Commons. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of Georgia Southern Commons. For more
information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/116?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/821?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/821?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/117?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/827?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1542?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1542&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

A MARKOV DECISION PROCESS APPROACH TO ADAPTIVE

CONTACT STRATEGIES

by

ARTUR GRYGORIAN

(Under the Direction of Stephen Carden)

ABSTRACT

In the field of survey methodology, optimizing contact strategies helps organizations

increase response rates using their allocated budget. Markov Decision Processes

(MDP) are widely used to model decision-making strategies in situations where the

outcomes have a random component. In this research we use MDPs and adaptive

sampling techniques to construct a strategy that, based on target audience charac-

teristics, suggests the best contact policy. The data we use comes from the First

Destination Survey conducted by the Office of Career Services at Georgia Southern

University. The constructed model is quite flexible and can be used by other organi-

zations to optimize their contact strategies.

Key Words : Markov Decision Process, MDP, Adaptive Sampling Methods, First

Destination Survey(FDS), Policy Iteration, Q-learning

2009 Mathematics Subject Classification: 90C40

A MARKOV DECISION PROCESS APPROACH TO ADAPTIVE

CONTACT STRATEGIES

by

ARTUR GRYGORIAN

B.S., Odessa I.I. Mechnikov National University, Ukraine, 2011

M.S., Odessa I.I. Mechnikov National University, Ukraine, 2013

M.A., University of Houston, United States, 2014

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment

of the Requirement for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

©

ARTUR GRYGORIAN

All Rights Reserved

iii

A MARKOV DECISION PROCESS APPROACH TO ADAPTIVE

CONTACT STRATEGIES

by

ARTUR GRYGORIAN

Major Professor: Stephen Carden

Committee: Tharanga Wickramarachchi

Arpita Chatterjee

Emil Iacob

Electronic Version Approved:

May 2017

iv

DEDICATION

I dedicate this thesis to my family, who always stood by me. It is their uncon-

ditional love that motivates me to set higher standards and become a better human

being.

v

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my thesis advisor, Doctor Stephen

Carden. He is a tremendous mentor for me. He always encourages my research and

helps me to develop my research skills. His advice on both research as well as on my

career have been priceless.

A special thank to Career Services Department, particularly to my supervisor

and director of Career Services Philip Bruce. They allowed me to use some of the

aspects of First Destination Survey data in my thesis, which helps us better construct

the model.

My sincere thanks also go to my family. They always support and motivate me

to pursue my dream.

vi

TABLE OF CONTENTS

Page

DEDICATION . v

ACKNOWLEDGMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF SYMBOLS . xi

CHAPTER

1 Introduction . 1

1.1 First Destination Survey 1

1.2 Adaptive Sampling Design 2

2 Markov Decision Process (MDP) 3

2.1 A Markov Decision Process Perspective 3

2.2 Framework . 3

2.3 State, Action, Probability, Reward Structure 4

2.4 Expected Total Discounted Reward Criterion 5

2.5 Bellman’s Theorem . 6

2.6 Policy Iteration . 7

2.7 Q-learning Intuition . 7

2.8 Example: Gridworld . 8

2.8.1 Problem Setup . 8

vii

2.8.2 Policy Iteration . 10

2.8.3 Q-learning . 11

3 FDS Model Setup . 12

3.1 Data Preparation/Cleaning 12

3.1.1 Open-ended Questions 12

3.1.2 Numerical Values . 14

3.2 FDS Model Construction 15

3.3 Results . 21

3.3.1 Optimal Contacting Strategies 21

3.3.2 Sensitivity Analysis . 24

4 Conclusion and Further Research 27

REFERENCES . 28

A First Appendix . 29

A.1 R Scripts. Model For the First Destination Survey 29

B Second Appendix . 42

B.1 Grid World . 42

B.1.1Policy Iteration R Script 42

B.1.2Q-learning R Scripts . 46

viii

LIST OF TABLES

Table Page

3.1 Summary of parameters used in the FDS model. 21

3.2 Optimal contacting strategies for both clusters. Case with cluster
values (7,3). 22

3.3 Optimal contacting strategies for both clusters. Case with cluster
values (7,2). 24

ix

LIST OF FIGURES

Figure Page

2.1 3x4 Gridworld. 9

2.2 Gridworld: Best policy (for unknown γ). 10

2.3 Optimal policies for discount rates 0.9 and 0.99 respectively. . . . 10

3.1 Number of states. FDS model. 17

3.2 Percentage of eligible sample households by calls to first contact for
five surveys [9]. 18

3.3 Sensitivity analysis for cluster one based on different values of αe, αp. 25

3.4 Sensitivity analysis for cluster two based on different values of αe, αp. 26

x

LIST OF SYMBOLS

• S - State space

• A - Action space

• R(st, at) - Reward from using action at in state st

• P (st+1|st, at) - Transition probability

• γ - Discount factor

• π - Policy function

• V π(s) - Value of a state s under some policy π

• Qπ(s, a) - Action-value function for policy π

• α - Learning rate

xi

CHAPTER 1

INTRODUCTION

When conducting a survey, the response rate is considered one of the most important

issues. Presently, there are a lot of ways to reach an audience, including but not

limited to: email, phone, mail, and in person. Understanding the characteristics

of the target audience is the key feature to not only increase the response rate but

also reduce the costs associated with it. This research uses data collected from the

First Destination Survey (FDS) conducted by the office of Career Services at Georgia

Southern University (GSU). This data is collected every semester and will be used

to successfully create a model that can allow for the adaptation of communication

practices to reach the target audience. Additionally, the research seeks to recommend

a similar model to organizations in an effort to aid them in effectively reaching their

target audience. This model incorporates some ideas from adaptive sampling design

and Markov Decision Processes.

1.1 First Destination Survey

Career Services at GSU conducts the FDS among newly graduating students. The

collected data captures information about how new college graduates do in their ca-

reers within six months of graduation. One issue common to all surveys is increasing

the response rate. When conducting the FDS survey, Career Services focuses on

increasing student response rates while also being aware of budget constraints. In-

creased response rates lead to an increase in the amount and quality of data. With

more data, we can more clearly answer questions like:

• What kind of jobs are graduate students more likely to get after graduation?

• What is the hiring rate after graduation?

2

• What is the average salary of graduates from each department?

• How many students were employed locally as opposed to out of state?

Initially, the survey was conducted in several stages. In the first stage, an email was

sent to graduates with a link to the survey beginning approximately one month before

graduation and continued to be sent every two weeks to all non-respondents. After

some period of time, Career Services staff started to contact all nonrespondents by

phone to ask them to complete the survey.

1.2 Adaptive Sampling Design

It is an accepted research practice for a researcher to make sampling decisions through-

out the process based on real-time observations. One example of the aforementioned

practice is adaptive sampling. Adaptive sampling is a sampling method where the

population sample may depend on results observed during the survey[1]. Adaptive

sampling allows a researcher to take advantage of specific characteristics of a popu-

lation in an effort to increase sample size and/or reduce cost of the survey. Adaptive

sampling was first mentioned by Debabrata Basu in 1969 [2]. He argued that the most

efficient sampling designs are the ones with selection probabilities that depend on ob-

served values. Because the target audience for the FDS is recent GSU graduates, it is

critical to the success of the survey that enough data is received from students with

varying characteristics such as: departments, majors, age groups, ethnicity, gender,

and race. Taking inspiration from adaptive sampling methods, this thesis will de-

velop adaptive contact strategies to optimize response rates for each possible cluster

of students.

CHAPTER 2

MARKOV DECISION PROCESS (MDP)

2.1 A Markov Decision Process Perspective

Adaptive contact strategies are sequential decision-making problems. For example,

after failing to reach a person by phone, you must decide how and whether to continue

attempts.

One of the standard techniques that can model this situation is a Markov Deci-

sion Process (MDP). An MDP is a discrete time stochastic control process. MDP’s

are widely used in various areas including ecology, sports, robotics, inventory, man-

ufacturing, biology etc. For example, Kohler [3] applied MDP in a game of darts.

Based on the actual score, the player decides where to aim the next shot. The states

of the system are the residual required scores to finish the game in a particular round.

White [4] used MDP’s to model manufacturing decisions of how much production is

necessary to meet the target amount given a random number of products will be

defective. The new state depends on the defective production of the current state

and the decision of how much to produce.

2.2 Framework

An MDP models a system that can be in one of a fixed set of states. At specified

points in time, a controller observes the state and chooses an action from a set of

actions. As a result of this action, the system transitions to a new state according

to a probability distribution determined by both the previous state and the action

made. At the next point in time, the system faces a similar situation and the process

repeats. While it is possible that the set of permissible actions might be different,

we only consider the case with the same set of actions at each point of time. Also,

4

after every action the controller receives a reward or cost associated with the state

and action. The reward/cost may be random variables. The goal of this process is to

come up with a function that dictates to the controller which action to use at each

specific state that maximizes (minimises) some long-term measure of reward (cost).

2.3 State, Action, Probability, Reward Structure

An MDP is made of 5 components.

1. The state space

Assume that we have a finite set of states denoted by S = (s1, s2..., sn).

2. The action space

Assume that at specified points in time the controller observes the state st and

chooses an action from a finite set of actions A = (a1, a2, ..., am).

3. Reward structure

At any given state and chosen action, the controller earns/bears an immediate

reward/cost. There is no meaningful difference between reward and cost because

maximizing rewards is the same as minimizing costs. These rewards are random

variables which are conditionally independent of the history of the process given

the present state and chosen action. Denote R(st, at) as an immediate reward

at time t, in a state st, with an action at.

4. The transition probabilities

Also, let’s assume that we are given a transition matrix P (st+1|st, at), which for

each pair of (st, at) gives a probability that next state will be st+1.

5. Discount factor

In this setup we also include a discount factor γ ∈ [0, 1] which represents the

5

difference in importance between immediate and future rewards. Smaller values

of γ represent a greedy or impatient agent, while larger values reflect more

patient agent.

So, an MDP is a 5-tuple (S,A,R(st, at), Pt(st+1|st, at), γ).

2.4 Expected Total Discounted Reward Criterion

As said previously, the goal is to find an optimal policy, denoted by π∗, which is a

function (S → A) that associates with each state an action which should yield high

rewards.

Define the value of a state s under some policy π as

V π(s) = E

[
∞∑
t=0

γtR(st, π(st))|s0 = s

]
. (2.1)

V π(s) is defined as the expected total discounted reward incurred when the policy

π is implemented and the initial state is s. An optimal policy π∗ should satisfy

V π∗
(s) = maxπ V

π(s), ∀ s ∈ S, which is the best of all policies.

6

2.5 Bellman’s Theorem

For any policy π and for all s ∈ S,

V π(s) = E[
∞∑
t=0

γtR(st, π(st))|s0 = s]

= E[R(s, π(s)) +
∞∑
t=1

γtR(st, π(st))]

= E[R(s, π(s)) + γ
∞∑
t=0

γtR(st+1, π(st+1))]

= E[R(s, π(s))] + γE[
∞∑
t=0

γtR(st+1, π(st+1))]

= E[R(s, π(s))] + γ
∞∑
t=0

γtE[R(st+1, π(st+1))]

= E[R(s, π(s))] + γ
∞∑
t=0

γt
∑
u∈S

E[R(st+1, π(st+1))|s1 = u] P (u|s, π(s))

= E[R(s, π(s))] + γ
∑
u∈S

[
∞∑
t=0

γtE[R(st+1, π(st+1))|s1 = u]] P (u|s, π(s))

= E[R(s, π(s))] + γ
∑
u∈S

V π(u)P (u|s, π(s)).

To sum it up:

V π(s) = E[R(s, π(s))] + γ
∑
u∈S

V π(u)P (u|s, π(s)), (2.2)

which is called Bellman’s equation. It shows a relationship between the value of a

current state and values for the future states. It incorporates both finite and infinite

state cases. For finite case, rewards become negligible starting from some period.

Theorem 2.1. For an optimal policy π∗

V π∗
(s) = max

a∈A
(E[R(s, a)] + γ

∑
u∈S

V π(u)P (u|s, a)) (2.3)

for any s ∈ S.

7

2.6 Policy Iteration

One of the standard methods to find the optimal policy for MDP is policy iteration,

introduced by Ronald Arthur Howard in 1960 [5].

1. The algorithm starts with an arbitrary initial policy π0, which is sometimes

called a “dummy policy”.

2. While πn 6= πn+1 repeat the following steps.

(a) Solve the system of linear equations for V πn :

V πn(s) = E[R(s, π(s))] + γ
∑
u∈S

V πn(u)P (u|s, π(s)).

(b) Update the policy by setting:

πn+1(s) = arg max
a∈A
{E[R(s, a))] + γ

∑
u∈S

V π(u)P (u|s, a))}.

Since, it is possible to have several actions that maximize expected return, we

adjusted our code to select the first appearance.

3. Once πn+1 = πn, by definition of convergence, V πn satisfies Bellman’s equation,

which means V πn is the optimal value function and we have achieved an optimal

policy π∗.

2.7 Q-learning Intuition

Q-learning is considered one of the most important breakthroughs in reinforcement

learning [6]. It can be used to find an optimal policy for the finite MDP and it does

not need to know the transition probabilities and reward structure. It only requires

the set of possible states and actions, and a way to simulate data.

8

Here we define the notion of action-value function for policy π. We denote it as

Qπ(s, a), which is equal to expected discounted reward if we start at state s, take the

action a, and follow policy π:

Qπ(s, a) = E[
∞∑
t=0

γtR(st, π(st))|s0 = s, a0 = a] (2.4)

Since we would like to quantify the value of each combination of state and action, a0

is not necessary equal to π(s0). The algorithm starts by arbitrary initializing Q0(s, a)

for all s ∈ S, a ∈ A and choosing the initial state. Then at the nth iteration, being in

a state s, the controller selects an action a and observes the new state u and reward

r associated with this action. Q is updated by the following formula:

Qn+1(s, a)← Qn(s, a) + α(r + γmax
b∈A

Qn(u, b)−Qn(s, a)) (2.5)

where α ∈ [0, 1] is the learning rate that controls the weighting of new and old

information. If α = 0 the controller learns nothing. If α = 1, the controller considers

only the new information. Generally, α can be a function of the iteration number

and this property is required for convergence. However, for simple examples it can

be considered as a constant.

If the next state is a terminal state (the one from which the process cannot

continue), the process starts from initial state with updated Q value.

2.8 Example: Gridworld

2.8.1 Problem Setup

Consider a simple 3 by 4 grid. An agent starts in a specified state (indicated as

“START” in Figure 2.1) and moves in the grid till it reaches one of the two terminal

states. One of them provides a positive reward of 1 and is considered the goal state.

The second one gives a negative reward of 1 (indicated as “+1” and “-1”, respectively,

9

Figure 2.1: 3x4 Gridworld.

in Figure 2.1) and is considered the penalty state. The agent can make one step at

a time and is able to go up, down, left, or right. Every move is associated with a

movement cost of negative 0.04. The agent moves reliably only 80% of the time. This

means that if the agent chooses the desired action (up, down, left, right), 80% of the

time he will move to the desired state, but there is a 10% chance to move clockwise

of the desired action and 10% to move counter-clockwise of the desired action. Also,

if the agent moves to the wall he will bounce back to the state where he was before.

The goal of the agent is to find the optimal policy to reach the goal state. By

optimal policy, we mean to find a function that associates every state with an action

that maximizes expected discounted total reward.

An online tutorial suggests that the optimal policy is the one in Figure 2.2 [7].

However, the discount factor was not stated, so it is difficult to verify. In the following

section we will discuss how the discount factor changes the optimal policy.

10

Figure 2.2: Gridworld: Best policy (for unknown γ).

2.8.2 Policy Iteration

Using our own choice of γ = 0.9, we achieved an optimal policy which is similar to

Figure 2.2. Also, we can notice that the results are the same every time we run the

simulation, which is one of the good things about policy iteration. An R script is

provided in the Appendix B.

Changing the discount rate, γ, can reveal some interesting insights. Let us have a

look at optimal policies for two discount rates; γ = 0.99, representing a more patient

agent and, γ = 0.9, representing a less patient agent who seeks more immediate

reward. We can notice (Figure 2.3) that the impatient agent (γ = 0.9) prefers to go

Figure 2.3: Optimal policies for discount rates 0.9 and 0.99 respectively.

11

up in state 3 even though there is a chance to fall in the pit. On the other hand, the

patient agent prefers to go down in state 4 to avoid even a low chance (10%) to fall

in the pit. Also in state 6, he prefers to go left with the same reason of avoiding the

pit.

2.8.3 Q-learning

To successfully apply q-learning to grid world we need either historical data or a

simulation to generate the data. We used simulated data using transition probability

matrix and reward structure. An R script can be found in the Appendix B.

By running q-learning code several times, we can notice that each time we receive

a different answer. This is due to the fact of randomness of the algorithm. Also, we

can notice that the states that are close to the terminal state change rarer which is

reasonable since in these states the agent is more informed about the future.

Based on the randomness feature of the q-learning result, a logical question arises.

How can we choose an optimal policy if every time the optimal policy changes? A

possible way to approach this questions is to simulate q-learning, let say 1000 times

and for each state determine the most often strategy. This topic is left for future

research.

CHAPTER 3

FDS MODEL SETUP

3.1 Data Preparation/Cleaning

It is well known that one of the most important steps in data analysis is to make sure

that data values are suitable for analysis. Correctness depends on the variables we

are measuring. For example, if we deal with GENDER we would expect to have only

two possible values, or if we think about WEIGHT, we should make sure that we are

using the same units of measurements in every observation and across the data sets.

I will briefly go through the main problems that we encountered with our data

and how we approached them.

3.1.1 Open-ended Questions

The data collected during previous surveys included a lot of open-ended questions.

The biggest problem with open-ended questions is that people may spell things in-

correctly. Even questions where the respondent was asked to write a city name had

spelling mistakes. If we think about names of universities, which sometimes have

three to four words, the room for error becomes even greater. Sometimes, if there is

a pattern, we can clean the data using programming tools. But sometimes we should

manually clean the data which can take a massive amount of time.

Below is the list of main issues with which we dealt while cleaning the data from

open-ended questions.

• Upper/lower case. For example, the data values “Statesboro” and “states-

boro” are considered to be different. In order to fix this, we changed every value

to the same standard with the first upper case and the rest lower case. There

are several R packages that can easily do it.

13

• Spelling Mistakes. By default, the data is case sensitive. For example, if we

have “Stateboro” and “Statesboro” with missing “s” in the first case. We solved

this problem using a dataset of all cities in the US and an R package (function

adist {utils}) that calculates approximate string distance between character

vectors. This distance is a generalised Levenshtein distance that estimates the

minimal weighted number of insertions, substitutions, or deletions needed to

transform one string to another. For example, the distance between “poker”

and “stoker” is 2. So, using this distance we constructed a matrix of distances

between our data set and the data set of all cities in the US. Then we found a

minimum for each row, which is simply the closest distance from the value in

our data set to a value from the dataset of all cities in the US. By knowing the

closest value, we simply can replace it with a value of our data set. To avoid

replacing wrong names we should set up a condition that found minimum should

be less than some specified distance. In the FDS data, we used a distance of 2.

Using this approach we replaced the most similar cases. After that we performed

a quick manual check to make sure that we did not miss any important cases.

To avoid this cleaning in the future, we added auto-complete and drop-down

features to these questions for next year surveys. By auto-complete, we mean that,

when respondent of the survey starts typing the answer to the question, the engine

behind the question suggests the most similar answers in a list, so the respondent

can choose an answer from the proposed ones which come from a stored dataset with

correct values. This type of question is good when we have a lot of possible choices

(a big data set to choose from).

Sometimes, when there are not a lot of possible values (for example, the US

states names), the drop-down is better.

14

3.1.2 Numerical Values

In our survey, we have some questions that asked to provide a numerical answer. One

of them is related to salary estimation. This question was open-ended in the previous

survey. Below is a list of issues we encounter cleaning this kind of data.

• Character Values. The nature of open-ended question makes it possible for

responded to include character values along with the number, for example,

“10000/”. Since there is “/”, we can not use this value for any numerical

analysis. So the first thing in cleaning numerical data was to eliminate character

values and make sure that everything is stored as a numerical value. We used

regular expression to search character values and eliminate them.

To avoid this kind of mistake, we include a condition in the future survey, that

only numbers can be typed.

• Outliers. To provide more or less robust salary estimation, it is very important

to do an outliers analysis. For example, one of the most common things was to

put “1” as a salary, which obviously is not appropriate.

For a lower bound of salary, we considered the lowest reasonable salary that a

college graduate can have as a full-time employee. Everything below of that

needs to be eliminated. (As a lowest value we picked $ 9600).

For the upper bound, it is more difficult because some graduates might have high

salaries because they have worked in the field before school, and a combination

of work experience and degree made it possible for them to get high salary.

Regardless, a salary like “1000000” is doubtful. One way to check whether this

response is valid is to look at other responses of this individual. Very often

those who give a suspicious answer to one question, will also give suspicious

15

answers to other questions as well. Having several suspicious answers gives us

more confidence that this observation should be deleted.

For the future surveys, we included upper bound for possible salaries based on

expert opinion from university officials.

Sometimes we can not eliminate suspected outliers because we are not sure

whether it is a true salary or not. Leaving these values in the data set can

influence our estimation of the average. For this purpose, we have decided to

report median rather than mean salary as an estimation of central tendency.

3.2 FDS Model Construction

Below we provide the model that describes the setup of the First Destination Survey

(FDS).

Action space:

Based on the Career Service practice, we consider three possible actions: phone

call, email, and give up. Since we constructed a model that can be applied not

only by Career Services but also by other institutions (with slight changes in the

code), possible actions can be different.

State space:

The state of a possible respondent is described by the following attributes:

• Cluster: the FDS data was partitioned by responce rate using a regression

tree (regression tree package in R). We came up with 2 clusters based on the

response rate. Based on previous data we estimate the response rates of each

cluster.

Parameters in the R code:

– Number of clusters: numcl = 2.

16

– Initial response rates: prob = 0.6 and 0.7 for cluster 1 and cluster 2 re-

spectively.

• Contact attempts history: we have two parameters that identify the number

of contact attempts. m is the number of email attempts and n is the number of

phone attempts. We require that m,n ≥ 0, and also m + n ≤ 3, meaning that

we have at most three attempts to contact a potential respondent. For example

(m,n) = (2, 1) means that we sent 2 emails and called one time.

Parameter in the R code:

– Maximum number of attempts before give up: numat = 3.

• Status: every possible respondent is associated with a status that can take one

of three values:

– active - the person has not responded yet and m+ n < 3,

– responded - the person responded, so contact attempts have ceased due to

received response,

– give up - the person did not respond, so contact attempts have ceased due

to giving up or ran out of contact attempts.

17

Figure 3.1: Number of states. FDS model.

Figure 3.1 shows the intuition of calculation of number of states. So the general

formula for the number of states is:

#ofclusters ·#ofstatuses · (#ofactions+ 1) · (#ofactions+ 2)

2
(3.1)

Thus the number of states is 2 · 3 · (3 + 1) · (3 + 2)

2
= 60. Based on the above

construction, we introduced a function that returns a state number based on the

following parameters: the cluster value, the status, the number of previous email and

phone attempts. The code of this function can be found in the Appendix A (the

name of the function is “index”).

Transition probabilities: In our case, transition probabilities are probabilities

to contact a person using either phone or email based the history of contact attempts

and cluster. Ideally, the data will give us an estimation of these probabilities, but

since we had limited amount of data, we used existing literature to come with these

estimations. Based on the available literature about the amount of contacting at-

tempts needed to reach a person, Figure 3.2 [9] shows that about half of the people

18

are contacted after the first phone call with a decreasing pattern afterwards. There

are two main factors that influence how many calls are required to contact a person.

1. Calls during the weekend evenings are on average more efficient than other

times.

2. Different populations have different accessibility likelihoods. Thus it is useful

to cluster people based on response rate.

Figure 3.2: Percentage of eligible sample households by calls to first contact for five

surveys [9].

The formula below captures the general behavior in Figure 3.2, which calculates the

probability of response after action applied.

P (m,n) =

αme α

n
ppi email;

αme α
n
ppi + (1− αme αnppi)γ phone.

(3.2)

Where:

m,n - the number of previous email, phone attempts,

19

pi - historical response rate of the cluster (0 ≤ pi ≤ 1, i = 1, 2),

αe - measures the “power” of reaching a person via email (0 < αe < 1),

αp - measures the “power” of reaching a person via phone (0 < αp < 1),

intuitively, αe and αp represent how much information we gain from an unsuc-

cessful attempt as to whether the person will ever be contacted.

γ - is chosen to give the function the approximate shape (Figure 3.2), as the one

suggested in the book [9].

The R code for this function can be found in the Appendix A (The name of

the function is “probresp”).

Reward structure: Every time we try to contact a person, we incur a cost

depending on the method of contact. Also, when we succeed we receive a positive

value. To incorporate this, we came up with the function that calculates expected

reward based on the set of parameters.

r = −σj + P (m,n) ∗ φi (3.3)

where:

r - reward associated with successfully contacting the person,

σj - cost associated with email(j = 1), phone(j = 2),

φi - value associated with contacting a person from cluster i (i=1,2).

The cost of one call is estimated based on hourly rate of graduate students

(approximately $9), who actually make the calls and average time of the call (which

is approximately 10 min.). Thus σ2 = 1.5. The cost of one email is hard to calculate,

because it involves the work of several departments. Since it is logical to assume that

the cost of one call is higher then a cost of one email, a reasonable estimate of the

cost of email is σ1 = 0.55.

Since it is important to receive responses from different clusters, we will value a

response from a cluster with lower response rate higher then the one from a cluster

20

with higher response rate. The exact values are chosen arbitrarily for the sake of the

model. The following are the values that we used in our model (7, 3).

The code for this function can be found in the Appendix A (The name of the

function is “reward”).

21

3.3 Results

3.3.1 Optimal Contacting Strategies

To come with the optimal contact strategy we used policy iteration with discount

factor equals to one (finite horizon case).

Table 3.1 contains a short summary of the parameters that we used in our model

to advise the optimal strategy for Career Services.

Name of a parameter Description Value

numcl number of clusters 2

numstat number of statuses (active, responded, give up) 3

numat maximum number of attempts 3

prob (pi) initial clusters’ response rate (cl1, cl2) (0.6, 0.7)

gamma (γ) approximation factor 0.6

alpha e (αe) the reaching “power” of email 0.5

alpha p (αp) the reaching “power” of phone 0.9

cl value (φi) the value of cluster (cl1, cl2) (7, 3)

cost (σj) the cost (email, phone) (0.55, 1.5)

Table 3.1: Summary of parameters used in the FDS model.

The final policy for both clusters indicating the best-contact strategy in every

feasible state is provided in Table 3.2. For example, the first row of the table says

that, given the model setup, the best way to start contacting a person from a cluster

one or two is to send an email. At the same time, if we look at the second row, which

says that if we have not reached the person yet (status is active) but tried to call

once before, the best way to contact is to call again if the person is from cluster one,

22

or to send an email if the person is from cluster two. One of the reasons that we

have different contact strategies for each cluster is because we set up different cluster

values. In our case, cluster one has the value of 7 while cluster two has 3, as a result

in some cases it is more beneficial to try to call a person from cluster one even though

it is more expensive.

History of attempts

(email, phone)

Cluster 1 Cluster 2

(0, 0) email email

(0, 1) phone email

(0, 2) phone email

(0, 3) give up give up

(1, 0) phone phone

(1, 1) phone phone

(1, 2) give up give up

(2, 0) phone phone

(2, 1) give up give up

(3, 0) give up give up

Table 3.2: Optimal contacting strategies for both clusters. Case with cluster values

(7,3).

Based on the Table 3.2, the recommendation to a Career Services team might

be to use the following contacting strategies. For the cluster one, first of all send an

email, if the person has not responded then try to call him/her, if the person still has

not responded, call him/her again. Notice, that the contacting strategy is the same

for cluster 2. But if we take a look at all feasible states, we can notice that in some

23

of the states we have different actions depending on the cluster. For example, for

the cluster two, the first recommendation is to send an email, it means that we will

never transition to a state (0,1), where the recommendation is to email again, which

different than in cluster one.

While estimating some of the initial parameters, we used an expert opinion or

a data-driven approximation that may be inaccurate. For example, based on the

response rates from the clusters, we claimed that, since we received less responses

from cluster one and it is important to have enough data from each cluster we gave

more value to the cluster with less response rate. However, it is hard to tell what

exact number we should assign with each cluster, whether it should be 2, 3 or 4 we

are not sure. Let’s see what happens with the policy if the clusters’ values are (7,2)

instead of (7,3).

Table 3.3 shows that by slightly changing the value for cluster two from 3 to 2,

it changed the optimal policy in the following way. The first attempt is email which

is the same as before, however, the second attempt becomes email, which is different

from the previous case, which was phone. The interesting this is that, after the second

attempt which is email, there is no third attempt which means that the possible value

of contacting a person is less then cost of sending email.

The determination of how to best assign value to each cluster is beyond the scope

of this paper. We leave value assignment problem to future research.

24

History of attempts

(email, phone)

Cluster 1 Cluster 2

(0, 0) email email

(0, 1) phone email

(0, 2) phone email

(0, 3) give up give up

(1, 0) phone email

(1, 1) phone email

(1, 2) give up give up

(2, 0) phone give up

(2, 1) give up give up

(3, 0) give up give up

Table 3.3: Optimal contacting strategies for both clusters. Case with cluster values

(7,2).

3.3.2 Sensitivity Analysis

One of the assumptions behind the model is the estimation of so-called “power” of

the contact strategy (0 ≤ αe, αp ≤ 1). For example, in the FDS model, we assumed

that αe is 0.5, while αp is 0.9. The logic behind this is simply that the chance to

contact a person via phone is higher than via email which is supported by existing

literature of survey methodology [9]. However, it is informative to test a model for

different combinations of (αe, αp). For this purpose, we created a metric that for

every combination of (αe, αp) counts how many times the policy suggests to contact

via email or phone.

25

In Figure 3.3, the upper graph represents the metric for phone, while the lower

graph represents the metric for email. Each dot has two attributes, colour and size,

both of which represent the value of the metric. For example, the green dot, which is

medium sized, in the upper graph means that the policy for the specific combination

of (αe, αp) has two calls in it. The same logic applies to second graph, but with regard

to the amount of emails.

Figure 3.3: Sensitivity analysis for cluster one based on different values of αe, αp.

It is also worth to notice that for the cluster one the phone call is more common

then sending email. Only when the power of email is more than 0.8 we use more

emails in the policy then phone calls. However, by looking at the cluster two (Figure

26

3.4), we can notice that sending email is more common then phone calls. Only when

the power of email is less than 0.5 we have more phone calls then emails.

Figure 3.4: Sensitivity analysis for cluster two based on different values of αe, αp.

CHAPTER 4

CONCLUSION AND FURTHER RESEARCH

In this thesis we constructed a model that can be of use for the Career Services office

at Georgia Southern University. Moreover, our model can be a starting point for

other organizations that want to optimize their contact strategies. Our theoretical

model, as well as the R script provided in the Appendix A, can be adjusted to take

into account specific needs of particular organizations.

By applying our model to the First Destination Survey, we came up with the

same strategy to contact respondents from both clusters. Our strategy is (email,

call, call), which means email first, if the person have not responded then call, if the

person have not responded call him again. This strategy seems to be logical, taking

into account the cost and reaching power of email and call. But since, we have created

a theoretical framework, our model can be applied to more complex and not obvious

scenarios.

Future research. It is worth to note that the concept of MDP have not been

applied in optimizing contact strategies before and this topic is quite open. One

logical continuation of this paper is adjusting and applying our model to more general

and complex cases, such as ones that have more contact methods and a more diverse

target population. Also it would be useful to take into account a budget allocated to a

survey, this might be applied via including it as an additional parameter categorizing

the state space.

28

REFERENCES

[1] S. K. Thompson, Adaptive Cluster Sampling, Journal of the American Statistical
Association Vol. 85, No. 412 (Dec., 1990), pp.1050-1059.

[2] D. Basu, Role of the Sufficiency and Likelihood Principles in Sample Survey The-
ory, Sankhya (1969), Ser. A, 31, 441-454.

[3] D. Kohler, Optimal strategies for the game of darts. J. Opl Res. Soc. (1982) 33,
871-884.

[4] D. J. White, Dynamic programming and systems of uncertain duration. Mgtnt
Sci. (1965) 19, 37-67.

[5] R. Howard, Dynamic Programming and Markov Processes, MIT Press(1960),
Cambridge, MA.

[6] Watkins, C.J.C.H. Learning from Delayed Rewards. Ph.D. thesis, Cambridge Uni-
versity. (1989).

[7] J. Schrum, Reinforcement Learning 2 - Grid World, Youtube (2015)
(https://www.youtube.com/watch?v=bHeeaXgqVig).

[8] R. Sutton, A. Barto, Reinforcement Learning. An Introduction. MIT Press/A
Bradford Book, Cambridge (2012), USA.

[9] Robert M. Groves, Survey methodology. Hoboken, NJ: J. Wiley (2004).

Appendix A

FIRST APPENDIX

A.1 R Scripts. Model For the First Destination Survey

The model consists of three scripts:

1. main v5.R - consists of main functions that create transitions probability ma-

trix as well as reward matrix.

2. policy iteration v2.R - calculating the optimal policy using policy iteration.

3. plot v2.R - creates sensitivity plot.

It is recommended to run plot v2.R, and check the policy in the matrix ”mat”.

1 # initializing transition probability and reward matrices to populate them further

2 int = function(piconfig) {

3 # calculating the number of states

4 numstates = piconfig$numcl*((piconfig$numat +1)*(piconfig$numat +2)/2)*piconfig$

numstat

5

6 # initializing zero matrices for email , phone , give up accordingly

7 p_m = matrix(0, nrow = numstates , ncol = numstates)

8 p_p = matrix(0, nrow = numstates , ncol = numstates)

9 p_g = matrix(0, nrow = numstates , ncol = numstates)

10

11 # initializing reward vectors

12 r_m = matrix(0, nrow = numstates , ncol = 1)

13 r_p = matrix(0, nrow = numstates , ncol = 1)

14 r_g = matrix(0, nrow = numstates , ncol = 1)

15 list = list("numstates"=numstates ,"p_m"=p_m,"p_p"=p_p,"p_g"=p_g,"r_m"=r_m,"r_p"=r_p

,"r_g"=r_g)

16 return(list)

17 }

18

19 # index function calculates indexes for the matrices

30

20 index <- function(c_m,c_p,cl,status ,numstates) {

21 if ((piconfig$numat -c_m) <= (piconfig$numat -1)) {

22 ind = (cl -1)*(numstates/piconfig$numcl) +

23 (status -1)*(numstates/(piconfig$numcl*piconfig$numstat)) +

24 sum((piconfig$numat+2-c_m):(piconfig$numat +2-1)) +

25 (c_p+1)

26 } else {

27 ind = (cl -1)*(numstates/piconfig$numcl) +

28 (status -1)*(numstates/(piconfig$numcl*piconfig$numstat)) +

29 (c_p+1)

30 }

31 return(ind)

32 }

33

34 # calculates prob of status happening

35 probresp <- function(a, c_m, c_p, cl) {

36 if (a == 1) {

37 resp = piconfig$alpha_e^(c_m)*piconfig$alpha_p^(c_p)*piconfig$prob[cl]

38 } else {

39 resp = piconfig$alpha_e^(c_m)*piconfig$alpha_p^(c_p)*piconfig$prob[cl] +

40 (1-piconfig$alpha_e^(c_m)*piconfig$alpha_p^(c_p)*piconfig$prob[cl])*

piconfig$gamma

41 }

42 return(resp)

43 }

44

45 # calculates rewards

46 reward <- function(cl_value , respob , cost){

47 exp_value = -cost + respob*cl_value

48 return(exp_value)

49 }

50

51 # populates the matrices from the int function

52 building_sys_dynamics <- function(piconfig) {

53

54 # Actions coding

55 # (a == 1) Sending email

56 # (a == 2) Sending phone

57 # (a == 3) Give up

58 # Statuses coding

31

59 # (s == 1) Active status

60 # (s == 2) Responded status

61 # (s == 3) Give up status

62

63 # looping through clusters

64 for(cl in 1: piconfig$numcl) {

65 # looping through statuses

66 for(s in 1: piconfig$numstat) {

67 # looping through history of email attempts

68 for(c_m in 0: piconfig$numat) {

69 # looping through history of phone attempts

70 for(c_p in 0:(piconfig$numat -c_m)) {

71 # if person is active (s==1) and the number

72 # of previous attempts is less that maximum of possible

73 if ((c_m + c_p < piconfig$numat) & (s == 1)) {

74 # looping through possible actions (1 - email , 2 - phone

75 # 3 - give up)

76 for (a in 1: piconfig$numac) {

77 # if email

78 if (a == 1) {

79 status = s

80 c_m_temp = c_m

81 c_p_temp = c_p

82 row_index = index(c_m,c_p,cl,status ,numstates)

83 c_m_temp = c_m_temp + 1

84 # if person responds

85 status = 2

86 column_index = index(c_m_temp ,c_p_temp ,cl,status ,numstates)

87 p_m[row_index , column_index] = probresp(a, c_m, c_p, cl)

88 r_m[row_index , 1] = reward(piconfig$cl_value[cl],

89 p_m[row_index , column_index], piconfig$

cost[a])

90 if (c_m + c_p < piconfig$numat - 1) {

91 # when person didn ’t responded

92 status = 1

93 column_index = index(c_m_temp ,c_p_temp ,cl,status ,numstates)

94 p_m[row_index , column_index] = 1 - probresp(a, c_m, c_p, cl)

95 } else if (c_m + c_p == piconfig$numat -1) {

96 status = 3

97 column_index = index(c_m_temp ,c_p_temp ,cl,status ,numstates)

32

98 p_m[row_index , column_index] = 1 - probresp(a, c_m, c_p, cl)

99 }

100 } else if (a == 2) {

101 status = s

102 c_m_temp = c_m

103 c_p_temp = c_p

104 row_index = index(c_m,c_p,cl,status ,numstates)

105 c_p_temp = c_p_temp+1

106 status = 2

107 column_index = index(c_m_temp ,c_p_temp ,cl,status ,numstates)

108 p_p[row_index , column_index] = probresp(a, c_m, c_p, cl)

109 r_p[row_index , 1] = reward(piconfig$cl_value[cl],

110 p_p[row_index , column_index], piconfig$

cost[a])

111 if (c_m + c_p < piconfig$numat -1) {

112 status = 1

113 column_index = index(c_m_temp ,c_p_temp ,cl,status ,numstates)

114 p_p[row_index , column_index] = 1 - probresp(a, c_m, c_p, cl)

115 } else if (c_m + c_p == piconfig$numat -1) {

116 status = 3

117 column_index = index(c_m_temp ,c_p_temp ,cl,status ,numstates)

118 p_p[row_index , column_index] = 1 - probresp(a, c_m, c_p, cl)

119 }

120 }

121 }

122 } else if (s == 2) {

123 # The person is already responded

124 row_index = index(c_m,c_p,cl,s,numstates)

125 # do nothing

126 p_m[row_index ,row_index] = 1

127 p_p[row_index ,row_index] = 1

128 p_g[row_index ,row_index] = 1

129 } else if (s==3) {

130 # The person is unreachable

131 row_index = index(c_m,c_p,cl,s,numstates)

132 # do nothing

133 p_m[row_index ,row_index] = 1

134 p_p[row_index ,row_index] = 1

135 p_g[row_index ,row_index] = 1

136 } else if ((c_m + c_p == piconfig$numat) & (s==1)) {

33

137 row_index = index(c_m,c_p,cl,s,numstates)

138 status = 3

139 column_index = index(c_m,c_p,cl,status ,numstates)

140 p_m[row_index , column_index] = 1

141 p_p[row_index , column_index] = 1

142 }

143 }

144 }

145 }

146 }

147 s = list("p_m"=p_m,"p_p"=p_p, "p_g" = p_g, "r_m"=r_m, "r_p"=r_p, "r_g" = r_g)

148 return(s)

149 }

main v5.R

1 policy = function (gam = 0.9) {

2 n_s = 60

3

4 #dummy policy

5 pi <- rep(3,n_s)

6 # 1 - Mail

7 # 2 - Phone

8 # 3 - Give up

9

10 #Initial policy ’s value

11 v = solve ((diag(n_s) - gam*p_g)) %*% r_g

12 diag(n_s)

13

14 #Storing policy and its values for comparison later

15 pi_old <- pi

16 v_old <- v

17

18 #Build a new , better policy

19 for (i in 1:n_s) {

20 best_action_value = v[i]

21 c_m = r_m[i] + gam*p_m[i,] %*% v

22 c_p = r_p[i] + gam*p_p[i,] %*% v

23 c_g = r_g[i] + gam*p_g[i,] %*% v

24 if (c_m > best_action_value) {

34

25 pi[i] = 1

26 best_action_value = c_m

27 }

28 if (c_p > best_action_value) {

29 pi[i] = 2

30 best_action_value = c_p

31 }

32 if (c_g > best_action_value) {

33 pi[i] = 3

34 best_action_value = c_g

35 }

36 }

37

38 difference = sum ((pi - pi_old)^2)

39 pi_old = pi

40

41 while (difference !=0) {

42 r <- matrix(0, nrow = n_s, ncol = 1)

43 p <- matrix(0, nrow = n_s, ncol = n_s)

44 for (i in 1:n_s) {

45 if (pi[i] == 1) {

46 r[i] = r_m[i]

47 p[i,] = p_m[i,]

48 }

49 else if (pi[i] == 2) {

50 r[i] = r_p[i]

51 p[i,] = p_p[i,]

52 }

53 else if (pi[i] == 3) {

54 r[i] = r_g[i]

55 p[i,] = p_g[i,]

56 }

57 }

58 # Find the value of a new policy

59 v = solve((diag(n_s) - gam*p)) %*% r

60 for (i in 1:n_s) {

61 best_action_value = v[i]

62 c_m = r_m[i] + gam*p_m[i,] %*% v

63 c_p = r_p[i] + gam*p_p[i,] %*% v

64 c_g = r_g[i] + gam*p_g[i,] %*% v

35

65 if (c_m > best_action_value) {

66 pi[i] = 1

67 best_action_value = c_m

68 }

69 if (c_p > best_action_value) {

70 pi[i] = 2

71 best_action_value = c_p

72 }

73 if (c_g > best_action_value) {

74 pi[i] = 3

75 best_action_value = c_g

76 }

77 }

78 # to see if new policy is different

79 difference = sum ((pi - pi_old)^2)

80 pi_old = pi

81 }

82 return(list("policy" = pi,"value"=sum(v)))

83 }

policy iteration v2.R

1 # setting up initial parameters

2 piconfig = list(numcl=2, numstat=3, numat=3, numac=3, prob = c(0.6, 0.7),

3 gamma = .6, alpha_e = .5, alpha_p = .9, cl_value = c(7,3), cost = c

(.55 ,1.5))

4

5 # numcl - number of clusters

6 # numstat - number of states

7 # numat - number of possible attempts

8 # prob - response rate from clusters (based on the previous data)

9 # gamma - the coefficient in the probresp function that helps to approximate it to

the graph

10 # alpha_e - the reaching "power" of email

11 # alpha_p - the reaching "power" of phone

12 # cl_value - the value of reaching to the respondent from a particular cluster

13 # cost - the cost of contacting by email , phone

14

15 o = 1 # maximum value for each alpha

16 h = 10 # amount of increments

36

17

18 mat = matrix(0, nrow=h^2, ncol = 66) # has columns for alpha1 , alpha2 , the entire

policy ,

19 # and summaries of actions for the policy for each cluster

20

21 # loops over alpha_e

22 for (l in 1:h) {

23 piconfig$alpha_e = l*(o/h)

24 # loops over alpha_p

25 for (j in 1:h) {

26 piconfig$alpha_p = j*(o/h)

27

28 # these lines store alpha1 and alpha2 in the matrix

29 mat[(l-1)*h + j,1] = piconfig$alpha_e

30 mat[(l-1)*h + j,2] = piconfig$alpha_p

31

32 # running the main_v5 script that creates functions that we

33 # will use further

34 source("main_v5.R")

35

36 # setup the empty vectors/matrices/etc for use by "building_sys_dynamics"

37 numstates = int(piconfig)$numstates

38 p_m = int(piconfig)$p_m

39 p_p = int(piconfig)$p_p

40 p_g = int(piconfig)$p_g

41 r_m = int(piconfig)$r_m

42 r_p = int(piconfig)$r_p

43 r_g = int(piconfig)$r_g

44

45 # get the "real" dynamics from the function. Populates the vectors/matrices

46 s = building_sys_dynamics(piconfig)

47 p_m = s$p_m

48 p_p = s$p_p

49 p_g = s$p_g

50 r_m = s$r_m

51 r_p = s$r_p

52 r_g = s$r_g

53

54 # running the policy_iteration script

55 source("policy_iteration_v2.R")

37

56

57 # stores the policy in the matrix

58 mat[(l-1)*h + j ,3:62]= policy ()$policy

59

60 # candidate location for changing policy

61 quitflag = FALSE

62 stateindex_cl1 = 3

63 stateindex_cl2 = 33

64 actionsum = c(0,0,0,0)

65 # for cluster one

66 while (!quitflag) {

67 if (mat[(l-1)*h + j,stateindex_cl1] == 1) {

68 actionsum [1] = actionsum [1] + 1

69 if (stateindex_cl1 %in% c(3,4,5)) {

70 stateindex_cl1 = stateindex_cl1 + 4

71 }

72 else if (stateindex_cl1 %in% c(7,8)) {

73 stateindex_cl1 = stateindex_cl1 + 3

74 }

75 else if (stateindex_cl1 %in% c(10)) {

76 stateindex_cl1 = stateindex_cl1 + 2

77 }

78 else if (stateindex_cl1 %in% c(6,9,11,12)) {

79 quitflag = TRUE

80 }

81 }

82 if (mat[(l-1)*h + j,stateindex_cl1] == 2) {

83 actionsum [2] = actionsum [2] + 1

84 if (stateindex_cl1 %in% c(3,4,5,7,8,10)) {

85 stateindex_cl1 = stateindex_cl1 + 1

86 }

87 else if (stateindex_cl1 %in% c(6,9,11,12)) {

88 quitflag = TRUE

89 }

90 }

91 if (mat[(l-1)*h + j,stateindex_cl1] == 3) {

92 quitflag = TRUE

93 }

94 }

95

38

96 quitflag = FALSE

97 # for cluster two

98 while (!quitflag) {

99 if (mat[(l-1)*h + j,stateindex_cl2] == 1) {

100 actionsum [3] = actionsum [3] + 1

101 if (stateindex_cl2 %in% c(33 ,34 ,35)) {

102 stateindex_cl2 = stateindex_cl2 + 4

103 }

104 else if (stateindex_cl2 %in% c(37 ,38)) {

105 stateindex_cl2 = stateindex_cl2 + 3

106 }

107 else if (stateindex_cl2 %in% c(40)) {

108 stateindex_cl2 = stateindex_cl2 + 2

109 }

110 else if (stateindex_cl2 %in% c(36 ,39 ,41 ,42)) {

111 quitflag = TRUE

112 }

113 }

114 if (mat[(l-1)*h + j,stateindex_cl2] == 2) {

115 actionsum [4] = actionsum [4] + 1

116 if (stateindex_cl2 %in% c(33 ,34 ,35 ,37 ,38 ,40)) {

117 stateindex_cl2 = stateindex_cl2 + 1

118 }

119 else if (stateindex_cl2 %in% c(36 ,39 ,41 ,42)) {

120 quitflag = TRUE

121 }

122 }

123 if (mat[(l-1)*h + j,stateindex_cl2] == 3) {

124 quitflag = TRUE

125 }

126 }

127 # stores the metrics in the appropriate columns in the matrix

128 mat[(l-1)*h +j,63] = actionsum [1]

129 mat[(l-1)*h +j,64] = actionsum [2]

130 mat[(l-1)*h +j,65] = actionsum [3]

131 mat[(l-1)*h +j,66] = actionsum [4]

132 }

133 }

134 # loading packages for ploting

135 require(ggplot2)

39

136 require(cowplot)

137

138 # creating a data frame

139 m = data.frame(mat)

140

141 # creating the Sensitivity graph for Cluster 1

142

143 count_emails = factor(m[,63])

144 a1 = ggplot(m, aes(x = X1, y = X2 , color = count_emails , size =count_emails)) +

145 geom_point() +

146 labs(

147 x = "power of email",

148 y = "power of phone",

149 title = "Email (cluster 1)"

150) +

151 scale_colour_manual(

152 values = c("0" = "red","1" = "blue","2" = "green", "3" = "black")

153) +

154 scale_size_manual(

155 values=c("0"=1, "1" = 2, "2"= 4, "3" = 5)

156) +

157 theme(

158 axis.title=element_text(size =13)

159)

160

161 count_phones = factor(m[,64])

162 a2 = ggplot(m, aes(x = X1, y = X2 , color = count_phones , size = count_phones)) +

163 geom_point() +

164 labs(

165 x = "power of email",

166 y = "power of phone",

167 title = "Phone (cluster 1)"

168) +

169 scale_colour_manual(

170 values = c("0" = "red","1" = "blue","2" = "green", "3" = "black")

171) +

172 scale_size_manual(

173 values=c("0"=1, "1" = 2, "2"= 4, "3"=5)

174) +

175 theme(

40

176 axis.title=element_text(size =13)

177)

178

179 # ploting a1 and a2 in the same graph

180 plot_grid(a2 , a1 , ncol = 1, nrow = 2)

181

182

183

184 count_emails = factor(m[,65])

185 a3 = ggplot(m, aes(x = X1, y = X2 , color = count_emails , size =count_emails)) +

186 geom_point() +

187 labs(

188 x = "power of email",

189 y = "power of phone",

190 title = "Email (cluster 2)"

191) +

192 scale_colour_manual(

193 values = c("0" = "red","1" = "blue","2" = "green", "3" = "black")

194) +

195 scale_size_manual(

196 values=c("0"=1, "1" = 2, "2"= 4, "3" = 5)

197) +

198 theme(

199 axis.title=element_text(size =13)

200)

201

202 count_phones = factor(m[,66])

203 a4 = ggplot(m, aes(x = X1, y = X2 , color = count_phones , size = count_phones)) +

204 geom_point() +

205 labs(

206 x = "power of email",

207 y = "power of phone",

208 title = "Phone (cluster 2)"

209) +

210 scale_colour_manual(

211 values = c("0" = "red","1" = "blue","2" = "green", "3" = "black")

212) +

213 scale_size_manual(

214 values=c("0"=1, "1" = 2, "2"= 4, "3"=5)

215) +

41

216 theme(

217 axis.title=element_text(size =13)

218)

219

220 # ploting a1 and a2 in the same graph

221 plot_grid(a4 , a3 , ncol = 1, nrow = 2)

plot v2.R

Appendix B

SECOND APPENDIX

B.1 Grid World

B.1.1 Policy Iteration R Script

The policy iteration script for grid world consists of two parts. The first part is the

function that gives a best policy based on the discount factor. The second part is a

sensitivity analysis based on different discount factors.

1 # Policy function that gives an optimal policy for the given discount factor

2 policy <- function (gamma = 0.9) {

3

4 # gamma - discount factor

5

6 m_down <- c(.9, .1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

7 .1, .8, .1, 0, 0, 0, 0, 0, 0, 0, 0,

8 0, .1, .8, .1, 0, 0, 0, 0, 0, 0, 0,

9 0, 0, .1, .9, 0, 0, 0, 0, 0, 0, 0,

10 .8, 0, 0, 0, .2, 0, 0, 0, 0, 0, 0,

11 0, 0, .8, 0, 0, .1, .1, 0, 0, 0, 0,

12 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

13 0, 0, 0, 0, .8, 0, 0, .1, .1, 0, 0,

14 0, 0, 0, 0, 0, 0, 0, .1, .8, .1, 0,

15 0, 0, 0, 0, 0, .8, 0, 0, .1, 0, .1,

16 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

17

18 m_left <- c(.9, 0, 0, 0, .1, 0, 0, 0, 0, 0, 0,

19 .8, .2, 0, 0, 0, 0, 0, 0, 0, 0, 0,

20 0, .8, .1, 0, 0, .1, 0, 0, 0, 0, 0,

21 0, 0, .8, .1, 0, 0, .1, 0, 0, 0, 0,

22 .1, 0, 0, 0, .8, 0, 0, .1, 0, 0, 0,

23 0, 0, .1, 0, 0, .8, 0, 0, 0, .1, 0,

24 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

25 0, 0, 0, 0, .1, 0, 0, .9, 0, 0, 0,

26 0, 0, 0, 0, 0, 0, 0, .8, .2, 0, 0,

43

27 0, 0, 0, 0, 0, .1, 0, 0, .8, .1, 0,

28 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

29

30 m_right <- c(.1, .8, 0, 0, .1, 0, 0, 0, 0, 0, 0,

31 0, .2, .8, 0, 0, 0, 0, 0, 0, 0, 0,

32 0, 0, .1, .8, 0, .1, 0, 0, 0, 0, 0,

33 0, 0, 0, .9, 0, 0, .1, 0, 0, 0, 0,

34 .1, 0, 0, 0, .8, 0, 0, .1, 0, 0, 0,

35 0, 0, .1, 0, 0, 0, .8, 0, 0, .1, 0,

36 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

37 0, 0, 0, 0, .1, 0, 0, .1, .8, 0, 0,

38 0, 0, 0, 0, 0, 0, 0, 0, .2, .8, 0,

39 0, 0, 0, 0, 0, .1, 0, 0, 0, .1, .8,

40 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

41

42 m_up <- c(.1, .1, 0, 0, .8, 0, 0, 0, 0, 0, 0,

43 .1, .8, .1, 0, 0, 0, 0, 0, 0, 0, 0,

44 0, .1, 0, .1, 0, .8, 0, 0, 0, 0, 0,

45 0, 0, .1, .1, 0, 0, .8, 0, 0, 0, 0,

46 0, 0, 0, 0, .2, 0, 0, .8, 0, 0, 0,

47 0, 0, 0, 0, 0, 0, .1, .1, 0, .8, 0,

48 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

49 0, 0, 0, 0, 0, 0, 0, .9, .1, 0, 0,

50 0, 0, 0, 0, 0, 0, 0, .1, .8, .1, 0,

51 0, 0, 0, 0, 0, 0, 0, 0, .1, .8, .1,

52 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

53

54 p_down <- matrix(m_down , 11, 11, byrow=TRUE)

55 p_left <- matrix(m_left , 11, 11, byrow=TRUE)

56 p_right <- matrix(m_right , 11, 11, byrow=TRUE)

57 p_up <- matrix(m_up , 11, 11, byrow=TRUE)

58

59

60 r_down <- c(0, 0, 0, 0, 0, -.1, 0, 0, 0, .1, 0) - 0.04

61 r_left <- c(0, 0, 0, -.1, 0, 0, 0, 0, 0, 0, 0) - 0.04

62 r_right <- c(0, 0, 0, -.1, 0, -.8, 0, 0, 0, .8, 0) - 0.04

63 r_up <- c(0, 0, 0, -.8, 0, -.1, 0, 0, 0, .1, 0) - 0.04

64

65 #dummy policy

66 pi <- c(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) # all left

44

67 # 1 - down

68 # 2 - left

69 # 3 - right

70 # 4 - up

71

72 #Initial policy ’s value

73 v = solve((diag (11) - gamma*p_left)) %*% r_left

74

75 #Storing policy and its values for comparison later

76 pi_old = pi

77 v_old = v

78

79 #Build a new , better policy

80 for (i in 1:11) {

81

82 best_action_value = v[i]

83 c_d = r_down[i] + gamma*p_down[i,] %*% v

84 c_l = r_left[i] + gamma*p_left[i,] %*% v

85 c_r = r_right[i] + gamma*p_right[i,] %*% v

86 c_u = r_up[i] + gamma*p_up[i,] %*% v

87

88 if (c_d > best_action_value) {

89 pi[i] = 1;

90 best_action_value = c_d

91 }

92 if (c_l > best_action_value) {

93 pi[i] = 2;

94 best_action_value = c_l

95 }

96 if (c_r > best_action_value) {

97 pi[i] = 3;

98 best_action_value = c_r

99 }

100 if (c_u > best_action_value) {

101 pi[i] = 4;

102 best_action_value = c_u

103 }

104 }

105 difference = sum ((pi - pi_old)^2)

106 pi_old = pi

45

107 while (difference !=0) {

108 r <- matrix(0, nrow = 11, ncol = 1)

109 p <- matrix(0, nrow = 11, ncol = 11)

110 for (i in 1:11) {

111 if (pi[i] == 1) {

112 r[i] = r_down[i]

113 p[i,] = p_down[i,]

114 }

115 else if (pi[i] == 2){

116 r[i] = r_left[i]

117 p[i,] = p_left[i,]

118 }

119 else if (pi[i] == 3) {

120 r[i] = r_right[i]

121 p[i,] = p_right[i,]

122 }

123 else if (pi[i] == 4) {

124 r[i] = r_up[i]

125 p[i,] = p_up[i,]

126 }

127 }

128

129 # Find the value of a new policy

130 v = solve((diag (11) - gamma*p)) %*% r

131 v

132

133 for (i in 1:11) {

134

135 best_action_value = v[i]

136 c_d = r_down[i] + gamma*p_down[i,] %*% v

137 c_l = r_left[i] + gamma*p_left[i,] %*% v

138 c_r = r_right[i] + gamma*p_right[i,] %*% v

139 c_u = r_up[i] + gamma*p_up[i,] %*% v

140

141 if (c_d > best_action_value) {

142 pi[i] = 1

143 best_action_value = c_d

144 }

145 if (c_l > best_action_value) {

146 pi[i] = 2

46

147 best_action_value = c_l

148 }

149 if (c_r > best_action_value) {

150 pi[i] = 3

151 best_action_value = c_r

152 }

153 if (c_u > best_action_value) {

154 pi[i] = 4

155 best_action_value = c_u

156 }

157 }

158

159 pi # to see if new policy is different

160 difference = sum ((pi - pi_old)^2)

161 pi_old = pi

162 }

163 pi

164 }

165

166 # for gamma sensitivity analysis

167 m = matrix(0, nrow = 10, ncol = 12)

168 for (i in 1:10) {

169 m[i,] = c(0.89 + i*0.01, policy(gamma = 0.89 + i*0.01))

170 }

gridworld R.R

B.1.2 Q-learning R Scripts

Q-learning R script consist of three parts. First part creates a transition reward ma-

trix. The second part creates q-learning function that calculates an optimal policy.

The final part is the sensitivity analysis based on different parameters of the model.

1 #transition reward function creates transition reward matrix

2 transition_reward <- function (state , action) {

3

47

4 # state will be a number from 1-11.

5 # action will be a number from 1-4.

6 # 1 is down

7 # 2 is left

8 # 3 is right

9 # 4 is up

10

11 n = 11; # Number of states

12 k = 1; # Size of sample to take

13

14 m_down <- c(.9, .1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

15 .1, .8, .1, 0, 0, 0, 0, 0, 0, 0, 0,

16 0, .1, .8, .1, 0, 0, 0, 0, 0, 0, 0,

17 0, 0, .1, .9, 0, 0, 0, 0, 0, 0, 0,

18 .8, 0, 0, 0, .2, 0, 0, 0, 0, 0, 0,

19 0, 0, .8, 0, 0, .1, .1, 0, 0, 0, 0,

20 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

21 0, 0, 0, 0, .8, 0, 0, .1, .1, 0, 0,

22 0, 0, 0, 0, 0, 0, 0, .1, .8, .1, 0,

23 0, 0, 0, 0, 0, .8, 0, 0, .1, 0, .1,

24 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

25

26 m_left <- c(.9, 0, 0, 0, .1, 0, 0, 0, 0, 0, 0,

27 .8, .2, 0, 0, 0, 0, 0, 0, 0, 0, 0,

28 0, .8, .1, 0, 0, .1, 0, 0, 0, 0, 0,

29 0, 0, .8, .1, 0, 0, .1, 0, 0, 0, 0,

30 .1, 0, 0, 0, .8, 0, 0, .1, 0, 0, 0,

31 0, 0, .1, 0, 0, .8, 0, 0, 0, .1, 0,

32 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

33 0, 0, 0, 0, .1, 0, 0, .9, 0, 0, 0,

34 0, 0, 0, 0, 0, 0, 0, .8, .2, 0, 0,

35 0, 0, 0, 0, 0, .1, 0, 0, .8, .1, 0,

36 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

37

38 m_right <- c(.1, .8, 0, 0, .1, 0, 0, 0, 0, 0, 0,

39 0, .2, .8, 0, 0, 0, 0, 0, 0, 0, 0,

40 0, 0, .1, .8, 0, .1, 0, 0, 0, 0, 0,

41 0, 0, 0, .9, 0, 0, .1, 0, 0, 0, 0,

42 .1, 0, 0, 0, .8, 0, 0, .1, 0, 0, 0,

43 0, 0, .1, 0, 0, 0, .8, 0, 0, .1, 0,

48

44 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

45 0, 0, 0, 0, .1, 0, 0, .1, .8, 0, 0,

46 0, 0, 0, 0, 0, 0, 0, 0, .2, .8, 0,

47 0, 0, 0, 0, 0, .1, 0, 0, 0, .1, .8,

48 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

49

50 m_up <- c(.1, .1, 0, 0, .8, 0, 0, 0, 0, 0, 0,

51 .1, .8, .1, 0, 0, 0, 0, 0, 0, 0, 0,

52 0, .1, 0, .1, 0, .8, 0, 0, 0, 0, 0,

53 0, 0, .1, .1, 0, 0, .8, 0, 0, 0, 0,

54 0, 0, 0, 0, .2, 0, 0, .8, 0, 0, 0,

55 0, 0, 0, 0, 0, 0, .1, .1, 0, .8, 0,

56 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

57 0, 0, 0, 0, 0, 0, 0, .9, .1, 0, 0,

58 0, 0, 0, 0, 0, 0, 0, .1, .8, .1, 0,

59 0, 0, 0, 0, 0, 0, 0, 0, .1, .8, .1,

60 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

61

62 p_down <- matrix(m_down , 11, 11, byrow = TRUE)

63 p_left <- matrix(m_left , 11, 11, byrow = TRUE)

64 p_right <- matrix(m_right , 11, 11, byrow = TRUE)

65 p_up <- matrix(m_up, 11, 11, byrow = TRUE)

66

67 if (action ==1) {

68 next_state <- sample(1:n, k, replace = TRUE , prob = p_down[state ,])

69 }

70 else if (action == 2) {

71 next_state <- sample(1:n, k, replace = TRUE , prob = p_left[state ,])

72 }

73 else if (action == 3) {

74 next_state <- sample(1:n, k, replace = TRUE , prob = p_right[state ,])

75 }

76 else {

77 next_state <- sample(1:n, k, replace = TRUE , prob = p_up[state ,])

78 }

79

80 if (next_state == 7) {

81 reward = -1 - 0.04

82 }

83 else if (next_state == 11) {

49

84 reward = 1- 0.04

85 }

86 else {

87 reward = -0.04

88 }

89

90 # a <- data.frame(next_state = next_state , reward = reward)

91 # a

92 c(next_state , reward)

93 }

transition reward R.R

1 # To find an optimal policy run q_learning function

2 q_learning <- function (n = 1000, gamma =0.8, epsilon = 0.2, alpha = 0.1) {

3

4 # n - Iterations

5 # gamma - Discount factor

6 # epsilon - Exploration coefficient

7 # alpha - Learning parameter

8

9 q_values = matrix(0, nrow = 11, ncol = 4)

10

11 state = 1

12 action = sample(1:4, 1)

13

14 source("C:/Users/artur -grygorian/Google Drive/thesis/Q-learning grid world/

transition_reward_R.R")

15

16 for (i in 1:n) {

17 next_state = transition_reward(state , action)[1]

18 reward = transition_reward(state , action)[2]

19

20 q_values[state , action] = (1-alpha)*q_values[state ,action] + alpha*(reward +

gamma*max(q_values[next_state ,]))

21

22 if (is.element(next_state , c(7,11))) {

23 state = 1

24 }

25 else {

50

26 state = next_state

27 }

28 if (runif (1) < epsilon) {

29 action = sample (1:4, 1)

30 }

31 else {

32 action = which.max(q_values[state ,])

33 }

34 }

35

36 policy = matrix(0, nrow = 1, ncol = 11)

37

38 for (k in 1:11) {

39 action = which.max(q_values[k,])

40 policy[k] = action

41 }

42 return(policy)

43

44 }

45

46 m = matrix(0, nrow = 10, ncol = 12)

47

48

49 # Sensitivity analysis based on different values

50 # for alpha

51 for (i in 1:10) {

52 m[i,] = c(i*0.1, q_learning(alpha = i*0.1))

53 }

54

55 # for gamma

56 for (i in 1:10) {

57 m[i,] = c(i*0.1, q_learning(gamma = i*0.1))

58 }

59

60 # for number of iterations

61 for (i in 1:10) {

62 m[i,] = c(i*1000, q_learning(n = i*1000))

63 }

64

65 # for epsilon

51

66 for (i in 1:10) {

67 m[i,] = c(i*0.1, q_learning(epsilon = i*0.1))

68 }

q learning R.R

	A Markov Decision Process Approach to Adaptive Contact Strategies
	Recommended Citation

	tmp.1491928539.pdf.6qQ3T

