
Georgia Southern University 

Georgia Southern Commons 

Electronic Theses and Dissertations Jack N. Averitt College of Graduate Studies 

Fall 2016 

An Investigation on a Mobile Robot in a ROS Enabled 
Cloud Robotics Environment 
Theodore C. Smith 

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd 

 Part of the Engineering Commons 

Recommended Citation 
Smith, Theodore C., "An Investigation on a Mobile Robot in a ROS Enabled Cloud Robotics 
Environment" (2016). Electronic Theses and Dissertations. 1519. 
https://digitalcommons.georgiasouthern.edu/etd/1519 

This thesis (open access) is brought to you for free and open access by the Jack N. Averitt College 
of Graduate Studies at Georgia Southern Commons. It has been accepted for inclusion in Electronic 
Theses and Dissertations by an authorized administrator of Georgia Southern Commons. For more 
information, please contact digitalcommons@georgiasouthern.edu. 

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1519&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1519&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1519?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1519&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


 
 

 

AN INVESTIGATION ON A MOBILE ROBOT IN A ROS ENABLED CLOUD ROBOTICS 

ENVIRONMENT

 

by 

 

THEODORE CORNELIUS SMITH 

(Under the Direction of Biswanath Samanta) 

 

ABSTRACT 

In modern day robotic applications, the use of cloud computing is being considered as a viable 

option giving rise to development of cloud robotics environment. Robots are also being 

developed to operate under an organized framework of robot operating system (ROS) for 

flexibility and better integration with robots of different types. In this work, an investigation is 

presented on the development of a mobile robotic platform and its integration in a ROS enabled 

cloud robotics environment.  A mobile robotic platform was built with different sensors 

including a depth camera, integrated with Arduino and raspberry pi for interfacing the sensors, 

the drive system and on-board local processing of signals and with wireless communication 

capability for transmission and receiving data. The robot was operated using ROS framework 

within a cloud robotics network. Two issues of robot operation in ROS enabled cloud 

environment, namely, latency and data integrity were investigated for the developed robot under 

different operating conditions. The system was tested for baseline connectivity and under low 

bandwidth environment and performance was found to be satisfactory in the areas of latency and 

data integrity. Ongoing and future extensions are proposed to integrate this current robot with 

other existing robots within the ROS enabled cloud robotics environment.  
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                                    CHAPTER 1: INTRODUCION  

1.1 The Growth of Robotic Systems 

The study of Robotics is an amalgamation of studies between mechanical 

engineering, electrical engineering and computer science. Robotics concerns itself with 

the design, construction, operation, and application of robots as well as the computer 

systems for their control, sensory feedback, and information processing. Modern Robotics 

gives us the unprecedented ability to maneuver during various situations from 

manufacturing processes, assistive living, to many other scenarios including disaster 

management. Many robots do jobs that are hazardous to people such as defusing bombs, 

mines and exploring shipwrecks. Robotics is a rapidly growing field, as technological 

advances continue. Researching, designing, and building new robots serve various 

practical purposes, whether domestically, commercially, or militarily.  

To meet these challenges, many robotics researchers have previously created a wide 

variety of frameworks to manage complexity and facilitate rapid prototyping of software 

for experiments, resulting in the many robotic software systems currently used in academia 

and industry (Kramer, 2007). Robots and manufacturing systems are becoming more 

flexible with progress because of computer technology and its many programming 

techniques.  

 

1.2 The Present Work 

The main hypothesis for this work is that with the use of a given network and 

infrastructure, a standardized robot can communicate and perform its tasks with the use 

of the cloud resources, if properly integrated, without a deterioration in network 
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performance and data integrity. 

To support this hypothesis, the following objectives were established:  

 Implementation of a mobile robotic platform (named in this work as Arlo  

Robot or Arlobot, in short) integrated with various sensors, including a depth 

camera, on-board  processors with local processing and wireless 

communication capability. 

 Integration of Arlobot within ROS framework. 

 Operation of the Arlobot in cloud robotics environment. 

 Investigations on the network latency and data integrity while operating the 

robot in the ROS-enabled network. 

To achieve these objectives, a robotic platform was assembled using a robot base, 

sensors, drive system, an Arduino Mega and a raspberry pi as local processors and for 

communication wirelessly with the cloud environment. Software base was developed to 

adapt the robot within the ROS framework and integrate it with the cloud robotics 

environment already existing in the lab.  

1.3 Organization of Thesis   

The thesis is organized as follows: 

Chapter 2 is the literature review that focuses on key points. First, features of 

Arlobot are  described, along with its  sensors and processors, and the network 

communication capability. Next cloud robotics and its challenges are reviewed. Next 

features of raspberry pi implementation on Arlobot are discussed. Ii is followed with 

brief discussions on  Robot Operating System (ROS). Finally features of a depth 

camera used in this work are discussed. 
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Chapter 3 takes a look at the research methodology used to conduct this 

research. First the overall device configuration is presented. It is followed with the 

implementation of ROS within the cloud. Next details of the necessary configuration of 

the Arlobot to make it compatible with the cloud robotics environment is discussed. 

Finally, the design of the experiment to test the robot effect on network latency and 

data integrity, under different operating conditions, is presented. 

Chapter 4 presents experimental results of network latency and data integrity.   

The results under different operating conditions are analyzed next.   

Chapter 5 summarizes an overview of the results and recommendations for 

future work.   

Additional documentation related to the research is provided in Appendices.  

The appendices include a list of Arduino and Python codes and scripts. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Standardized System  

Standardized System are functions that use more than one type of processor or core 

that helps in the performance of its tasks (Rogers, 2013).  

Standardized  systems have three guidelines to follow in order for the system to 

operate correctly:  

1. The data traveling through the system must be processed by the machine, and 

thus exists a data chokepoint at the machine, reducing the reliability and 

increasing the response time of the system. 

2. The system resources, both hardware and software, would exist at a single 

location, making any downtime the machine experiences catastrophic to the 

system. 

3. Even with enormous complexity a system of multiple, corroborative robots 

performing tasks simultaneously would outperform a single machine as the task 

complexity increases (Cao, Fukunaga, and Kahng, 1997). 

Standardized systems come in different shapes, sizes, and capabilities with that they 

complement each other and increase the capability of the system as a whole. 

Heterogeneous systems are more capable, efficient, fault tolerant, and expendable 

monolithic counterpart (Parker and Tang, 2006). 

2.2.1 Arlobot Platform System 

The robot, that has been used in this work, named Arlobot, is comprised of two 6 

inch driven wheels, two electrical motors to drive the wheels, two 3 inch caster wheels, 
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an easy-to-machine plastic platform, a 12V rechargeable battery, a camera, and an LCD 

screen. The driven wheels are positioned at the sides of the robot and the caster wheels 

are positioned at the forward and rear positions of the robot. The robot is able to turn by 

adjusting the speed of the electrical motors independently. A Parallax HB-25 fan cooled 

motor controller is mounted beneath the platform for each of the electrical motors. The 

motor controller uses a single pulse to a set output. The specifications of the motor 

controller can be found in Appendix A. The motor controllers are linked to a Pololu 

Micro Maestro servo controller. The servo controller enabled individual speed and 

acceleration control for each channel. Its specifications can be found in Appendix B. The 

left and right Parallax motor controller channels W, R, B were connected to Pololu 

channels 1 and 2. The Pololu RX channel was connected to the Arduino microcontroller 

TX channel. The RX line is to receive serial commands. The Pololu TX channel was 

connected to the Arduino RX channel. The TX line is for responses to the serial 

commands. Figure 1 displays the motor and servo controller diagrams.   

 

  Figure 1: Parallax HB-25 (left) and Pololu Micro Maestro (right)    
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The various components used in the construction of the robot are: 

This kit consists of a circular high-density polyethylene robotics platform having 

220 square inches of usable surface area. It consists of hardware for both single and 

double battery mounting and a battery shelf designed to carry one or two 12 V lead acid 

batteries.  A single caster wheel was used as the front wheel to provide direction and two 

motor mounted rear wheels provided the moving power.  

 

 

Figure 2: Parts used for the Arlobot 

2.2.2 Arduino Microcontroller 

The Arduino Mega 2560, the successor to the Arduino Mega, is a microcontroller 

board based on a ATmega2560 AVR microcontroller. It has 70 digital input/output pins 

(of which 15 can be used as PWM outputs and 16 can be used as analog inputs), a 16 

MHz resonator, a USB connection, a power jack, an in-circuit system programming 

(ICSP) header, and a reset button. It contains everything needed to support the 

microcontroller; simply connect it to a computer with a USB cable or power it with a AC-
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to-DC adapter or battery to get started. 

The Mega 2560 differs from the preceding Mega in that it does not use the FTDI 

USB-to-serial driver chip. Instead, it features the Atmega8U2 programmed as a USB-to-

serial converter. This auxiliary microcontroller has its own USB bootloader, which 

allows advanced users to reprogram it. 

2.2.3 Ping Ultrasonic Sensor 

The PING Ultrasonic Distance Sensor (shown in Fig 3) is perfect for any number 

of applications that require distance between moving or stationary objects. The sensor 

measures distance using sonar; an ultrasonic (well above human hearing) pulse is 

transmitted from the unit and distance-to-target is determined by measuring the time 

required for the echo return. Output from the PING sensor is a variable-width pulse that 

corresponds to the distance to the target. 10 PING sensors were used for this project.   

 

Figure 3: PING Ultrasonic Sensor 

The robot has been designed to perform various tasks such as avoiding physical 

contact with objects, following an object, and moving in a formation with other robots. The 
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tasks were accomplished by incorporating PING sensors to detect presence of objects in its 

path. Five PING sensors at the forward and rear positions of the robot are placed 30° apart, 

as indicated in Figure 4.  

                        

 

Figure 4: PING Sensor Layout 

The PING sensor utilizes a very high frequency sound (40 kHz, it is beyond 

human audibility) and its echo to determine the distance of an object. A brief ultrasonic 

chirp produced by the speaker and the delay of the echo exerted on the microphone is 

measured. The distance is calculated by multiplying the time by the speed of sound in the 

air (340m/s). Figure 5 represents the principle behind the sensor. 
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Figure 5: PING Sensor Operation 

A platform tier was added to the structure to serve as a base for the pole supporting 

the camera and LCD Screen. A 5 inch space between the platforms ensured that all the 

components had enough clearance. The support pole was positioned at the center of the 

platform. The Arlobot power distribution board was placed on the platform at the forward 

position to allow easy on/off access to the users. The power distribution board uses the 12V 

battery as the power source and distributes 12V to each of the Parallax motor drivers, and 

6.5V to the Arduino microprocessor board. The power distribution board wiring is 

displayed in Fig. 6. 

 

               Figure 6: Switch case for the Arlobot 

2.2.4 Raspberry Pi 

Raspberry Pi (shown in Fig. 7) is a smaller than a phone computer that can be 

utilized as a desktop PC. It is little in any case, sufficiently capable to do consistent word 

ArloBot 

Motors Main 

Motor  Motor  Battery  Aux. 

+12  -  +12  -   +12 -    +6.5 - 
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processing, spread sheet investigation and other general exercises. It can likewise do 

nonstandard task like being a media server or go about as a smart TV. The Raspberry 

Pi was developed in the United Kingdom by the Raspberry Pi Foundation with the 

intention of promoting the teaching of basic computer science in schools and developing 

countries. The original Raspberry Pi and Raspberry Pi 2 are manufactured in several 

board configurations through licensed manufacturing agreements with Newark 

element14 (Premier Farnell), RS Components and Egoman. The hardware is the same 

across all manufacturers. 

 

Figure 7: Raspberry Pi 

2.3 Cloud Robotics 

2.3.1 Overview of Cloud Robotics 

NIST defines cloud computing as "a model for enabling ubiquitous, convenient, 

on-demand network access to a shared pool of configurable computing resources that can 

be rapidly provisioned and released with minimal management effort or service provider 

https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/Raspberry_Pi_Foundation
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Newark_element14
https://en.wikipedia.org/wiki/Newark_element14
https://en.wikipedia.org/wiki/Premier_Farnell
https://en.wikipedia.org/wiki/RS_Components


18 
 

 
 

interaction." (Mell, 2011) 

  

Cloud robotics and cloud computing in general, offers the concept of utility 

computing; instead of buying computational resources to own, these resources can be 

provided for use on the short-term, as-needed basis (Armbrust, et al. 2010). With the use 

of cloud robotics, robots are able to store, interact, and solve more complex information 

in a datacenter. This way there is a decreased dependence needed in the middleware of a 

system. 

2.3.2 Advantages of Cloud Robotics  

With the growth of cloud robotics it should be assumed that it is doing very well. 

Figure 8: A brief graphic explaining cloud storage and cloud computing 
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Advantages of cloud robotics are: 

1. Big Data: access to updated libraries of images, maps, and object/product data, 

2. Cloud Computing: access to parallel grid computing on demand for statistical 

analysis, learning, and motion planning, 

3. Collective Learning: robots and systems sharing trajectories, control policies, and 

outcomes, and  

4. Human Computation: use of crowdsourcing to tap human skills for analyzing 

images and video, classification, learning, and error recovery. 

2.3.3 Disadvantages of Cloud Robotics 

Although cloud robotics is the change that society is vastly picking up, it is still taking 

time to get its proper share, because it has a few disadvantages such as:. 

 Cloud-based applications can get slow or simply become unavailable leaving 

the robot "brainless". 

 Tasks that involve real-time execution require onboard processing. 

 Security issues 

 Computation challenges: 

o Offload decision 

o Offload strategy 

2.4 Challenges in Cloud Computing 

2.4.1 Network Latency 

Dealing with output to input network transportation paying attention to latency is 

key to successfully transmitting information. Network latency is an expression of how 

much time it takes for a packet of data to get from one designated point to another 
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(Rocus, 2014). In order for cloud computing to work effectively the latency would have 

to be managed proficiently. 

2.4.2 Data Integrity  

Data integrity is of prime importance for proper transfer of data over the network 

as it pertains to the proper working of the devices connected.. Data integrity has been 

used as one of the criteria in this work. 

2.5 Virtualization  

Virtualization is another element that adds on to latency in a cloud. The reason 

this needs proper consideration is because there is a change from virtual machine running 

task to a more complex web of hypervisor running several virtual machines. There have 

been tasks to make virtual networks, but it gave rise to many problems with several 

packet delay of data making too many decisions without properly going through correct 

process. Virtualization is the concept of abstracting hardware resources such that multiple 

paths to hardware can be provided, allowing numerous users’ access to the same 

hardware. The use of virtualization minimizes the number of server machines which can 

save energy that is continuously used in the data center.   

 

2.6 Robot Operating System 

 

Robot Operating Systems (ROS), which was formulated by Quigley et. al, is not 

an operating system in the traditional sense of process management and scheduling. 

Rather, ROS provides a structured communications layer above the host operating 
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systems of a heterogeneous compute cluster. (Quigley, 2009) In this work the focus 

is to test the current condition of a wireless connectivity between a  device and a 

network. ROS is a framework for writing robot software. It is a collection of tools, 

libraries, and conventions that aim to simplify the task of creating complex and robust 

robot behavior across a wide variety of robotic platforms (Quigley, 2007). When 

dealing with ROS there are a few basic definitions below, which will be referred to 

often in this work. 

 Nodes- Nodes are processes that perform computation. ROS is designed to be 

modular at a fine-grained scale; a robot control system usually comprises many 

nodes. A ROS node is written with the use of a ROS client library, such as roscpp 

or rospy. Nodes communicate with each other by passing messages. 

 Messages- Nodes communicate with each other by passing messages. A message 

is simply a data structure, comprising typed fields. Standard primitive types 

(integer, floating point, boolean, etc.) are supported, as are arrays of primitive 

types. Messages can include arbitrarily nested structures and arrays (much like C 

structs). A node sends a message by publishing it to a given topic. 

 Topics- Messages are routed via a transport system with publish/subscribe 

semantics. A node sends out a message by publishing it to a given topic. The topic 

is a name that is used to identify the content of the message. There may be 

multiple concurrent publishers and subscribers for a single topic, and a single 

node may publish and/or subscribe to multiple topics. In general, publishers and 

subscribers are not aware of each other’s' existence. Although the topic-based 

publish-subscribe model is a flexible communications paradigm, its “broadcast” 
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routing scheme is not appropriate for synchronous transactions, which can 

simplify the design of some nodes. 

 Services- The publish/subscribe model is a very flexible communication 

paradigm, but its many-to-many, one-way transport is not appropriate for request / 

reply interactions, which are often required in a distributed system. Request / 

reply is done via services, which are defined by a pair of message structures: one 

for the request and one for the reply. A providing node offers a service under a 

name and a client uses the service by sending the request message and awaiting 

the reply. ROS client libraries generally present this interaction to the programmer 

as if it were a remote procedure call. 

 Packages – ROS packages are the base level bundles of code that are designed to 

be uploaded for sharing and downloaded for use. ROS packages can contain zero 

or more of nodes, messages, libraries, configuration files, build instructions, 

documentation, and more. Because of ROS’s open source nature, packages are 

often free to download and use, and are developed by programmers across the 

world for a multitude of purposes that, due to the modular, standard-focused 

nature of ROS, can be applied to many different types of robots. 

 Master- The ROS Master provides name registration and lookup to the rest of the 

Computation Graph. Without the Master, nodes would not be able to find each 

other, exchange messages, or invoke services. 

 

2.7 ASUS Xtion PRO LIVE DEPTH CAMERA 

The ASUS XTION PRO LIVE  is based on the projective stereo technology 
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developed by PrimeSense. It provides RGB and depth images with VGA resolution (640 

× 480 pixels) at a rate of 30 frames per second. A higher frame rate of 60 frames per 

second can be obtained by reducing the resolution to QVGA (320 × 240 pixels). 

Compared to the Microsoft Kinect the ASUS XTION PRO LIVE has the following 

advantages. The RGB and depth images are time synchronized and can be registered to 

each other on-board the camera. Furthermore, the camera has only a weight of ~150 g 

(Microsoft Kinect ~440 g) and only needs the USB connection as power supply. 

 

Figure 9: ASUS Xtion PRO LIVE camera: 1 IR projector 2 RGB camera 3 IR camera 

 

The depth values are encoded as 16 bit unsigned integer values representing the 

depth in millimeters. According to the specification, the depth values range from 0.8 m to 

3.5 m. In experiments measurements in the range of 0.7 m up to 9.5 m have been 

obtained. Depth registration causes invalid pixels at the border of the depth image, 

because the depth image has to be transformed into the viewpoint of the RGB camera to 

associate every color pixel with a depth pixel. 
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CHAPTER 3: METHODOLOGY 

3.1 System Configurations 

In order to run these experiments on the topics examined in this study, mainly 

network latency and data integrity, the Arlobot was integrated with a cloud robotic 

environment developed in the bIRIS (Bio-inspired Robotics and Intelligent Systems) lab. 

Initially, virtual datacenter was used to give the establishment on which the cloud service, 

e.g., remote operation, and image processing were supported. ROS was integrated to the 

cloud computing environment to facilitate the operation of Arlobot. 

The Arlobot was configured to connect to the cloud network through a wireless 

adapter with the use of a passcode. There was an extensive amount of information added 

to the ROS framework such as ROS drivers, directing robot movement, acquiring/storing 

robot ping sensor data, and attempting to integrate robots into a single control system. 

For the robot test, the latency and data integrity of the connection between the robot 

and the cloud was tested by streaming data packets to the desired robot and monitoring 

what was returned from the packet. The information was used to see how well the network 

was performing over a long period of time and also viewed how it reacted with a lot of 

activities going on in the network. In addition to that, the Arduino was strictly used to 

navigate the Arlobot and follow given directions. The use of image detection was also 

viewed in this paper to see how it operated with Raspberry Pi and Arduino. 

3.2 Combination of Instruments  

A Raspberry Pi and an Arduino code were written to communicate with one another 
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over a serial line in order to establish the Pi as the controller and the Arduino as a controlled 

tool. The Raspberry Pi receives a string from the Arduino indicating the distances and the 

corresponding sensors. The string is parsed so that the information becomes useful through 

the “mystring.split()” command. This makes it so that the variable (a) now stores the sensor 

that has the lowest reading. The ard.inWaiting() command recognizes the amount of input 

from the Arduino and the ard.flushInput() command flushes the data if it is taking up space 

in the buffer. This does two things. The first thing is that it keeps the buffer low so that 

there is no latency issues with the processor and provides the newest commands from the 

Arduino. A string is created with name “left” and another with the name “right”. These 

strings have the characters corresponding to the sensor numbers in our robot and are used 

as references for turning the robot right or left (+ or -, respectively). The first character of 

the string sent from the Raspberry Pi initializes the response actuated from the Arduino. 

The characters are a guidepost for how the Arduino should treat the incoming string. If a 

(+) sign is received, then the robot will turn left, if an (=) sign is received, the robot will 

come to a full stop. The “F” and “R” represent forward and reverse. Figures 10 and 11 

show the overview of processing in the Arlobot. 
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Arduino Sensors 
Capture Distances

Distances and Sensors 
are Stored in Arrays

Arrays are Sent to 
Raspberry Pi in String 

form

Raspberry Pi Analyzes 
the String and outputs 

a Command

Arduino Receives 
Command and 

Actuates the Motors

Figure 10: This is the overview of the overall process taking place 
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Figure 11: Process flow chart in Raspberry Pi 

The Arduino code consists of a part that sorts the sensors and their distances into 

arrays and then sends those arrays out through the Serial.begin (9600) serial 

communication. The number of characters is designated to be nine as fits the number of 

bytes that are sent from the Raspberry Pi to the Arduino within the output. The code 

organizes these strings by recognizing the first character in the string to be “<” sign and 

the last character in the string to be “>”. The void loop RecvWithStartEndMarkers is 

responsible for performing this action and storing the data in an index. The 

Is Arduino Sending out Data?

No    

Print an Error in Communication

Yes

Stop Robot Motion

Yes

Rotate Left

No

Rotate Right

No

Move Forward or Move in Reverse

No

Is the shortest distance > 10cm?

No

Is the sensor number {2,3,7,8}?

Yes

Is the sensor number {5,6,10,11}?

Yes

Is the sensor number 4?

Yes

Store data as a Sting. Dump old data. Parse the 
sting to analyze the sensor number. Read the 

shortest distance.
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VoidParseData void loop takes the index and parses it into usable data. For example, the 

messageFromPC and the IntegerFromPC are named from the string stored in the Index 

coming from the Raspberry Pi. This is stored as an integer or a character and used to 

actuate the motors through the Polulu controller.  

3.3 bIRIS Network 

3.3.1 Virtual Datacenter 

The bIRIS virtual data center was chosen to make efficient use of server hardware 

while providing a dynamic, reconfigurable environment in which services and control 

systems could be built, altered, and shut down as needed by the client robot or users. 

Furthermore, the virtualized datacenter provides a high degree of fault tolerance for the 

virtual machines that isn't found in physical datacenters; virtual machines can be 

immediately rebooted upon crashing, or migrated to another host machine without an 

interruption in service should the host machine fail. 

Six physical servers were built in total to provide ample resources for the virtual 

datacenter and future expansion. Five of the machines functioned as host servers for 

virtual machines, while the sixth provided network-attached storage (NAS) for the 

storage of the virtual machine files. 

Through software-defined networking (SDN), the virtual machines and host 

machines did not have to use the same network interfaces for communicating with other 

devices, allowing for the segregation of network traffic based on the nature or purpose of 

the data being transferred. Three networks were defined to segment network traffic into 

three categories: management, storage, and testbed. Management traffic was placed on its 
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own network to prevent the disruption of the virtual datacenter operation by high network 

usage by client or storage devices. Finally, this leaves the testbed network, which 

contains all robots, virtual machines hosting control software, cloud resources outside of 

the virtual datacenter, and client PCs through which users interact with the cloud. 

Physically, the devices were connected to a Dell PowerConnect 6248 Ethernet 

switch via category 6 twisted pair cables. The PowerConnect switch was segmented into 

three virtual local access networks (VLANs) to create the three aforementioned networks 

(shown in Figure 12) and prevent traffic from crossing over the networks. For wireless 

connectivity on the Testbed network, a Linksys E2700 wireless router was used to 

provide a Wi-Fi access point for remote systems.   

 

Figure 12: Testbed Network Physical Topology 

Six computers were built to function as the host servers of the datacenter, though 
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one was later designated to provide NAS for the datacenter. The six machines were built 

nearly identically, with the sole difference being the NAS machine contained larger hard 

drives for increased storage capacity. 

Five machines were provided with USB flash drives imaged with VMware's ESXi 

5.5 Hypervisor operating system. The ESXi configuration screen is shown in Figure 3.4. 

USB flash drives were used as opposed to the local hard drives so that there would be no 

need to create a small partition on a hard drive in each machine for operating system 

storage; this way, the hard drives remain fully free for cloud storage use. Each machine 

was connected to an Avocent Autoview Digital KVM Switch, to which a console was 

attached that would provide a direct console user interface (DCUI) to each machine that 

was configured to be used in the datacenter. 

Next, VMware's vSphere Client was installed on a computer temporarily located 

on the management network. Through the vSphere client, a local datastore was 

configured on which to store the datacenter management VM. Server01’s networking was 

further configured to designate the network interface connected to the management 

network to be used for management traffic. 
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Figure 13: vSphere Web Client Interface to ESXi Machine 

Through the vSphere Client interface, a virtual appliance (vApp) was deployed on 

server01. vApps are simply VMs with a preconfigured operating system and settings. 

This particular Linux-based vApp was loaded with the vCenter Server management 

software, which provides a management interface at the datacenter level, as opposed to 

the host level the ESXi operating system provides. 

Through the DHCP server, the IP address of every Testbed network interface 

(whether a robot, PC, or virtual machine) was defined in a single location, as opposed to 

each robot, PC, and virtual machine deciding its own IP address. 
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The bIRIS Testbed system comprised of a wide range of systems and robots, 

including robots, cloud assets not oversaw by the datacenter, control systems and the 

VMs they were facilitated on, and the customer PCs through which clients could get to 

the Testbed system. The physical assets for the datacenter and in addition an example of 

the robots utilized for this study are shown in Figure 14. 

 

Figure 14: The bIRIS Datacenter and Robots 

3.3.2 Virtual Machines 

A virtual machine (VM) is an operating system or application environment that is 
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installed on software which imitates dedicated hardware. The end user has the same 

experience on a virtual machine as they would have on dedicated hardware (Rouse, 

2013). Numerous VMs were made at he datacenter to host software devoted to 

interfacing the robots with the ROS system or giving cloud administrations to the robots. 

These VMs had a system interface on the Testbed Network and were statically given IPs 

through the DHCP server, and also area names through the DNS server. Besides, a 

remote desktop convention (RDP) application was introduced on these VMs to give 

clients – through the physical PCs on the Testbed Network – access to the VMs to create 

and test programming. 

3.3.3 Client Computer 

A client computer is an individual PC that gets to the data and programs stored on 

a server as part of a network environment. Several physical PCs were put on the Testbed 

Network to permit users' entrance into the system to design robots and run programming 

situated on VMs. RDP programming was introduced on these PCs to be utilized to get to 

the VMs. These client customer PCs were furnished with a NIC such that the PCs would 

keep up their association with the campus network while likewise keeping up an 

association with the BIRIS Testbed Network. 

3.4 Robots 

  Figure 14 shows the Arlobot robots used in this work. 
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Figure 15: Arlobot and Arlobot with Raspberry Pi 

3.5 ROS in the Cloud Network 

ROS was the key component in the cloud network for integrating the robot with 

the network. There were a few different applications added to the ROS, the first helped 

run the core ROS functionality which was a Linux Ubuntu virtual machine. Linux 

Ubuntu uses a unit as the main user interface for different software.  This is important 

because Linux is really used as a stoplight, meaning it’s only reason for being used in this 

scope is to direct ROS traffic throughout the network, this virtual machine was not used 

for any software development. The Linux VM was used in a minimal version of ROS that 

had only the base communication libraries which didn’t need GUI tools because it wasn’t 

needed in the scope of this work.  
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Once the first virtual machine was built, another virtual machine was made and 

this one used all of ROS VMs applications that included many ROS packages for 

simulators, navigation, and visualization tools. The purpose for this ROS virtual machine 

was for a template from which figure ROS VMs would be cloned. The workspace was 

made to keep track of everything in the software. There was source control software that 

was used to easily track change in code and distribute code. The VM was converted to a 

template once the RDP software was added to the VM to give client computers access to 

the network. 

The vCenter Server software permits the use to make utilization of VM template. 

These templates are VMs that can't be turned on, however can rapidly be cloned into 

operational VMs. VM Templates can have extra programming introduced and documents 

put away on the PC this also have a custom equipment design. The beforehand made 

template was utilized as the establishment of all VMs that gave cloud robotics autonomy 

administrations through ROS. 

3.6 Setup of Arlobot 

3.6.1 Arlobot Installation 

The Arlobot was loaded with Linux through a raspberry pi which had its own 

hostname. This Pi has it’s own firmware and a Micro SD card that could support a list of 

data. The Arlobot is shown in Figure 17. 
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Figure 17: Arlobot with Raspbeery Pi and ASUS Xtion PRO LIVE 

3.6.2 Arlobot Wireless Configuration  

The Arlobot is one of the simpler devices to integrate because unlike other 

devices the raspberry pi helped in all the network system necessities. The Arlobot’s 

native wireless interface was connected to the bIRIS Testbed Network using the 

network’s SSID and the robot password.  

3.6.3 Arlobot ROS Driver  

The full ROS software was introduced on the Arlobot, alongside the Arlobot-
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particular ROS bundles fundamental for interfacing with the automated base. Also, ROS-

OpenNI programming was introduced for interfacing with the Arlobot's ASUS camera. 

3.6.4 Raspberry Pi Specifications 

All Raspberry Pi’s include the same VideoCore IV GPU , and either a single-

core ARMv6-compatible CPU or a newer ARMv7-compatible quad-core one (in Pi 2); 

and 1 GB of RAM (in Pi 2), 512 MB, or 256 MB (in older models A and A+). They 

have Secure Digital (SD) (models A and B) or MicroSD (models A+ and B+) sockets for 

boot media and persistent storage. In 2014, the Raspberry Pi Foundation launched 

the Compute Module, for use as a part of embedded systems for the same compute power 

as the original Pi. In early February 2015, the next-generation Raspberry Pi, Raspberry Pi 

2, was released. The system does not come with a built in real time clock. Operating 

systems include any unix-like compiled for ARM architectures including linux and 

freeBSD. 

The detail specification of this board is given in the Fig 16. 

https://en.wikipedia.org/wiki/VideoCore
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/ARM_architecture#32-bit_architecture
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/ARM_architecture#32-bit_architecture
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Gibibyte
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Mebibyte
https://en.wikipedia.org/wiki/Secure_Digital
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Figure 16: Specification for Raspberry Pi 

An LCD screen was added as an interfacing unit. The monitor would allow 

Python scripts to be adjusted on the fly. It would display images dependent on the 

environment that the robot is responding to. A frame was designed and laser cut from a 

0.118” thick acrylic sheet. The frame comprised of four layers. The back layer consisted 

of a sheet with a cutout for the power connection port. Two shimming layers with a 

cutout size of the LCD screen was added to provide a gap between the back layer and the 

screen. The gap was to ensure that the LCD screen circuit di not overheat from 

constriction. A front layer completed the assembly of the frame by sandwiching the 

screen between the front and back layers. The layers were welded together with an 

acetone solution. The screen was to tilt about the horizontal axis 50° so that the 

orientation of the screen was able to fit the purpose of operation. Two brackets with slots 
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to allow the tilting of the screen were attached on the back of the frame. A mount was 3D 

printed with ABS plastic to serve as a pivoting point for the frame. The piece also mounts 

the frame onto the robot’s camera supporting stand. The schematics of the frame 

assembly and mount are provided in Appendix A.  

 

 

Figure 17: Layout of the Raspberry Pi Case 
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Figure 18: Arch holder for Raspberry Pi 

3.6.5 Arduino Mega Board 

This microcontroller was the brain of the robot. It processed the data from the 

sensors to tell the robot where to go. The Arduino Mega 2560 microcontroller was used to 

program the robot. The specification for the microcontroller can be found in Appendix C. 

5 V supply from the Arduino is provided to the Pololu and ten PING sensors. Each PING 

sensor signals were connected to signal input channels 2 to 12.  

 

Figure 19: Arduino MEGA Board 

The details of the Arduino Mega components are below. 
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 Microcontroller: ATmega2560 

 Operating voltage: 5 V 

 Input voltage (recommended): 7-12 V 

 Digital I/O pins: 70 (of which 15 provide PWM output) 

 Analog input pins: 16* 

 DC current per I/O pin: 40 mA 

 DC current for 3.3V pin: 50 mA 

 Flash memory: 256 KB of which 8 KB used by bootloader 

 SRAM: 8 KB 

 EEPROM: 4 KB 

 Clock speed: 16 MHz 

 

 

Figure 20: Arduino microcontroller wiring diagram 
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3.7 Arlobot ROS   

 

Figure 21: Complete Process for ROS 

In the complete process above was launched in the console with the command 

line arguments to specify IP address of the targeted Arlobot and to give all of the ROS 

computations into a specified location. The horizontal latter step is necessary to properly 

execute all the needed operations for the network and for the data to transfer properly. 

The process begins with the Arduino and goes through publishers and subscribers and 

end in the Virtual Machine. Once in the virtual machine the information is processed the 

ROS network monitor and returns all the information back to the Arduino to execute. 
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 The Arlobot was used in many different steps dealing with the time the ROS 

network execute the time. Most of the times were at random, but two were done at the 

same time in the day time and night with seconds between them to give a clear 

understanding of the time differences. The time analysis is to see how the latency is 

executed and helps in understand when best to run these experiments in in later works. 

3.8 Image Detection 

One of the primary goals of the project was to integrate a camera into the 

operation of the robot in order to perform long-range distance evaluation and decision-

making. This would be accomplished by using an Asus Xtion Pro Live camera that 

included a laser rangefinder in its hardware. Using the laser rangefinder, the camera 

would be able to evaluate the distances to various objects in the two-dimensional image 

that it captures, allowing for more accurate distance evaluation over a significantly 

increased range. This data would then need to be communicated to the Raspberry Pi used 

to control the robot, which would use the data in conjunction with the data received from 

the array of Ping sensors to make decisions with regard to motor and motion control. 

Building OpenNI2 from source is the main part of this operating well, but this 

would take a long time. To save time and work efficiently the information for the 

Raspberry Pi was packaged from Hirotaka’s website, this saved a lot of time and worked 

exceptionally well for the main objective. The data is simply depth information for each 

pixel position. When the SimpleRead program was running understanding this will make 

a lot more sense when an object is moving back and forth in front of the camera. 

The area scanned by ASUS XTION Pro Live below shoots a person, the 

manufacturer advices to keep the device at a distance of 1 and 8 meters from the 
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designated object because less is needed for the busts. 

 

Figure 22: ASUS Xtion Shot of a Person 

The most important point of view in this phase is to find a position in which the 

sensor operates at its best, and manages to produce reasonable details of what has been 

framed. The usage of the GPUs of graphics cards implies some compatibility limits, and 

in fact along with the software a compatibility list is supplied with the various graphics 

cards. The software has two operating modes: a normal one (Standard, with a 1x1x1m 

volume, subdivided in 256 elements for each dimension) or a high resolution one (Hi-res, 

with the same volume, but with 512 elements). (Landoni, 2015) 

Of the potential methods assessed for obtaining and communicating range data 

from the camera to the Raspberry Pi, the most successful was the use of a pre-prepared 

archive file that operated on open Frameworks, an open source C++ toolkit that is 

designed to be easily used across multiple operating systems and IDEs. As the given 

archive could not operate on the base software of the Raspberry Pi, the open Frameworks 

software had to be installed before downloading the camera control archive. Following 
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the initial setup, the archive was installed, which allowed for range data to be recorded 

and sent to the Raspberry Pi. 

3.8 Experimental Design 

There were plenty of control and data acquisition used with the Arlobot and were 

implemented in the testing of the environment. Taking a look at how the ASUS camera 

will also be added to this the plan is to successfully have the camera pick an object up at 

a certain distance and have to Ping sensors react to that distance and send it to the 

Raspberry Pi. The ASUS will react when given objects are added around it and it should 

send a response to the Raspberry Pi to activate and the Arlobot will follow its main 

instructions. 

To investigate the performance of Arlobot in the network, a network performance 

baseline had to be established, highlighting the least amount of measures of the robot 

needed to characterize the environment Network performance was determined based on 

three points: 

 Network throughput, the speed at which data is transferred between devices, 

 Network latency, the amount of time a data packet is in transition, and 

 Dropped packets, the percentage of data packets that do not arrive at their 

destination and must be retransmitted.  

 How the network reacts with various times in the network. 

The normal idleness experienced by Arlobot is plotted for every experiment and the 

measurable parameters of the analysis are accounted for in a table. For the computation of 

the factual parameters, times of strangely high inertness were disregarded as they were not 

illustrative of the robot's impact on the system. 
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CHAPTER 4: EXPERIMENTAL RESULTS AND DISCUSSIONS 

4.1 Baseline Testing  

 Testing the bandwidth of the network was necessary to determine the limits of the 

network. From the observation it was clear that the wired network performed  

exceptionally well compared to the wireless network, but the wireless network was a 

better fit. The figure below shows the maximum bandwidth data for the network (Reid, 

2015). 

 

Figure 23: Maximum Wired Throughput of Network 

The reason for the wireless network being a better fit for the experiment is 

because the wired network exceeded the specifications needed by 5.86% for the 1Gbit per 

second (Reid, 2015). Therefore the focus on the baseline wireless test was done for the 

Arlobot for the given time in the day and also key times in the day that would give a good 
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understanding  of the experiment. 

4.2.1 Daytime Test  

 The first baseline test (shown in Figure 24) was conducted by testing the latency 

between the network and the Arlobot connected to the network at a random time in the 

day and random time at night with the time length of 2000 seconds which is 33.33 

minutes. The results are shown below.   

 

Figure 21: Baseline of Arlobot-to-Cloud Latency in the Daytime 

The baseline wireless latency test gave an average of 2.557 ms, and a standard 

deviation of 2.969 ms for the time of 2000 seconds which is 33.33 minutes test. The 

packet loss was at zero, but there were a few that were not received, but this didn’t affect 

the data transmitted. These losses are the red lines in the graph which could happen for 
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the same reasons as the graph changes because of different interfaces going on in the 

daytime.  

4.2.2 Evening Test 

 Next, the Arlobot was used in the evening at a random time also and the baseline 

test was conducted (shown in Figure 25) by testing its latency between the network and 

the Arlobot connected to the network with the same time length of 2000 seconds which is 

33.33 minutes. The Results are shown below. 

 

Figure 22: Baseline of Arlobot-to-Cloud Latency in the Evening 

The baseline wireless latency test gave an average of 2.425 ms, a standard 

deviation of 3.077 ms, and zero loss in packets transmitted for the time of a 2000 
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the many wireless networks used on campus and clients devices in the building used for 

the experiment. 

4.2.3 Comparisons of the Daytime and Evening  

Table 1: ROS Day and Night Arlobot Latency Results 

 

 

Figure 26: Graph of Day and Evening Latency Comparison 

 

 The table shown above shows that time of experimentation makes a difference for 

the robot, because more is needed from the network to operate a functional robot with no 

issues.  
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4.3 Daytime and Night Exact Time Observation 

 This test was done to show what the results could possibly change if the same 

time in the day and night was used for the network test. The daytime would be at 

12:03pm and night 12:03am with seconds separating them. These test were done for 3 

hours 06 minutes and 67 seconds which was fairly long but was chosen to get a full 

understanding of the two time spans. 

 

Figure 27: Baseline Wireless Latency at 12:03pm in the Day 
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Figure 28: Baseline Wireless Latency at 12:03pm in the Day 

4.4 Daytime and Night Longest Time Period Observation 

 For the next test done for the longest time it was done for 3 hours 33 minutes and 

33 seconds. This time was done for an extremely large time period to test how well the 
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Figure 29: Longest Time Period Latency in the Day 
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Figure 30: Longest Time Period Latency in the Night 
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Figure 31: Longest Time Period Latency in the Night (Large packet loss) 

4.5 Daytime and Night Final Time Test 

 As determined from the longest time periods test, a lot of data was not received so 

the test was done on minimal time scale. The first test was done for 2 hours, 23 minutes, 

and 33 seconds in the day and night. The last test was done for 1 hours, 6 minutes, and 67 

seconds. Results are presented in Figures in 33-36. 
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Figure 32: Latency in the Day for 2:23 
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Figure 33: Latency in the Night for 2:23 
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Figure 34: Latency in the Day for 1:06 
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Figure 35: Latency in the Night for 1:06 

4.6 Analysis of the Three Time Periods 

 In the table below, results and statistical data for the four times are summarized to 

show how each one operated in the network with its given time scale.  

Table 2: ROS Night Time Latency Results 
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Figure 36: Minimum, Standard Deviation, and  Average Graph 

 

One clear conclusion is that these tests are better done in the night time with a 

short time scale. The best results came from the 1:06 time scale which wasn’t too long 

and the results were great. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusion 

A mobile robotic system, Arlobot,  worked well without significant issues of 

network latency and data integrity. The robot was integrated with a ROS enabled cloud 

robotic environment. The Arlobot had local processors of Arduino Mega and Raspberry 

Pi. The Robot Operating System was used as the main source of interaction for the robot-

to-cloud in the cloud network. The Raspberry Pi provided the interface between the cloud 

and the robot in the network. 

The network performance and data integrity were investigated when the Arlobot 

communicated with the cloud network. Baseline performance was established with the 

robot in the network. Experiments were conducted to test the network performance under 

different conditions. 

             This analysis confirmed with the thesis hypothesis that the standardized robot 

could work well  without significant issues of network latency and data integrity in the 

cloud network.  

 

5.2 Recommendations for Future Work 

Due to the time constraints, the investigations were limited to the low bandwidth 

data. In the next phase, investigations with high-bandwidth data would be considered. 

The Arlobot had a lot of room for improvement although everything was running 

correctly, another part that should have been viewed is possibly using another Arduino 

for the simple fact that the Arduino board kept burning out. In the next phase, the camera 
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would be utilized with more image processing tasks. The inclusion of heterogeneous 

group of robots in the network would also be the topic of next phase investigations. 
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APPENDICIES 

 

Appendix A: Arduino code for Arlobot. 

 
// Receive with start- and end-markers 

 

const int PING_MAP[] = { 

  2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; 

 

const byte numChars = 11; 

char receivedChars[numChars]; 

 

boolean newData = false; 

 

void setup() { 

    Serial.begin(9600); 

    Serial.println("<Arduino is ready>"); 

} 

 

void loop() { 

    recvWithStartEndMarkers(); 

    if (newData == true) 

      process_serial_in(); 

       

    // Process local data to send to RPi 

    String serial_output = process_serial_out(); 

 

    // Send serial data to RPi 

    send_serial_out(serial_output); 

 

} 

 

void recvWithStartEndMarkers() { 

    static boolean recvInProgress = false; 

    static byte ndx = 0; 

    char startMarker = '<'; 

    char endMarker = '>'; 

    char rc; 

  

    while (Serial.available() > 0 && newData == false) { 

        rc = Serial.read(); 

 

        if (recvInProgress == true) { 

            if (rc != endMarker) { 

                receivedChars[ndx] = rc; 



 

 
 

                ndx++; 

                if (ndx >= numChars) { 

                    ndx = numChars - 1; 

                } 

            } 

            else { 

                receivedChars[ndx] = '\0'; // terminate the string 

                recvInProgress = false; 

                ndx = 0; 

                newData = true; 

            } 

        } 

 

        else if (rc == startMarker) { 

            recvInProgress = true; 

        } 

    } 

} 

 

void process_serial_in() 

{ 

   

  String serial_input = receivedChars; 

  // serial_input is of the form "+###,+###" 

 

  int sign_x = (serial_input[0] == '+') ? 1 : -1; 

  int sign_z = (serial_input[serial_input.indexOf(',')+1] == '+') ? 1 : -1; 

 

  String x_str = serial_input.substring(1,serial_input.indexOf(',')-1); 

  String z_str = serial_input.substring(serial_input.indexOf(',')+2); 

 

  int x = sign_x * x_str.toInt(); 

  int z = sign_z * z_str.toInt(); 

 

  write_motor_commands( x, z); 

  //Serial.print("X value is "); 

 

  //Serial.print(x); 

  //Serial.print("| Z value is "); 

  //Serial.println(z); 

} 

 

void write_motor_commands(int x, int rotz) 

 

{ 

  int left_int = (x + rotz)/100*128 + 127; 



 

 
 

  int right_int = (x - rotz)/100*128 + 127; 

   

  byte left_byte = (byte)left_int; 

  byte right_byte = (byte)right_int; 

 

  write_left_motor(left_byte); 

  write_right_motor(right_byte); 

}  

 

void write_left_motor(byte value) 

 

{ 

  Serial1.write(0xFF); 

  Serial1.write(1); 

  Serial1.write(value);  

} 

 

void write_right_motor(byte value) 

{ 

  Serial1.write(0xFF); 

  Serial1.write(2); 

  Serial1.write(value); 

 

} 

 

String process_serial_out() 

 

{ 

  String serial_out = "<"; 

   

  for ( int i = 0; i < sizeof(PING_MAP)/sizeof(int); i++) 

  { 

    serial_out += String(read_ping(PING_MAP[i])); 

    serial_out += '_'; 

  } 

  serial_out [serial_out.length()-1] = '>'; 

   

  return serial_out; 

} 

 

 

void send_serial_out(String serial_output) 

{ 

  Serial.println(serial_output); 

} 

long read_ping(int pin_number) 



 

 
 

{ 

  pinMode(pin_number, OUTPUT); 

  digitalWrite(pin_number, LOW); 

  delayMicroseconds(3); 

  digitalWrite(pin_number, HIGH); 

  delayMicroseconds(10); 

  digitalWrite(pin_number, LOW); 

 

  pinMode(pin_number, INPUT); 

  long result = pulseIn(pin_number, HIGH); 

   

  delay(25); 

   

  return result; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Appendix B: Processing code for Python. 

 

#!/usr/bin/python 

#======================================== 

# 

# EV3 ROS Driver edited by Theodore Cornelius Smith 

# Filename: serial_proj.py 

# 

#======================================== 

# Import the serial 

import serial 

 

# Import the rospy module 

import rospy 

 

# Import ROS Msgs 

 

from std_msgs.msg import Int8 

 

from geometry_msgs.msg import Twist 

 

# Import ev3 driver messages 

# Might use generic messages, but for now we need the header data 

# to determine network integrity 

# Dict for EV3 peripherals (sensors + motors) 

 

p = {} 

 

cs_pub = None 

 

def init_ros_publishers(): 

 

 global cs_pub 

 

 cs_pub =rospy.Publisher('arlobot/ping',UInt8MultiArray,queue_size=10) 

 

def publish_ping_sensor(): 

 

 global cs_pub 

 

   global startMarker, endMarker 

 startMarker = '<' 

 endMarker = '>' 

   

  ck = "" 

   x = "z" # any value that is not an end- or startMarker 



 

 
 

   byteCount = -1 # to allow for the fact that the last increment will be one too 

many 

    

   # wait for the start character 

   while  ord(x) != startMarker:  

     x = ser.read() 

   

   # save data until the end marker is found 

   while ord(x) != endMarker: 

     if ord(x) != startMarker: 

       ck = ck + x  

       byteCount += 1 

     x = ser.read() 

    

 

# Add sensors from Guynays code here 

 

 cs_pub.publish(ck.split('_')) 

# print.cs_pub 

 

 

 

def subscribe_cmd_vel(data): 

 

 global p 

 

 potential_left = (data.linear.x - data.angular.z)* 255 

 

 if potential_left > 255: 

 

  potential_left = 255 

 

 elif potential_left < -255: 

 

  potential_left = -255 

 

 potential_right = (data.linear.x + data.angular.z) * 255 

 if potential_right > 255: 

 

  potential_right = 255 

 

 elif potential_right < -255: 

  potential_right = -255 

 

 str = '<' + potential_Left + ', ' + potential_Left + '>' 

# print.str 



 

 
 

 ser.write(str) 

 

def on_shutdown(): 

 global cs_pub 

 cs_pub.unregister() 

 

serPort = "/dev/ttyACM0" 

baudRate = 9600 

ser = serial.Serial(serPort, baudRate) 

print "Serial port " + serPort + " opened  Baudrate " + str(baudRate) 

 

# Main function 

 

def arlo_driver(): 

 

 rospy.init_node('arlo_driver',anonymous=False) 

 init_ros_publishers() 

 s = 

rospy.Subscriber("arlobot/cmd_vel",Twist,subscribe_cmd_vel,queue_size=10) 

 

 rate = rospy.Rate(100) # 25Hz 

 

 while not rospy.is_shutdown():  

  if s.get_num_connections() == 0: 

   publish_ping_sensor() 

   

  rate.sleep() 

 

if __name__ == '__main__': 

 try: 

  arlo_driver() 

 except rospy.ROSInterruptException: 

  pass 
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