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MI to handle missing data in clinical trial data. Particularly, the intent of this dissertation is to 

exploit supplemental knowledge about the missing data mechanism for the amelioration of 

inference in clinical trials.  

Clinical trials are made with more scientific rigor than what was previously seen in 

survey design, emphasizing two important features: randomization and control. The aim of these 

studies is to answer specific questions about the effectiveness of biomedical or behavioral public 

health interventions, with the concern of introducing a new treatment that could be a drug or a 

medical device. The importance of clinical trials in public health is amplified through the 

pharmaceutical industry, a recognized major partner in public health. The 1962 Kefauver-Harris 

(K-F) Amendments to the Food, Drug and Cosmetics Act of 1938 clearly indicate that for a drug 

to be authorized for commercialization, effectiveness should be demonstrated by well-controlled 

clinical trials (Bren, 2007). Clinical trials are very well regulated, and the agency authorizing the 

conduct of clinical trials in the US is the Food and Drug Administration (FDA). Clinical trial 

data are largely about safety and efficacy of the new treatment. In phase III trials, a random 

sample of voluntary participants, sick or healthy, are studied to draw inference on the larger 

population of potential patients.  There is a great advantage to the validity of results derived from 

clinical trials due to randomization, but this advantage can be compromised by the presence of 

missing data, particularly when the presence of missing values depends on the subjects in the 

randomized groups (National Research Council, 2010). 

The necessity to clarify the issues raised by missing data and to consider the reason for 

missing data and the consequences for the analysis have been acknowledged (Carpenter and 

Kenward, 2013). Upon the request of the FDA, the National Research Council formed a panel on 

handling missing data in clinical trials that came out with grounded and well-defined 
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recommendations (2010). The panel noted that the regularity of missing observations in clinical 

trials depends on health conditions under study in the trials, different levels of stress created by 

participation in a trial, and how participation is facilitated. They acknowledged that in the 

context of clinical trials, the treatment of missing data starts with an effort to eliminate all 

sources of missing data. They suggested using the information in the observed data to reduce 

potential bias attributed to missingness. In doing so, the panel pointed out that outcomes, 

designs, and implementation methods can have considerable influence on the fluctuation of the 

amount of missing data in clinical trials. These influences are, for example, a continuous 

collection of data after participation dropout, the presence of outcome variables or clinical 

endpoints at risk of not being defined for some participants due their condition, the design 

method for collecting data, and the introduction of composite outcomes.  

The persistence of missing data in the strictly organized setting of randomized controlled 

trials (RCT) is evidence of the difficulty in eliminating missing data in research studies. Reasons 

for missing data are diverse. The first consideration is that no matter what effort is done to 

prevent missing data, things just happen; a participant may die, a record may be lost, results may 

not be accessible, or the participant may not be able or be willing to meet for evaluation. The 

possibility of missing data is even guaranteed in the ethical consideration required for clinical 

trials established by the adopted 1947 Nuremberg Code. Under this code, a participant can stop 

their participation at any time without further explanation. We have highlighted a few examples 

involving missing data in clinical trials. These examples include the analgesic trial, the 

depression trials, the fluvoxamine trial, and the Toenail data (Molenberghs & Kenward, 2007).  

In the analgesic trial, 359 patients were treated for pain caused by chronic non-malignant 

disease during 12 months. Measurement were taken at 3, 6, 9, and 12 months using a Global 
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Satisfaction Assessment scale. Only 40% of the participants completed all the measurement 

sessions which resulted in dropouts and intermittent missing data values. The depression trials 

data came from antidepressant clinical trials and contain the Hamilton depression rating scale 

used to measure the depression status of participants (Mallinckrodt et al., 2003). Although 

baseline values were observed for all participants, dropouts were observed during subsequent 

visits.  The Fluvoxamine trial data resulted from controlled clinical trials for fluvoxamine, a 

serotonin reuptake inhibitor antidepressant drug, conducted with 315 patients having measures 

taken at 2, 4,  8, and 12 weeks after the initial visits (Burton, 1991).  The toenail data objective 

was to assess the relative efficacy and safety of two antifungal compounds in the treatment of 

dermatophyte onychomycosis after recruiting 378 patients who were followed for a period of 12 

weeks, generating about 76% missingness in the process (De Backer et al., 1995). 

The vast majority of clinical trial data are recorded longitudinally. Within this structure, 

there are two possible type of missingness: monotone and non-monotone. The monotone or 

dropout type of missing data is by far the more common in clinical trials (Molenbbergs and 

Kenward, 2007). Supposing measurements are recorded during visits, dropout happens when a 

participant who miss a visit do so for all subsequent visits until the end of the trial. Data are said 

to have a monotone missing data pattern when all missing values are dropouts. Alternatively, 

non-monotone missing data consists of intermittent missing values. In a non-monotone missing 

data pattern, some participants miss a visit and do not miss all subsequent visits.  

 The potential impact of missing values on the inference that can be drawn from 

randomized control trial with missing data is a major concern in clinical trials. What is important 

to know is how missing data affect the analysis. Cases of loss of efficiency and bias have been 

reported to be associated to missing data (Rubin, 1976, 1987; Molenberghs and Kenward, 2007; 
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Carpenter & Kenward, 2013).  Obviously, a better understanding of the reasons why the data are 

missing is the first step in finding solutions for the effects of missing data on the analysis. 

Different classifications of the reasons why the data would be missing are found in the taxonomy 

of missing data mechanism that consist of missing completely at random (MCAR), where 

missingness is independent of study variables; missing at random (MAR), where missingness 

can depend on observed variables but not on missing outcomes; and missing not at random 

(MNAR), where missingness depends on the unobserved values (Rubin, 1976; Little & Rubin 

2002). This classification consists of precise mathematical expressions of the relationship 

between the measured variables and the probability of missing data. 

 The terminology of missing data used here is based on Little and Rubin’s structure (2002) 

as presented by Molenberghs and Kenward (2007) as follows: The measurements can be 

expressed in the data as 𝑌𝑌𝑖𝑖𝑖𝑖  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  

𝑖𝑖 (𝑖𝑖 = 1, … ,𝑁𝑁)𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠),  

𝑗𝑗 (𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖  ) 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖. 

Following this notation,  

𝑅𝑅𝑖𝑖𝑖𝑖 = �
1 𝑖𝑖𝑖𝑖 𝑌𝑌𝑖𝑖𝑖𝑖  𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
0               𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  is the indicator of missingness 

𝑌𝑌𝑖𝑖 =    �𝑌𝑌𝑖𝑖1,  .  . .  ,𝑌𝑌𝑖𝑖𝑛𝑛𝑖𝑖�
′
  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖. 

𝑅𝑅𝑖𝑖  𝑖𝑖𝑖𝑖  𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 

The vector of outcomes for a subject can be partitioned as:  

𝑌𝑌𝑖𝑖 = (𝑌𝑌𝑖𝑖𝑂𝑂 ,𝑌𝑌𝑖𝑖𝑚𝑚),  �
𝑌𝑌𝑖𝑖𝑂𝑂 ,  𝑅𝑅𝑖𝑖𝑖𝑖 = 1 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑌𝑌𝑖𝑖𝑚𝑚 ,𝑅𝑅𝑖𝑖𝑖𝑖 = 0 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

 

The full data are given by (𝑌𝑌𝑖𝑖,𝑅𝑅𝑖𝑖)  with density 𝑓𝑓�𝑦𝑦𝑖𝑖 , 𝑟𝑟𝑖𝑖|𝑋𝑋𝑖𝑖 ,𝑊𝑊𝑖𝑖 ,  𝜃𝜃,𝜓𝜓� 
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where 𝑋𝑋𝑖𝑖 is the design matrix of measurements with vector parameter  𝜃𝜃, and 𝑊𝑊𝑖𝑖  is the design 

matrix of missingness with vector parameter 𝜓𝜓. For simplification, the vector parameters can be 

omitted when representing the density function to have 𝑓𝑓(𝑦𝑦𝑖𝑖 , 𝑟𝑟𝑖𝑖|𝑋𝑋𝑖𝑖,𝑊𝑊𝑖𝑖). 

 The missing data framework denotes different factorizations of the full density for 

modeling incomplete data. Possible missing data frameworks are the selection model, the pattern 

mixture model, and the shared parameter model. The selection model featured by Heckman 

(1976) encompasses the factorization of the full density as the product of the marginal density of 

the measurement process by the density of the missingness process conditional on the outcome.     

𝑓𝑓(𝑦𝑦𝑖𝑖, 𝑟𝑟𝑖𝑖|𝑋𝑋𝑖𝑖 ,𝑊𝑊𝑖𝑖) = 𝑓𝑓(𝑦𝑦𝑖𝑖|𝑋𝑋𝑖𝑖)𝑓𝑓(𝑟𝑟𝑖𝑖|𝑦𝑦𝑖𝑖 ,𝑊𝑊𝑖𝑖) 

The pattern mixture model lets the marginal density to be factored as the product of the 

density of the measurement process conditional on the missingness by the marginal density of 

the missingness process (Little, 1993). 

𝑓𝑓(𝑦𝑦𝑖𝑖 , 𝑟𝑟𝑖𝑖|𝑋𝑋𝑖𝑖 ,𝑊𝑊𝑖𝑖) = 𝑓𝑓(𝑦𝑦𝑖𝑖|𝑟𝑟𝑖𝑖,𝑋𝑋𝑖𝑖)𝑓𝑓(𝑟𝑟𝑖𝑖|𝑊𝑊𝑖𝑖) 

The shared-parameter model uses the same factorization as the pattern mixture model 

with at least one component of the parameter vector shared between both factors (Wu and 

Carroll, 1988).  

𝑓𝑓(𝑦𝑦𝑖𝑖 , 𝑟𝑟𝑖𝑖|𝑋𝑋𝑖𝑖,𝑊𝑊𝑖𝑖 , 𝑏𝑏𝑖𝑖) = 𝑓𝑓(𝑦𝑦𝑖𝑖|𝑟𝑟𝑖𝑖,𝑋𝑋𝑖𝑖 , 𝑏𝑏𝑖𝑖)𝑓𝑓(𝑟𝑟𝑖𝑖|𝑊𝑊𝑖𝑖 , 𝑏𝑏𝑖𝑖) 

where 𝑏𝑏𝑖𝑖 is the component of the parameter vector shared between the two factors. 

The taxonomy of missing data mechanisms (MCAR, MAR, and MNAR) seems to find a 

natural expression in the selection model framework (Molenberghs & Kenward, 2007). 

Consequently, the mathematical expression of the missing data mechanism that follows will be 

based on this framework. 
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Under MCAR, the probability of an observation being missing is independent of the 

responses. Drawing from the basic probabilistic notion that if A and B are independent then 

P(A|B)=P(A), the conditional density of missingness given the outcome can be written as: 

𝑓𝑓(𝑟𝑟𝑖𝑖|𝑦𝑦𝑖𝑖 ,𝑊𝑊𝑖𝑖) = 𝑓𝑓(𝑟𝑟𝑖𝑖|𝑊𝑊𝑖𝑖) 

When this term is replaced in the factorization of the full density, the expression becomes 

𝑓𝑓(𝑦𝑦𝑖𝑖 , 𝑟𝑟𝑖𝑖|𝑋𝑋𝑖𝑖 ,𝑊𝑊𝑖𝑖) = 𝑓𝑓(𝑦𝑦𝑖𝑖|𝑋𝑋𝑖𝑖)𝑓𝑓(𝑟𝑟𝑖𝑖|𝑦𝑦𝑖𝑖,𝑊𝑊𝑖𝑖) = 𝑓𝑓(𝑦𝑦𝑖𝑖|𝑋𝑋𝑖𝑖)𝑓𝑓(𝑟𝑟𝑖𝑖|𝑊𝑊𝑖𝑖) 

This implies that 𝑦𝑦𝑖𝑖and 𝑟𝑟𝑖𝑖 are independent, given 𝑋𝑋𝑖𝑖 and 𝑊𝑊𝑖𝑖 . The joint distribution of the 

observed values and the missingness becomes  

𝑓𝑓�𝑦𝑦𝑖𝑖𝑂𝑂, 𝑟𝑟𝑖𝑖|𝑋𝑋𝑖𝑖,𝑊𝑊𝑖𝑖� = 𝑓𝑓�𝑦𝑦𝑖𝑖𝑂𝑂|𝑋𝑋𝑖𝑖�𝑓𝑓(𝑟𝑟𝑖𝑖|𝑊𝑊𝑖𝑖). 

For example, if MCAR is assumed in the study using the ETS survey data, valid inference could 

be made using only the 472 respondents of the 660 principals surveyed. It is assumed that the 

472 respondents constitute a random sample of the 660 schools. The MCAR assumption should 

not be a characteristic of the data itself, but decided based on the analysis considered (Carpenter 

and Kenward, 2013). The assumption of MCAR is very stringent and less likely to occur in most 

research settings. There is a statistical test to determine if the data are not MCAR (Little, 1988). 

The hypotheses of the test are: 

𝐻𝐻0:𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

𝐻𝐻𝑎𝑎 :𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

If we reject 𝐻𝐻0 then we cannot conclude MCAR. Most MCAR cases arise in clinical trials when 

follow up is not available because the study has ended (administrative censoring), when 

participants become unable to complete the study due to displacement (migration-studies), and 

when there is a random failure of measurement equipment. 
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Under MAR, missingness depends on the observed variables but not on the unobserved 

values of the outcome of interest for which measurements are taken. The probability that data are 

missing on a particular variable does not depend on the value of that variable, after adjusting for 

observed variables. The distributional expression is that the probability of missingness is 

conditionally independent of the unobserved outcome. This statement is mathematically 

equivalent to:  

𝑓𝑓(𝑟𝑟𝑖𝑖|𝑦𝑦𝑖𝑖 ,𝑊𝑊𝑖𝑖) = 𝑓𝑓(𝑟𝑟𝑖𝑖|𝑦𝑦𝑖𝑖𝑜𝑜,𝑊𝑊𝑖𝑖) 

 The full density for the observed data is: 

𝑓𝑓�𝑦𝑦𝑖𝑖𝑂𝑂, 𝑟𝑟𝑖𝑖|𝑋𝑋𝑖𝑖 ,𝑊𝑊𝑖𝑖� = 𝑓𝑓�𝑦𝑦𝑖𝑖𝑂𝑂|𝑋𝑋𝑖𝑖�𝑓𝑓(𝑟𝑟𝑖𝑖|𝑦𝑦𝑖𝑖𝑜𝑜 ,𝑊𝑊𝑖𝑖) 

MAR can be considered when participants in a clinical trial are removed from the study because 

their condition cannot be controlled as previously indicated in the protocol or they drop out 

because of their previously recorded side-effect or their known baseline characteristics. 

  With the MNAR mechanism, the probability of a missing observation is dependent on the 

unobserved outcome. This assumption is made when the mechanism causing missing data is 

neither MCAR nor MAR. It is not possible to simplify the joint distribution in this case. The 

joint density of the observed outcome and the missingness is: 

𝑓𝑓(𝑦𝑦𝑖𝑖0, 𝑟𝑟𝑖𝑖�𝑋𝑋𝑖𝑖,𝑊𝑊𝑖𝑖) = �𝑓𝑓(𝑦𝑦𝑖𝑖|𝑋𝑋𝑖𝑖)𝑓𝑓(𝑟𝑟𝑖𝑖|𝑦𝑦𝑖𝑖 ,𝑊𝑊𝑖𝑖)𝑑𝑑𝑦𝑦𝑖𝑖𝑚𝑚 

Where 𝑦𝑦𝑖𝑖0 represent the observed data for the outcome and 𝑦𝑦𝑖𝑖𝑚𝑚 the missing part of the outcome. 

Assuming MNAR in clinical trials is often when participants dropout because of unobserved 

response.  

Multiple Imputation was first introduced by Rubin (1976, 1978) as a valid and efficient 

method of dealing with missing data in the survey context under the assumption of MAR.  At 

that time, the National Academy of Science formed a panel to discuss the problems with 
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incomplete data, and there were recommendations by the Office of Management and Budget not 

to validate studies with more than 50% missingness (Rubin 1978). The problem encountered 

with missing data when it was ignored was that the analysis was done only on complete cases, 

and this resulted in a lack of efficiency and possible bias. Other methods of imputation prevailed 

but as single imputation methods, they did not take into account the uncertainty due to missing 

values.  The problem with replacing a missing value with a single value is that by this process, 

missing values are treated as if they were known. 

 Complete case analysis and single imputation methods are not totally ruled out, even in 

clinical trials, but the validity of these methods are judged by the assumption about the 

missingness mechanism. In most cases, these methods can be envisaged only under the most 

stringent assumption of MCAR, which is rarely plausible. MI offers the advantage of being 

applicable in most research settings, and it is the first choice in many cases to obtain valid 

inference when analyzing data with missing values. In comparison with most recent estimation 

and probabilistic methods, MI is more noticeable because it is at the same time practical as 

statistical software is available and widely applicable in many research settings (Carpenter & 

Kenward, 2013). More recently, methods of analyzing missing data recommended by the Panel 

on Handling Missing Data in Clinical Trial (2010) also include maximum likelihood, Bayesian 

inference, and generalized estimating equations methods. 

1.4 Methods for Handling Missing Data 

 Complete case analysis (CCA) corresponds to the earliest method used to deal with 

missing data and consists of discarding observations with missing data. The simplicity of this 

method does not mean it cannot be effective. For example, when data are missing completely at 
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random, results of analysis using this method are valid. The biggest problem with CCA remains 

the reduction of power due to reduced sample size. In all other circumstances, when data are 

MAR or MNAR, the CCA will eventually return biased results. For instance, if the nonresponses 

in the ETS survey typically have lower achievement scores, then CCA will overestimate the 

mean achievement score of students in compensatory reading programs. 

Available case analysis uses all available data for estimation. For example, the mean and 

variance of a variable would be estimated based on the number of observed values for that 

variable. The covariance between two variables would be estimated based on the observations 

having values for both variables (Chow, 1978). When possible, existing values are used for 

statistical testing in a way that all observed information is used. One problem with this method is 

that the parameters of the model can stand on different data sets with different statistics. Using 

average sample size across analysis as in most standard software is likely to either under estimate 

or overestimate standard error. Another problem with using different samples for analyses is that 

it can produce non-positive definite matrices. 

 With single imputation methods, each missing value is filled in with a value determined 

by the specific techniques used. These methods have been commonly used in surveys because of 

the possibility provided to use the standard analysis procedures and to incorporate data 

collectors’ knowledge and researchers’ techniques in one single data set that can be stored for 

public use (Rubin, 1987). Some examples of single imputation are mean substitution, hot deck, 

cold deck, regression method, and the method of last observation carried forward. 

 Mean substitution is where the mean of the observed values for each variable is used to 

replace the missing values. Because the mean of the observed values is the same as the mean of 

the responses, which might not be true in the case of nonresponse bias, this method can easily 
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bias the results. Mean substitution does not add any variability. With mean substation the 

standard deviation is always underestimated, making it arbitrarily smaller and test statistics 

larger.  

The hot deck and cold deck methods are largely used in survey data and particularly in 

census data. In the hot deck procedure, a matching respondent is found for each observation with 

a missing outcome; the matching respondent is the closest with regard to the observed variables. 

The flexibility of the procedure is found by modifying the categorical variable to facilitate the 

matching possibilities. For example, if a study is done in the United States, where state is used as 

one of the matching variables and no match is found for nonresponse, region of the country 

could be used instead. Similarly, income can be changed from a five-level variable to a four, 

three, or two-level to fulfill the need of matching respondents. The matching variable is selected 

from the pool of recorded data in the same survey for the hot deck method. In the cold deck 

method, the same procedure is followed. However, the matching variables are selected from 

previous surveys with the same characteristics. 

The regression method consists of constructing a regression model where the variable 

containing missing values can be used as the response variable. The replacement of a missing 

value is generated by the predicted value derived from the model. This construction implies that 

predicted values for missing observations are actually used to impute those missing observations. 

Different regression models can be used depending on the structure of the data. For instance, it is 

suitable to have a Poisson regression for count variables, logistic regression for binary variables, 

and linear regression for the continuous case (Raghunathan, Lepkowski, Hoewyk & Solenberger, 

2001). One problem with regression single imputation model is that the variability of the 

imputation is underestimated, and inferences will be misleading (Little & Rubin, 1989; Enders, 
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2001). Another problem with this method of imputation is that if the regression model does not 

provide a good fit, it leads to weak predicting power (Little & Rubin, 2002).  

Last observation carried forward (LOCF), baseline observation carried forward (BOCF), 

and worst observation carried forward (WOCF) are usually used in cases of dropout, where 

missing data is the consequence of treatment discontinuation or analysis dropout. In LOCF, the 

last observed value for a participants who drop out is filled in for its subsequent unmeasured 

values. The reasoning behind the LOCF is that participants who dropped out would not have 

recorded any change on their measured outcome if they have remained in the study. In the 

BOCF, the imputation is done with the baseline observation, which assumes that a participant’s 

measured outcome remains the same as that measured at the beginning of the trial. And WOCF 

uses the worst value among the observed values for each dropout to fill in missing values. Apart 

from underestimating the treatment effect, the implementation of these techniques would further 

lead to erroneous estimation of standard error and ignore the uncertainty due to missing data. The 

LOCF method has been intensively used in clinical trials in recent years, but the National 

Research Council (2010) did not recommend its continued use. 

The expectation maximization algorithm (Dempster, Laird & Rubin, 1977) allows 

parameter estimation in probabilistic models when there are missing data. The EM consists of a 

sequence of steps, starting with an initial guess of the parameter to be estimated. Then follows 

the computation of a probability distribution over possible accomplishments using the current 

parameters, which is the E step. Next, in the M-step, new parameters are derived from the current 

probability results. The EM algorithm ends with convergence determined when the new values 

of the parameter generated are not different from previous ones. Problems with the EM model of 

estimation of a parameter are the possibility that the algorithm may not converge, the 
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computation is not simplified, and standard error on the estimate requires additional steps 

(Carpenter & Kenward, 2013).  

Multiple Imputation does not substitute a single value for each missing data but a set of 

plausible values containing the natural variability and the uncertainty about the true values. The 

key is to make a reasonable assumption about the distribution of the missing values and make a 

number of Bayesian draws from the predictive distribution of missing values, each draw 

corresponding to one imputed data set.  The method is given in three steps: First, the draws are 

performed to create the number of complete data sets needed. Second, each data set is analyzed 

using the standard methods for complete data sets. Third, the results of the individual analyses 

are combined to get a single estimator and to draw the consequent inferences. MI preserves the 

advantages of single imputation methods by providing the possibility to use standard statistical 

analysis procedures available for complete data and by incorporating data collectors’ knowledge. 

MI eliminates the major problem of single imputation by adding uncertainty through the use of 

multiple data sets. The advantages of multiple imputation are that a random draw of imputations 

increases the efficiency of the estimation and it takes into account variability due to missing data, 

providing valid inference under MAR. MI also allows researchers to easily study the sensitivity 

of the inference as applied to different models for nonresponses (Rubin, 1987). 

Multiple Imputation is a valid method of treating missing data under the assumption of 

MAR. However, in clinical trials, no statistical test can determine if the data is MAR or MNAR. 

Therefore, this dissertation will explore the implications of the deviation from the MAR 

assumption on the validity of the results. This exploration will involve various distributions 

including the Normal, t, and chi-squared and varying proportions of data missing simultaneously 

by MAR and MNAR assumptions. Also, following these investigations, this dissertation aims to 
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propose a method of MI to handle missing data that takes into account the co-occurrence of 

ignorable and nonignorable missing data mechanisms by using influential tilting approach. 
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CHAPTER 2 

 LITERATURE REVIEW 

Missing data has always been a potential indicator of inferential problems when 

conducting research. With missing data, the sampled data may not represent the population. This 

is the case when the distribution of the missing values is different from that of the observed. 

Missing data may create lack of efficiency and bias (Carpenter and Kenward, 2013). Researchers 

have been working for decades to find a better way to handle missing data. Although a consensus 

has not been reached, there is agreement about the necessity to maintain missing data’s 

occurrence at a minimum at the design level and to integrate data collectors’ knowledge and 

researchers’ experience to find the appropriate method of inference with incomplete data.  

Multiple imputation has gained popularity among researchers of diverse fields because of 

its practical utility and its broad applicability. The recent Panel on Handling Missing Data 

requested by the FDA and conducted by the National Research Council recommended multiple 

imputation for analysis with missing data in clinical trials (2010). Several themes or topics have 

dominated research in missing data and subsequently multiple imputation. The discussion about 

handling missing data has been whether to use complete case analysis, single imputation, or 

multiple imputation and other sophisticated analysis methods such as the expectation 

maximization algorithm (EM), inverse probability weighting (IPW), and generalized estimating 

equation (GEE). Another common emphasis in the literature has been to investigate the 

processes that causes missing data. Researchers are concerned about how the analysis can be 

dependent on those processes, and how the assumption chosen for missing data can be defined. 

The bulk of the literature also discusses the three inferential methods: sampling distribution 

inference, direct likelihood inference, and Bayesian inference. More recent research has focused 
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on new implementation and application of multiple imputation.  Finally, the development of 

statistical software has played an important role in the diffusion of ideas in this field.  

For decades, complete case analysis and pairwise deletion dominated the literature as 

acceptable methods for dealing with missing data under the assumption of missing completely at 

random. These methods were particularly accepted when deletion of observations would not 

significantly reduce power.  Primary debates about complete case analysis and pairwise deletion 

targeted the reduction of power and the applicability of the missing completely at random 

assumption. With this regard, Cohen and Cohen (1983) suggested to delete observations when 

the missingness occurs on the dependent variable. Otherwise, these authors argued that it is a 

good technique to investigate the effect of missingness on the power, which is mostly revealed 

by the proportion of missing values in the data. These shortcomings were also investigated by 

Allisson (2001) and Shaffer and Graham (2002). The reduction in power that results from 

deletion of missing observation was also investigated by Stumpf (1978), Malhotra (1987), and 

Gilley and Leone (1991) who concluded that more missing data would lead to less power. 

Donner (1982), Orme and Reis (1991), and Little and Rubin (2002) added that deleting 

observations could bias the comparison between groups.  

Single imputation methods have been intensively studied by Kalton and Kasprzyk (1982), 

Anderson et al. (1983), Lessler and Kalsbeek (1992).  These methods were primarily used as an 

attempt to reduce nonresponse bias. Shaffer and Graham (2002) emphasized the importance of 

using observed auxiliary information with these methods. Regression imputations have been 

discussed for their face validity. Little and Rubin (2002) noted a poor predictive power of the 

model when the regression cannot provide a good fit, which is the case with model 

misspecification (Schenker & Taylor, 1996).  
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Other methods of single imputation were proposed particularly to maintain the matrix 

form of complete data sets, which is required in most statistical packages. Ono and Miller 

(1969), discussed the advantages of the hot deck/cold deck procedure. Rubin (1987) indicated 

that this method has been widely used for public data and particularly in social science, and he 

has presented some limitations of the method. Mean substitution is among the methods that have 

been used in many studies, but researchers have always questioned the validity of this method, 

particularly in clinical trials. Imputing missing observations using mean substitution 

inappropriately deflates the variance particularly when the proportion of missingness is large 

(Cole, 2008; Haitovsky, 1968).  Clinical trials researchers employed Last Observation Carried 

Forward (LOCF) for some time until they understood the flaws in the method. Basically the 

validity of LOCF assumes that participants who drop out would not have had any change on their 

measured outcome if they had continued the study. Molnar and colleagues (2009) investigated 

some of the current methods used for handling missing data in clinical trials, and they observed 

that LOCF was far from being optimal.  

Other areas of research focus on estimation of parameters when dealing with missing 

data. Dempster, Laird, and Rubin (1977) presented the advantages expectation maximization 

algorithm.  Maximum likelihood estimation has been used for the mean and covariance 

parameters. Rubin (1978, 1987) proposed Multiple Imputation (MI) as a principled method to 

handle missing data, arguing that it preserves the advantages of single imputation methods and 

improves on their disadvantages by taking into account the incertitude of missing data. Schafer 

(1997) contributed to a relaxed normality assumption by replacing this assumption with the 

multivariate normal conditional on the fully observed nominal variables. Molenberghs and 

Kenward (2007) argued that when the process creating missing data was ignorable, MI resulted 
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in unbiased estimation of the parameters and standard errors. Schafer (1999) added that this 

result can be obtained with few imputations limiting the burden of higher number of imputations. 

Rubin (1978) initially suggested that the number of imputations to obtain significant results 

could be less than 10, and usually less than five in simple cases. Shaffer and Graham (2002) 

concluded that a smaller proportion of missing data helps in having fewer imputations.  

Given the complication of multiple imputation with different categories of variables and 

the multivariate form of missing values, many methods of analysis have been used. Multiple 

imputation started with a Bayesian perspective. The first widely included methods were the 

Markov Chain Monte Carlo (MCMC) and logistic regression (Rubin, 1987, 1996; Lipsitz, Zhao, 

& Molenberghs, 1998). Liang and Zeger (1986) developed the Generalized Estimating Equation 

(GEE) to handle binary outcomes often encountered in clinical trials. Raghunathan et al. (2001) 

established a different approach to multiple imputation by sequential regression. An approach 

developed to avoid the normality assumption about the imputed variable was the approximate 

Bayesian bootstrap (Rubin & Shenker, 1986). This method, also considered to be a non-

parametric multiple imputation, has not found many applications. 

Much has been done to generate multiple imputations from the multivariate normal 

model (MVN). Demitras, Freels, and Yucel (2008) proposed that when the assumption of 

normality is not met, the MVN model can still work for some common estimands. The 

assumption of normality, originally required for continuous data when implementing multiple 

imputation, has long been overlooked. Researchers have worked on distributional deviation from 

normality that can substitute the original assumption. Yulei and Trivellore (2012) looked for 

ways to apply multiple imputation with non-normal multivariate data, and they used Tukey’s gh 

transformation to complete the works started by He and Raghunathan (2006). Demitras and 
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Hedecker considered the situation of Weibull and Beta distribution (2008a) and that of power 

polynomials (2008b). Demirtas (2010) looked at MI under a more general family of distribution, 

the generalized lambda family.  

More techniques are being studied regarding the type of difficulties that can be 

encountered with MI. Steele, Wang, and Raftery (2010) looked at the confidence interval using a 

mixture of normal distributions. In clinical trials, Mallinckrodt (2013) and O’kelly and Ratitch 

(2014) found an application of MI based on the pattern mixture model for the statistical behavior 

of post withdrawal outcomes. The multivariate imputation by chained equations, MICE, 

introduced by Burren et al. (1999) contributed to the implementation of MI for non-monotone 

missing data patterns. Garg (2013) evaluated MI techniques with various proportions of missing 

data under both monotone and non-monotone missing data patterns, using both normal and non-

normal distributions. 

When the assumption of MAR is met, likelihood based approaches provide valid 

estimates. Because this assumption is not directly testable, the validity of approaches that assume 

MAR, including multiple imputation, is questioned when further analyses are not done to test the 

sensitivity of deviation from the MAR assumption. Fortunately, when there is additional 

information available, and this information is correlated to the missing outcome, it can be used as 

an auxiliary variable to test the MAR assumption. Wang and Hall (2010) corrected the bias from 

non-randomness in such cases for longitudinal data. Comparing multiple imputation with other 

methods, Marshall, Altman, Royston, and Holder (2010) matched different MI techniques, 

complete case analysis, and a single imputation using a multivariate missing data set and varying 

proportions of missingness. These authors concluded that although MI techniques provided 

better estimates and model performances in a simulation study, these results were not observed 
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with more than half of the data missing. Wang and Hall (2008) suggested that, compared with 

the likelihood joint modeling approach, multiple imputation is more robust to misspecification of 

the imputation distribution when there is an auxiliary variable. 

When the assumption of MAR is not met, sensitivity analysis is needed to access 

deviation from the assumption (Scharfstein et al., 2014). Derivation from MNAR model have 

usually been complicated, but some author have developed models based on exponential tilting 

to handle the problem (Kim & Yu, 2011; Daniels & Hogan, 2008). These authors considered 

estimation of the tilting parameter when it was unknown. The improvements with exponential 

tilting methods were achieved by using parametric, nonparametric, or semiparametric 

approaches.  

  The success of MI among researchers is in part due to its applicability that has also been 

facilitated by the availability of statistical packages handling MI. The recent versions of all the 

major statistical packages SAS (www.sas.com), SPSS, R (www.r-project.org) have included a 

method for MI. Royston (2004) introduced MI in STATA (www.stata.com) with the imputation 

using chained equations (ICE). One approach to MI was the multivariate chained equation 

(MICE) that was introduced in S-PLUS (Buuren & Oudshoom, 2000) using the Gibbs sampling 

technique. Ratitch and O’kelly (2011) presented a new technique to use the SAS multiple 

imputation procedure for pattern mixture models. 

Different assumptions about the nature of the missing data mechanism may lead to 

varying conclusions derived from clinical trials with missing data. The approach of this 

dissertation is to consider that MAR and MNAR assumptions can be simultaneously considered 

at different proportions depending on previous experience on the type of clinical trial data sets to 

be studied. This dissertation analyzes the appropriateness of these proportionalities with different 
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distributional assumptions, including normal, chi-square, and t-distribution and varying 

percentages of missingness. Garg (2013) simulated datasets with various percentages of missing 

values to explore the precision of estimates from MI.  This dissertation continues to navigate 

around the possibilities to improve estimation using MI by looking at the assumptions of missing 

data mechanisms and the flexibility introduced by combining ignorable and nonignorable 

mechanisms.  
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CHAPTER 3 

 METHOD of MULTIPLE IMPUTATION   

3.1 Development  

Multiple imputation (MI) was developed by Rubin (1978, 1987) primarily to handle 

nonresponse in the survey setting. Faced with the problem of missing data in surveys, the idea 

was to imagine what the data would have been if all participants had provided a response to each 

question in the survey. The true values of the data cannot be obtained unless nonresponses can be 

recovered. Rubin’s attempt was to find a strategy to handle missing data that is theoretically 

sound and practically useful. Rubin based his idea on the premises that different models can be 

built for the missing data processes that include the available data and the experimenter’s 

knowledge. The models correspond to possible answers. What is important is to choose an 

appropriate model and communicate this to interested researchers. For practical purposes, Rubin 

anticipated that imputation is necessary to replace the missing observations, but single 

imputation methods do not reflect the uncertainty about the values that are used to replace the 

missing ones. Rubin then suggested using several imputation models and combining the results 

of the analysis obtained from each imputed data set. This section of the dissertation will focus on 

describing how to generate multiple imputations, showing how to draw inference from a multiply 

imputed dataset, justifying the resultant inference, and reporting the progress made with MI so 

far. 

MI is performed in three steps. First, a multiple imputed dataset is generated that corresponds 

to a set of complete datasets, each dataset resulting from an imputation of the incomplete dataset. 

Second, each of the complete datasets is analyzed using standard techniques for analysis when 
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there is no missing value. Third, analysis results of individual datasets are combined using 

Rubin’s rules. 

3.1.1 Generation of Multiply Imputed Datasets   

Fundamental to the idea of multiple imputation is to generate multiple datasets. 

Consequently, generating multiple datasets is the most important step in MI. This process 

consists of three major tasks.  

The modeling task is essentially choosing a model for the data. This choice is motivated by 

integrating prior knowledge and practical wisdom. Rubin’s initiative considers the Bayesian 

perspective. Moreover, importance is given to the choice of hyperparameters, the parameters of 

prior distributions.  The process is facilitated when the mechanism creating missing data is 

ignorable. Given the matrix 𝑌𝑌 of the data, the model 𝑓𝑓(𝑌𝑌|𝜙𝜙) is chosen and a prior distribution of 

the vector parameter 𝜙𝜙 is also determined. The data is then modelled with independent rows 

given the vector parameter 𝜙𝜙, which is equivalent to say that observations are independents. 

The estimation task computes the posterior distribution of the parameter 𝜙𝜙 assuming the 

distribution 𝑓𝑓(𝑌𝑌|𝜙𝜙) and the prior distribution of 𝜙𝜙. The computation of posterior distributions 

using Bayesian methods sometimes can be problematic, but using numerical approximations 

would generally solve the problem. The development of computational statistics has made this 

task even easier. 

The imputation task takes random draws from the predictive distribution of the missing data 

given the observed data and creates the vectors of imputed data for the desired number of 

datasets. The imputation task starts by classifying patterns of missing data from the sample units. 
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For each pattern of missing data, the matrix 𝑌𝑌 is partitioned into a matrix of observed (𝑌𝑌𝑂𝑂) and 

missing (𝑌𝑌𝑀𝑀) variables such that  

𝑌𝑌 = (𝑌𝑌𝑀𝑀 ,𝑌𝑌𝑂𝑂). 

The density function can then be factored 

𝑓𝑓(𝑌𝑌𝑀𝑀|𝜙𝜙) = 𝑓𝑓(𝑌𝑌𝑀𝑀 ,𝑌𝑌𝑂𝑂|𝜙𝜙) = 𝑓𝑓(𝑌𝑌𝑀𝑀|𝑌𝑌𝑂𝑂,𝜙𝜙)𝑓𝑓(𝑌𝑌𝑂𝑂|𝜙𝜙). 

Considering appropriate functions 𝑞𝑞 𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞 of the parameter 𝜙𝜙 corresponding to the partition 𝑌𝑌 = 

(𝑌𝑌𝑀𝑀 ,𝑌𝑌𝑂𝑂), the density becomes 

𝑓𝑓(𝑌𝑌𝑀𝑀|𝜙𝜙) = 𝑓𝑓(𝑌𝑌𝑀𝑀|𝑌𝑌𝑂𝑂 , 𝜀𝜀)𝑓𝑓(𝑌𝑌𝑂𝑂|𝜂𝜂)  

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜀𝜀 = 𝑞𝑞(𝜙𝜙) 𝑎𝑎𝑎𝑎𝑎𝑎 𝜂𝜂 = 𝑞𝑞(𝜙𝜙). 

Starting with the pattern without missing data, a value 𝜙𝜙∗ is drawn from the posterior distribution 

of the parameter 𝜋𝜋(𝜙𝜙|𝑌𝑌𝑀𝑀) derived from the distribution of 𝑓𝑓(𝑌𝑌𝑀𝑀|𝜙𝜙) and the prior 𝜋𝜋(𝜙𝜙). 

With this disposition, subsequent patterns have at least one variable with missing observations up 

to the last pattern. The new parameter in a pattern is drawn from the posterior distribution given 

the parameters in the previous patterns. Finally, the missing values for each unit in the pattern are 

imputed with independent draws of 𝑌𝑌𝑀𝑀 from the posterior distribution 

𝑓𝑓(𝑌𝑌𝑀𝑀|𝑌𝑌𝑂𝑂 = 𝑌𝑌𝑂𝑂∗, 𝜀𝜀 = 𝜀𝜀∗)  

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑌𝑌𝑂𝑂∗ 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡′𝑠𝑠 𝑣𝑣𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓 𝑌𝑌𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀∗ = 𝑞𝑞(𝜙𝜙∗ ). 

The process is repeated until the desired number of imputations is fulfilled.  

3.1.2 Analysis of the Imputed Datasets 

 The multiple imputation technique allows the creation of a desired number of complete 

datasets. Each of the complete datasets is analyzed with standard analytical techniques. In this 

step, no reference is made to the missing data mechanism. In the case of parameter estimation, 
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the parameters are estimated for each dataset and stored. The results are combined as it would be 

indicated in the next step using Rubin’s rule. 

3.1.3 Combination of the Results 

Suppose the quantity to be estimated is a p dimensional vector of parameters, noted by β. In 

the previous section, the analysis of the K imputed datasets resulted in K such vectors. For each 

of the K data set there is an estimate 𝛽̂𝛽𝑘𝑘  of β with variance 𝑉𝑉𝑘𝑘 ,  k=1,…, K. The method of 

combining the complete data estimates and variance proposed is known as Rubin’s rules. 

Inference for the vector β is based on the assumption that if 𝛽̂𝛽 is the statistic estimating β then 

𝛽𝛽 − 𝛽̂𝛽 is normally distributed with mean zero and covariance matrix noted V. The estimate of β 

resulting from the K imputed dataset is the simple average of the estimates from each imputed 

dataset.  

𝛽̅𝛽 =
1
𝐾𝐾� 𝛽̂𝛽𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 

The variance estimate associated with 𝛽̅𝛽 consists of the within imputation variance, which is the 

average of the K complete data variances, and the variance among the K imputed datasets or 

between variance estimate. 

𝑉𝑉 = 𝑊𝑊� + (1 + 𝐾𝐾−1)𝐵𝐵 

𝑊𝑊� =
1
𝐾𝐾�𝑉𝑉�𝑘𝑘

𝐾𝐾

𝑘𝑘=1

, 

𝐵𝐵 =
1

𝐾𝐾 − 1�
�𝛽̂𝛽𝑘𝑘 − 𝛽̅𝛽�

𝐾𝐾

𝑘𝑘=1

�𝛽̂𝛽𝑘𝑘 − 𝛽̅𝛽�
𝑇𝑇
 

where (1 + 𝐾𝐾−1) is an adjustment term for the finite number of imputations. 
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3.2 Justification of MI  

MI was introduced as the phenomenological Bayesian approach to nonresponse in sample 

surveys (Rubin, 1978). Thus, it is obvious that the Bayesian paradigm supports Rubin’s approach 

to multiple imputations. Repeated draws from the Bayesian posterior distribution of missing 

values are used for multiple imputations. Also a valid Bayesian inference is obtained by 

appropriately combining the analysis of each of the multiply imputed complete datasets. 

Generally the problem is to estimate the parameters of a statistical model for an incomplete 

dataset. The idea of handling the missing data problem is to suggest what the estimate would 

have been if no value was missing in the dataset. Assuming MAR, MI procedure imputes K 

datasets from the Bayesian predictive distribution of the missing data given the 

observed 𝑓𝑓(𝑌𝑌𝑀𝑀|𝑌𝑌𝑂𝑂), fits the substantive model to each of the imputed datasets, and combines the 

results using Rubin’s rules. Given the parameters associated to the missing and the observed 

data, the distribution is written as 𝑓𝑓(𝑌𝑌𝑀𝑀 ,𝛽𝛽|𝑌𝑌𝑂𝑂,𝜑𝜑), where 𝜑𝜑 is the parameter of the observed data 

and 𝛽𝛽 that of the missing data in the substantive model.   

Focusing on 𝛽𝛽  and omitting the parameters of the observed data, the joint distribution is 

written𝑓𝑓(𝑌𝑌𝑀𝑀 ,𝛽𝛽|𝑌𝑌𝑂𝑂). Regarding 𝑌𝑌𝑀𝑀 as a nuisance, the posterior can be partitioned as: 

𝑓𝑓(𝛽𝛽,𝑌𝑌𝑀𝑀|𝑌𝑌𝑂𝑂) =  𝑓𝑓(𝑌𝑌𝑀𝑀|𝑌𝑌𝑂𝑂)𝑓𝑓(𝛽𝛽|𝑌𝑌𝑀𝑀 ,𝑌𝑌𝑂𝑂). 

Using the expression of the marginal distribution in terms of the conditional expectation 𝑓𝑓𝑋𝑋(𝑥𝑥) =

𝐸𝐸𝑌𝑌(𝑓𝑓𝑋𝑋|𝑌𝑌(𝑥𝑥|𝑦𝑦)), the marginal posterior of 𝛽𝛽 can be expressed as 

𝑓𝑓(𝛽𝛽|𝑌𝑌𝑂𝑂) =  𝐸𝐸𝑌𝑌𝑀𝑀𝑓𝑓(𝛽𝛽|𝑌𝑌𝑀𝑀 ,𝑌𝑌𝑂𝑂). 

Particularly, the posterior mean for 𝛽𝛽 can be written 

𝐸𝐸(𝛽𝛽|𝑌𝑌𝑂𝑂) = 𝐸𝐸𝑌𝑌𝑀𝑀{𝐸𝐸(𝛽𝛽|𝑌𝑌𝑀𝑀 ,𝑌𝑌𝑂𝑂)}. 
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Considering draws  𝑌𝑌𝑀𝑀𝑘𝑘 , 𝑘𝑘 = 1, … ,𝐾𝐾  from the predictive distribution of the missing values given 

the observed values, with empirical moments approximation, the mean for 𝛽𝛽 is  

𝐸𝐸(𝛽𝛽|𝑌𝑌𝑂𝑂) ≈
1
𝐾𝐾�

�𝐸𝐸�𝛽𝛽�𝑌𝑌𝑀𝑀𝑘𝑘 ,𝑌𝑌𝑂𝑂��
𝐾𝐾

𝑘𝑘=1

=
1
𝐾𝐾�𝛽̂𝛽𝑘𝑘

𝐾𝐾

𝑘𝑘=1

= 𝛽̅𝛽 

where 𝛽̂𝛽𝑘𝑘  is the estimate for 𝛽𝛽 using the kth imputed dataset. 

Also, using the property 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)  =  𝐸𝐸(𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋|𝑌𝑌))  +  𝑉𝑉𝑉𝑉𝑉𝑉(𝐸𝐸(𝑋𝑋|𝑌𝑌)), the posterior variance for 

𝛽𝛽 is  

𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽|𝑌𝑌𝑂𝑂) = 𝐸𝐸𝑌𝑌𝑀𝑀{𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽|𝑌𝑌𝑀𝑀 ,𝑌𝑌𝑂𝑂)} + 𝑣𝑣𝑣𝑣𝑣𝑣𝑌𝑌𝑀𝑀{𝐸𝐸(𝛽𝛽|𝑌𝑌𝑀𝑀 ,𝑌𝑌𝑂𝑂)}. 

Approximating as previously, and using the sample variance formula, the posterior variance for 

𝛽𝛽 is expressed as  

𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽|𝑌𝑌𝑂𝑂) ≈
1
𝐾𝐾�

�𝑣𝑣𝑣𝑣𝑣𝑣�𝛽𝛽�𝑌𝑌𝑀𝑀𝑘𝑘 ,𝑌𝑌𝑂𝑂��
𝐾𝐾

𝑘𝑘=1

+
1

𝐾𝐾 − 1�{𝐸𝐸�𝛽𝛽�𝑌𝑌𝑀𝑀𝑘𝑘 ,𝑌𝑌𝑂𝑂� − 𝛽̅𝛽}{𝐸𝐸�𝛽𝛽�𝑌𝑌𝑀𝑀𝑘𝑘,𝑌𝑌𝑂𝑂� − 𝛽̅𝛽}𝑇𝑇
𝐾𝐾

𝑘𝑘=1

 

𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽|𝑌𝑌𝑂𝑂) ≈
1
𝐾𝐾�

�𝑣𝑣𝑣𝑣𝑣𝑣�𝛽𝛽�𝑌𝑌𝑀𝑀𝑘𝑘 ,𝑌𝑌𝑂𝑂��
𝐾𝐾

𝑘𝑘=1

+
1

𝐾𝐾 − 1�
�𝛽̂𝛽𝑘𝑘 − 𝛽̅𝛽��𝛽̂𝛽𝑘𝑘 − 𝛽̅𝛽�

𝑇𝑇
,

𝐾𝐾

𝑘𝑘=1

 

including the correction for finite number of imputation, 

𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽|𝑌𝑌𝑂𝑂) =
1
𝐾𝐾�

�𝑣𝑣𝑣𝑣𝑣𝑣�𝛽𝛽�𝑌𝑌𝑀𝑀𝑘𝑘 ,𝑌𝑌𝑂𝑂��
𝐾𝐾

𝑘𝑘=1

+ �1 +
1
𝐾𝐾�

1
𝐾𝐾 − 1�(𝛽̂𝛽𝑘𝑘 − 𝛽̅𝛽)(𝛽̂𝛽𝑘𝑘 − 𝛽̅𝛽)𝑇𝑇

𝐾𝐾

𝑘𝑘=1

, 

which concludes the justification for MI inference.   

3.3 Progress with MI 

From its conception, MI imputation has evolved to its application to various settings 

other than that of survey data originally anticipated. MI was designed to be used by the database 

constructors to create a set of complete datasets from an incomplete dataset. Eventually, with MI, 
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the data collection process does not return a single dataset with missing values, but a set of 

complete datasets and additional instructions on the model used to multiply impute the missing 

data (Rubin, 1996). This process allows for the integration of the data knowledge and the 

uncertainty due to missing data. The statistical environment has changed. Computational 

progress has made MI easier than originally thought. Consequently some of the limitations 

attributed to the strategy of multiple imputations, including operational difficulties and the use of 

simulation, are no longer valid. Much research has indicated that MI is robust to the deviation 

from normality. Others have successfully found applications of MI to non-normal data. The 

MAR assumption has also been able to be loosened. Although these achievements are 

indisputable, there is no doubt that there is no miracle cure to the problem of missing data, so MI 

is not one. The question then is to know how far is too far when attempting to solve the problem 

of missing data with MI. Even under barely satisfied conditions, MI provides better inferences 

than single imputation strategies (Heitjan & Rubin, 1990).  

Although much more can be done with MI, it remains necessary to adopt the general 

guidelines of the National Research Council’s Panel on Handling Missing Data in Clinical Trials 

(2010) by reducing the causes of missing data at the design level. These preliminary steps will 

reduce potential bias attributable to an eventual misspecified model. Also, imputation is 

facilitated when more variables are included in the substantive model that could contribute to 

information recovery. Newly developed methods for non-normal data need to be used 

appropriately. Although MI needed a theoretical justification, its practical acceptance was of 

major importance. This dissertation seeks to improve inferences with MI by adjusting the 

assumptions of missing data mechanisms to the reality of clinical trial data. Rubin (1987) 

recognized that in practice missing data are never the result of a unique cause. This dissertation 
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discusses the possibilities of refining MI inference by considering both the MAR and the MNAR 

assumption in varying proportions. The goal of this dissertation will be accomplished by 

simulating data with varying distributional assumptions including normal, chi-squared, and t-

distribution and assuming both MAR and MNAR missing data mechanisms.  
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CHAPTER 4 

SIMULATIONS AND RESULTS 

4.1 Reason for Simulations 

In order to achieve the objectives of this dissertation, data is simulated for the purpose of 

evaluating the impact of various scenarios of missing data on statistical inference for mean 

estimation. The method is to generate random samples that follow particular distributions, 

calculate the test statistics from each sample, organize the distribution of the test statistics, and 

then investigate the significance of the procedure under various scenarios. Using simulations is 

practical because it facilitates manipulation on datasets, such as forming correlation among 

variables and creating adequate missing data structure. These experimental conditions are 

modified to fit a host of variations. Moreover, simulations provide the opportunity for all types 

of data that are needed for comparison. This is an extra tool to verify the methods’ accuracy that 

cannot easily be obtained when data are actually collected. Data simulation facilitates the 

understanding of the process based on distinct distributions. Also, simulations help to create 

several thousand samples, facilitating multiple experimental conditions. In doing so, the analyst 

is freed from the burden of data gathering and can focus on the results. Simulations are no 

exception to the common limitation found in inductive inference that reasoning is based on 

sample facts, and as such is less precise than results based on mathematical models.   

Although robustness to deviation from the original assumption has been indicated, the 

implementation of multiple imputation (MI) usually assumes normally distributed data. In this 

dissertation, random normal data sets are simulated. Additionally, for the purpose of 

understanding deviation from the distributional assumption, two other distributions are 
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simulated. One is the student t distribution with three degrees of freedom, translating into heavy 

tail distributions.  The other is the chi-square distribution with four degrees of freedom, to 

acknowledge the possibility of skewed distributions.  Rubin (1987) noted that MI is facilitated 

when data has a monotonic missing data pattern. Consequently, the data sets simulated are 

restricted to this pattern. Generally, when a data set has a non-monotone missing data pattern, a 

multiple imputation can always be done to create the monotone pattern. Also, clinical trials are 

largely dominated by longitudinal data where missing values are dropouts, which is a monotone 

missing data pattern. In this type of data, variables are often correlated. Whenever possible, the 

simulations in this dissertation include correlations among variables. 

The expectation for simulating these data are at minimum to understand the behavior of 

the estimands when deviation from the normality assumption occurs. More importantly, the goal 

is to observe and identify the reasons for changes in the results when the proportions of MAR 

and MNAR in the simulated data vary. It has been shown that precision of multiple imputation as 

well as that of other valid methods for handling missing data depend on the amount of missing 

data. A better understanding of the process will require increasing the percentage of missing data 

when identifying the changes. At the same time, complete case analysis, which is the default 

method for most procedures, contributes as a comparative tool for multiple imputation. The idea 

is to estimate the parameter of the simulated data and use test of hypotheses to characterize the 

changes when successive modifications are brought to the distribution, the percentage of missing 

data in the sample, and the proportion of MAR and MNAR mechanisms. 

Going further in this dissertation, the mean is estimated for each of the simulated 

samples. One point in the method is to compare the mean of the simulated data with that of the 

hypothesized distribution, which can be achieved with test of significance. The test of 
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significance gives the probability that the difference between the sample mean and the 

hypothesized mean is only due to sample error.  An easy way to record the results of the test for 

each sample is to capture the p-value. The p-value is defined as the probability of obtaining a 

result as extreme as, or more extreme than, the calculated test statistic if the null hypothesis were 

true. The null hypothesis for these tests is that the hypothesized mean is equal to a pre-specified 

value. A p-value less than the significance level correspond to a significant result, thus rejection 

of the null hypothesis. The conclusion of a significant result with these samples is that the 

difference between the sample mean and the hypothesized mean is unlikely to have occurred due 

to sampling error alone, which is interpreted as the sample does not provide enough evidence 

that the population mean is equal to the specified value. For the purpose of this dissertation, a 

method of handling missing data is better as results of the tests applying the method on the 

samples are similar to results of the tests on the original samples without missing values.  

Original sample datasets are simulated following specified distributions and the tests of 

hypothesis are done on each sample estimating the mean. Observations are deleted on the data in 

order to achieve the desired missing data mechanism and percentage of missing data. Then, a 

method of handling missing data is used and the tests of hypothesis are done again on each 

sample estimating the mean. Results for the original sample are considered the gold standard and 

a perfect method of handling missing values would achieve the same results. Simulations 

contribute to identify how the distribution of data, the percentage of missing values, and the 

proportions of MNAR and MAR affect the results of the tests. This procedure allows a critical 

look at the multiple imputation of missing data under various circumstances, relative to the 

imposed conditions, and in comparison to complete case analysis. 
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4.2 Simulation Procedure 

For each distribution considered, 1000 sample datasets of 100 observations were 

simulated. There were four variables in each dataset 𝑋𝑋3,𝑋𝑋2,𝑋𝑋1, and  𝑍𝑍1 where  𝑋𝑋3 represented the 

baseline characteristics, 𝑋𝑋2,𝑋𝑋1, and  𝑍𝑍1 were measurement occasions. The variable  𝑍𝑍1 was our 

outcome of interest. Observations were sequentially deleted for the variables and 𝑋𝑋2,𝑋𝑋1, and 

 𝑍𝑍1in order to have the monotone missing data pattern, the desired percentage of missing values, 

and the proportions of MNAR and MAR. The percentage of missing data considered was 

actually the percentage of missing data on the variable 𝑍𝑍1. The objective was to obtain 

approximately 20%, 30%, and 40% missing values each time. MAR was assumed when data was 

deleted on one measurement occasion conditioned on the value of the previous measurement 

occasion with a certain probability. MNAR was assumed when the value of the outcome was 

deleted if it was in a certain range with a chosen probability. In the process, random 

variables 𝑈𝑈1,𝑈𝑈2,𝑈𝑈3, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈4, were generated to help in the deletion of observations.  

When 20% of the data is missing, we can have all MAR which correspond to 20% MAR 

- 0% MNAR, 15% MAR - 5% MNAR, 10% MAR - 10% MNAR, 5% MAR - 15%MNAR, and 

finally all MNAR which is 0% MAR - 20% MNAR. When 30% of the data is missing, we have 

the repartitions 30% MAR - 0% MNAR which is all MAR, 20% MAR - 10% MNAR, 15% 

MAR - 15% MAR, 10% MAR - 20% MAR, and 0% MAR - 30% MNAR which is all MNAR. 

And when 40% of the data is missing we have the repartition 40% MAR - 0% MNAR which is 

all MNAR, 30% MAR - 10% MNAR, 20% MAR - 20% MNAR, 10% MAR - 30% MNAR, and 

0% MAR - 40% MNAR which is all MNAR. The full data was deleted following a stochastic 

censuring where the range of missing values helped define the various possibilities studied. For 

each of the distributions that are normal, t, and chi-square, there is stochastic censuring on the 
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left, on both tails, and around the mode. And for the chi-square distribution, which is not 

symmetrical, there is also stochastic censuring on the right.  

4.3 Results for the Standard Normal Distribution 

4.3.1 Data Simulation for the Normal Distribution 

For this distribution, the measurement occasions were correlated, with variance 

covariance matrix 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �
1 0.8 0.4

0.8 1 0.8
0.4 0.8 1

� 

Overall, each simulated data had a multivariate normal distribution and constituted a full 

data on which some values were deleted to create missing values. We took three approaches to 

deleting data: stochastic censuring on the left tail, around the mode, and on both tails. Given that 

the distribution is symmetric, the result for the right tail was anticipated to be similar to that of 

the left tail and was not envisaged. 

For stochastic missing to the left, MAR was assumed if the value of a measurement was 

likely to be missing when the value of the previous measurement was less than the cutoff point 

of -0.3.  

With 20 % missing values assumed to be all MAR, we deleted progressively on 𝑋𝑋2,𝑋𝑋1, 

and  𝑍𝑍1  if the values of the previous measurement occasion was less than the cutoff, with the 

appropriate probability to create 20% of missing values on the outcome 𝑍𝑍1. First the values of 

the variable 𝑋𝑋2 were deleted with a probability 0.073 by removing the observation when the 

values of the generated random uniform variable 𝑈𝑈1 were less than 0.073. Secondly, the values 

of the variable 𝑋𝑋1 were deleted with probability 0.19, using 𝑈𝑈2 for randomness, if 𝑋𝑋2 < -0.3. 
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Finally, the values of 𝑍𝑍1 were deleted with the same probability when 𝑋𝑋1 was less than the cutoff 

and 𝑈𝑈3 was used for randomness. Noting that with the monotone missing data pattern when a 

measurement is missing subsequent measurements are also set to missing, the process led to the 

creation of about 20% missing values on the variable 𝑍𝑍1 (Figure 2).  

With the 15% MAR and 5% MNAR, the same procedure for creating MAR missing 

values was used to obtain 15% of missing observations on the outcome variable 𝑍𝑍1. This time, 

the probabilities of missing 𝑈𝑈1,𝑈𝑈2,𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈3were set to 0.054, 0.14, and 0.14 respectively.  An 

additional 5% of missingness, assumed to be MNAR, was created by stochastically deleting  

 

Figure 2:  Normal distribution of the population with 20% stochastic left censoring, all MAR. 
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observations on 𝑍𝑍1 when the values were less than the -0.3 cutoff. The probability of missing 

was set by choosing to delete observations on z1 when  𝑈𝑈4 < 0.17.  

With the 10% MAR and 10% MNAR we kept 90% of the observations on 𝑍𝑍1 with the 

MAR missing assumption by setting the probabilities at 0.034, 0.09 and 0.09 corresponding to 

the value of 𝑈𝑈1,𝑈𝑈2,𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈3 below which observations were deleted on 𝑋𝑋2,𝑋𝑋1, and  𝑍𝑍1 

respectively. Creating the MNAR missingness by deleting z1 when 𝑍𝑍1<-.03 and u4<0.30, we 

ended up with about 80% of the observations of 𝑍𝑍1 (Figure 3).  

With 5% MAR and 15%, we only had 5% 𝑍𝑍1 missing depending on 𝑋𝑋1, and the rest of 

15% missing was because of the value of 𝑍𝑍1 itself. The 5% MAR was created by deleting when 

 

Figure 3: Normal Distribution with 20% Stochastic Left censoring, 10%MAR- 10%MNAR. 
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𝑈𝑈1,𝑈𝑈2, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈3, were less than 0.017, 0.045, and 0.045 respectively. And the 15% MNAR was 

obtained by deleting z1 when z1<-0.3 and u4<0.42. 

With 0% MAR and 20% MNAR, all the missing values were because of the value of the 

outcome variable 𝑍𝑍1. The observation on 𝑍𝑍1 was deleted when 𝑍𝑍1<-0.3 𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈 <0.52. This 

deletion resulted in 20% missing values on 𝑍𝑍1 (Figure 4). 

The creation of missing values was done similarly to obtain 30% and 40% missing values 

on the data at the specified proportion of MNAR and MAR. Distribution obtained are presented 

in Figure 5 for all MAR and all MNAR. Supplementary distributions can be found in Appendix 

A. 

 

Figure 4: Normal distribution with 20% stochastic left censoring, all MNAR  
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Figure 5: Normal Distribution with 30% and 40% no Mixed Missingness to the Left. In the first row is 30% missing values and in the 

second row it is 40%. On the left is all MAR and on the right it is all MNAR. 
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When missing values were around the mode, values were stochastically deleted around 

zero to obtain the desired percentage of missing values and the appropriate proportion of MNAR 

and MAR missing data mechanisms. The values were set to be deleted between the cutoff points 

of -0.5 and 0.5 to insure coverage of 20%, 30%, and 40% missing values simultaneously 

(Appendix A). This was to avoid having different cutoff points for different percentages of 

missing values.  

When missing values were on both tails, missingness was set to happen stochastically for 

values less than - 0.7 or for values greater than 0.7. The process of creating missing not at 

random and missing at random mechanisms remained the same. The probability of missingness 

was chosen to insure the coverage of all the proportions of MAR and MNAR. The distributions 

obtained are presented in Appendix A.  

4.3.2 Analysis for Normal Distributions 

For each proportion of MAR and MNAR and by increasing percentages of missing data, 

we used MI with 5 imputations and complete case analysis to estimate the mean μ of each 

sample data. Then we tested the hypothesis (μ = 0 vs μ ≠ 0) at the significance level of 𝛼𝛼 =

0.05 for each sample. The significant tests were acknowledged by recording p-values. Note that 

for the full data, considered as the standard, there were 51 significant tests, which is 

approximately what we expect to have at a significance level of 0.05 and 1000 samples. 

4.3.2.1 Analysis of the Normal Data with Stochastic Left Censoring  

For the 20% MAR, 58 significant tests were recorded when using MI, among which 35 

were true significant (TS) tests, meaning these tests were also significant on the full sample data. 
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With these values, the sensitivity was 68.63%. There were 926 true non-significant (TN) tests, 

meaning that the tests of the hypothesis on the full data sample were also not significant, leading 

to a specificity of 97.58%. The results obtained using only complete cases indicated 145 

significant tests with a sensitivity of 49.02% and a specificity of 87.36%. 

 For the 15% MAR data, the number of significant tests was 63 with a sensitivity of 68.63 

and a specificity of 97.05%. The complete case data indicated 228 significant tests with a 

sensitivity of 41.18% and a specificity of 78.19%.  

For the 10% MAR, the number of significant tests for MI was 63 with a sensitivity of 

68.63% and a specificity of 97.05%. The results revealed 343 significant tests for the complete 

case analysis with a sensitivity of 41.18% and a specificity of 61.02%. 

 For the 5% MAR, the number of significant tests for MI was 81 with a sensitivity of 

62.755% and a specificity of 94.84. With complete case analysis, there were 483 significant tests 

and the sensitivity and specificity were 39.22% and 50.16% respectively.  

For the 0% MAR, the number of significant tests for MI was 99 with a sensitivity of 

58.82% and a specificity of 92.73%. With complete case analysis, there were 659 significant 

leading to a sensitivity of 39.22% and a specificity of 32.67%.  

Overall at 20% of missing data, we can say that MI does well in general whatever the 

proportions of missing at random in the data are; see Table 1. MI produced results similar to that 

of the full data, which was not the case with complete case analysis. This can justify why some 

authors found that MI is robust to the assumptions about the missing data mechanism when the 

percentage of missing data is not high.  On the contrary, complete case analysis did not perform 

that well, and the situation worsened as the proportion of MNAR increased (Figure 6).  
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When the sampled datasets had about 30% of missing values, MI did pretty well when 

there was no MNAR. The number of significant tests was 69 (sensitivity = 58.82% and 

specificity = 95.89%). The results were acceptable up to a proportion of 20% MNAR, but were 

not still acceptable with all MNAR, where 211 significant tests were recorded with sensitivity 

43.14% and specificity 80.08%. As anticipated, complete case analysis did not provide 

satisfactory results even when all the missingness was MAR (254 significant tests with 

sensitivity 43.14% and specificity 74.50%). And, the situation quickly worsened as the 

 

Figure 6:  Graph of the Number of Significant Tests for the Normal Distribution with 

Missingness to the left. On the x axis, 0 = 0% MNAR, 1= 25%MNAR or 33%MNAR, 

2=50%MNAR, 3=75%MNAR or 67%MNAR, and 4=100%MNAR. 
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Table 1: Results for Normal Distribution with Stochastic Censoring to the Left 

Note. NSig = number of significant test; TS = true significant; TN = true non-significant; Spec = 
specificity; Sens = sensitivity. 

 

Repartition Full 
Data 

Available Data Multiple Imputation 

  NSig TS 
Sens(%) 

TN 
Spec(%) 

NSig TS 
Sens(%) 

TN 
Spec(%) 

0%missing 51         

20%MAR-0%MNAR 
 

  145 25 
49.02 

829 
87.36 

58 35 
68.63 

926 
97.58 

15%MAR-5%MNAR 
1 

  228 21 
41.18 

742 
78.19 

63 35 
68.63 

921 
97.05 

10%MAR-10%MNAR 
 

  353 21 
41.18 

617 
65.02 

63 35 
68.63 

921 
97.05 

5%MAR-15%MNAR 
3 

  493 20 
39.22 

476 
50.16 

81 32 
62.75 

900 
94.84 

0%MAR-20%MNAR 
 

  659 20 
39.22 

310 
32.67 

99 30 
58.82 

880 
92.73 

30%MAR-0%MNAR 
 

  264 22 
43.14 

707 
74.50 

69 30 
58.82 

910 
95.89 

20%MAR-10%MNAR 
 

  569 20 
39.22 

400 
42.15 

70 30 
58.82 

909 
95.79 

15%MAR-15%MNAR 
 

  750 22 
43.14 

221 
23.29 

89 29 
56.86 

889 
93.68 

10%MAR-20%MNAR 
 

  866 27 
52.94 

110 
11.59 

116 25 
49.02 

858 
90.41 

0%MAR-30%MNAR 
 

  984 41 
80.39 

6 
0.63 

211 22 
43.14 

760 
80.08 

40%MAR-0%MNAR 
 

  421 20 
39.22 

548 
57.74 

66 28 
54.90 

911 
96.00 

30%MAR-10%MNAR 
 

  788 27 
52.94 

188 
19.81 

77 21 
41.18 

893 
94.10 

20%MAR-20%MNAR 
 

  978 38 
74.51 

9 
0.95 

164 22 
43.14 

807 
85.04 

10%MAR-30%MNAR 
 

  1000 51 
100.00 

0 
0.00 

357 20 
39.22 

612 
64.49 

0%MAR-40%MNAR 
 

  1000 51 
100.00 

0 
0.00 

625 21 
41.18 

345 
36.35 
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proportion of MAR decreased. When we had all MNAR, 984 significant tests were recorded. 

Even with 40% of data missing, MI performed well when there was no MNAR. The number of 

significant tests was 66 with sensitivity of 54.90% and specificity of 96.00%. The situation 

started to worsen with more than 20% MNAR. When all the 40% missingness were MNAR, we 

had the worst case using MI where 625 significant tests were recorded with a sensitivity and 

specificity respectively 41.18% and 36.85%. All the results for normal distribution missing on 

the left are summarized in Table 1, and a graphical representation is given in Figure 6.  

4.3.2.2 Analysis of the Normal Data with Stochastic Censuring Around the Mode  

 For 20% of the data missing, MI indicated 65 significant tests when all the missingness 

were MAR. The sensitivity was 78.43 % and the specificity 97.37%. These results did not 

change by much as the proportion of MAR decreased and the proportion of MNAR increased. As 

these proportions changed, sensitivity was between 78.43% and 84.31% and specificity between 

97.37% and 98.31%. Regardless of missing data mechanism involvement, the results were 

attractive. However, they were not different from the complete case analysis results.  

When 30% of the data was missing, we recorded approximately the same number of 

significant tests (between 62 and 84) with MI as the proportion of MAR varied. The lowest 

sensitivity was 64.71% at 30% MAR and the lowest specificity was 95.57% at 20% MAR. 

Again, the number of significant tests were less close to the full data result than the numbers 

obtains with complete case analysis but not by much.  

When 40% of the data was missing, MI provided significant tests between 61 and 77 as 

the proportions of MAR varied. The lowest sensitivity was with all MAR at 56.86% and the 

highest with all MNAR at 78.43%. Specificity did not vary much and stayed between 95.36% 
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and 97. 37%. Complete case analysis provided a relatively low number of significant tests 

compared to MI.  

Overall, when data was missing around the mode, missing values did not influence 

estimation of the mean. Therefore, results in this case were less biased, regardless of the missing 

data mechanism and the percentage of missing data involved. Figure 7 indicates the comparison 

of number of significant tests recorded, and Table 2 presents all the results for. 

 

Figure 7:  Graph of the Number of Significant Tests for the Normal Distribution with 

Missingness around the mode. On the x axis, 0 = 0% MNAR, 1= 25%MNAR or 33%MNAR, 

2=50%MNAR, 3=75%MNAR or 67%MNAR, and 4=100%MNAR. 
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Table 2: Results for Normal Distribution with Stochastic Censoring Around the Mode 

Note. NSig = number of significant test; TS = true significant; TN = true non-significant; Spec = 
specificity; Sens = sensitivity. 

 

Repartition Full 
Data 

Available Data Multiple Imputation 

  NSig TS 
Sens(%) 

TN 
Spec(%) 

NSig TS 
Sens(%) 

TN 
Spec(%) 

0%missing 51         

20%MAR-0%MNAR 
0 

  61 37 
72.55 

925 
97.47 

65 40 
78.43 

924 
97.37 

15%MAR-5%MNAR 
1 

  55 38 
74.51 

932 
98.21 

65 41 
80.39 

925 
97.47 

10%MAR-10%MNAR 
2 

  49 41 
80.39 

941 
99.16 

65 41 
80.39 

925 
97.47 

5%MAR-15%MNAR 
3 

  56 44 
86.27 

937 
98.74 

59 43 
84.31 

933 
98.31 

0%MAR-20%MNAR 
4 

  52 47 
92.16 

944 
99.47 

65 43 
84.31 

927 
97.68 

30%MAR-0%MNAR 
0 

  52 31 
60.78 

928 
97.79 

67 33 
64.71 

915 
96.42 

20%MAR-10%MNAR 
1 

  58 37 
72.55 

928 
97.79 

84 42 
82.35 

907 
95.57 

15%MAR-15%MNAR 
2 

  57 38 
74.51 

930 
98.00 

62 36 
70.59 

923 
97.26 

10%MAR-20%MNAR 
3 

  58 42 
82.35 

933 
98.31 

65 37 
72.55 

921 
97.05 

0%MAR-30%MNAR 
4 

  54 49 
96.08 

944 
99.47 

67 42 
82.35 

924 
97.37 

40%MAR-0%MNAR 
0 

  59 32 
62.75 

922 
97.15 

70 29 
56.86 

908 
95.68 

30%MAR-10%MNAR 
1 

  53 31 
60.78 

927 
97.68 

65 35 
68.63 

919 
96.84 

20%MAR-20%MNAR 
2 

  62 38 
74.51 

925 
97.47 

77 33 
64.71 

905 
95.36 

10%MAR-30%MNAR 
3 

  56 41 
80.39 

934 
98.42 

61 36 
70.59 

924 
97.37 

0%MAR-40%MNAR 
4 

  56 48 
94.12 

941 
99.16 

65 40 
78.43 

924 
97.37 
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4.3.2.3 Analysis of the Normal Data with Stochastic Censoring on Both Tails 

First, with 20% of the data missing, we recorded 60 significant tests when all the missingness 

were MAR with a sensitivity of 68.63% and a specificity of 97.37%. These results were constant 

as the proportion of MAR decreased and the proportion of MNAR increased. Sensitivity was 

between 68.63% and 90.20% and specificity between 97.37% and 98.84%. Regardless of 

proportion of missing data mechanisms, MI produced satisfactory results. With complete case, 

we recorded sensitivity between 50.98% and 70.59% and specificity between 96.63% and 

97.47% slightly lower than the results with MI. 

Secondly, when 30% of the data were missing, MI produced about the same number of 

significant tests (between 52 and 67) as the proportion of MAR varied. Results for sensitivity 

were between 62.75% and 80.39%, and for specificity, they were between 96.84% and 98.74%.  

Although the number of significant tests recorded with MI was similar to that of complete case 

analysis, there were considerable differences on the sensitivity and specificity. With complete 

case analysis sensitivity was as low as 23.53% when missingness was all MNAR. 

Finally, when 40% of the data were missing, we recorded the lowest sensitivity with MI 

at 54.90% when all the missingness were MNAR and the highest at 64.71% when there was 10% 

MAR and 30% MNAR. Specificity did not vary much and stayed between 96.00% and 97. 89%. 

Although complete case analysis provide relatively similar number of significant tests (between 

47 and 50), the results for sensitivity were considerably lower (between 37.25% and 17.65%).  

Overall, when data was missing on both tails, the similarity between complete case 

analysis and multiple imputation with regard to the number of significant tests disappeared when 

considering sensitivity (Figure 8). Sensitivity decreased very sharply with complete case analysis 
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as the percentage of missing data and the proportion of MNAR increased. Table 3 presents the 

complete results. 

 

Figure 8: Graph of the Number of Significant Tests Recorded with Stochastic Censoring on Both 

Tails for the Normal Data. On the x axis, 0 = 0% MNAR, 1= 25%MNAR or 33%MNAR, 

2=50%MNAR, 3=75%MNAR or 67%MNAR, and 4=100%MNAR 

4.4. Results for Student t-Distribution with 3 Degrees of Freedom 

4.4.1 Data Simulation for the Student’s t-Distribution 

Following the guidelines established for this work, 1000 samples of 100 observations 

each were simulated. Each of the variables 𝑋𝑋3,𝑋𝑋2,𝑋𝑋1, and  𝑍𝑍1had a t-distribution (df=3). The 
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Table 3: Results for Normal Distribution with Stochastic Censoring on Both Tails 

Note. NSig = number of significant test; TS = true significant; TN = true non-significant; Spec = 
specificity; Sens = sensitivity. 

Repartition Full 
Data 

Available Data Multiple Imputation 

  NSig TS 
Sens(%) 

TN 
Spec(%) 

NSig TS 
Sens(%) 

TN 
Spec(%) 

0%missing 51         

20%MAR-0%MNAR 
0 

  67 36 
70.59 

918 
96.73 

60 35 
68.63 

924 
97.37 

15%MAR-5%MNAR 
1 

  66 36 
70.59 

919 
96.84 

55 38 
74.51 

932 
98.21 

10%MAR-10%MNAR 
2 

  65 33 
64.71 

917 
96.63 

61 42 
82.35 

930 
98.00 

5%MAR-15%MNAR 
3 

  57 28 
54.90 

920 
96.94 

64 46 
90.20 

931 
98.10 

0%MAR-20%MNAR 
4 

  50 26 
50.98 

925 
97.47 

55 44 
86.27 

938 
98.84 

30%MAR-0%MNAR 
0 

  60 31 
60.78 

928 
97.79 

61 32 
62.75 

920 
96.94 

20%MAR-10%MNAR 
1 

  63 34 
66.67 

910 
95.89 

64 34 
66.67 

919 
96.84 

15%MAR-15%MNAR 
2 

  56 23 
45.10 

916 
96.52 

67 39 
76.47 

921 
97.05 

10%MAR-20%MNAR 
3 

  55 20 
39.22 

914 
96.31 

63 41 
80.39 

927 
97.68 

0%MAR-30%MNAR 
4 

  48 12 
23.53 

913 
96.21 

52 40 
78.43 

937 
98.74 

40%MAR-0%MNAR 
0 

  50 19 
37.25 

922 
97.15 

56 31 
60.78 

924 
97.37 

30%MAR-10%MNAR 
1 

  54 19 
37.25 

914 
96.31 

68 30 
58.82 

911 
96.00 

20%MAR-20%MNAR 
2 

  52 14 
27.45 

911 
96.00 

57 30 
58.82 

922 
97.15 

10%MAR-30%MNAR 
3 

  50 12 
23.53 

911 
96.00 

60 33 
64.71 

922 
97.15 

0%MAR-40%MNAR 
4 

  47 9 
17.65 

911 
96.00 

48 28 
54.90 

929 
97.89 
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characteristics and 𝑋𝑋3,𝑋𝑋2,𝑋𝑋1, and  𝑍𝑍1are measurement occasions. And the measurement 

occasions were correlated, with variance covariance matrix 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �
3 2 1
2 3 2
1 2 3

�. 

Missing values were generated from each full dataset following the procedure used in the 

normal case such that we had a monotone missing data structure with z1 having the most missing 

values. Also, similarly to the normal distribution, three different possibilities of creating missing 

data were use; the stochastic left censoring, around the mode stochastic censuring, and both tails 

stochastic censuring.  

The processing of stochastic left censuring on the student t-distribution was as in the 

normal case. The only difference with the normal case was on the choice the cutoff point of -0.6, 

under which measurements were deleted. Also, with varying percentages of missing values, 

similar repartitions were made for the proportions of MAR and MNAR.  

For stochastic censuring around the mode on the t-distribution, once again the procedure 

to generate missing values was not different from the procedure used with the normal 

distribution. The values between which observations were stochastically deleted are -1 and 1. We 

note the difference with the normal case where the values were -0.5 and 0.5. This difference is 

explained by the heavy tail of the t-distribution. 

The processing of stochastic censuring on both tails for the t-distribution was also similar 

to the normal case, but deletion was made below -1.5 and above 1.5. Because of the large tail in 

this distribution these values were set farther to capture the needed proportion of data with all 

percentages of missing values. Appendix C present histograms of the corresponding distribution 

to the various scenarios. 
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4.4.2 Analysis for the t-Distribution 

We tested the hypothesis the null hypothesis μ = 0 vs the alternative μ ≠ 0 at the level of 

significance α=0.05 for each sample. We obtained 41 significant tests from the full datasets. 

These hypothesis were tested on the data when stochastic censoring was done on the left tail, 

around the mode, and on both tails. 

4.4.2.1 Analysis of the t-Distribution with Stochastic Censoring on the Left 

With 20% of the data missing on the t-distribution, we first looked at the results when the 

missingness was all MAR. MI indicated 38 significant tests, among which 18 true significant 

tests. With these values the specificity was 43.90% and specificity was 97.91%. Complete cases 

analysis indicated 80 significant tests with a sensitivity of 51.22% and a specificity of 93.85%. 

Secondly, when we looked at 15% MAR and 5% MNAR, MI indicated 62 significant tests with a 

sensitivity of 53.66% and a specificity of 95.83%. Complete cases analysis indicated 139 

significant tests with a sensitivity of 63.41% and a specificity of 88.22%.  Third, when we looked 

at 10% MAR and 10% MNAR, MI indicated 80 significant tests with a sensitivity of 65.85% and 

a specificity of 94.47%. Complete cases analysis indicated 202 significant tests with a sensitivity 

of 63.41% and a specificity of 81.65%.  Fourth, when we looked at 5% MAR and 15% MNAR, 

MI indicated 125 significant tests with a sensitivity of 68.29% and a specificity of 89.89%. 

Complete cases analysis indicated 309 significant tests with a sensitivity of 63.41% and a 

specificity of 70.49%.  Fifth, when the data was all MNAR, MI indicated 200 significant tests 

with a sensitivity of 68.29% and a specificity of 82.06%. Complete cases analysis indicated 451 

significant tests with a sensitivity of 63.41% and a specificity of 55.68%. When there was 20% 
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of data missing, MI did well in general with different proportions of missing at random in the 

data. But results for complete case analysis were quickly not interesting.  

With 30% of the data missing, MI led to 56 significant tests when the missingness was all 

MAR. The sensitivity in this case was 43.90% and the specificity 96.04%. Complete cases 

analysis indicated 132 significant tests with a sensitivity of 53.66% and a specificity of 88.53%.  

Similarly to the previous case, we observed the increased in number of significant tests as the 

proportion of MNAR increased. And, when all the missingness was MNAR, MI indicated 434 

significant tests with a sensitivity of 63.41% and a specificity of 57.46%, and complete cases 

analysis indicated 842 significant tests with a sensitivity of 73.17% and a specificity of 14.29%. 

With 40% of the data missing, we had the same pattern where the number of significant 

tests increased as the proportion of MAR decreased in favor of the proportion of MNAR. With 

all data MAR, MI indicated 61 significant tests with a sensitivity of 39.02% and a specificity of 

95.31%, and complete cases analysis indicated only 8 non-significant tests. 

Overall the same pattern of was observed as the proportion of MNAR increased at each 

proportion of missing data. Also, the results were less accurate as the proportion of MNAR 

increased for both MI and complete case analysis. The comparison of number of significant tests 

recorded for both methods is presented in Figure 9.  Complete results are shown in Table 4. 

 4.4.2.2 Analysis of the t-Distribution with Stochastic Censoring Around the Mode 

MI provided practically constant results with stochastic missing around the mode. These 

results were obtained regardless of the percentage of missing values and the proportion of MAR 

and MNAR on the data. For example, in one extreme with 20% of the data missing and all 
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missingness was MAR, we recorded 42 significant tests where the sensitivity was 63.41% and 

the specificity 98.33%. And in the other extreme with 40 percent of the data missing MNAR, 

 

Figure 9:  Graph of the Number of Significant tests for the t-Distribution with Missingness on the 

Left. On the x axis, 0 = 0% MNAR, 1= 25%MNAR or 33%MNAR, 2=50%MNAR, 

3=75%MNAR or 67%MNAR, and 4=100%MNAR  

there were 57 significant tests recorded with a sensitivity of 70.73% and a specificity of 97.08%. 

Similar results were obtained with complete case analysis, where with 20 percent of the data 

missing and all MAR, we recorded 38 significant tests with sensitivity 56.10% and specificity 

99.06%. With 40 percent of the data missing and all MNAR, there were 45 significant tests 

recorded with sensitivity 87.80% and a specificity 99.06%.  
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Table 4: Results for t-Distribution with Stochastic Censoring on the Left 

Note. NSig = number of significant test; TS = true significant; TN = true non-significant; Spec = 
specificity; Sens = sensitivity. 

 

Repartition Full 
Data 

Available Data Multiple Imputation 

  NSig TS 
Sens(%) 

TN 
Spec(%) 

NSig TS 
Sens(%) 

TN 
Spec(%) 

0%missing 41         

20%MAR-0%MNAR 
0 

  80 21 
51.22 

900 
93.85 

38 18 
43.90 

939 
97.91 

15%MAR-5%MNAR 
1 

  139 26 
63.41 

846 
88.22 

62 22 
53.66 

919 
95.83 

10%MAR-10%MNAR 
2 

  202 26 
63.41 

783 
81.65 

80 27 
65.85 

906 
94.47 

5%MAR-15%MNAR 
3 

  309 26 
63.41 

676 
70.49 

125 28 
68.29 

862 
89.89 

0%MAR-20%MNAR 
4 

  451 26 
63.41 

534 
55.68 

200 28 
68.29 

787 
82.06 

30%MAR-0%MNAR 
0 

  132 22 
53.66 

849 
88.53 

56 18 
43.90 

921 
96.04 

20%MAR-10%MNAR 
1 

  310 26 
63.41 

675 
70.39 

91 24 
58.54 

892 
93.01 

15%MAR-15%MNAR 
2 

  498 26 
63.41 

487 
50.78 

159 24 
58.54 

824 
85.92 

10%MAR-20%MNAR 
3 

  628 26 
63.41 

357 
37.23 

225 27 
65.85 

761 
79.35 

0%MAR-30%MNAR 
4 

  852 30 
73.17 

137 
14.29 

434 26 
63.41 

551 
57.46 

40%MAR-0%MNAR 
0 

  242 21 
51.22 

738 
76.96 

61 16 
39.02 

914 
95.31 

30%MAR-10%MNAR 
1 

  529 26 
63.41 

456 
47.55 

136 19 
46.34 

842 
87.80 

20%MAR-20%MNAR 
2 

  810 31 
75.61 

180 
18.77 

301 25 
60.98 

683 
71.22 

10%MAR-30%MNAR 
3 

  950 37 
90.24 

46 
4.80 

553 28 
68.29 

434 
45.26 

0%MAR-40%MNAR 
4 

  992 41 
100.00 

8 
0.83 

809 34 
82.93 

184 
19.19 
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Overall, when data with t-distribution was stochastically missing around the mode, 

missing values did not influence estimation of the mean. Therefore, results with complete case 

analysis and multiple imputation were simultaneously interesting regardless of the missing data 

mechanism and the percentage of missing data involved. Similar results were already observed 

with the normal data. Figure 10 indicates a comparison of the number of significant tests 

recorded, and Table 5 presents all the results. 

 

Figure 10:  Graph of the Number of Significant Tests for the t-Distribution with Missingness 

around the mode. On the x axis, 0 = 0% MNAR, 1= 25%MNAR or 33%MNAR, 2=50%MNAR, 

3=75%MNAR or 67%MNAR, and 4=100%MNAR 
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Table 5: Results for t-Distribution with Stochastic Censoring Around the Mode 

Note. NSig = number of significant test; TS = true significant; TN = true non-significant; Spec = 
specificity; Sens = sensitivity. 

 

Repartition Full 
Data 

Available Data Multiple Imputation 

  NSig TS 
Sens(%) 

TN 
Spec(%) 

NSig TS 
Sens(%) 

TN 
Spec(%) 

0%missing 41         

20%MAR-0%MNAR 
0 

  32 23 
56.10 

950 
99.06 

42 26 
63.41 

943 
98.33 

15%MAR-5%MNAR 
1 

  37 30 
73.17 

952 
99.27 

42 27 
65.85 

944 
98.44 

10%MAR-10%MNAR 
2 

  39 31 
75.61 

951 
99.17 

49 34 
82.93 

944 
98.44 

5%MAR-15%MNAR 
3 

  38 33 
80.49 

954 
99.48 

49 31 
75.61 

941 
98.12 

0%MAR-20%MNAR 
4 

  40 38 
92.68 

957 
99.79 

43 32 
78.05 

948 
98.85 

30%MAR-0%MNAR 
0 

  37 25 
60.98 

947 
98.75 

41 22 
53.66 

940 
98.02 

20%MAR-10%MNAR 
1 

  31 24 
58.54 

952 
99.27 

54 28 
68.29 

933 
97.29 

15%MAR-15%MNAR 
2 

  38 28 
68.29 

949 
98.96 

43 24 
58.54 

940 
98.02 

10%MAR-20%MNAR 
3 

  37 30 
73.17 

952 
99.27 

50 31 
75.61 

940 
98.02 

0%MAR-30%MNAR 
4 

  44 37 
90.24 

952 
99.27 

50 30 
73.17 

939 
97.91 

40%MAR-0%MNAR 
0 

  40 20 
48.78 

948 
98.85 

40 17 
41.46 

936 
97.60 

30%MAR-10%MNAR 
1 

  35 24 
58.54 

933 
97.29 

55 26 
63.41 

930 
96.98 

20%MAR-20%MNAR 
2 

  37 23 
56.10 

945 
98.54 

45 23 
56.10 

937 
97.71 

10%MAR-30%MNAR 
3 

  41 30 
73.17 

948 
98.85 

52 28 
68.29 

935 
97.50 

0%MAR-40%MNAR 
4 

  45 36 
87.80 

950 
99.06 

57 29 
70.73 

931 
97.08 
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4.4.2.3 Analysis of the t-Distribution with Stochastic Censoring on Both Tails 

Here is another situation where the number of significant tests recorded is very close to 

the number of significant tests obtained with the full data. These results are obtained regardless 

of the distribution, the percentage of missing data, and the proportion of MNAR and MAR 

(Figure 11). But, a look at the sensitivity and specificity tells us that those good numbers do not 

necessary reflect quality of the method used. For example, with 20 percent of the data missing 

and all MAR, 50 significant tests were recorded with MI where the sensitivity was 48.78% and 

the specificity 96.87%. In the same conditions, 38 significant tests were recorded with complete 

cases only with a sensitivity of 39.02% and a specificity of 97.71%. Furthermore, when there 

were 40 percent of the data missing and all MNAR, 43 significant tests were recorded with MI. 

The sensitivity was 17.07% and the specificity 96.25%, which is approximately the results 

obtained with complete cases, where 47 significant tests were recorded with a sensitivity of 

7.32% and a specificity of 95.41%. The full results are presented in Table 6. 

 

4.5. Results for Chi-squared Distribution with 4 Degrees of Freedom 

4.5.1. Data Simulation for the Chi-square Distribution 

We also simulated 1000 samples of size 100, where each sample consisted of four 

random variable having Chi-square distribution with 4 degrees of freedom. Simulation of a chi-

square distribution was obtained by a Wishart distribution with four degree of freedom and 

sigma=1 (Johnson, 1987). To simulate the correlated chi-square we started from correlated 

random normal distributions, then we obtained a chi-square distribution with 4 degrees of    
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Figure 11:  Graph of the Number of Significant Tests Recorded with Missingness on Both Tails 

for the t-Distribution. On the x axis, 0 = 0% MNAR, 1= 25%MNAR or 33%MNAR, 

2=50%MNAR, 3=75%MNAR or 67%MNAR, and 4=100%MNAR 

freedom as the sum of four squared standard normal distributions. We chose the variance 

covariance matrix for the multivariate normal  

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �
1 0.8 0.6

0.8 1 0.8
0.6 0.8 1

� 

Similarly to the previous situation, missing data were generated by deleting observations from 

these full data. The objective remained to obtain monotone missing data, to form varying  
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Table 6: Results for t-Distribution with Stochastic Censoring on Both Tails 

Note. NSig = number of significant test; TS = true significant; TN = true non-significant; Spec = 
specificity; Sens = sensitivity. 

 

Repartition Full 
Data 

Available Data Multiple Imputation 

  NSig TS 
Sens(%) 

TN 
Spec(%) 

NSig TS 
Sens(%) 

TN 
Spec(%) 

0%missing 41         

20%MAR-0%MNAR 
0 

  38 16 
39.02 

937 
97.71 

50 20 
48.78 

929 
96.87 

15%MAR-5%MNAR 
1 

  38 17 
41.46 

938 
97.81 

41 22 
53.66 

940 
98.02 

10%MAR-10%MNAR 
2 

  46 18 
43.90 

931 
97.08 

45 21 
51.22 

935 
97.50 

5%MAR-15%MNAR 
3 

  41 16 
39.02 

934 
97.39 

41 23 
56.10 

941 
98.12 

0%MAR-20%MNAR 
4 

  45 12 
29.27 

926 
96.56 

45 16 
39.02 

930 
96.98 

30%MAR-0%MNAR 
0 

  40 17 
41.46 

936 
97.60 

46 18 
43.90 

931 
97.08 

20%MAR-10%MNAR 
1 

  41 11 
26.83 

929 
96.87 

54 16 
39.02 

921 
96.04 

15%MAR-15%MNAR 
2 

  48 13 
31.71 

924 
96.35 

38 18 
43.90 

939 
97.91 

10%MAR-20%MNAR 
3 

  44 10 
24.39 

925 
96.45 

44 15 
36.59 

930 
96.98 

0%MAR-30%MNAR 
4 

  46 9 
21.95 

922 
96.14 

56 17 
41.46 

920 
95.93 

40%MAR-0%MNAR 
0 

  41 10 
24.39 

927 
96.66 

49 14 
34.15 

924 
96.35 

30%MAR-10%MNAR 
1 

  36 26 
63.41 

933 
97.29 

43 13 
31.71 

929 
96.87 

20%MAR-20%MNAR 
2 

  47 6 
14.63 

918 
95.72 

56 15 
36.59 

918 
95.72 

10%MAR-30%MNAR 
3 

  54 4 
9.76 

909 
94.79 

63 12 
29.27 

908 
94.68 

0%MAR-40%MNAR 
4 

  47 3 
7.32 

915 
95.41 

43 7 
17.07 

923 
96.25 
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percentages of missing values, and to lay the stated missingness assumptions. For each 

percentage of missing data stated, we produced similar proportions of MNAR and MAR to the 

previous cases. Additionally, because the distribution is not symmetric, it was relevant to study 

the case of stochastic censoring to the right.  

When stochastic censoring was on the left tail the cutoff point was 3.  For around the 

mode censoring, deletion was done for values greater than 0.7 and less than 3.2. For both tails 

stochastic censuring, deletion was above 5.7 or below 1.8. And for stochastic censoring to the 

right values less than 4 were not deleted.   

4.5.2. Analysis for the Chi-square with Four Degrees of Freedom 

The test of hypotheses on the full data with Chi-square distribution yielded 50 significant 

tests among the 1000 tests conducted. The null hypothesis was 𝜇𝜇 = 4 versus the alternative 𝜇𝜇 ≠

4 because in the case of chi-square distribution with 4 degrees of freedom the mean is 4. 

4.5.2.1 Analysis of the Chi-square with Stochastic Censoring on the Left 

With 20% of the data missing on the Chi-square data, MI results indicated 47 significant 

tests, among which 28 were true significant, for all MAR. With these values the specificity was 

56.00% and specificity 98.00%. Complete cases analysis indicated 57 significant tests with a 

sensitivity of 56.00% and a specificity of 96.95%. For 15% MAR and 5% MNAR, we recorded 

45 significant tests with a sensitivity of 52.00% and a specificity of 98.00% with MI. When all 

the 20 percent data were missing not at random we recorded 129 significant tests with a 

sensitivity of 36.00% and a specificity of   88.32%. At 20 percent of missing data, we can 

conclude that MI did well in general with different proportions of missing at random in the data.  
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Complete case analysis did not perform well when more than half of the missingness was 

MNAR.  

With 30% of the data missing, MI led to 50 significant tests when all the missingness was MAR. 

The specificity in this case was 44.00% and the sensitivity 95.89%. We also observed the 

increased number of significant tests as the proportion of MNAR increased, as well as a decrease 

of sensitivity and specificity. And when all the missingness was MNAR, there were 336 

significant tests with a sensitivity of 36.00% and a specificity of 96.32%. Complete case results 

were not satisfactory as soon as there were some MNAR.  With 40% of the data missing, MI 

produced the same pattern where the number of significant tests increased as the proportion of 

MAR decreased in favor of the proportion of MNAR, translating into a decrease in specificity. 

With all MAR we recorded 53 significant tests with a sensitivity of 36.00% and a specificity of 

96.32%. With all MNAR we had 719 significant tests, a sensitivity of 44.00% and a specificity 

of 26.63%. Again, results with available data were off target when MNAR was introduced. All 

the results are presented in Table 7, and Figure 12 indicates the number of significant tests for 

MI and complete case analysis.  

4.5.2.2 Analysis of the Chi-square with Stochastic Censoring Around the Mode 

With 20% of the data missing, we recorded 45 significant tests using MI when we had all 

MAR. The sensitivity was 52.00% and the specificity was 98.00%. These values did not vary 

considerably as the proportion of MAR decreased in favor of the MNAR. When all the 

missingness was MNAR we recorded 103 significant tests for a sensitivity of 42.00% and a 

specificity of 91.37%.  But when using complete case analysis, the number of significant tests  
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Figure 12:  Graph of the Number of Significant Tests for the Chi-square with Stochastic 

Censoring on the Left. On the x axis, 0 = 0% MNAR, 1= 25%MNAR or 33%MNAR, 

2=50%MNAR, 3=75%MNAR or 67%MNAR, and 4=100%MNAR 

recorded changed considerably at 20% all MNAR where 311 significant tests were recorded and 

sensitivity and specificity were 32.00% and 68.95% respectively.  

With 30% of the data missing, we recorded 48 significant tests using MI when all the 

missingness was MAR. The sensitivity was 50.00% and the specificity was 97.58%. Again, these 

values did not vary much as the proportion of MAR decreased. When all the missingness was 

MNAR we recorded 222 significant tests for a sensitivity of 32.00% and a specificity of 78.32%.  
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Table 7: Results for the Chi-square Distribution with Stochastic Censoring on the Left 

Repartition Full 
Data 

Available Data Multiple Imputation 

  NSig TS 
Sens(%) 

TN 
Spec(%) 

NSig TS 
Sens(%) 

TN 
Spec(%) 

0%missing 50         

20%MAR-0%MNAR 
0 

  57 28 
56.00 

921 
96.95 

47 28 
56.00 

931 
98.00 

15%MAR-5%MNAR 
1 

  85 21 
42.00 

886 
93.26 

45 26 
52.00 

931 
98.00 

10%MAR-10%MNAR 
2 

  157 19 
38.00 

812 
85.47 

53 23 
46.00 

920 
96.84 

5%MAR-15%MNAR 
3 

  259 16 
32.00 

707 
74.42 

83 20 
40.00 

887 
93.37 

0%MAR-20%MNAR 
4 

  381 16 
32.00 

585 
61.58 

129 18 
36.00 

839 
88.32 

30%MAR-0%MNAR 
0 

  63 18 
36.00 

905 
95.26 

50 22 
44.00 

922 
97.05 

20%MAR-10%MNAR 
1 

  219 15 
30.00 

746 
78.53 

61 22 
44.00 

911 
95.89 

15%MAR-15%MNAR 
2 

  383 15 
30.00 

582 
61.26 

99 21 
42.00 

872 
91.79 

10%MAR-20%MNAR 
3 

  522 15 
30.00 

443 
46.63 

161 17 
34.00 

806 
84.84 

0%MAR-30%MNAR 
4 

  828 19 
38.00 

141 
14.84 

336 16 
32.00 

630 
66.32 

40%MAR-0%MNAR 
0 

  105 17 
34.00 

862 
90.74 

53 18 
36.00 

915 
96.32 

30%MAR-10%MNAR 
1 

  418 15 
30.00 

547 
57.58 

83 15 
30.00 

882 
92.84 

20%MAR-20%MNAR 
2 

  732 16 
32.00 

234 
24.63 

206 13 
26.00 

757 
79.68 

10%MAR-30%MNAR 
3 

  957 33 
66.00 

26 
2.74 

425 16 
32.00 

541 
56.95 

0%MAR-40%MNAR 
4 

  999 49 
98.00 

0 
0.00 

719 22 
44.00 

253 
26.63 

Note. NSig = number of significant test; TS = true significant; TN = true non-significant; Spec = 
specificity; Sens = sensitivity. 
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Complete case analysis produced higher number of significant tests as the proportion of MNAR 

increased, and we obtained up to 671 significant tests when all the missingness was MNAR. 

With 40% of the data missing, we recorded 59 significant tests when using MI, with a 

sensitivity of 44.00% and a specificity of 95.11%. In this case the number of significant tests 

increased as the proportion of MNAR increased, and the results were no longer satisfactory 

starting at 30% MNAR. 

Overall, when missing values were created by stochastic censoring around the mode, MI 

performed well except when 40% of the data was missing with 30% or more MNAR (Table 8). 

These results contrasted with that of complete case analysis, where the results were satisfactory 

only below 10% MNAR (Figure 13).  

4.5.2.3 Analysis of the Chi-square with Stochastic Censoring on Both Tails 

With 20% of the data missing, and when using MI, 57 significant tests were recorded at 

all MAR. With these values the sensitivity was 58.00% and specificity was 97.05%. When we 

looked at 15% MAR and 5% MNAR, we recorded 56 significant tests with a sensitivity of 

60.00% and a specificity of 97.26%. And when all the 20 percent data were missing not at 

random we recorded 74 significant tests with a sensitivity of 64.00% and a specificity of   

95.58%. These results were satisfactory regardless of the proportion of MNAR and MAR. 

Similar results were obtained with available data only. 

With 30% of the data missing, we recorded 58 significant tests using MI when all the 

missingness was MAR. The sensitivity was 48.00% and the specificity was 96.42%. These 

values did not vary much as the proportion of MAR decreased in favor of the proportion of 

MNAR. When all the missingness was MNAR we recorded 140 significant tests for a sensitivity 
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Figure 13: Graph of the Number of Significant Tests for the Chi-square with Stochastic 

Censoring Around the Mode. On the x axis, 0 = 0% MNAR, 1= 25%MNAR or 33%MNAR, 

2=50%MNAR, 3=75%MNAR or 67%MNAR, and 4=100%MNAR   

of 56.00% and a specificity of 88.21%. As indicated in Table 9, complete case results were very 

similar except for all MNAR were 230 significant tests were recorded with sensitivity and 

specificity 60.00% and 78.95% respectively. 

With 40% of the data missing, we recorded 67 significant tests when using MI with a 

sensitivity of 44.00% and a specificity of 95.26%. In this case the number of significant tests 

increased as the proportion of MNAR increased, such that when all the missingness were 
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Table 8: Results for Chi-square Distribution with Stochastic Censoring Around the Mode 

Repartition Full 
Data 

Available Data Multiple Imputation 

  NSig TS 
Sens(%) 

TN 
Spec(%) 

NSig TS 
Sens(%) 

TN 
Spec(%) 

0%missing 50         

20%MAR-0%MNAR 
0 

  55 26 
52.00 

921 
96.95 

45 26 
52.00 

931 
98.00 

15%MAR-5%MNAR 
1 

  78 22 
44.00 

894 
94.11 

40 23 
46.00 

933 
98.21 

10%MAR-10%MNAR 
2 

  125 21 
42.00 

846 
89.05 

51 24 
48.00 

923 
97.16 

5%MAR-15%MNAR 
3 

  211 18 
36.00 

757 
79.68 

74 24 
48.00 

900 
94.74 

0%MAR-20%MNAR 
4 

  311 16 
32.00 

655 
68.95 

103 21 
42.00 

868 
91.37 

30%MAR-0%MNAR 
0 

  56 21 
42.00 

915 
96.32 

48 25 
50.00 

927 
97.58 

20%MAR-10%MNAR 
1 

  184 16 
32.00 

782 
82.32 

58 24 
48.00 

916 
96.42 

15%MAR-15%MNAR 
2 

  285 15 
30.00 

680 
71.58 

89 19 
38.00 

880 
92.63 

10%MAR-20%MNAR 
3 

  404 15 
30.00 

561 
59.05 

113 20 
40.00 

857 
90.21 

0%MAR-30%MNAR 
4 

  671 15 
30.00 

294 
30.95 

222 16 
32.00 

744 
78.32 

40%MAR-0%MNAR 
0 

  94 19 
38.00 

875 
92.11 

59 22 
44.00 

913 
96.11 

30%MAR-10%MNAR 
1 

  262 15 
30.00 

703 
74.00 

60 16 
32.00 

906 
95.37 

20%MAR-20%MNAR 
2 

  532 15 
30.00 

433 
45.58 

138 14 
28.00 

826 
86.95 

10%MAR-30%MNAR 
3 

  834 21 
42.00 

137 
14.42 

292 17 
34.00 

675 
71.05 

0%MAR-40%MNAR 
4 

  963 30 
60.00 

17 
1.79 

503 16 
32.00 

463 
48.74 

Note. NSig = number of significant test; TS = true significant; TN = true non-significant; Spec = 
specificity; Sens = sensitivity. 
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MNAR, we recorded 390 significant tests with a sensitivity of 62.00% and a specificity of 

62.21%. Comparable results were obtained with complete cases, where the lowest number of 

significant tests recorded was 87 at all MAR, with a sensitivity of 48.00% and a specificity of 

93.37% (Table 9). 

Overall, MI produced satisfactory results for stochastic censoring on both tails compared 

to complete case analysis (Figure 14). Results for MI started to be questionable when we had 

over 30% MNAR in the data.  

 

Figure 14: Graph of the Number of Significant Tests for the Chi-square Distribution with 

Missingness on Both Tails. On the x axis, 0 = 0% MNAR, 1= 25%MNAR or 33%MNAR, 

2=50%MNAR, 3=75%MNAR or 67%MNAR, and 4=100%MNAR. 



78 
 

Table 9: Results for Chi-square Distribution with Stochastic Censoring on Both Tails 

Note. NSig = number of significant test; TS = true significant; TN = true non-significant; Spec = 
specificity; Sens = sensitivity. 

Repartition Full 
Data 

Available Data Multiple Imputation 

  NSig TS 
Sens(%) 

TN 
Spec(%) 

NSig TS 
Sens(%) 

TN 
Spec(%) 

0%missing 50         

20%MAR-0%MNAR 
0 

  55 27 
54.00 

922 
97.05 

57 29 
58.00 

922 
97.05 

15%MAR-5%MNAR 
1 

  66 23 
46.00 

907 
95.47 

56 30 
60.00 

924 
97.26 

10%MAR-10%MNAR 
2 

  68 24 
48.00 

906 
95.37 

57 27 
54.00 

920 
96.84 

5%MAR-15%MNAR 
3 

  95 26 
52.00 

881 
92.74 

77 33 
66.00 

906 
95.37 

0%MAR-20%MNAR 
4 

  109 27 
54.00 

868 
91.37 

74 32 
64.00 

908 
95.58 

30%MAR-0%MNAR 
0 

  71 22 
44.00 

901 
94.84 

58 24 
48.00 

916 
96.42 

20%MAR-10%MNAR 
1 

  98 25 
50.00 

877 
92.32 

71 28 
56.00 

907 
95.47 

15%MAR-15%MNAR 
2 

  112 25 
50.00 

863 
90.84 

82 30 
60.00 

898 
94.53 

10%MAR-20%MNAR 
3 

  139 26 
52.00 

837 
88.11 

94 28 
56.00 

884 
93.05 

0%MAR-30%MNAR 
4 

  230 30 
60.00 

750 
78.95 

140 28 
56.00 

838 
88.21 

40%MAR-0%MNAR 
0 

  87 24 
48.00 

887 
93.37 

67 22 
44.00 

905 
95.26 

30%MAR-10%MNAR 
1 

  122 25 
50.00 

853 
89.79 

80 21 
42.00 

891 
93.79 

20%MAR-20%MNAR 
2 

  179 23 
46.00 

794 
83.58 

110 21 
42.00 

861 
90.63 

10%MAR-30%MNAR 
3 

  312 32 
64.00 

670 
70.53 

211 31 
62.00 

770 
81.05 

0%MAR-40%MNAR 
4 

  562 34 
68.00 

422 
44.42 

390 31 
62.00 

591 
62.21 
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4.5.2.4 Analysis of the Chi-square with Stochastic Censoring on the Right 

With 20% of the data missing, we first looked at the results of all MAR. When using MI, 

55 significant tests were recorded. With these values the sensitivity was 68.00% and specificity  

was 97.79%. And when using only complete cases there was 113 significant tests with a 

sensitivity of 62.00% and a specificity of 91.37%. Then when we looked at 15% MAR and 5% 

MNAR, we recorded 84 significant tests with a sensitivity of 66.00% and a specificity of 

94.63%. When all the 20 percent data are missing not at random we recorded 289 significant 

tests with a sensitivity of 70.00% and a specificity of   73.26%. 

With 30% of the data missing, MI led to 67 significant tests when all the missingness 

were MAR. The specificity in this case was 54.00% and the sensitivity 95.79%. We also 

observed the increased in number of significant tests as the proportion of MNAR increased, as 

well as a decrease of specificity. And when all the missingness was MNAR, there were 649 

significant tests with a sensitivity of 72.00% and a specificity of 35.47%. Results for complete 

case analysis were satisfactory only at all MAR (Table 10).  

With 40% of the data missing, we had the same pattern where the number of significant 

tests increased as the proportion of MAR decreased, both for complete case and MI. At the 

starting point of all MAR we recorded 86 significant tests (sensitivity was 48.00% and 

specificity of 93.47%) when using MI, whereas there were 274 significant tests with complete 

case analysis. 

Overall, when data were stochastically censured on the right tail, MI produced relatively 

satisfactory results at all percentages of missing values conditioned that it was MAR. As soon as 

MNAR was introduced, the results were less attractive. In comparison, complete case analysis 
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started with higher number of significant tests and this number increased even more as the 

proportion of MNAR increased (Figure 15). 

 

Figure 15:  Graph of the Number of Significant Tests for the Chi-square Distribution with 

Missingness on the Right. On the x axis, 0 = 0% MNAR, 1= 25%MNAR or 33%MNAR (if 30% 

of data missing), 2=50%MNAR, 3=75%MNAR or 67%MNAR (if 30% of data missing), and 

4=100%MNAR. 
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Table 10: Results for Chi-square Distribution with Stochastic Censoring on the Right 

Note. NSig = number of significant test; TS = true significant; TN = true non-significant; Spec = 
specificity; Sens = sensitivity. 

Repartition Full 
Data 

Available Data Multiple Imputation 

  NSig TS 
Sens(%) 

TN 
Spec(%) 

NSig TS 
Sens(%) 

TN 
Spec(%) 

0%missing 50         

20%MAR-0%MNAR 
0 

  113 31 
62.00 

868 
91.37 

55 34 
68.00 

929 
97.79 

15%MAR-5%MNAR 
1 

  183 33 
66.00 

800 
84.21 

84 33 
66.00 

899 
94.63 

10%MAR-10%MNAR 
2 

  328 35 
70.00 

657 
69.16 

134 33 
66.00 

849 
89.37 

5%MAR-15%MNAR 
3 

  484 35 
70.00 

501 
52.74 

199 35 
70.00 

786 
82.74 

0%MAR-20%MNAR 
4 

  642 35 
70.00 

343 
36.11 

289 35 
70.00 

696 
73.26 

30%MAR-0%MNAR 
0 

  182 32 
64.00 

800 
84.21 

67 27 
54.00 

910 
95.79 

20%MAR-10%MNAR 
1 

  463 35 
70.00 

522 
54.95 

146 30 
60.00 

834 
87.79 

15%MAR-15%MNAR 
2 

  645 35 
70.00 

340 
35.79 

241 34 
68.00 

743 
78.21 

10%MAR-20%MNAR 
3 

  804 39 
78.00 

185 
19.47 

373 34 
68.00 

611 
64.32 

0%MAR-30%MNAR 
4 

  974 48 
96.00 

24 
2.53 

649 36 
72.00 

337 
35.47 

40%MAR-0%MNAR 
0 

  274 32 
64.00 

708 
74.53 

86 24 
48.00 

888 
93.47 

30%MAR-10%MNAR 
1 

  642 35 
70.00 

343 
36.11 

198 28 
56.00 

780 
82.11 

20%MAR-20%MNAR 
2 

  933 45 
90.00 

62 
6.53 

484 36 
72.00 

502 
52.84 

10%MAR-30%MNAR 
3 

  997 50 
100.00 

3 
0.32 

809 39 
78.00 

180 
18.95 

0%MAR-40%MNAR 
4 

  1000 50 
100.00 

0 
0.00 

996 50 
100.00 

4 
0.42 
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CHAPTER 5 

PROPOSED METHOD: INFLUENTIAL EXPONENTIAL TILTING 

5.1 Introduction 

Our simulation study indicated that MI performs well under the assumption of MAR 

missingness in estimating mean. However, under the MNAR assumption, we observed a 

potential bias. In this chapter, we propose the method of influential exponential tilting (IET) in 

an attempt to temper the effects of MNAR missingness. The necessity is to handle the problem 

of missing data as it would appear in a practical situation, where there is no unique cause, but a 

simultaneous presence of ignorable and nonignorable mechanisms. The motivation of the 

proposed influential exponential tilting method came from a succinct use of importance 

resampling for power estimation by Samawi et al. (1998). Additionally, our proposed method is 

motivated by the exponential tilting for MNAR missingness in Kim and Yu (2011) and 

Scharfstein et al. (2014).  

Kim and Yu (2011) used exponential tilting to model nonignorable missing data. In their 

paper, they considered the tilting parameter for determining the amount of departure from the 

MAR assumption of the response mechanism. Like Scharfstein et al. (1999), they handled the 

case where the tilting parameter was known. Moreover, they proceeded to the estimation of the 

tilting parameter when it was unknown. They used validation subsample to estimate tilting 

parameter, and assumed complete response among the elements in the validation subsample. 

Practically, there is the possibility of missingness in the validation subsample, and in that case 

their method is not applicable.  
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Daniels and Hogan (2008) handled the problem of nonignorable missing data by treating 

parameters of the models they specified for each pattern as sensitivity analysis parameters. 

Although they use Bayesian method for inference, they specify fully parametric models. It is a 

disadvantage to use fully parametric models because it is not necessary for identifying the 

estimands, and there is a possibility of misspecification. Scharfstein et al. (2014) proposed 

sensitivity analysis for a similar problem by choosing a benchmark assumption and controlling 

for deviation from MAR through varying the sensitivity parameter. In this dissertation, we 

propose to extend the exponential tilting approach by using the influence function as for tilting 

the assigned probability to the observed responses, see Samawi et al. (1998). The advantage of 

the proposed method is that the tilting based on the influential function depends on the statistics 

(functional) under consideration. Also, our method should be robust compared to with other 

methods. Furthermore, our method fixes the tilting parameter for the benchmark assumption, in 

which different ranges of deviation from MAR are considered. 

5.2 Exponential Tilting Method 

Kim and Yu (2011) assumed that the distribution of the nonrespondents is an exponential 

tilting of the distribution of the respondents when handling nonignorable missing data problem. 

Let (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) be independent realizations of the continuous random variable (X, Y), with some 

𝑦𝑦𝑖𝑖  missing and all 𝑥𝑥𝑖𝑖 are observed. In this setting, the response indicator 𝑟𝑟𝑖𝑖 takes the value 1 or 0 

respectively if 𝑦𝑦𝑖𝑖  is observed or not. Thus, the response mechanism is expressed as independent 

Bernoulli random variables with parameters  𝜋𝜋𝑖𝑖 = 𝜋𝜋(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) 

𝑟𝑟𝑖𝑖|(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)~Bernouilli(𝜋𝜋𝑖𝑖) , 

the interest being in estimating the mean 𝜃𝜃 of the variable Y.   
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But the problem of missing values cannot allow to use the regular consistent estimator 

𝜃𝜃� =
1
𝑛𝑛�𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Under MAR assumption,  

𝑃𝑃(𝑦𝑦𝑖𝑖 ∈ 𝐵𝐵|𝑥𝑥𝑖𝑖, 𝑟𝑟𝑖𝑖 = 0) = 𝑃𝑃(𝑦𝑦𝑖𝑖 ∈ 𝐵𝐵|𝑥𝑥𝑖𝑖, 𝑟𝑟𝑖𝑖 = 1) 

which is not the case under MNAR assumption. 

 If 𝑓𝑓0(𝑦𝑦𝑖𝑖/𝑥𝑥𝑖𝑖) is the conditional distribution among the nonrespondents and 𝑓𝑓1(𝑦𝑦𝑖𝑖/𝑥𝑥𝑖𝑖) the 

conditional distribution among the respondents of 𝑦𝑦𝑖𝑖 given 𝑥𝑥𝑖𝑖, the problem is to estimate the 

conditional mean for missing values. 

To compute the conditional distribution given 𝑟𝑟𝑖𝑖 = 0 suggestion is given to use the relationship  

𝑃𝑃(𝑦𝑦𝑖𝑖 ∈ 𝐵𝐵|𝑥𝑥𝑖𝑖, 𝑟𝑟𝑖𝑖 = 0) = 𝑃𝑃(𝑦𝑦𝑖𝑖 ∈ 𝐵𝐵|𝑥𝑥𝑖𝑖, 𝑟𝑟𝑖𝑖 = 1) ×
𝑃𝑃(𝑟𝑟𝑖𝑖 = 0|𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 ∈ 𝐵𝐵)
𝑃𝑃(𝑟𝑟𝑖𝑖 = 1|𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 ∈ 𝐵𝐵) ×

𝑃𝑃(𝑟𝑟𝑖𝑖 = 1|𝑥𝑥𝑖𝑖)
𝑃𝑃(𝑟𝑟𝑖𝑖 = 0|𝑥𝑥𝑖𝑖)

 

From which 

𝑓𝑓0(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) = 𝑓𝑓1(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) ×
Ο (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

𝐸𝐸{Ο (𝑥𝑥𝑖𝑖,𝑌𝑌𝑖𝑖)|𝑥𝑥𝑖𝑖, 𝑟𝑟𝑖𝑖 = 1} 

where the conditional odds for nonresponse is written 

Ο(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) =
𝑃𝑃(𝑟𝑟𝑖𝑖 = 0|𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑃𝑃(𝑟𝑟𝑖𝑖 = 1|𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

 

Assuming that the response probability is a logistic regression model 

𝜋𝜋𝑖𝑖 ≡ 𝑃𝑃(𝑟𝑟𝑖𝑖 = 1|𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) =
𝑒𝑒𝑒𝑒𝑒𝑒{𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝜙𝜙𝑦𝑦𝑖𝑖}

1 + 𝑒𝑒𝑒𝑒𝑒𝑒{𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝜙𝜙𝑦𝑦𝑖𝑖}
 

for some function  𝑔𝑔(. ) and a parameter  𝜙𝜙. Under this response model, the odds function can be 

written  

Ο(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) =  𝑒𝑒𝑒𝑒𝑒𝑒{−𝑔𝑔(𝑥𝑥𝑖𝑖)− 𝜙𝜙𝑦𝑦𝑖𝑖} 

And the conditional distribution of the nonresponse can be simplified to 
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𝑓𝑓0(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) = 𝑓𝑓1(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) ×
exp(−𝜙𝜙𝑦𝑦𝑖𝑖)

𝐸𝐸{exp(−𝜙𝜙𝑌𝑌𝑖𝑖) |𝑥𝑥𝑖𝑖, 𝑟𝑟𝑖𝑖 = 1}    , 

which expresses the distribution of the nonrespondents as an exponential tilting of the 

distribution of the respondents. Exponential tilting has been indicated for sensitivity analysis in 

repeated measure data with nonignorable missingness using non-parametric approach, see 

Scharfstein et al. (2014). Changing the notation to be consistent with the previous example the 

missing data distribution is identified by  

𝑓𝑓0(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) = 𝑓𝑓1(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) ×
exp (𝛼𝛼𝛼𝛼(𝑦𝑦𝑖𝑖))

𝐸𝐸{exp (𝛼𝛼𝛼𝛼(𝑌𝑌𝑖𝑖))|𝑥𝑥𝑖𝑖, 𝑟𝑟𝑖𝑖 = 1} 

where 𝑟𝑟 is a specified function.     

5.3 Proposed Method 

A goal of this dissertation is to propose a method for handling missing data using MI that 

takes into account the mix between MNAR and MAR assumptions. The practicality of the 

method is to assume a benchmark assumption for plausible MNAR as considered by subject 

matter experts, based on experience with the type of study. Instead of relying on a defined tilting 

parameter to adjust for MNAR missingness, the proposed IET uses an influential function to 

penalize observations that are more influential with respect to the statistic under consideration 

and in the opposite direction of the possible MNAR missingness, but rewards those in the same 

direction. In this process, an ad-hoc distribution for the outcome is created, and one imputes from 

the ad-hoc distribution. By substituting the original distribution, the conditional distribution of 

the unobserved values is set to be equal to that of the observed ones, and a setting for MAR is 

created. IET relies on MI to deliver robust estimation notwithstanding deviation from the MAR 

assumption.  
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Like other exponential tilting methods, IET states that the model for the nonresponding 

part is an exponential tilting of the model of the responding part. The particularity of IET is the 

choice of the specified function 𝑟𝑟(𝑦𝑦)  in the exponential tilting formula. Often, 𝑟𝑟(𝑦𝑦)  is replaced 

by 𝑦𝑦. Sometimes, 𝑟𝑟(𝑦𝑦) serves to quantify the effect of the observed response on the risk of 

dropping out (Scharfstein et al., 2014). For IET, we chose 𝑟𝑟(𝑦𝑦) to be the influential function. The 

influential function approach considers estimators for parameters based on a nonparametric 

estimation of unknown functionals. In general, nonparametric estimation consists of the 

estimation of a statistical functional 𝜃𝜃 = 𝑇𝑇(𝐹𝐹), where we suppose 𝑦𝑦  follows F distribution. 

Under some regularity conditions, the influence function of the functional 𝑇𝑇(𝐹𝐹)  is defined by 

𝐿𝐿(𝑦𝑦) = 𝜀𝜀
𝑙𝑙𝑙𝑙𝑙𝑙
��0 �

𝑇𝑇�(1− 𝜀𝜀) + 𝜀𝜀𝛿𝛿𝑦𝑦� − 𝑇𝑇(𝐹𝐹)
𝜀𝜀

� 

where  

𝛿𝛿𝑦𝑦(𝑢𝑢) = �0     𝑖𝑖𝑖𝑖  𝑢𝑢 < 𝑦𝑦
1     𝑖𝑖𝑖𝑖  𝑢𝑢 ≥ 𝑦𝑦 

 For estimating the mean, which is the concern of this dissertation, the influence function is 

estimated by 

𝐿𝐿�(𝑦𝑦𝑖𝑖) = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�  

Influential function can be justified that the problem in this dissertation is to estimate a parameter 

depending on the probability density of the distribution of all the responses, which is unknown 

because only the distribution of the observed data is available. 

Using the idea of importance resampling exponential tilting method, see Samawi et al. 

(1998), our method suggests the distribution of the missing values from the distribution of the 

observed data as  

𝑓𝑓𝜂𝜂(𝑦𝑦𝑖𝑖) =
1

𝐸𝐸(𝑒𝑒𝜂𝜂𝜂𝜂(𝑌𝑌𝑖𝑖))𝑒𝑒
𝜂𝜂𝜂𝜂(𝑦𝑦𝑖𝑖) × 𝑓𝑓(𝑦𝑦𝑖𝑖)  , 
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 with 𝜂𝜂 ≈ �|𝑧𝑧𝜋𝜋| + 2
3
− 1

3
�|𝑧𝑧𝜋𝜋|� 𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧𝜋𝜋) , 𝑧𝑧𝜋𝜋 is the Z-score corresponding to the probability 𝜋𝜋, 

and the specified function is chosen  as 

𝑟𝑟(𝑦𝑦𝑖𝑖) =
𝐿𝐿�(𝑦𝑦𝑖𝑖)
𝜎𝜎�√𝑛𝑛

 

where 𝜎𝜎�2 = 1
𝑛𝑛
∑ 𝐿𝐿�2(𝑦𝑦𝑖𝑖) and 𝐿𝐿�(𝑦𝑦) is the influential function. The probability 𝜋𝜋 indicates a 

benchmark assumption of the way the data could be MNAR, and takes the values 0.05 or 0.95 

for missingness to the left or to the right respectively.   

5.4 Steps for Performing IET 

For a dataset of size n to be used for estimation, we consider the outcome of interest Y 

with a density function f. The following steps can be followed to perform influential exponential 

tilting. 

1. Determine a benchmark assumption for the way in which data can be MNAR. This is 

materialized by choosing a value for 𝜋𝜋, in order to calculate the tilting parameter 𝜂𝜂 =

�|𝑧𝑧𝜋𝜋| + 2
3
− 1

3
�|𝑧𝑧𝜋𝜋|� 𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧𝜋𝜋) 

2. Find the assumed distribution 𝑓𝑓∗, of the missing values as an exponential tilted 

distribution of the observed value using the formula 

𝑓𝑓∗(𝑦𝑦𝑖𝑖) =
exp �𝜂𝜂 � 𝐿𝐿� (𝑦𝑦𝑖𝑖)

𝜎𝜎�√𝑛𝑛
��

�∑ exp �𝜂𝜂 � 𝐿𝐿� (𝑦𝑦𝑖𝑖)
𝜎𝜎�√𝑛𝑛

��𝑛𝑛
𝑖𝑖=1 �

𝑛𝑛

𝑓𝑓(𝑦𝑦𝑖𝑖) 

3. Using standard multiple imputation methodology, as indicated in chapter 3 of this 

dissertation, draw multiple imputations for the unobserved values using the tilted 

distribution. 



88 
 

4. Substitute the value 𝑦𝑦𝑖𝑖∗ = 𝑓𝑓∗(𝑦𝑦𝑖𝑖) for the missing 𝑦𝑦𝑖𝑖 to obtain the number of complete 

dataset corresponding to the number of imputations. 

5. Inference can be drawn using standard MI techniques by first analyzing the data as it 

would have been done if there were no missing values and then combining the results 

using Rubin’s rules. 

5.4 Simulation and Results for EIT 

We simulated one thousand samples of 200 observations each from the multivariate 

standard normal distribution. Stochastic left censoring was applied like in chapter 4 to create 

missing values to the left. The variables X3, X2, X1, and the outcome of interest Z1 were 

considered. We also created the same proportions of MNAR missingness and the same 

percentages of missing values for consistency with our previous simulations. The cutoff points 

for creating missing observations depending on the values of a variable was set to -0.3, -0.2 and -

0.01 at 20%, 30%, and 40% missing data respectively. Thereafter, Uniform random variables 

were used to create stochastic censoring and achieve the needed amount of missingness.  We 

performed IET to estimate the mean μ of Z1 for each sample. Ultimately, estimation was also 

done using standard MI, and comparison continued by using test of hypotheses for evaluation. 

Again, we tested the hypothesis (𝜇𝜇 =  0 𝑣𝑣𝑣𝑣 𝜇𝜇 ≠  0) at the significance level of 𝛼𝛼 = 0.05 for 

each sample and recorded the significant tests. Results for the full data were used as standard for 

assessing sensitivity and specificity. 

Given that the data were simulated to be stochastically missing to the left, the value of 𝜋𝜋 

was set to 0.05. If the values were deleted to the right, we would have chosen 0.95, and the 

procedure would have been the same considering the symmetry. The corresponding tilting 
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parameter was 𝜂𝜂 = 1.884. The results indicate that when all the data is MAR, IET and MI are 

similar for the most part, but IET performs better than MI for all other cases.  

At 20% of data missing, IET yielded 62 significant tests with a sensitivity of 61.70% and 

a specificity of 96.54% when all the missingness was MAR. In the same conditions, MI indicated 

59 significant tests with a sensitivity of 59.57% and a specificity of 96.85%. Among the 62 tests 

rejected by IET, 29 were included in the 47 tests rejected by using the full data. Equally, among 

the 59 tests rejected by MI, 29 were included in the 47 tests rejected by using the full data. These 

values represent excellent similarity between the two methods at this point. While the number of 

significant tests increased for MI as the proportion of MNAR increased, there was practically no 

change with IET. When all the data were MNAR, there were 87 significant tests recorded for 

IET with a sensitivity of 70.21% and a specificity of 94.33%. But, there were 143 significant 

tests with sensitivity and specificity of 53.19% and 87.62% respectively for MI. Among the 87 

tests rejected by IET, 33 were included in the 47 tests rejected by using the full data. However, 

among the 143 tests rejected by MI, only 25 were included in the 47 tests rejected by using the 

full data. These results indicate a sensible difference between the two methods, EIT doing better. 

At 30% of data missing IET yielded 77 significant tests among which 23 true significant 

with a sensitivity of 48.94% and a specificity of 96.96% when all the missingness were MAR. 

MI indicated 52 significant tests, where 19 were true significant tests, with a sensitivity of 

40.43% and a specificity of 96.54%. Although the number of significant tests were slightly 

higher for IET at this level, sensitivity and specificity were higher, making IET results stronger. 

While the number of significant tests increased for MI as the proportion of MNAR missingness 

increased, there was no important change with IET except when all the missingness was MNAR. 

At this level, there were 179 significant tests, where 29 were true significant tests, with a 
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sensitivity of 63.83% and a specificity of 84.37%. MI yield 299 significant tests including 26 

true significant tests, with sensitivity and specificity 55.32% and 71.35% respectively. IET is 

better than MI in identifying the same data as the full data analysis for rejecting or failing to 

reject the null hypothesis. 

At 40% of data missing, IET yielded 128 significant tests, where 23 were the same as for 

the full data analysis, with a sensitivity 48.94% and a specificity of 88.98% when all the 

missingness was MAR. MI indicated 62 significant tests, where 21 were the same as for the full 

data analysis, with a sensitivity of 44.68% and a specificity of 95.70%. Sometimes, one can be 

misled by the number of significant tests if sensitivity and specificity are not considered. With 

128 significant tests for IET and 62 for MI, one is tempted to say that MI is better in this case. 

However, the better test is determined by the point closest to the point of coordinates (0, 1) on 

the graph (1- specificity) by sensitivity. Optimal sensitivity and specificity can be defined as the 

minimal value for 𝑑𝑑 =  (1 −  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2 +  (1 −  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2, see Perkins and 

Schisterman (2006). 

  For IET, 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼 = (1− 0.4894)2 + (1 − 0.8898)2 = 0.273 

for MI ,        𝑑𝑑𝑀𝑀𝑀𝑀 =  (1− 0.4468)2 + (1 − 0.9570)2 = 0.308 , 

with 𝑑𝑑𝐼𝐼𝐼𝐼𝐼𝐼 <  𝑑𝑑𝑀𝑀𝑀𝑀  meaning that IET is also doing better than MI in this case. At 30%MAR-

10%MNAR, which is equivalent to a 25% MNAR, IET indicated 86 significant tests, among 

which 25 true significant tests, with a sensitivity of 53.19% and a specificity of 93.60%. This is a 

drop from the all MAR case. A similar drop was observed at 20%MAR-20%MNAR, which is 

the 50% MNAR. The increase in the number of significant tests for IET was observed starting 

when 75% of the missingness was MNAR, where we observed 139 significant tests, among 

which 26 true significant tests, with a sensitivity of 55.32% and a specificity of 88.98%. When 
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all the data were MNAR, 272 significant tests were recorded, among which 26 true significant, 

with a sensitivity of 55.32% and a specificity of 74.19%. At this level, MI produced 475 

significant tests, among which 24 true significant, with a sensitivity of 51.06% and a specificity 

of 52.68%. Again, IET did better than MI for distinguishing datasets as far as the results for 

analyses using the full data would be. 

The overall results are summarized in Table 11, and they indicate a net superiority of IET 

over MI. A graphical representation of the results doing a side by side comparison of the two 

methods as the proportion of MNAR increases is shown in Figure 16, and it points to how IET is 

better than MAR for estimation.  

 

Figure 16: Comparison of the Number of Significant Tests for IET and MI  

  



92 
 

Table 11: IET and MI Results 

Note. NSig = number of significant test; TS = true significant; TN = true non-significant; Spec = 
specificity; Sens = sensitivity.  

 Full 
Data 

Influential Exponential 
Tilting 

Multiple Imputation 

Repartition  NSig TS 
Sens(%) 

TN 
Spec(%) 

NSig TS 
Sens(%) 

TN 
Spec(%) 

0%missing 47         

20%MAR-0%MNAR   62 29 
61.70 

920 
96.54 

59 29 
61.70 

923 
96.85 

15%MAR-5%MNAR   55 29 
61.70 

927 
97.27 

64 33 
70.21 

922 
96.75 

10%MAR-10%MNAR   55 31 
65.96 

929 
97.48 

83 30 
63.83 

900 
94.44 

5%MAR-15%MNAR   68 37 
78.72 

922 
96.75 

100 31 
65.96 

884 
92.76 

0%MAR-20%MNAR   87 33 
70.21 

899 
94.33 

143 25 
53.19 

835 
87.62 

30%MAR-0%MNAR   77 23 
48.94 

924 
96.96 

52 19 
40.43 

920 
96.54 

20%MAR-10%MNAR   69 27 
57.45 

911 
95.59 

75 23 
48.94 

901 
94.54 

15%MAR-15%MNAR   69 29 
61.70 

913 
95.80 

105 26 
55.32 

874 
91.71 

10%MAR-20%MNAR   94 33 
70.21 

892 
93.60 

160 25 
53.19 

818 
85.83 

0%MAR-30%MNAR   179 30 
63.83 

804 
84.37 

299 26 
55.32 

680 
71.35 

40%MAR-0%MNAR   128 23 
48.94 

848 
88.98 

62 21 
44.68 

912 
95.70 

30%MAR-10%MNAR   86 25 
53.19 

892 
93.60 

88 25 
53.19 

870 
91.29 

20%MAR-20%MNAR   74 25 
53.19 

840 
88.14 

163 23 
48.94 

813 
85.31 

10%MAR-30%MNAR   139 26 
55.32 

848 
88.98 

285 24 
51.06 

692 
72.61 

0%MAR-40%MNAR   272 26 
55.32 

707 
74.19 

475 24 
51.06 

502 
52.68 
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CHAPTER 6 

DISCUSSION 

6.1 Interpretation of MI Results 

Multiple Imputation is a valid method of treating missing data under the assumption of 

MAR. We have presented results with data that deviate from the MAR assumption by varying 

the proportion of MAR and MNAR missingness. We have included normal, t, and chi-square 

distribution at 20, 30, and 40 percent of missing data. The percentage of missing values, the 

proportion of MNAR assumption, and the distribution of the data contribute to the difficulty of 

accurate and unbiased estimation of parameters when using MI.  When the percentage of missing 

values is low, the results indicate that MI performs well regardless of the distributional 

assumption. These findings are consistent with the literature that MI is robust to departure from 

the distributional assumption (Schafer, 1997). Results for MI remain acceptable when the 

MNAR assumption is introduced because as the percentage of missing data is low, the 

proportion of MNAR is also small. In most cases the results indicate a pattern of bias estimation 

as the proportion of MNAR increases, leading to less valid results when all the missingness is 

MNAR. The bias is observed when the missing values influence the estimation of the parameter 

and, in these cases, complete case analysis results deteriorate fast as the proportion of MNAR 

increases. 

MI is best performed under the assumption of missing at random, and the imputation 

assumes normally distributed data. Our simulation study confirmed these hypotheses. When the 

data simulated has a normal distribution, creating missing data that is suitable for a MAR 

assumption, MI leads to robust estimation of parameters even for larger percentages of missing 
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values. MI is also recognized to be robust to deviation from the assumption of MAR 

(Mallinckrodt et al., 2001). The results in this dissertation indicate that the validity of the 

departure from the MAR assumption disappears when the percentage of missing value increases. 

In this situation, the conclusions drawn from MI depend on the proportion of missing values 

assumed to be MNAR.  

   When the creation of missing values is on both tails or around the mode for normally 

distributed data, the dependence of missing values on the values of the observed variable does 

not considerably affect the mean. In this case, missing values below the mean are perfectly 

balanced by the ones above. Consequently, MI and available data analysis are both correct in the 

estimation of the mean. The advantage of MI being that it does not discard information and most 

likely does not reduce power.  The similarity between the results obtained by both methods is 

limited to the number of significant tests because sensitivity and specificity are lower with 

available case analysis than with MI. These results were not expected. One explanation is that 

MI takes into account the incertitude about the missingness, and by replacing a missing value 

with several possible values, contributes to obtaining a better estimation.  

In the process of MI, the distributions are usually assumed to be normal; however, when 

they are not, MI still produces satisfactory results. With the data simulated in this dissertation, 

this consideration is specifically true when the distributions are symmetrical. Results for the t 

distribution are similar to that of normal distribution at various percentages of missing values and 

proportions of missing data mechanism. The fact that the distribution is symmetric is especially 

relevant when data are missing on the tails. The t distribution is a heavy tail distribution, and 

variation on the tails is expected to threaten estimation of the parameters of the distribution 
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quickly. The difference between MI and available case analysis is more pronounced with the t 

distribution when data are missing on both tails.   

As the percentage of missing data and the proportion of MNAR increase, the results of 

MI apparently become less reliable not only for the t distribution but also for the normal 

distribution. We have seen that the problem is not significant when data is uniformly missing 

around the mean or on both tails. Furthermore, symmetrical distributions with missing values 

only on the right or only on the left tail led to similar results. Consequently, our discussion is 

focused on missingness on the left tail for both normal and t distributions. The weak performance 

with MNAR is consistent with the idea that MI does not do well when missingness is MNAR. 

However, the results indicate that MI works well for MAR, even with the data with t distribution, 

which is not the case for complete case analysis.  

When the data has a non-symmetric distribution as in the chi-square distribution, the 

patterns for the results are different. The first remark is that when the percentage of missing 

values is low, MI results are very impressive because it leads to about the same conclusion as 

that of the full data. Another remark is that, with missingness on both tails, MI also provides 

acceptable results when the proportion of MNAR is not too high but complete case analysis does 

not. These results are clearly different from that of the symmetric distributions. Stochastic left 

censoring provides poor results as the proportion of MNAR and the percentage of missing values 

increase. It is also observed that sensitivity decreases, and specificity decreases even faster. 

Looking at the data when the missingness not at random is on the left tail, the explanation could 

be that the distribution tends to appear congruent to the normal distribution as the percentage of 

MNAR increases.   
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The changes on the MNAR results with the chi-square distribution are prominent when 

missing values are centered or balanced on the extremes. For missingness on both tails, better 

results are observed when the percentage of missing values is less than 30% or the proportion of 

MNAR no more than 3/4. The difference with symmetric distributions is that the consequences 

are more dependent on the size of MNAR missingness among the missing values. In this case, 

complete case analysis estimation is more likely to be biased. The same pattern is observed for 

missingness around the mode. 

With the chi-square distribution, stochastic censoring to the right and to the left do not 

yield the same results neither with MI nor complete case analysis. Results are more unreliable as 

the percentage of MNAR increases. However, they are not satisfactory for complete case 

analysis even when the missingness is all MAR. We note that when data is MNAR with 

stochastic missing to the left, this tends to make the distribution of the observed data more 

skewed. However, with stochastic missing to the right the distribution of the observed data tends 

to be more symmetrical. 

The main finding with MI is that it works well when the data is missing at random, 

regardless of the distribution. However, when missing not at random is introduced, these 

conclusions are no longer valid. Sometimes, when missingness is well balanced around the 

parameter being estimated, MI performs well even with MNAR. Otherwise, estimation with MI 

tend to be bias. The reality is that as soon as there is MNAR, MI is no longer reliable. However, 

there have been improvements to the MI method allowing for MNAR, and reliability of the 

results obtained in this case are subject to sensitivity analysis.   
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6.2 Interpretation of IET Results 

Our solution to the problem of missing data is to consider that missing completely at 

random is the lesser problem. Besides, Little (2002) derived a test to verify that missingness is 

MCAR.  The other possibilities are MNAR and MAR. Unfortunately, the data does not provide 

any information to make a distinction going further. The first idea is to assume MAR, and do MI 

to obtain estimates of the parameters of interest, then follow up with sensitivity analysis. There is 

a possibility to do more. One interesting feature of MI is that it allows to integrate the expertise 

and experience about the data, the estimands, and the study conducted. Rubin's idea of MI (1987) 

was to use a method that takes into account the data collectors knowledge and the analyst 

experience. By gathering experts' contributions, it is possible to trace a strong benchmark 

assumption for the way in which the data could be MNAR. And at this point, it is suitable to take 

an MNAR method for MI. There is no problem doing so if the possibility of MAR missingness 

can be foreseen. One such method that we propose is the influential exponential tilting (IET), 

where the distribution of missing values is assumed to be an exponential tilting of that of the 

observed data. The specified function used in the tilted distribution is the influential function for 

the estimand considered, which contribute to controlling for deviation from the MAR 

assumption.  

Our simulations of multivariate normal distributions completely support the superiority of 

IET over regular MI. The choice of an optimal tilting parameter associated with the influential 

function helps control for deviation to the MAR assumption and provides a steady estimation of 

the means regardless of the mechanism of missing values. The closeness of the number of 

significant tests achieved with EIT to that of the full data, materialized by the high values for 

sensitivity and specificity, contribute to justify the good performance of our method.    
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No matter how sophisticated an MNAR method is, it can never be definitive. The 

fundamental reason is that all MNAR methods depend on unverified assumptions about the 

distribution of the missing values. Because these values are missing, there is no possibility to 

refute or to confirm these propositions. The recommendation for analyzing data with missing 

values in clinical trials is to assume MAR, which is a very robust assumption, and to do a 

sensitivity analysis to understand deviation from the MAR assumption (O'Neil, 2012). 

Sensitivity analysis consists of applying a variety of MNAR models to observe how consistent 

the results can be across those models. A similarity of the results obtained with the MNAR 

model increases some confidence about the MAR assumption, suggesting that even if the data 

were not MAR, the results would still be reasonable. However, this process does not guarantee 

that the results will always be correct, and this is for a couple of reasons. 

  First, for any dataset the number of MNAR models that can be produced is unlimited. 

Attempting to build all possible models is unreasonable. And one can only create some models 

that follow the desired pattern intuitively formulated. 

  Second, nothing in the data tells us which model is the best, or even between two MNAR 

models which one is better.  The fact that many models converge to the same result does not 

diminish anything about the fact that an MNAR model with a different result can end up being 

the correct one. 

  For the problem of missing data, our suggestion is to use all the available information 

possible to analyze the data. The data might be unable to provide any information about the 

nature and distribution of the missing values, but experience and knowledge about the type of 

data can deliver some clues. Failing to use this information to improve the estimation of 

parameters is a drawback from standard guidelines for statistical analysis. In the eventuality of 
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additional hints, sensitivity analysis can be restricted to a range of plausible models. IET 

rightfully proposes to emphasize the models suggested by research insight by considering a 

benchmark assumption for a plausible range of MAR and MNAR missingness.  

6.3 Conclusions 

A goal of this dissertation was to explore the problem of missing data, particularly when 

MI is used. One of the findings is that the results of the estimation of parameters depend on the 

proportion of MNAR and MAR missingness, biased results being attributed to increased 

presence of MNAR missingness. This dissertation also sought to improve estimation of 

parameters by taking into account the proportionality of MNAR and MAR assumptions.  We 

propose IET as an attempt to control the effects of deviation from the MAR assumption. 

Although MI has become a largely recommended method for handling missing data, there is no 

exact model when the data are MNAR.  

The simulations in this dissertation provide evidence of the influence of which way and 

what proportion of data is MNAR in the estimation of the mean. MI works well under the MAR 

assumption. Whenever MNAR is introduced, the chances of unbiased estimation decrease as the 

percentage of missing data and the proportion of MNAR missingness increase. However, when 

MNAR is such a way that the missingness above and below the mean are balanced, MI does not 

appear to be sensitive to MNAR missingness, and estimations are mostly correct. Furthermore, 

the distribution of the data influence how the way the data is MNAR affects the results. With the 

t distribution, the pattern of the results is similar to that of the standard normal data with some 

quick changes in the presence of   MNAR. The thick tail in the t distribution can explain this. In 
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contrast, results with the chi-square distribution are unpredictable from that of the standard 

normal data. It depends on of how skewed the distribution becomes due to MNAR missingness. 

The application of MI as a primer for handling missing data need to be revisited to further 

understand the implication of varying proportion of MAR and MNAR missingness on the 

inference. In many situations, the most distinguished recommendations are to choose a MAR 

model and then conduct sensitivity analysis to investigate plausible deviation from the MAR 

model. However, it can be noted from this dissertation that estimation of parameters can go very 

wrong when the proportion of MNAR missingness increases. This pattern is consistent with that 

presented by Little et al. (2012), stipulating that the need for sensitivity analysis increases with 

the potential proportion of MNAR missing data. The ratio of MNAR missing also infringes the 

claim that MI is robust to the deviation to the normality assumption, which is valid only when 

the proportion of missing data is reasonably small. 

The problem of missing data is of great importance to public health policy, and the recent 

FDA recommended panel on handling missing data in clinical trials testify to this. Recent 

studies, including this dissertation, indicate that although MI brings about some progress to the 

problem of missing data, there are some issues with MNAR missingness. When a benchmark 

assumption indicating the ways of possible MNAR is determined, IET method introduced in this 

dissertation can correct the problem. Integrating the proposed solutions into the policies will 

eventually improve the overall research with missing data. 

Therefore, the scale of the problem of missing data in clinical trials is extensive even 

when only MI is considered. Improving MI requires more research to understand better the 

implication of the underlined assumptions.  The simulations in this dissertation indicate how 

mixing MNAR and MAR ruins MI. Future research could focus on finding how the MAR 
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missingness hurts modeling approaches to fixing MNAR missingness. Also, we propose 

influential exponential tilting method for MNAR model which is a semi-parametric model 

having the same limitation of standard MI. One problem with the approach is finding theoretical 

justification for the tilting parameter chosen as the optimal tilting parameter used for power 

estimation. Further research building on the results and the idea of this dissertation can formulate 

a numerical approximation. Furthermore, a fully nonparametric method using the influence 

function for tilting the assigned probability to the observed responses worth investigating by 

resampling from the distribution using those weighted probabilities. 

This dissertation has presented a critical look at the missing data problem, offering 

caution to the application of MI regarding the primary assumption leading to the validity of the 

method. Consequently, some limitations were encountered that worth considering: First, the 

findings were based on simulations that do not have the same strength as a theoretical 

presentation. Secondly, no definite solution arises from MNAR assumption; by definition, 

MNAR suppose that the reason for missingness is unknown, and the data does not provide any 

information to control it. Furthermore, no guarantee is given that the suggestions in this 

dissertation will work for a given data, although it can work for most data. 

MI has gained a positive reputation amongst all the methods for handling missing data in 

clinical trial despite the difficulties observed with MNAR. The purpose of this dissertation was 

to look critically at the influence of the proportionality of MAR and MNAR missingness on the 

estimation of parameters with MI.  The findings indicate that MI remains a valid method for 

handling missing data when all the missingness is MAR. As soon as MNAR missingness is 

introduced, inference with MI loses its validity. Our recommendation is that available 

information not necessarily included in the data can dictate the choice of a benchmark 
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assumption for missing data mechanism. Consequently, our proposed method of influential 

exponential tilting provides robust estimation of parameters for the benchmark assumption.  
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APPENDIX A 

NORMAL DISTRIBUTION SIMULATION HISTOGRAMS 

Normal Distribution with Stochastic Censoring on the Left Tail 

Normal Distribution with all MAR Missing on the Left Tail 

Normal Distribution with 25% or 33% MNAR Missing on the Left Tail 

            Normal Distribution with 50% MNAR Missing on the Left Tail 

     Normal Distribution with 67% or 75% MNAR Missing on the Left Tail 

 Normal Distribution with all MNAR Missing on the Left Tail 

Normal Distribution n with Stochastic Censoring Around the Mode 

 Normal Distribution with all MAR missing around the mode 

 Normal Distribution with 25% or 33% MNAR Missing Around the Mode 

 Normal Distribution 50% MNAR Missing Around the Mode 

 Normal Distribution with 67% or 75% MNAR Missing Around the Mode 

 Normal Distribution with all MNAR Missing Around the Mode 

Normal Distribution with Stochastic Censoring on Both Tails 

 Normal Distribution with all MAR Missing on Both Tails 

 Normal Distribution with 20% or 33% MNAR Missing on Both Tails 

 Normal Distribution with 50% MNAR Missing on Both Tails 

 Normal Distribution with 67% or 75% MNAR Missing on Both Tails 

 Normal Distribution with all MNAR Missing on Both Tails 
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Normal Distribution with all MAR Missing on the Left Tail 
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Normal Distribution with 25% or 33% MNAR Missing on the Left Tail 


