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CHAPTER 1

INTRODUCTION TO GAME THEORY

1.1 Overview of Game Theory

The branch of mathematics known as Combinatornial Game Theory may be widely

known by name, but actual knowledge of the subject is not as common. Thus,

before we can really get into the main subject of Tree Topplers, we need to lay the

groundwork for Combinatorial Game Theory itself. Game Theory is defined as “the

branch of mathematics concerned with the analysis of strategies for dealing with

competitive situations where the outcome of a participants choice of action depends

critically on the actions of other participants” [2]. Specifically, Combinatorial Game

Theory involves the study of sequential games with perfect information, that is, all

players know everything that can happen from a given position with no randomness.

But what is a game? For the purposes of this paper, a game is defined with the

following attributes:

• There are two players, known as Left and Right.

• There are finitely many positions, including a starting position.

• There are rules that specify the moves either player can make from a given

position.

• Left and Right alternate making moves.

• Both players have access to all information at any given time.

• There is no randomness to moves made, such as rolling a die.

• A player that is unable to move loses.

• A player will always lose once the ending condition is met.
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Some of the most recognizeable games that could be considered under these

rules, for example, are Chess and Checkers. However, for the sake of simplifying the

concepts needed for this study, we will look at another game known as Hackenbush.

In Hackenbush, a figure is drawn using vertices and line segments and connect to a

final line called the ground. Players take turns deleting one of their lines. Classically,

Left and Right take on the colors bLue and Red respectively. If at any time a path

cannot be drawn from the ground to a line segment, that segment is also deleted.

This allows for more strategic plays as a player can delete an opponent’s move during

their turn [1]. The following is an example of a Hackenbush game:

Figure 1.1: An example of Hackenbush.

Now, stop and think about how Left and Right would play this game logically.

Should Left go first, he has two moves: the line on the right and the line on top of

the red line. However, the latter move is the better move to make since Right can

take his middle piece, effectively removing Left’s piece with it. Likewise, Right should

take his middle piece if he moves first for that exact reason. This is what it means to

make optimal plays. Also, one thing that should be noted here is, with every move a

player makes, the resulting gameboard becomes a subgame of the original, effectively

making it a game in and of itself.
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1.2 Scoring

There are ways to assign values to games in terms of the advantage a player has,

assuming optimal plays will be made. These values are determined by looking at the

advantage Left has after a player has moved. For example, after Left has played, he

has a moves advantage over Right, but after Right moves, Left has b moves advantage

over Right. We take these values and write them in the form {a|b}. This form does

not make any quantifiable sense at the moment, but that is because the actual value

is determined by what a and b are.

Before going into how to find that value, let us first consider the case in which

there are no legal moves for a player. Then that player’s score is left blank in the

notation. If both players have no legal moves, the result is a zero-game.

Definition 1. A zero-game is a game that scores { | } = 0, essentially making

it such that the first player to move loses, assuming all moves made are optimal.

For Hackenbush, the simplest form of a zero game equates to an empty board

at the beginning. Thus it is obvious the first player to move has no legal move and

loses automatically. Likewise, if we were to add one bLue line, Left would have 0

moves left after his move and Right would have no legal move giving Left a clear 1

move advantage, written {0| } = 1. This trend continues in such a manner that

{n| } = n+ 1, where n is the number of remaining moves Left has after an optimal

move.

However, what if we add a Red line instead? As stated before, these values are

applied with respect to the advantage of the Left player. Thus adding one line for

Right puts Left at a one move disadvantage, or a (-1) advantage. So adding one Red

line results in { |0} = −1. Adding two Red lines would then be { | − 1} = −2.

And so on to a general form of { | − n} = −(n + 1), where n is the number of
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remaining moves Right has after an optimal move.

Now with the groundwork out of the way, we can start using the values of sub-

games to determine the value of an overall game. Take the following Hackenbush

game for example:

Figure 1.2: A simple Hackenbush game tree with values.

After Left moves, Right has one move. From that game, we clearly have a

{ |0} = −1 situation. Conversely, if Right moves first, we have {0| } = 1. This

results in the overall game having a value of {−1|1} = 0. This makes sense as well,

since we equally added one independent move for both players to an empty board,

meaning advantage did not change. But what about this next game?

Figure 1.3: What could this game equal?
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Now both players have been given one line each. But if Left moves, Right’s only

move is eliminated and if Right moves, Left still has a move. It is not so clear what

the value of this game is given the scoring rules already introduced. There is another

rule, known as the Simplicity Rule, that can determine the value of a game such

as this.

Theorem 1.2.1. - The Simplicity Rule [1] - For a combinatorial game of value

{a|b} = G, G is the simplest number such that a < G < b. That is,

G = 2p+1
2n+1 = { p

2n
|p+1
2n
}.

Note:A formal proof of The Simplicity Rule will not be provided in this thesis and

can be found in [1].

To simplify, the value of a game is the number between a and b with the lowest

power of 2 as the denominator. Therefore, for our example above, we get {0|1} = 1
2
.

Likewise, we can obtain values such as {3
8
|3
4
} = 1

2
and so on. With this, we can finally

obtain a value for our original example:

Figure 1.4: The game tree of the first Hackenbush example.
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We can also obtain the value of this game by another means. We can look at

the values of each individual, non-interacting game board and express the value as a

sum:

Figure 1.5: The original example broken up as a sum of games.

We can trivially find that a single red line has a value of −1 and a single blue

line has a value of 1. Through similar steps to the game in Figure 1.3, we can find the

middle game’s value to be −1
2
. Thus, we get a final value of (−1) + (−1

2
) + (1) = −1

2
.

There are also other special games of infinitesimal, or extremely small, value.

Definition 2. A *-game (pronounced star game) is an infinitesimal game that scores

{0|0} = ∗, essentially resulting the first player to move winning, assuming all moves

made are optimal.

Say, for example, Hackenbush had another line type that was green, which is

claimable by either player. Then we get the following game which results in a value

of {0|0} = ∗ (See Figure 1.6). Building onto this concept, we also have results like

{n| − n} = n∗, where n∗ = n + ∗. It is also worth noting that * has the property

such that ∗+ ∗ = 0.
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Figure 1.6: Example of a *-game with a green line.

Furthermore, there are two more infinitesimal games.

Definition 3. An ↑-game (pronounced “up game”) is a positive infinitesimal game

where the score is {0|∗}, which favors the Left player [7].

Figure 1.7: An example of an up-game.
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The negative version of an up-game is called a down-game and is defined as

follows:

Definition 4. An ↓-game (pronounced “down game”) is a negetive infinitesimal

game where the score is {∗|0} which favors the Right player [7].

With the relation between up and down games, now is a good time to mention

the relation between the inverses of games. With every game, there is a way to

reverse every move and, as as result, negates the value the game originally had. With

Hackenbush, this is obtained by replacing every red line with a blue line and vice-

versa, like in Figure 1.8.

Figure 1.8: A down-game, showing the negation relation.



CHAPTER 2

DOMINEERING

Before getting into Tree Topplers, we must first briefly discuss a couple of topics,

the first of which is another game known as Domineering. The premise of the game

is simple; each player takes turns placing a domino, made of two tiles, on a tiled

game board (similar to a chess board), with Left placing their piece vertically and

Right placing their piece horizontally. Pieces are not allowed to overlap and cannot

be played outside the boundries of the board. The first one that is unable to play

loses. As an example, observe the following game where blue is Left’s vertical move

and red is Right’s horizontal move:

Figure 2.1: A sample game of Domineering with moves included.

One problem with looking at Domineering in this form is it is harder to visu-

ally distinguish the subgame. Therefore, when drawing game trees of Domineering,

whenever a domino is places onto the board, the covered cells are removed from the

drawing. See Figure 2.2 for an example.
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Figure 2.2: A sample game of Domineering eliminating moves.

In that form, we can more easily see that the two games resulting from Left’s

and Right’s individual moves actually result in the same game, thus having the same

value.

Now, there is one concept that needs to be addressed with Domineering. Whereas

with all our Hackenbush games, we had a ≤ b for all games of value {a|b}, it is possible

for games in Domineering to play out such that a > b, as follows:

Figure 2.3: A Domineering game with value ±1.
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Notice that this game was assigned the value ±1. This is an example of a

switch game, as the value can switch depending on who makes the first move. In

this example, the first player to move gains a 1-move advantage. The way this breaks

down is as follows:

For a game {y|z} such that y > z,

{y|z} = a+ {x| − x} = a± x,

where a = y+z
2

and x = y−z
2

.

Now, keeping in mind that, for Domineering, negating the value involves turning

the board by 90◦ , we can can look at an example that is a bit more complicated.

Figure 2.4: Domineering played on a 3x3 board.

Notice that, from the starting position, the optimal move for either player in-

volves taking the center square, thereby leaving the other player with only one avail-

able move to take. The best reason for this move, however, is that it reserves two
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more moves for that player to use later. This strategy can be applied to bigger boards

to reserve a move against an edge since the other player cannot play in that space.

From there, the only available moves for either player has equal impact on the game’s

value. Notice, however, that every game on the left side of the tree is the negative

of each game on the right as they all are a 90◦ rotation of another. Also, the second

game from the left can quickly have its value calculated as the sum of two games

that clearly have a value of 1 making its value 2, meaning its corresponding negative

have a value of −2. The value for the game on the bottom left can quickly have its

value calculated as 0. This shows the value of the previous game being 1. Finding

all the values on the left side allows immediate results in finding the values of the

games on the right, since they are all negations of the left side, ending in a value of

{1| − 1} = ±1.

Domineering has been around for fair amount of time [6]. As such, many values

have already been found for many game. Several examples may be seen in Figure 2.5.

There has also been a lot of research into the game, such as who wins on various

sizes of rectangular boards, that is, a board of size m×n. While this can be a subject

of interest, it does not give any specific values to the games. At best, a lot of results

that are known simply boil down to whether vertical or horizontal always wins, or if

the first or second player always wins. Beyond that, some other boards only have the

known result that, for instance, horizontal always wins if they go first [4]. However,

for the purposes of this thesis, we will not be going that in-depth into the subject of

Domineering as just a basic understanding is necessary for Tree Topplers. If further

reading is desired, there are manybooks and online articles on the subject, such as

[4].
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Figure 2.5: Several Domineering games with their corresponding values.[1]



CHAPTER 3

TREE TOPPLERS

3.1 Young Tableau and Hook Length

Our second set of topics before getting into Tree Topplers are the Young tableau

and hook length. A Young tableau can be formed by taking a partition of a positive

integer and filling out a tableau of squares with left justified rows of length equal to

the partitions in decreasing order [3].

Figure 3.1: A partition of (5,4,1) would have 5 squares on the top row, then 4 in the

middle, and 1 on the bottom row, all aligned on the left side.

A standard Young tableau of a partition of n has distinct integers from 1 to n

such that each row and column form increasing sequences.

Figure 3.2: A standard Young tableau of partition (5,4,1).



15

Related to the Young tableau is the concept of the hook and its hook length. Let

a Young tableau have a shape denoted by λ. A hook, Hλ(i, j) on a Young tableau

is the subset of cells on the tableau starts at the (i, j) and continues right and down

from there until the column and row terminate. The hook length of Hλ(i, j), denoted

hλ(i, j), is the total number of cells in Hλ(i, j).

Figure 3.3: A visual representation of Hλ(1, 2) filled with its hook length of 5.

The number of standard Young tableaus of a shape λ, denoted dλ can be calcu-

lated by dλ = n!∏
hλ(i,j)

. The easiest was to obtain
∏
hλ(i, j) would be to fill out the

tableau with all the corresponding hook lengths, like in Figure 3.4.

Figure 3.4: The same tableau filled with the hook lengths of each cell.

Using this as an example, we can see that for a tableau of shape λ = (5, 4, 1) we

get dλ = 10!
7·5·5·4·3·3·2·1·1·1 = 288.

This concept has since been generalized to binary trees to the effect of the equa-

tion not changing at all [5].
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3.2 Introduction to Tree Topplers

The inspiration for Tree Topplers came from the concept presented in the previous

section where hook length for a Young tableau was generalized for binary tree. Using

Domineering as a basis, Tree Topplers began with the premise of looking at Domi-

neering as a rooted binary tree such that every square is a vertex and every vertex of

adjacent squares are joined by an edge, with a vertical connection slanting from right

to left and a horizontal connection slanting from left to right.

Figure 3.5: A Domineering game with its equivalent Tree Topper game.

However, while at first glance it seems as though Tree Topplers is nothing but a

restricted version of Domineering, there are in fact games that are exclusive to each

particular game (See Figure 3.6).

Figure 3.6: Examples of games exclusive to Domineering and Tree Topplers respec-

tively.
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For the Domineering game in Figure 3.6, if we were to convert it into a graph,

we would end up with a cycle graph C4. As for the Tree Toppler game, it cannot

directly be converted to a tableau since the bottom two vertices would cause the

corresponding cells to overlap.

Before moving on, we need to clarify some terms that will be used intermittently.

For starters, the premise of Tree Topplers plays very similar to Domineering. Con-

verting from Domineering to Tree Topplers, we can define our analog of what a piece

is.

Definition 5. A piece in Tree Topplers refers to two vertices joined by one edge.

Furthermore, the following definitions give name to certain parts of a Tree Top-

plers game board. Figure 3.7 on the next page will give a visual representation of

each.

Definition 6. A contested vertex in this game refers to a vertex that is in pieces

that may be taken by either players.

Definition 7. A free vertex in this game refers to a vertex that is in pieces that

may only be taken by a specific player.

Definition 8. We call a piece an extension of another piece if the two pieces share

a vertex and both pieces belong to the same player.

Definition 9. We call a set of pieces a leg if the the following conditions are met:

• Every piece in the set shares at least one vertex with another piece in the set.

• Exactly one vertex in the set is a contested vertex.

• Exactly one vertex in the set is a leaf.

• The maximum degree of all free vertices in the set is 2.
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Figure 3.7: A Tree Topplers game with the sections labelled.

3.3 Gameplay

Gameplay follows by players alternatingly taking their pieces from the board, with

Left taking pieces that slant from right to left and Right taking the opposite. The

first player unable to remove a piece loses. Take the following simple game tree for

example. Do note that, when a piece is removed, all edges connecting to that piece,

colored green in following figures, are suddenly useless, and therefore are removed

from successive plays. For example:

Figure 3.8: Example game tree of Tree Topplers, marking removed pieces for clarity.
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As with Domineering, various games from Tree Topplers can be a switch game

as well, such as the following:

Figure 3.9: A switch game in Tree Topplers.

Other properties used in finding the value of this example include negating the

game by performing a horizontal flip on the entire tree. However, while a vertical

flip can also have the same effect, it violates the general structure of the game as the

root would then be at the bottom. Many different values can be found just through

experimentation alone:

Figure 3.10: Various Tree Topplers games and their values.
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One particular Tree Toppler game from Figure 3.11 is of interest due to the way

the game plays out.

Figure 3.11: Examples of games excluside to Domineering and Tree Topplers respec-

tively.

This game is of interest as it shows an example of a game here that, not only

results in a switch game, but also demonstrates various operations such as the addition

of games and switch games involving * values. In fact, as noted earlier, in order to

find the value of this game, we must take advantage of the fact that ∗+ ∗ = 0 when

applying the formula for switch games.
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3.4 Observations

Through working with this game, several observations have been made, documented

here in the form of theorems and their respective proofs.

Lemma 3.4.1. Taking a piece with a contested vertex always yields a more favorable

result than taking a piece with only free vertices.

Proof. Let there be two moves for left such that M0 is a move with no contested

vertices and M1 is a move with at least 1 contested vertex. For M0, Right has no way

to interact with this move. However, Right can interact with M1 by taking a piece

containing one of the contested vertices. Therefore, Left should make a priority to

the take M1 over M0.

Figure 3.12: The difference in choices of taking zero, one, or two contested vertices.
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Remark 1. In regards to Lemma 3.4.1, it is natural to think that it is always a better

move to take a piece that has the largest number of contested vertices. However, the

Figure 3.13 shows that this is not always the case.

Figure 3.13: An example where taking one contested vertex yields a better result over

two.

Next, we have a theorem that can help quickly find values of games by adding

to the shape in certain ways.

Theorem 3.4.2. Let G be a game with at least one leg for Left. Then, adding two

extensions to that leg increases the value of the game by 1.

Before going into the proof of this theorem, let us first note that, for the sake of

convenience, we will abuse notation somewhat. Let G be a game and Mn be a move

for either player. Then G−Mn = z refers the game G having the move Mn removed

from it and resulting in a game with a value of z.
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Proof. Let G be a game such that G = {a|b} and G has at least one leg for Left

with terminal vertex v. Let G′ be a game resembling G except with two extensions

extended from v, adding vertices w and x. Let Right’s best move in G be MR. Then

G−MR = b. Then, Right’s best move in G′ is MR.

Figure 3.14: A general game for visualization purposes.

Case 1. Assume MR includes a contested vertex u such that the path from u to

v is a leg, called L. WLOG, let |L| = 1. Then G′ −MR still contains the path wx.

Thus G′ −MR = b+ 1.

Case 2. Assume MR does not include the contested vertex in L. Then the proof

is trivial and G′ −MR = b+ 1.

Now let Left’s best move in G be ML. Then G−ML = a. We want to show that,

if M ′
L is Left’s best move in G′, then M ′

L = ML, that is, adding the two extensions

does not change Left’s best move.

Assume M ′
L lies on the extension, that is M ′

L removes the piece vw or wx.

However, since u is a contested vertex, then by Lemma, 3.4.1, a piece including u

would be preferable. Thus M ′
L cannot exist on the extension. That means M ′

L = ML.

Case 1. Let ML ⊂ L. Then ML removes the piece uv. Let WX be the game

consisting only of the piece wx. Then G′ −ML = G−ML +WX = a+ 1.

Case 2. Let ML 6⊂ L. Then the proof is trivial and G′ − L = a+ 1.

Thus, in general, G′ = {a+ 1|b+ 1} = {a|b}+ 1.
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Remark 2. It should be noted that there are cases where one extension can increase

the value of a game by 1, but that does not always occur. Two extensions, however,

will always increase the game value by 1. For example, see Figure 3.15.

Figure 3.15: A Tree Topplers game showing how the value is affected by one and two

extensions.

Naturally, this theorem can be reworked to apply to Right’s moves as well.

Corollary 3.4.3. Let G be a game with at least one leg for Right. Then, adding two

extensions to that leg decreases the value of the game by 1.

Proof. Since performing a horizontal flip on a Tree Topplers game negates the value,

the proof is trivial.

Remark 3. Since Tree Topplers and Domineering have similar structures, this the-

orem and corollary can quickly be applied to Domineering as well by adding a set of

two horizontal or vertical squares.

One of the most basic structures of a Tree Topplers game is a game with two legs

of equal length meeting at one contested vertex. The following theorem will show

that there are only two possible values for games of this particular shape. See Figure

3.16 for examples.
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Proposition 3.4.4. Let G(n) be a game with exactly one contested vertex and all

pieces form two legs of equal length n. Then the following are true:

(a) If n is odd, then the result is a *-game.

(b) If n is even, then the result is a zero-game.

Proof. To begin, we know G(0) = 0 and G(1) = ∗. Let a game G(n) = {a|b}. Let

m ∈ N. By Theorem 3.4.2, adding two extensions to Left increases the value by 1 and

by Corollary 3.4.4, adding two extensions to Right decreases the value by 1. Since

there are an equal number of extensions on either side, the increase/decrease in value

is nullified.

(a) If n is even, G(n) = G(0 + 2m) = G(0) = 0.

(b) If n is odd, G(n) = G(1 + 2m) = G(1) = ∗.

Figure 3.16: Equal-legged Tree Topplers games with their respective values.
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3.5 Future Potential Topics

One topic that may be of interest to apply towards Tree Topplers harkens back to

hook length. It is possible that there could be a relation between hook length values

and Tree Topplers game values. Also, as opposed to Domineering, Tree Toppler games

have an easier structure to interpret, potentially making studies of these games easier.

As Tree Topplers and Domineering share similar attributes, it would seem relevent

to try to apply results from Tree Topplers to Domineering. This is a new game and

there are many things likely waiting to be discovered on it. Have fun.
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