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HELPING TO RESOLVE TAXONOMIC CONFLICTS WITHIN THE GENUS 
AMBLYOMMA (ACARI: IXODIDAE) FROM A MOLECULAR PERSPECTIVE 

 
by 
 

PAULA LADO 
(Under the Direction of Lorenza Beati) 

 
 

ABSTRACT 
 

This work sought to reassess the taxonomic status of Amblyomma parvum 

Aragao, 1908 and of the A. maculatum group of ticks Camicas, 1998. By using 

different molecular markers, 12SrDNA, 16SrDNA, DL, COI, COII (mitochondrial) 

and ITS2 (nuclear), I analyzed the systematic relationships between these taxa 

and their closest relatives. Phylogenetic analyses by maximum parsimony, 

maximum likelihood, and Bayesian analysis were performed in order to 

determine relationships among species and populations, and to determine the 

evolutionary history of these ixodids. The data obtained supported the hypothesis 

of cryptic speciation occurring within A. parvum, with the northern populations of 

Central America being a different species from the one occurring in the southern 

latitudes, mainly in Brazil and Argentina. As for the A. maculatum group of 

species, the results strongly suggest that A. triste should be synonymized with A. 

maculatum, while A. tigrinum is maintained as a separated taxon until further 

biological evidence is gathered. In conclusion, the analyses presented herein 

successfully resolved some of the taxonomic issues within this large genus of 

hard ticks, while raising additional questions for future investigations.  
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Chapter 1 

 Is Amblyomma parvum a complex of species? 

 

 

Introduction 

 

The hard tick Amblyomma parvum (Acari: Ixodidae) Aragao 1908 has a 

broad geographic distribution, ranging from Mexico to Argentina (Hoffman, 1962, 

Guglielmone and Hadani, 1980; 1982; Guglielmone et al. 1990; 2003; Nava et 

al., 2008a). Throughout its geographical distribution, this species has a 

predilection for drier areas of Central America, the Nothern coast of South 

America, and the dry diagonal of South America spanning from the Chaco and 

Pampa in Argentina, to the Cerrado and Caatinga in Brazil (Fairchild, 1966; 

Guglielmone and Hadani, 1980; Morrone, 2006; Nava et al., 2008a). Basically, 

with the exception of an isolated population in Roraima (Amazonia), A. parvum 

has a disjunt distribution with two main clusters (northern and southern) 

separated by the Amazon basin. 

As for host range, adults commonly parasitize a variety of medium to 

large-sized domestic and wild animals, including humans (Jones et al., 1972; 

Guglielmone et al., 1991; Nava et al., 2006; 2008b), while the immature stages 

are commonly collected from rodents, in particular members of the Caviidae and 

Echimyidae (Labruna et al., 2005; Nava, 2006; 2008b; Saraiva et al., 2012).  

As A. parvum can also bite humans, it is a potential vector of pathogens of 

public health importance. Specimens of this tick have been found to be naturally 

infected with Coxiella burnetii, Ehrlichia cf. chaffensis and Candidatus 'Rickettsia 

andeanae' (Pachecho et al., 2007; Tomassone et al., 2008; Labruna et al 2011; 

Pacheco et al., 2013). 

Aragão described A. parvum in 1908 (Aragão, 1908) and further illustrated 

it in 1911 (Aragão, 1911). Ivancovich (1973) designated a subspecies, A. parvum 

carenatus, which differed from the original description of A. parvum by the 

presence of ventral plates on the festoons, not realizing that in his 1911 
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publication, Aragão mentioned the occurrence of carenae in A. parvum 

(Guglielmone et al., 1990).  

Later, Guglielmone and Hadani (1980) observed that males with carenae 

were more commonly found on cattle whereas males without them were almost 

exclusively found on a wild rodent, Dolychotis salinicola. The taxonomic status of 

this group of species was resolved by Guglielmone et al. (1990) through an in 

depth analysis of the different morphological types. The authors redescribed the 

adults and described de immatures of A. parvum. Amblyomma parvum carenatus 

was synonymized with A. parvum because it corresponded to the tick described 

by Aragão in 1911. In addition, they erected a new species, Amblyomma 

pseudoparvum Guglielmone, Mangold, and Keirans 1990, consistently found to 

lack carenae and to parasitize D. salinicola. 

Although the systematic status of A. parvum appeared to have been 

clarified, recent molecular studies suggested that A. parvum could correspond to 

a complex of species (Nava et al., 2008a). Increasing evidence shows that tick 

species with a wide geographic distribution can in fact be clusters of more or less 

cryptic species (Szabo et al., 2005; Labruna et al., 2009; Mastropaolo et al., 

2011; Beati et al., 2013; Nava et al., 2014).  

The analysis of 16SrDNA sequences of A. parvum from Argentina and 

Brazil revealed significantly higher divergence values between (3.7%) than within 

populations (0 to 1.1%) suggesting to the authors the possible occurrence of two 

species (Nava et al., 2008a).  

Nevertheless, divergence values are relative numbers, that cannot be 

used as such to define species, particularly when based on the analysis of a 

single gene. Multiple sources of evidence, morphological, molecular, and 

biological, should be combined in order to reliably delimit species. Morphological 

data and cross breeding experiments between populations of A. parvum from 

Argentina and Brazil contradicted the 16SrDNA results: they did not detect 

significant morphological differences between populations nor did they reveal 

reproductive incompatibility (Nava et al., unpublished data). Although these ticks 
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might be geographically separated and prevented from interbreeding, their 

isolation has not yet resulted in speciation (Nava et al., unpublished data). 

Nonetheless, these studies were based on specimens collected from 

southern South America only. If samples from Brazil and Argentina are 

genetically different enough to suggest incipient speciation, samples from Central 

America are more likely to have diverged earlier and to constitute a different 

species. This would be particularly meaningful, if we consider that another tick, 

Amblyomma cajennense, with a similar geographical distribution and also 

associated with relatively drier areas, was found to be constituted by six different 

species, one of them with a Mexican and Central American distribution 

(Amblyomma mixtum) and five confined to continental South America (Beati et 

al., 2013; Nava et al., 2014) 

 

 

Material and Methods 

 

Sampling 

Our samples included 90 adult specimens identified as A. parvum from the 

following countries: Argentina, Brazil, Paraguay, Costa Rica, El Salvador, 

Panama and Mexico (Fig. 1.1). In the case of Argentina and Brazil, specimens 

from several localities were included in order to consider variation between and 

within different eco-regions. Our tick sample included specimens from 16 

localities, corresponding to 7 countries across the geographic distribution of A. 

parvum, thus covering a wide range of latitudes (Table 1.1). The collection sites 

are shown in Fig. 1.1 and designated as follows: Argentina, Arg; (Cordoba, CB, 

Santiago del Estero, SDE; Catamarca, CA; La Rioja, LR), Brazil, Bra; (Piaui, PI; 

Mato Grosso do Sul, MGS; Minas Gerais, MG; Pantanal, PA, Goias, GO), Costa 

Rica, CR; (Palo Verde, PV; Santa Rosa, SR), El Salvador, ES; Mexico (Yucatan, 

YU), Panama, PM; (Panama, PM; Los Santos, LS), Paraguay, Par; (Boqueron, 

BO). In addition, specimens of A. pseudoparvum included in the analyses were 

from Salta (SA), Argentina. 
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DNA extraction, PCR, and sequencing 

Tick DNA was extracted and the exoskeletons were preserved for further 

morphological analysis following previously published protocols (Beati and 

Keirans, 2001; Beati et al., 2012). For that purpose a small portion of the postero-

lateral idiosoma of each tick was removed by using a disposable scalpel and the 

tick was incubated overnight in 180 µl Qiagen ATL lysis buffer (Qiagen, Valencia, 

CA) and 40 µl of a 14.3 mg/ml solution of proteinase K (Roche Applied Sciences, 

Indianapolis, IN). After complete lysis of the tick tissues and repeated vortexing, 

the exoskeletons were stored in 70% ethanol and kept as voucher specimens. 

The lysed tissues were further processed as previously described (Beati and 

Keirans, 2001; Beati et al., 2012). Five mitochondrial gene sequences, 12SrDNA 

(ribosomal small-subunit RNA gene sequence), 16SrDNA (ribosomal small-

subunit RNA gene sequence), COI (Cythochrome oxydase subunit I), COII 

(Cythochrome oxydase subunit II), and d-loop (DL, control region) were amplified 

employing previously reported sets of primers (Beati and Keirans, 2001; Beati et 

al., 2012; Barret and Hebert, 2005; Mangold et al., 1998). In addition, a portion of 

the nuclear ribosomal internal transcribed spacer 2 (ITS2) was amplified by 

modifying previously published methods, with 35 instead of 27 cycles of 

annealing (Beati et al., 2012; McLain et al., 1995). PCRs were performed using a 

MasterTaq kit (5-Prime, Gaithersburg, MD). Each reaction contained 2.5 µl of tick 

DNA, 2.5 µl of 10 × Taq buffer, 5 µl of 5 × TaqMaster PCR Enhancer, 1.5 µl of 

MgAc (25 mM), 0.5 µl dNTP mix (10 mM each), 0.1 µl of Taq polymerase (5U/ 

µl), 1.25 µl of each primer from a 10 pmoles/µl stock solution (Invitrogen, Life 

Technologies Corporation, Grand Island, NY), and 14.6 µl molecular biology 

grade H2O. The two DNA strands of each amplicon were purified and sequenced 

at the High-Throughput Genomics Unit (HTGU, University of Washington, 

Seattle, WA) and were assembled with Sequencer 4.5 (Gene Codes Corporation, 

Ann Arbor, MI).  
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Phylogenetic analyses 

Sequences were manually aligned with McClade 4.07 OSX (Sinauer Associates, 

Sunderland, MA) (Maddison and Maddison 2000). Secondary structure was 

considered in aligning 12SrDNA (Beati and Keirans 2001) and DL (Zhang and 

Hewitt 1997). Codon organization was taken into account when aligning the COII 

data set. Each data set was analyzed by maximum parsimony (MP) and 

maximum likelihood (ML) using PAUP (Swofford, 2000), and through Bayesian 

analysis (BA) with MrBayes 3.1.2 and 3.2.4 (Huelsenbeck and Ronquist 2001; 

Ronquist et al., 2011). Branch support was assessed by bootstrap analysis (1000 

replicates) with PAUP for MP, with PHYML (100 replica) (Guindon and Gascuel 

2003) in Phylogeny.fr (Dereeper et al., 2008) for ML, and by posterior probability 

with MrBayes. MP heuristic searches were performed by branch-swapping using 

the tree bisection-reconnection (TBR) algorithm, ACCTRAN character 

optimization, with all substitutions given equal weight. Gaps were treated either 

as a 5th (in DL, COII and ITS2 analyses) or as a missing character (12srDNA, 

16SrDNA, COI and both concatenated datasets). ML heuristic searches were run 

after the nucleotide substitution model best fitting the data was selected by 

Modeltest v3.7 (Posada and Crandall 1998). Pairwise sequence distances were 

calculated based on the ML model by using PAUP. For ML searches, the MP 

tree with the best ML score was used as the starting tree. Two runs, with four 

chains each, were run simultaneously for BA analyses (1,000,000 generations). 

Trees were sampled every 100 iteration. Trees saved before the average 

standard deviation of split fragments converged to a value < 0.01 were discarded 

from the final sample, and the number of generations was increased, if needed, 

to avoid discarding more than 25% of the trees. The 50% majority-rule 

consensus tree of the remaining trees was inferred and posterior probabilities 

were recorded for each branch. Data sets were combined for total evidence 

analyses. One concatenated data set including both mitochondrial and nuclear 

sequences (n+mtDNA), were analyzed following the same procedure outlined for 

the separate analyses. The sequences were concatenated using MacClade. The 

outgroup used for all the phylogenetic analyses included the following species: A. 
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cajennense, A. sculptum, A. mixtum and A. interandinum. A. pseudoparvum was 

included in the analyses because it corresponds to the closest morphological 

relative of A. parvum. 

 

Results 
 

Sequence diversity 

Due to variations in the amplification success, it was not possible to obtain 

sequences for all the genes for each sample. However, we obtained sequences 

for all the geographic regions and localities (Table 1.1). 

In terms of sequence diversity, the 39 12SrDNA (343 bp) sequences were 

represented by 12 unique haplotypes; the 65 16SrDNA (406 bp) sequences by 

21 haplotypes; the 36 COI (604 bp) sequences by 20 haplotypes; the 15 COII 

(602 bp) sequences by 9 haplotypes; the 33 DL (455 bp) sequences by 29 

haplotypes and the 8 sequences from the ITS2 (1161 bp) by 7 genotypes (Table 

1.2). The 455 bp DL dataset was reduced to 389 bp after eliminating the 

hypervariable region, which could not be aligned with sufficient confidence. There 

were no shared haplotypes between the countries or regions, according to the 

designation in Table 1.2. 

 

Individual gene markers 

12SrDNA 

The MP analysis for the 12SrDNA sequences detected a total of 73 

parsimony-informative characters, and the heuristic search found 3 equally 

parsimonious trees with relatively little homoplasy: length = 163; consistency 

index (CI) = 0.812; retention index (RI) = 0.859; homoplasy index (HI) = 0.188. 

The ML model that best fitted the data according to the Akaike Information 

Criterion was TVM+G with base frequencies of A = 0.42; C = 0.09; G = 0.13 and 

T = 0.36 and proportion of invariable sites (PI) = 0 and gamma distribution shape 

parameter (G) = 0.2406.  
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The MP, ML and Bayesian analyses (Figs. 1.2, 1.3 and 1.4 respectively) 

all revealed that the ingroup is not monophyletic due to the presence of A. 

pseudoparvum embedded within it. MP, ML and BA analyses resulted in 

topologically identical trees.  The ingroup and A. pseudoparvum were clustered 

in a well-supported (100%) polytomic clade.  

Within this group, the well-supported Brazilian (B) and the Argentinian (A) 

lineages were clustered in a monophyletic group, and the Central American (CA) 

clade was resolved and separated from the other ones. The A. pseudoparvum 

branch stemmed from the polytomy and did not appear to be more or less related 

to any of the other groups.  

ML distance values within the three main clades (A, B, and CA) were 

always below 0.7%. Distances between either A or B and CA ranged from 6.5 to 

8.0%, while between A or B and A. pseudoparvum they varied from 8.3 to 9.1%. 

A. pseudoparvum differed from CA by 8.6-8.9%. The distance separating the 

ingroup from the outgroup ranged from 14.2 to 19.6%, and the distance within 

species of the outgroup varied from 7.9 to 14.3% (Table 1.3).  

 

16rDNA 

The MP analysis of the 16SrDNA gene sequences detected a total of 90 

parsimony-informative sites, and the search found 3 equally parsimonious trees. 

The length of the trees was 194 (CI = 0.778; RI = 0.885; HI = 0.222). The ML 

model that best fitted the data according to the Akaike Information Criterion was 

TVM+G with base frequencies of A=0.43; C=0.08; G=0.13 and T=0.36; PI = 0; G 

= 0.1556. 

The MP, ML and BA trees were totally congruent (Figs. 1.5-1.7). A. 

pseudoparvum constituted a basal lineage within a monophyletic group, and all 

A. parvum clustered in a well-resolved separated lineage. The first node within 

the ingroup divided the sequences in two resolved clades, the basal CA and a 

cluster including all samples from Brazil, Argentina, and Paraguay. The second 

lineage was further subdivided into two supported groups. The first included the 

Brazilian samples and the second included the Argentinian and the Paraguayan 
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samples (A + P). Amblyomma pseudoparvum was more closely related to the CA 

clade than to the rest of the A. parvum subgroups.  

Divergence values within the clades (A, B, and CA) were always below 

1.3%. Distance between either A, B or Paraguayan, and CA samples ranged 

from 6.5 to 7.9%. A. pseudoparvum differed from the A, B or Paraguayan 

sequences by 10.3 to 11.9%.  The divergence values between CA and A. 

pseudoparvum were 8.5 - 10.1%. The distance separating the ingroup from the 

outgroup ranged from 11.6 to 17.7%, and from 7.2 to 12.2% within species of the 

outgroup (Table 1.3).  

 

COI 

The MP analysis of COI gene sequences detected 137 parsimony 

informative sites and the heuristic search led to 6 equally parsimonious trees. 

The length of the trees was 386 (CI = 0.681; RI = 0.811; and HI=0.319). The ML 

model that best fitted the data according to the Akaike Information Criterion was 

GTR+I+G with base frequencies of A=0.31; C=0.17; G=0.13 and T=0.39; PI = 

0.5399 and G = 0.7578. 

The MP, ML and BA results (Figs 1.8-1.10) revealed that the ingroup was 

paraphyletic because of the position of A. pseudoparvum. The MP analysis 

showed three lineages arising from a polytomy: A. pseudoparvum, CA (100%), 

and the A – B lineage (91%). The latter was further split into A and B (99 and 

98% respectively). The topology of the ML reconstruction was identical. By using 

BA the CA lineage was basal to everything else, followed by the 

A.pseudoparvum branch, located between CA and the A – B cluster. A and B 

were monophyletic sister lineages. ML divergence values within B ranged from 

0.2 to 0.5%, within A from 0.2 to 3.5%, and within CA from 0.3 to 1.3%. Clades A 

and B were separated from each other by 4.3 - 6.2%; and either one of them 

differed from CA by 9.8 – 11.2%. Distance between CA and A. pseudoparvum 

was 11.6 – 12.3%. The ingroup was separated from the outgroup by 14.7% to 

18.5%. The variation within the outgroup ranged from 11.6 to 15.6% (Table 1.4). 
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COII 

 The MP analysis of the COII dataset identified a total of 120 parsimony-

informative characters, with 8 best trees (length = 310; CI= 0.803; RI= 0.840; HI= 

0.197). The ML model best fitting the data, according to the Akaike Information 

Criterion, was TrN+G with the following base frequencies: A=0.37; C=0.08; 

G=0.17 and T=0.38; PI = 0 and G = 0.1954.   

 The MP, ML and BA results (Figs. 1.11-1.13) were fully congruent. The 

ingroup was monophyletic and resolved into two clades: B - A and CA. Of those, 

the first one was further subdivided into two supported lineages, B and A.   

 Divergence values within the clades were below 0.8%. The distance 

separating B from A ranged from 3.3 to 4.2%. The divergence values between 

either A or B and CA clade varied from 11.2 to 12.1%, while between the ingroup 

and the outgroup differed by 16.6 - 21.9%. Variation within outgroup species 

oscillated between 10.7 and 19.3% (Table 1.4). 

 

DL 

 The MP analysis of DL sequence detected 72 parsimony-informative sites 

and the heuristic search led to 2000 equally parsimonious trees. The length of 

the trees was 174; CI = 0.753; RI = 0.860 and HI = 0.247. The ML model best 

fitting the data, according to the Akaike Information Criterion, was TVM+I+G with 

base frequencies of A=0.42; C=0.13; G=0.13 and T=0.32; PI = 0.444; G = 0.531.  

 The MP and ML were congruent. Amblyomma pseudoparvum was always 

embedded within the monophyletic A. parvum (Figs. 14 and 15). Two clades 

were well resolved, the CA - A. pseudoparvum and the A - B. In the former, the 

CA samples were monophyletic. In the second, only B was supported. For BA, 

the ingroup was also not monophyletic (Fig. 1.16). The monophyletic CA 

clustered with A. pseudoparvum. The Brazilian clade was monophyletic, while 

the Argentinian sequences did not form a well-supported clade. 

ML pairwise distances within the clades were always below 1.1%. CA 

differed from A or B by 7.1 to 7.9%, and A. pseudoparvum differed from A or B by 

8.6 to 9.5%. The divergence value between CA and A. pseudoparvum ranged 
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from 6.6 to 6.8%. The distances separating the ingroup from the outgroup ranged 

from 11.8 to 16.2%, and within the ougroup from 6.8 to 12.1% (Table 1.5).  

 

ITS2 

Unfortunately, we were unable to obtain an ITS2 sequence for A. 

pseudoparvum. The MP analysis of the remaining ITS2 gene sequences 

detected 244 parsimony-informative sites and the length of the 2 best trees was 

383 (CI=0.924; RI=0.958; and HI=0.076). The ML model best fitting the data by 

the Akaike Information Criterion was GTR+G with base frequencies of A=0.17; 

C=0.36; G=0.28 and T=0.19; PI = 0; G=0.4616.  

In both the MP and ML (Figs. 1.17 and 1.18) analyses the ingroup was 

monophyletic. The MP reconstruction identified two clades within the ingroup: CA 

and B - A. With this molecular marker, neither the Brazilian nor the Argentinian 

sequences clustered into monophyletic groups. The ML analysis was 

characterized by overall lower resolution, with only CA constituting a relatively 

weakly (70%) supported clade, sister group to the Brazilian samples from Goiás. 

The remaining Brazilian and Argentinian sequences were polytomic and basal to 

the other clades. The BA reconstruction resolved the monophyletic ingroup into 

two resolved clades: one (88%) included samples from Argentina (A) and Brazil 

(PA and MG), while the other (98%) clustered the sister lineages from Brazil 

(GO) and Central America (100%) (Fig. 1.19).  

 The ML divergence value within Brazilian samples from PA and MG was 

0.2%, and differed from Brazilian samples from GO, by 3.8 to 4.1%. Thus, the 

overall variation within Brazilian samples was from 0.2 to 4.1%. The distance 

between CA samples and either Brazil from MG and PA or GO was similar and 

ranged from 3.3 to 5.9%. Divergence values between Argentinian and Brazilian 

samples from MG and PA varied from 0.1 to 0.4%, whereas the distance 

between Argentinian samples and Brazilian samples from GO was 3.9%. 

Divergence values between A and CA sequences ranged from 3.6 and 5.5%. 

Between the ingroup and the outgroup the distances oscillated from 13.5 to 

17.4%, and within the outgroup from 2.1 to 7.1% (Table 1.6).  
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Concatenated datasets (mitochondrial gene sequences) 

 The concatenated matrix included sequences representative of the 

countries included in the study. In addition, a sequence of A. pseudoparvum was 

also included. Sequences of all the mitochondrial molecular markers were 

concatenated with the exception of COII, a gene for which we did not have a 

sufficient number of amplicons. The concatenated matrix included 84 sequences 

(1755 bp) corresponding to 16 unique haplotypes, 1 sequence of A. 

pseudoparvum and 4 outgroups. 

 The MP analysis of the concatenated mitochondrial dataset detected 350 

parsimony-informative characters and the heuristic search found 2 equally 

parsimonious trees. The length of the trees was 885; CI = 0.738; RI = 0.820; and 

HI = 0.262. The ML model best fitting the data, according to the Akaike 

Information Criterion, was GTR+I+G with base frequencies of A=0.38; C=0.12; 

G=0.14 and T=0.36; PI = 0.5606; G = 1.0068. 

 The MP and ML analyses (Figs. 1.20 and 1.21) revealed a polytomy with 

A. pseudoparvum embedded within the ingroup. Two clades were well-

supported, CA (100%) and B - A (100%). The latter was further resolved into two 

lineages, B and A, both with 100% bootstrap support. The BA resulted in a 

reconstruction in which the ingroup was monophyletic, although the support was 

low (70%). The ingroup was resolved in two clades: B - A (100%) and CA 

(100%).  The Panama samples constituted a supported lineage within CA. The B 

- A clade was split in two monophyletic lineages, A and B (both with 100% 

support). Within B, the MG branch was basal to the sister lineages, GO and PA 

(Fig. 1.22).  

ML pairwise distances within the clades were always below 1.6%. CA 

differed from A or B by 8.1 to 8.5%, and A. pseudoparvum differed from A or B by 

10.5 to 11%. The divergence value between CA and A. pseudoparvum was 

between 9.5 and 9.8%. The distances separating the ingroup from the outgroup 

ranged from 13.9 to 16.3%, whereas the distance between A. pseudoparvum and 
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the outgroup varied from 15.3 to 17.5%. The distances between species 

belonging to the ougroup differed by 9.5 to 13.1% (Table 1.7). 

 

Concatenated datasets (mitochondrial and nuclear gene sequences) 

 The concatenated matrix included 95 sequences (2630 bp) corresponding 

to 15 unique haplotypes and 4 outgroups. The MP analysis for the concatenated 

dataset detected a total of 607 parsimony-informative sites, and the 

parsimonious heuristic search found 2 trees equally parsimonious. The length of 

those trees was 1119 and the coefficients as follows: CI= 0.833; RI= 0.895; HI= 

0.167. The ML model that best fitted the data according to the Akaike Information 

Criterion was GTR+I+G with base frequencies of A=0.30; C=0.21; G=0.19 and 

T=0.30; PI = 0.3601; G = 0.7092.  

 The MP, ML and BA analyses were fully congruent leading to topologically 

identical trees, in which the ingroup was monophyletic and two clades were 

resolved: CA and A - B. This clade was further resolved into two; B and A. In the 

three phylogenetic reconstructions a lineage inluding Brazilian samples from 

Goias was supported within the B clade (Figs. 1.23-1.25). 

 Divergence values within the CA and A clades were always below 1.1%. 

Overall variation within B clade ranged between 0 and 1.5%, being 0 within the 

GO lineage. The distance between A and Brazilian samples from MG and PA 

ranged from 2.5 to 2.9%, whereas Brazilian samples from GO differed from 

Argentinian samples by 3.8 to 4.1%. Divergence values between either A or B 

and CA ranged from 6.5-6.7% and the distance splitting the ingroup from the 

outgroup was 18.6-21.1%. Variation within the outgroup varied between 7.6 and 

11% (Table 1.8). 
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Discussion 

 

 The overall structure of the trees obtained with the 6 genes was often 

different, particularly when dealing with weakly supported nodes. However, when 

A. pseudoparvum was included in the analyses, it became clear that A. parvum is 

paraphyletic, with two consistently distinct clades diverging at the basal level, the 

CA and the A – B clade. When the position of A. pseudoparvum was resolved, it 

appeared to be more closely related to CA than to A – B. ML pairwise distance 

values between A and B were compatible with these geographically distant 

lineages being conspecific, particularly when compared to distance values within 

the outgroup a cluster of recognized different species. Between CA and A – B, 

CA and A. pseudoparvum, and A - B and A. pseudoparvum, the distance values 

are similar to values recorded between outgroup species and between the 

outgourp and the ingroup. This strongly suggests that we are dealing with three 

taxonomic entities, A. parvum (from Brazil and Argentina), a distinct species from 

Central America which needs to be described and characterized, and A. 

pseudoparvum. In order to fully ascertain the taxonomic status of the Central 

American lineage, it would be useful to cross-breed colony ticks from CA, B and 

A and verify whether or not they are reproductively compatible. In addition, it 

would be important to include two other Amblyomma taxa in future analysis, A. 

auricularium and A. pseudoparvum, two species closely related to our ingroup 

(Nava et al., 2008a).   

Within the A- B clade, some of the analyses reveal that the samples from 

Brazil – GO have further differentiated from other Brazilian lineages, which 

appear to be more closely related to the Argentinian ones. Nevertheless, the 

differentiation between BR-GO and the other A-B samples is relatively weak, and 

cross-breeding experiments between A and Br-GO ticks showed reproductive 

compatibility (Gerardi et al., 2013; Nava et al., unpublished data). 

If the deepest split between lineages in this group of taxa separates A. 

pseudoparvum, a tick strictly associated with the Chaco area (northern Argentina 

and Paraguay), a Brazilian-Argentinian clade mostly found in the 
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Chaco/Cerrado/Caatinga regions, and a clade found in the seasonally dry 

tropical forest of Central America, it is possible that the A. parvum group of taxa 

has an early-middle Miocene origin, as was the case for another Amblyomma 

species with a similar geographical distribution (Beati et al., 2013). During that 

period, caviomorph rodents had already started diversifying in South America 

(Poux et al., 2006), thus providing a specific group of hosts host for A. 

pseudoparvum, a lineage in a basal position and distinct from clades that 

specialized on larger mammals, cattle for A. parvum and wild ungulates (among 

others) for the CA clade (Nava et al., 2008). 
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APPENDIX 1 

 

 

 

 

 

Figure 1.1. Political map of Central and South America showing the collection areas and the eco-regions to what they 

correspond. YU: Yucatan, Mexico; ES: El Salvador; CR: Costa Rica; PM: Panama; PR: Para, Brazil; MG: Minas Gerais, Brazil; 

GO: Goias, Brazil; PI: Piaui, Brazil; PA: Pantanal, Brazil; BO: Boqueron, Paraguay; CA: Catamarca, Argentina; CB: Cordoba, 

Argentina; LR: La Rioja, Argentina; SA: Salta, Argentina; SDE: Santiago del Estero, Argentina. 
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Fig. 1.2 Amblyomma parvum Maximum Parsimony 

(MP) reconstruction for 12S. Color codes: Black: 

outgroup species; Orange: A. pseudoparvum; Green: 

Central American clade of A. parvum; Blue: Brazilian 

clade of A. parvum; Red: Argentinian clade of A. parvum. 

Thicker lines represent branches with bootstrap support 

> 75%. Color codes and thickness of the branches is 

maintained throughout the document. 
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Fig. 1.3 Maximum likelihood tree for 12S. 
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Fig. 1.4 Bayesian analysis for 12S. 
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Fig. 1.5 Maximum parsimony reconstruction for 16S.  
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Fig. 1.6 Maximum likelihood tree for 16S. 
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Fig. 1.7 Bayesian analysis reconstruction of 16S. 
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Fig. 1.8 Maximum parsimony reconstruction for COI.  
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Fig. 1.9 Maximum likelihood tree for COI. 
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Fig. 1.10 BA for COI. 
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 Fig. 1.11 Maximum parsimony tree for COII. Fig. 1.12 Maximum likelihood tree for COII. 
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Fig. 1.13 BA for COII 
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Fig. 1.14 Maximum parsimony 

reconstruction for DL.  
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Fig. 1.15 Maximum likelihood tree for DL. 
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Fig. 1.16 BA for DL 
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Fig. 1.17 Maximum parsimony reconstruction for 

ITS2.  

Fig. 1.18 Maximum likelihood tree for ITS2. 
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Fig. 1.19 BA for ITS2. 
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Fig. 1.20 Maximum parsimony 

reconstruction for the mitochondrial 

dataset (12S-16S-COI-DL).  

Fig. 1.21 Maximum likelihood tree for mitochondrial 

concatenated dataset. 
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Fig. 1.22 BA for the mitochondrial concatenated 

dataset. 
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Fig. 1.23 Maximum parsimony reconstruction for the 

mitochondrial and nuclear concatenated dataset (12S-

16S-COI-DL-ITS2).  

Fig. 1.24 Maximum likelihood tree for the nuclear 

mitochondrial concatenated dataset. 
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Fig. 1.25 BA for the nuclear and mitochondrial 

concatenated dataset. 
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Lab ID Species Locality Code Country 12S  16S DL ITS2 COI COII 

1W A. parvum Piaui PI Brazil X           

2W A. parvum Mato Grosso do Sul MGS Brazil   X         

3W A. parvum Mato Grosso do Sul MGS Brazil   X         

4W A. parvum Minas Gerais MG Brazil X X X   X   

5W A. parvum Minas Gerais MG Brazil X X X   X   

6W A. parvum Chiriqui PM Panamá   X         

1 A. parvum Córdoba CB Argentina   X X   X   

5 A. parvum Córdoba CB Argentina X X X   X X 

7 A. parvum Córdoba CB Argentina   X X X X X 

9 A. parvum Córdoba CB Argentina X X X   X X 

12 A. parvum Santiago del Estero SDE Argentina   X X   X   

17 A. parvum Santiago del Estero SDE Argentina X X X   X X 

24 A. parvum Catamarca CA Argentina X X X   X   

25 A. parvum Catamarca CA Argentina X X X   X X 

26 A. parvum Catamarca CA Argentina X X X   X   

29 A. parvum La Rioja LR Argentina X X X   X X 

30 A. parvum La Rioja LR Argentina X X X   X   

32 A. parvum Santiago del Estero SDE Argentina X X X   X   

33 A. parvum Santiago del Estero SDE Argentina X X X   X   

38 A. parvum La Rioja LR Argentina   X X   X   

44 A. parvum Santiago del Estero SDE Argentina   X X   X X 

AP2 A. parvum Puerto Limon PM Panamá X X X     X 

Table 1.1.  Localities and PCR amplification success for each of the samples, and each of the individual gene markers. 
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AP3 A. parvum El Salvador ES El Salvador X X   X   X 

AP4A A. parvum Goias GO Brazil X   X X X   

AP4B A. parvum Goias GO Brazil X   X X X   

AP4C A. parvum Goias GO Brazil X X X   X   

AP4D A. parvum Goias GO Brazil X X X   X   

AP4E A. parvum Goias GO Brazil X X X       

AP4F A. parvum Goias GO Brazil X X X       

AP4G A. parvum Goias GO Brazil X X X       

AP5 A. parvum Pan PM Panamá X X X X X X 

AP6 A. parvum Chiriqui PM Panamá X     X   X 

AP7A A. parvum 
Formoso (Minas 

Gerais) 
MG Brazil X   X     X 

AP7B A. parvum 
Formoso (Minas 

Gerais) 
MG Brazil X   X     X 

AP7C A. parvum 
Formoso (Minas 

Gerais) 
MG Brazil X X X X   X 

AP7D A. parvum 
Formoso (Minas 

Gerais) 
MG Brazil X X X     X 

AP7E A. parvum 
Formoso (Minas 

Gerais) 
MG Brazil X X X       

AP7F A. parvum 
Formoso (Minas 

Gerais) 
MG Brazil             

AP1A A. parvum Pantanal PA Brazil X X     X   

AP1B A. parvum Pantanal PA Brazil X X     X   

AP1C A. parvum Pantanal PA Brazil X X X X X   

AP1D A. parvum Pantanal PA Brazil         X   

AP1E A. parvum Pantanal PA Brazil         X   

AP1F A. parvum Pantanal PA Brazil     X   X   
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AP1G A. parvum Pantanal PA Brazil         X   

AP1H A. parvum Pantanal PA Brazil         X   

AP1I A. parvum Pantanal PA Brazil         X   

AP1J A. parvum Pantanal PA Brazil         X   

APP1 
A. 

pseudoparvum 
Salta SA Argentina         X   

AP5N A. parvum Los Santos LS Panama X       X   

AP7N A. parvum Cartago PV Costa Rica             

AP8 A. parvum Cartago PV Costa Rica X           

APCA A. parvum Yucatan YU Mexico X           

AP-FOR A. parvum Minas Gerais MG Brazil             

122838(1) A. parvum Santa Rosa CR Costa Rica X           

122838(2) A. parvum Santa Rosa CR Costa Rica X X X       

A parvum 12S 

CR 
A. parvum Santa Rosa CR Costa Rica X           

123529 A. parvum Santa Rosa CR Costa Rica X           

CR45 A. parvum   CR Costa Rica         X   

CR495 A. parvum   CR Costa Rica         X   

OJ4 A. parvum Santiago del Estero SDE Argentina   X         

CH4 A. parvum La Rioja LR Argentina   X         

PAR A. parvum BOQUERON BO PARAGUAY   X         

GO1 A. parvum Goias GO Brazil   X         

GO2 A. parvum Goias GO Brazil   X         

GO3 A. parvum Goias GO Brazil   X         

GO4 A. parvum Goias GO Brazil   X         

GO5 A. parvum Goias GO Brazil   X         
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W A. parvum Pantanal PA Brazil   X         

APA6 A. parvum Minas Gerais MG Brazil   X         

APA4_CR A. parvum Cartago PV Costa Rica   X         

APA2 A. parvum Yucatan YU Mexico   X         

APA1 A. parvum COLON PM Panama   X         

APA3 A. parvum El Salvador ES El Salvador   X         

UR2 A. parvum Santiago del Estero SDE Argentina   X         

YU1 A. parvum Salta SA Argentina   X         

YU2 A. parvum Salta SA Argentina   X         

YU3 A. parvum Salta SA Argentina   X         

QU7 A. parvum Córdoba CB Argentina   X         

SA2 A. parvum Catamarca CA Argentina   X         

SA3 A. parvum Catamarca CA Argentina   X         

ES3 A. parvum Catamarca CA Argentina   X         

SA4 A. parvum Catamarca CA Argentina   X         

QU5 A. parvum Córdoba CB Argentina   X         

QU6 A. parvum Córdoba CB Argentina   X         

CE2 A. parvum Santiago del Estero SDE Argentina   X         

CE3 A. parvum Santiago del Estero SDE Argentina   X         

CE4 A. parvum Santiago del Estero SDE Argentina   X         

A44 A. parvum Catamarca CA Argentina   X         

APA5 A. parvum Palo Verde PV Costa Rica   X         

Total per gene         39 65 33 8 36 15  

Total # samples         90 
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12S 

Haplotype by Country or 

Region 1A 1B 1C 1D 1E 1F 1G 1H 1I 1J 1K 1L 

Argentina 4 1 5 0 0 0 0 0 0 0 0 0 

Brazil 0 0 0 1 1 1 8 7 1 0 0 0 

C. America 0 0 0 0 0 0 0 0 0 5 3 1 

Mexico 0 0 0 0 0 0 0 0 0 0 1 0 

16S 

Haplotype by Country or 

Region 2A 2B 2C 2D 2E 2F 2G 2H 2I 2J 2K 2L 2M 2N 2O 2P 2Q 2R 2S 2T 2U 

Argentina 1 1 13 0 1 1 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Paraguay 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Brazil 0 0 0 0 0 0 0 5 1 1 1 2 1 7 1 1 0 0 2 0 0 

C. America 0 0 0 0 0 0 0 0 0 5 3 1 0 0 0 0 2 5 0 1 1 

Mexico 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 

 

 

 

 

 

 

 

 

 

 

Table 1.2. Individual gene haplotypes by country/region. The haplotypes are named with letters and combined with a 

number for each of the genes: 1, 12S; 2, 16S; 3, DL; 4, COI; 5, COII; 6, ITS2. The numbers in each cell correspond to the 

number of sequences that have that specific haplotype. 
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DL 

Haplotype by Country or 

Region 3A 3B 3C 3D 3E 3F 3G 3H 3I 3J 3K 3L 3M 3N 3O 3P 3Q 3R 3S 3T 3U 

Argentina 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

Brazil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

C. America 0 0 0 0 0 0 0 0 0 5 3 1 0 0 0 0 2 6 0 1 1 

3V 3W 3X 3Y 3Z 3AA 3BB 3CC 

0 0 0 0 0 0 0 0 

1 2 3 1 1 1 0 0 

0 0 0 0 0 0 2 1 

COI 

Haplotype by Country or 

Region 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L 4M 4N 4O 4P 4Q 4R 4S 4T 

Argentina 0 0 1 3 1 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

Brazil 1 1 0 0 0 0 0 0 0 0 0 0 0 0 10 4 0 0 0 0 

C. America 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

COII 

Haplotype by Country or 

Region 5A 5B 5C 5D 5E 5F 5G 5H 5I 

Argentina 1 6 0 0 0 0 0 0 0 

Brazil 0 0 1 1 1 1 0 0 0 

C. America 0 0 0 0 0 0 2 1 1 
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ITS2 

Haplotype by Country or 

Region 6A 6B 6C 6D 6E 6F 6G 

Argentina 0 0 0 0 0 0 1 

Brazil 0 0 0 1 1 2 0 

C. America 1 1 1 0 0 0 0 
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12S/16S Arg Bra Par CA Psp Out 

Arg 0.0-0.6/0.0-1.0 2.5/3.5 0.2-0.5 6.5-7.5 10.9-11.9 14.8-17.7 

Bra 2.9-3.6 0/0.2-1.2 2.5-3.0 6.7-7.9 10.3-11.8 14.1-17.6 

Par n/a n/a n/a 6.7-7.2 10.9-11.4 14.8-17.1 

CA 6.8-8.0 6.5-7.2 n/a 0.3-0.6/0.2-0.5 8.5-10.1 11.6-15.3 

Psp 8.3-8.9 8.9-9.1 n/a 8.6-8.9 n/a/1.0 12.9-15.8 

Out 14.9-18.1 15.4-19.1 n/a 14.2-19.6 16.4-21.0 7.9-14.3/7.2-12.2 

 

 

 

 

COI/COII Arg Bra CA Psp Out 

Arg 0.2-3.5/0.2 3.3-4.2 11.2-11.8 n/a 17.5-21.7 

Bra 4.3-6.2 0.2-0.5/0.2-0.7 11.4-12.1 n/a 17.0-21.9 

CA 9.8-11.2 10.3-11 0.3-1.3/0.2-0.5 n/a 16.6-20.2 

Psp 11.9-13.0 12.0-12.3 11.6-12.3 n/a n/a 

Out 15.2-18.5 14.8-17.0 14.7-17.0 16.8-19.1 11.6-15.6/10.7-19.3 

 

 

 

 

 

Table 1.4. Maximum likelihood pairwise distances for COI (bold) and COII (italicts). Values expressed as percentage. 

 

Table 1.3. Maximum likelihood pairwise distances for 12S (bold) and 16S (italicts). Values expressed as percentage. 
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DL Arg Bra CA Psp Out 

Arg 0.0-1.0 2.4-3.7 7.3-7.9 8.9-9.5 11.8-16.0 

Bra 

 

0.0-0.5 7.1-7.9 8.6-9.1 12.4-16.2 

CA 

  

0.3 6.6-6.8 13.4-15.3 

Psp 

   

n/a 13.1-16.8 

Out 

    

6.8-12.1 

ITS2 Arg Bra Bra-GO CA Out 

Arg n/a 

    Bra 0.1-0.4 0.2 

   Bra-GO 3.9 3.8-4.1 n/a 

  CA 3.6-5.5 3.3-5.6 4.3-5.9 0-3.2 

 Out 13.8-15.0 13.5-16.8 15.5-16.8 14.3-17.4 2.1-7.1 

Table 1.6. Maximum likelihood pairwise distances for ITS2. Values expressed as percentage. 

 

Table 1.5. Maximum likelihood pairwise distances for DL. Values expressed as percentage. 
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mit Arg Bra CA Apsp Out 

Arg 0.0-1.5 

    Bra 3.7-4.2 0.0-0.2 

   CA 8.1-8.5 8.1-8.4 0.3-0.5 

  Apsp 10.5-11.0 10.5-10.6 9.5-9.8 n/a 

 Out 14.3-16.3 14.1-16.1 13.6-16.0 15.3-17.5 9.5-13.1 

mit+nuclear Arg Bra Bra-GO CA Out 

Arg 0.0-1.0 

    Bra 2.5-2.9 0.2 

   Bra-GO 3.8-4.1 1.3-1.5 0 

  CA 6.6-6.7 6.5-6.6 6.8-6.9 0.2 

 Out 19.4-21.1 19.4-20.9 19.4-21.1 18.6-20.6 7.6-11.0 

Table 1.7. Maximum likelihood pairwise distances for the mitochondrial concatenated dataset. Values 

expressed as percentage. 

 

Table 1.8. Maximum likelihood pairwise distances for the nuclear and mitochondrial dataset. Values 

expressed as percentage. 
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Chapter 2 

 Molecular systematics of the Amblyomma maculatum group of 

species. 

 

 

Introduction 

 

The Amblyomma maculatum group includes the following species: A. 

maculatum Koch, 1844; Amblyomma neumanni Ribaga, 1902; Amblyomma 

parvitarsum Neumann, 1901; Aamblyomma tigrinum Koch, 1844 and 

Amblyomma triste Koch, 1844 (Camicas et al., 1998). Together with the 

Amblyomma ovale group, that encompasses A. ovale and Amblyomma 

aureolatum, they have been clustered by Camicas et al. (1998) in the revised 

version of subgenus Anastosiella, originally erected by Santos Dias (1963).  

Within the A. maculatum group, A. neumanni and A. parvitarsum are 

morphologically easily distinguishable from the rest of the group species. Unlike 

the other taxa, they are both characterized by incomplete marginal grooves in 

males, and A. parvitarsum has beady and orbited eyes (Estrada-Peña et al., 

2005). In females, all species are glabrous with the exception of A. neumanni. A. 

parvitarsum also has beady and orbited eyes. Other diagnostic differences are 

listed in Estrada- Peña et al. (2005), who suggested that A. neummanni and A. 

parvitarsum should be grouped with the A. ovale group in a yet to be determined 

subgenus, while A. maculatum, A. triste, and A. tigrinum would be the only 

remaining members of the subgenus Anastosiella. 

In contrast with A. parvitarsum and A. neumanni, A. maculatum, A. 

tigrinum and A. triste are morphologically very similar. Koch (1844) briefly 

described the three taxa based on males of A. maculatum and A. tigrinum, and a 

female of A. triste. He completed his description in 1850 (Koch, 1850) and 

essentially reported differences in punctation and ornamentation. Neumann 

(1899) synonymyzed A. tigrinum and A. triste with A. maculatum after failing to 
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observe differences in the number of spines (modified setae) on tibiae II to IV 

(called tarsi by Neumann (1899), protarsi by Robinson (1926), and metatarsi by 

Kohls [1956]). Kohls (1956) reestablished A. tigrinum and A. triste as valid 

species and completely redescribed the three taxa. Since then, although 

considered to be separate species, the identification of these ticks has been 

challenging, in particular the distinction between A. maculatum and A. triste 

(Mendoza Uribe and Chavez Chorocco, 2004; Estrada-Pena et al., 2005; Mertins 

et al., 2010; Guglielmone et al., 2013) which has led to frequent misidentifications 

(Tagle y Alvarez, 1957, 1959; Aragao and Fonseca, 1961). Taxonomic conflicts 

are not limited to adult stages, as immatures, for which taxonomic keys are 

nevertheless available, are even more difficult to differentiate (Estrada-Pena et. 

al., 2002, 2005; Mertins et al., 2010). 

The distribution of A. maculatum is confined to the southern United States, 

Central America and some areas of Colombia, Venezuela, Perú and Ecuador, 

whereas A. tigrinum is reported to occur only in South American countries (Kohls, 

1956; Jones et al., 1972; Guglielmone et al., 1982, 2003). Amblyomma triste was 

considered to be exclusively South American until recently, when it was reported 

from Mexico and the U.S. (Guzman-Cornejo et al., 2006; Mertins et al., 2010), 

thus joining the group of ticks with a Neotropical and Neartic distribution 

(Guglielmone et al., 2013). 

Notwithstanding the increasing number of publications dealing with the 

systematics of this group of taxa, the taxonomic status of the A. maculatum 

group of species remains controversial. Its reassessment is essential not only for 

systematic reasons, but also because A. maculatum, A. triste and A. tigrinum are 

involved in the transmission of different pathogens of public health and animal 

health importance, such as Rickettsia parkeri (Nava et al., 2008; Paddock et al., 

2004; 2010; Romer et al., 2011; 2014; Ferrari et al., 2012; Lado et al., 2014; 

2015; Venzal et al., 2004), and Hepatozoon americanum (Ewing and Panciera, 

2003).  

Molecular techniques used to infer phylogenetic relationships and 

evaluate the taxonomic status of the different species of the A. maculatum group 
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have so far not been applied in a comprehensive manner. However, preliminary 

reports based on the analysis of 16S rDNA sequences confirmed that A. 

maculatum, A. triste and A. tigrinum were closely related to each other, while A. 

neumanni and A. parvitarsum were distinct from each other, from the rest of the 

A. maculatum group of taxa, and also did not cluster with the A. ovale group of 

species (Estrada-Pena et al., 2005).  

The main goal of this study is to reassess the taxonomic status of the A. 

maculatum group of species through the phylogenetic analysis of six (five 

mitochondrial and one nuclear) molecular markers.  

 

 

Materials and Methods 

 

Sampling 

Our sample included a total of 95 adult specimens morphologically identified as 

A. maculatum, A. triste, A. tigrinum, and 2 specimens identified as A. parvitarsum 

and A. neumanni. Amblyomma maculatum ticks were from the U.S., Perú, and 

Colombia; A. triste from Argentina, Brazil, and Perú; A. tigrinum from Argentina 

and Brazil; and A. parvitarsum and A. neumanni from Argentina. When available, 

specimens from several localities were included in order to consider variation 

between and within different eco-regions (Table 2.1). Ticks were obtained from 

12 localities and 5 countries, and coded as follows: Argentina, Arg; (Buenos 

Aires, BA; Corrientes, CR; Formosa, FO; Santiago del Estero, SDE), Brazil, Bra; 

(Goias, GO; Mato Grosso do Sul, MGS; Sao Paulo, SP), Colombia, CO; 

(Santander, SR), Perú, PU; (Ica; Tumbes, TU), and the United States, U.S.; 

(Florida, FL; Georgia, GA) (Fig. 2.1). 

 

DNA extraction, PCR, and sequencing 

Tick DNA was extracted and the exoskeletons were preserved for further 

morphological analysis following previously published protocols (Beati and 

Keirans, 2001; Beati et al., 2012). A small portion of the postero-lateral idiosoma 
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of each tick was removed by using a disposable scalpel and the tick was 

incubated overnight in 180 µl Qiagen ATL lysis buffer (Qiagen, Valencia, CA) and 

40 µl of a 14.3 mg/ml solution of proteinase K (Roche Applied Sciences, 

Indianapolis, IN). After complete lysis of the tick tissues and repeated vortexing, 

the exoskeleton was stored in 70% ethanol and kept as a voucher specimen. The 

lysed tissues were further processed as previously described (Beati and Keirans, 

2001; Beati et al., 2012). Five mitochondrial gene sequences, 12SrDNA (small 

subunit ribosomal RNA), 16SrDNA (small subunit ribosomal RNA), COI 

(Cythochrome oxydase subunit I), COII (Cythochrome oxydase subunit II), and 

the control region or d-loop (DL) were amplified with previously reported sets of 

primers (Beati and Keirans, 2001; Beati et al., 2012; Barret and Hebert, 2005; 

Mangold et al., 1998). In addition, a portion of the nuclear ribosomal Internal 

Transcribed Spacer 2 (ITS2) was also amplified by slightly modifying a previously 

published protocol to include 35 instead of 27 annealing cycles (Beati et al., 

2012; McLain et al., 1995). PCRs were performed using a MasterTaq kit (5-

Prime, Gaithersburg, MD). Each reaction contained 2.5 µl of tick DNA, 2.5 µl of 

10 × Taq buffer, 5 µl of 5 × TaqMaster PCR Enhancer, 1.5 µl of MgAc (25 mM), 

0.5 µl dNTP mix (10 mM each), 0.1 µl of Taq polymerase (5U/ µl), 1.25 µl of each 

primer from a 10 pmoles/ µl stock solution (Invitrogen, Life Technologies 

Corporation, Grand Island, NY), and 14.6 µl molecular biology grade H2O. The 

two DNA strands of each amplicon were purified and sequenced at the High-

Throughput Genomics Unit (HTGU, University of Washington, Seattle, WA) and 

were assembled with Sequencer 4.5 (Gene Codes Corporation, Ann Arbor, MI).  

Phylogenetic analyses 

Sequences were manually aligned with McClade 4.07 OSX (Sinauer Associates, 

Sunderland, MA) (Maddison and Maddison 2000). Secondary structure was 

considered in aligning 12SrDNA (Beati and Keirans 2001) and DL (Zhang and 

Hewitt 1997). Codon organization was taken into account when aligning the COII 

data set. Each data set was analyzed by maximum parsimony (MP) with PAUP 

(Swofford, 2000). Bayesian analysis (BA) was performed using MrBayes 3.2.4 
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(Huelsenbeck and Ronquist 2001, Ronquist, 2011). Branch support was 

assessed by bootstrap analysis (1000 replica) with PAUP for MP, and by 

posterior probability with MrBayes for BA. MP heuristic searches were performed 

by branch-swapping using the tree bisection-reconnection (TBR) algorithm. Gaps 

were treated either as a 5th (16SrDNA, concatenated datasets and ITS2 

analyses) or as a missing character (12srDNA, DL, COI and COII). Maximum 

likelihood distances were calculated after the nucleotide substitution model best 

fitting the data was selected by Modeltest v3.7 (Posada and Crandall 1998). Two 

runs, with four chains each, were run simultaneously for BA analyses (1,000,000 

generations). Trees were sampled every 100 iteration. Trees saved before the 

average standard deviation of split fragments converged to a value < 0.01 were 

discarded from the final sample. When necessary, the number of generations 

was increased so that the number of discarded samples would not exceed 25% 

of the total sampled trees. The 50% majority-rule consensus tree of the 

remaining trees was inferred and posterior probabilities recorded for each 

branch. Congruent data sets were combined for total evidence analyses. One 

concatenated data set including both mitochondrial a nuclear sequences 

(n+mtDNA) were analyzed following the same procedure outlined for the 

separate analyses.  

Amblyomma parvitarsum and A. neumanni were used as outgroups in our 

analyses. Additional species were also considered as possible outgroups and 

preliminary analyses were performed with the following: A. aureolatum, A. 

coelebs, A. dubitatum, A. oblongoguttatum, and A. ovale. 

 

Results 

 

Sequences and haplotype diversity 

The alignment of the 75 12SrDNA gene sequences (16 unique haplotypes) 

resulted in a 338 bp data matrix. The 16S rDNA dataset was 411 bp long and 

included 79 sequences (31 unique haplotypes), that of the COI gene was 603 bp 

long and included 67 sequences (38 unique haplotypes). A total of 73 sequences 
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(374 bp) were obtained for the DL marker (40 unique haplotypes). Only 11 

sequences were generated for the COII gene (608 bp), 8 of which were unique 

haplotypes. The nuclear ITS2 (1002 bp) gene sequence was sequenced from 50 

ticks, with 13 unique genotypes (Table 2.2). 

 

 

Phylogenetic Analyses 

 

Phylogenetic analyses were first performed with several different sets of 

outgroups. They all proved to be too distantly related to our ingroup for their 

inclusion to result in good ingroup resolution, with the exception of A. neumanni 

and A. parvitarsum that were, therefore, used as outgroups in all analyses. For 

clarity, we are referring to A. triste, A. maculatum, and A. tigrinum collectively as 

the ingroup. 

 

12SrDNA 

 The MP analysis detected 62 informative characters, and found 2 equally 

parsimonious trees (length=92; CI=0.913; RI=0.946 and HI=0.087). The ML 

model that better fitted the data using Modeltest was K81uf+I, with base 

frequencies of A=0.37, C=0.12, G=0.09 and T=0.42. The proportion of invariable 

sites (PI) = 0.6872. 

 The MP analysis identified a single monophyletic cluster (100% bootstrap) 

consisting of the whole ingroup, an unresolved polytomic lineage (Fig 2.2). In the 

BA tree, the polytomic Peruvian lineages were basal, to a supported clade (90%). 

In this cluster, A. maculatum from the U.S. was basal and paraphyletic. The 

remaining samples from Brazil and Argentina, including, A. tigrinum, grouped in a 

monophyletic clade (Fig. 2.3). 

 Intraspecific divergence values in the ingroup taxa ranged from 0 to 2.1%. 

Distance between A. triste and A. maculatum was 0.6-2.1%. The distance 

separating A. tigrinum from either A. maculatum or A. triste ranged from 1.8 to 
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2.7%. Divergence between the ingroup and the outgroup ranged from 11.9 to 

16.2%, while distance within the outgroup species was 11-11.7% (Table 2.3). 

 

16SrDNA 

 The MP analysis identified a total of 43 parsimony-informative sites and 

found 129 equally parsimonious trees (length=137; CI=0.766; RI=0.831 and 

HI=0.234). The selected ML model was GTR+I+G with base frequencies of: 

A=0.42, C=0.07, G=0.13 and T=0.38; PI = 0.5844; G = 0.6450.  

 The MP analysis revealed a monophyletic ingroup which was split in two 

monophyletic sister clades: A. tigrinum and A. maculatum - A. triste. In the MP 

reconstruction, three lineages were supported within the otherwise polytomic A. 

triste - A. maculatum clade: two sequences of A. triste (MGS, Brazil); two 

sequences of A. maculatum (GA and FL, U.S.); and two sequences of A. 

maculatum (GA, U.S. and SR, Colombia) (Fig. 2.4).  

In the BA the ingroup was polytomic. Nevertheless, it included five resolved 

clusters: the A. tigrinum (99%) branch, two Brazilian A. triste lineages (84 and 

98% respectively), one including A. maculatum sequences from the U.S. and 

Colombia, and finally one U.S. cluster (Fig. 2.5). 

 Intraspecific divergence values in the ingroup ranged from 0 to 2.7%. 

Distance between A. triste and A. maculatum varied from 0.5 to 2.7%. The 

distance separating A. tigrinum from either A. maculatum or A. triste ranged from 

3.2 to 4.6%, and that between the ingroup and the outgroup varied from 10.8 to 

12.6%. Divergence within the outgroup species was of 10.1% (Table 2.3). 

 

DL 

 The MP analysis detected 51 parsimony-informative characters and 18 

equally parsimonious trees were found (length=189; CI=0.862; RI=0.874 and 

HI=0.138). The model that best fitted the data was TVM+I+G with base 

frequencies of: A=0.42, C=0.13, G=0.13 and T=0.32; PI = 0.4423; G = 1.0222.   
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Both the MP and the BA separated the ingroup into two main clades: A. 

tigrinum (100%, 100%) and A. triste - A. maculatum (98%, 90%). The ingroup, 

however, was not monophyletic (Fig. 2.6). In the BA the A. triste – A.maculatum 

clade included several unsupported branches corresponding to sequences of A. 

triste from Brazil and Argentina, in addition to a supported  Peruvian A. triste - A. 

maculatum lineage (99%) and a monophyletic cluster of A. triste from Brazil and 

Argentina (96%) (Fig. 2.7).  

 Intraspecific distances within A. triste and A. tigrinum varied from 0.3 to 

2.4%, while within A. maculatum they reached 3.5%. Distances between A. 

maculatum and A. triste ranged from 0.3 to 4.6%, and those separating A. 

tigrinum from A. triste or A. maculatum varied between 9.4 and 11.3%. Between 

the ingroup and the outgroup, divergences ranged from 27.6 to 30.1% (Table 

2.4). 

 

ITS2 

 The MP analysis detected 188 informative sites and 5 equally 

parsimonious trees (length=369; CI=0.989; RI=0.981; and HI=0.011). The model 

that better fitted the data was GTR with base frequencies of: A=0.20, C=0.28, 

G=0.36 and T=0.16, PI = 0.  

 The MP analysis resulted in a poorly resolved ingroup, with only A. 

tigrinum separating itself from other supported lineages, that did not appear to 

correspond to any taxonomic or geographical pattern (Fig. 2.8). The BA resolved 

three lineages arising from a polytomy: A. tigrinum (100%) and two lineages of 

heterogeneous geographical origins. The remaining Argentinian and Brazilian 

samples of A. triste stemmed directly from the polytomy (Fig. 2.9).  

 Intraspecific divergences within the three ingroup taxa were never above 

1.1%. Distance between A. maculatum and A. triste ranged from 0.3 to 1.3%. 

The distance separating A. tigrinum from either A. triste or A. maculatum varied 

between 1 and 1.7%. The divergence value separating the ingroup and the 

outgroup ranged from 17.2 to 21.8%, and variation within the outgroup was of 

7.9% (Table 2.4). 
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COI 

A total of 90 parsimony-informative characters were detected in the MP analysis 

and 2000 (Max trees sat to 2000) equally parsimonious trees were found 

(length=247; CI=0.810; RI=0.894 and HI=0.190). The model that better fitted the 

data was GTR+G with base frequencies of: A=0.31, C=0.16, G=0.13 and T=0.40; 

PI = 0.5791; G = 0.8554. 

 The MP analysis evidenced the monophyly of the ingroup and fully 

resolved two clades: A. tigrinum (99%) and A. triste - A. maculatum (100%). This 

was further subdivided in one supported clade that included the sample 21D of A. 

maculatum from Georgia, U.S., and the sample of A. maculatum from Colombia. 

The remaining sequences had no support except for a resolved lineage that 

corresponded to the Peruvian samples (71%), and one that clustered two 

Brazilian A. triste (91%) (Fig. 2.10). 

By BA, A. tigrinum (100%) was the sister group of everything else. The 

monophyletic A. triste - A. maculatum clade was further subdivided into Peruvian 

and non-Peruvian (75%) lineages. The non-Peruvian group included two well-

supported groups, a North-American-Colombian (99%) and a Brazilian-

Argentinian (84%) (Fig. 2.11). 

 Intraspecific divergence values within the three ingroup taxa were 

variable, ranging from 0 to 3.5%. The distance between A. maculatum and A. 

triste ranged from 0.0 to 4%, and that separating A. tigrinum from either A. triste 

or A. maculatum varied from 5.6 to 7.8%. The divergence between the ingroup 

and the outgroup ranged from 15.4 to 18.7%, and within the outgroup varied from 

15.7 to 17.9% (Table 2.5). 

 

COII 

A total of 70 parsimony-informative characters were detected in the MP analysis 

and two trees were found (length=172; CI=0.924; RI=0.903 and HI=0.076). The 

model that better fitted the data was HKY+I with base frequencies of: A=0.38, 

C=0.09, G=0.15 and T=0.38; PI = 0.6889. 
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 The MP analysis resolved two clades within the ingroup: A. tigrinum 

(100%) and A. triste - A. maculatum (99%). The latter was split in two lineages, 

one including A. triste from Argentina and Brazil in addition to A. maculatum from 

the U.S (75%) and the other represented by A. maculatum from Peru (Fig. 12).  

The BA revealed two well-supported clades within the ingroup: A. tigrinum (98%) 

and A. triste - A. maculatum (98%). No further resolution was achieved through 

this analysis (Fig. 2.13). 

 Intraspecific distances within the three ingroup species were never over 

1.7%. Distance between A. maculatum and A. triste ranged from 0.8 to 1.7%. 

The distance separating A. tigrinum from either A. triste or A. maculatum varied 

between 5.8 and 6.6%. The ingroup and the outgroup differed by 11.7 - 16.8%, 

and the variation within the outgroup was 11.4% (Table 2.5). 

 

Mitochondrial Concatenated dataset (12SrDNA+16SrDNA+COI) 

 The concatenated dataset represented a matrix of 1352 bp, 102 

sequences including 32 unique haplotypes and two outgrups. The MP analysis 

identified a total of 200 parsimony-informative sites and found 11 equally 

parsimonious trees (length=531; CI=0.827; RI=0.869 and HI=0.173). The ML 

model chosen as more accurate for the data was GTR+I+G with base 

frequencies of: A=0.35, C=0.13, G=0.13 and T=0.39; PI = 0.5560; G = 0.7777. 

 The MP and the BA agreed on the monophyly of the ingroup and resolved 

two clades: A. tigrinum and A. triste - A. maculatum. The MP analysis further 

resolved the A. triste - A. maculatum clade in two lineages: A. triste from Peru 

(77%) and the remaining sequences (100%) which did further split in lineages 

with no obvious geographical meaning with the exception of the Peruvian 

sequences which were basal (Figs. 2.14 and 2.15). 

In the BA phylogenetic reconstruction, the ingroup was resolved in two clades: A. 

tigrinum and A. triste-A. maculatum.  Within the second, the Peruvian samples 

were basal and separated from a supported clade that included all the A. 

maculatum from the U.S., and all the A. triste from Brazil and Argentina. (Fig. 

2.15). 
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 Divergence values within each of the species of the ingroup were at or 

below 1.6%. The distance between A. triste and A. maculatum ranged from 0.5 to 

1.6%. The distance separating A. tigrinum from either A. triste or A. maculatum 

varied between 4.3 and 5.1%. Divergence values between the ingroup and the 

outgroup were 13.5 – 15.7%, and within the outgroup was 12.7% (Table 2.6). 

 

Mitochondrial - Nuclear concatenated dataset (12SrDNA+16SrDNA+COI+ITS2) 

 The concatenated dataset represented a matrix of 2328 bp, 81 

sequences, corresponding to 25 unique haplotypes and two outgrups. The MP 

analysis identified a total of 324 parsimony-informative sites and found 41 equally 

parsimonious trees (length=892; CI=0.898; RI=0.834 and HI=0.102). The ML 

model chosen as more accurate for the data was GTR+I+G with base 

frequencies of: A=0.30, C=0.21, G=0.19 and T=0.30; PI = 0.3601; G = 0.7092. 

 

The MP analysis evidenced a monophyletic ingroup (100%), with a basal A. 

tigrinum branch, followed by the Peruvian sample. All the A. maculatum samples 

from the U.S., together with the A triste from Brazil and Argentina were clustered 

in a monophyletic and polytomic lineage. (Fig. 2.16). 

The BA had better resolution and also resulted in two separated lineages: A. 

tigrinum, basal, and the A. triste - A. maculatum (100%). Within this clade, a 

basal Peruvian A. triste lineage was separated from two sister clusters: a 

resolved North American A. maculatum clade and the A. triste from Brazil and 

Argentina (99%). Both the North American A. maculatum and the Brazilian-

Argentinian sequences of A. triste constituted monophyletic lineages (100%) 

within that clade (Fig. 2.17). 

Divergence values within each of the species of the ingroup were below 

1%. The distance between A. triste and A. maculatum ranged from 0.8 to 1.1%. 

The distance separating A. tigrinum from either A. triste or A. maculatum varied 

between 3.1 and 3.4%. Divergence values between the ingroup and the outgroup 

taxa were of 15.7-18.0%, and within the outgroup was 11.4% (Table 2.7). 
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Discussion 

 

Overall, the reconstructions obtained with different genes were not always 

congruent. Nevertheless, they agreed in several points. First, in most cases both, 

A. maculatum and A. triste, were paraphyletic. If there was clustering, it was 

determined by geography, rather than by taxonomic assignment. The Peruvian 

A. maculatum and A. triste often grouped together, as did the North-American-

Colombian samples, or the southern samples from Brazil and Argentina. BA 

consistently showed that, within the mostly monophyletic A. triste- A. maculatum 

lineage, the branches were short. This would suggest a very recent and rapid 

divergence history with incomplete lineages sorting. Intra- and interspecific 

distance values obtained within and between A. maculatum and A. triste 

overlapped. Although divergence values in themselves cannot be used for 

species delimitation, with the support of the phylogenetic reconstructions, we can 

reliably propose that A. maculatum and A. triste should be considered 

conspecific. Therefore, A. triste should be returned to junior synonymy of A. 

maculatum (Koch, 1844). This would also result in questioning the taxonomic 

value of tibial spurs. As the so-called “spurs” are in fact simply modified robust 

setae, differences in length and thickness might merely be the result of local 

adaptation, without particular systematic meaning. 

The question of whether or not A. tigrinum is distinct from A. maculatum is more 

difficult to answer. In most cases, the A tigrinum samples clustered in a distinct 

monophyletic clade. The geographical distribution of A. tigrinum in South 

America mostly overlaps that of the other two species (Estrada-Peña, 2005), 

although it reaches more southern latitudes than A. maculatum – A. triste. 

Although divergence values between A. tigrinum and A. maculatum - A. triste are 

moderately higher than intraspecific values, they remain much lower then the 

interspecific distances recorded between outgroup species, and between 

outgroup and ingroup taxa. Those values are also comparable to, or slightly 

higher than, intraspecific variation, but always lower than the interspecific 
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divergence values observed for other Amblyomma species analyzed by using 

some of the same gene markers (Beati et al., 2013). More importantly, the 

variable nuclear gene used in this study (ITS2) includes A. tigrinum in a 

polytomic ingroup and does not support a clear split between the taxa. The ITS2 

is a gene marker that has successfully been used for taxonomic reassessments 

among South American Amblyomma species of similar geographical distribution 

(Marrelli et al., 2007; Beati et al. 2013). Therefore, according to the above 

information, either we can also consider A. tigrinum to be a synonym of A. 

maculatum which would conform to Neumann’s opinion (Neumann, 1899), or we 

can temporarily maintain A. tigrinum as a separate taxonomic entity with a very 

short evolutionary history separating it from the sympatric A. maculatum. Only 

cross-breeding experiments are likely to determine whether the time elapsed 

since the divergence of the two lineages was sufficient for them to become 

different species, as morphological differences are minimal and mostly based on 

tibial spur arrangement which may not have taxonomic importance. Also shape 

and length of carena on festoons and ornamentation are known to sometimes be 

intraspecifically polymorphic (Nava et al., 2014). Our results can explain why the 

identification of these species throughout their distribution range has been so 

problematic. Furthermore, we can agree with Estrada-Peña et al. (2005) in 

considering A. parvitarsum and A. neumanni to be distant from the ingroup and 

not part of the same complex of species.  

In conclusion, our data strongly support the synonymization of A. triste with A. 

maculatum, and suggest that this might be true also for A. tigrinum. 

Nevertheless, additional ecological and biological (cross-breeding) information 

should be gathered in order to establish whether or not A. tigrinum and A. 

maculatum are conspecific. 
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APPENDIX 2 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Political map of southern North America, Central and South America showing the collection areas and the eco-

regions to what they correspond: GA, Georgia (U.S.); FL, Florida (U.S); SR, Santander (Colombia); TU, Tumbes (Peru); ICA 

(Peru); Brazil; GO, Goias (Brazil); PA, Pantanal (Brazil); SP, Sao Paulo (Brazil); CR, Corrientes (Argentina); FO, Formosa 

(Argentina); SDE, Santiago del Estero (Argentina); BA, Buenos Aires (Argentina). 
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Fig. 2.8 MP tree for ITS2. 
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Fig. 2.16 MP for the mitochondrial + nuclear 

concatenated dataset (12S-16S-COI-ITS2). 
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Lab ID Species Locality State/Provence/Department Code Country 12S  16S DL ITS2 COI COII 

AT1A A. triste Zarate Buenos Aires BA Argentina       X X   

AT1B A. triste Zarate Buenos Aires BA Argentina X       X   

AT1C A. triste Zarate Buenos Aires BA Argentina X       X   

AT3A A. triste Inta Delta Buenos Aires BA Argentina X       X   

AT3B A. triste Inta Delta Buenos Aires BA Argentina         X   

AT3C A. triste Inta Delta Buenos Aires BA Argentina X       X   

AT3D A. triste Inta Delta Buenos Aires BA Argentina         X X 

AT3E A. triste Inta Delta Buenos Aires BA Argentina     X   X   

1A A. triste Inta Delta Buenos Aires BA Argentina X X X X X   

1A2 A. triste Inta Delta Buenos Aires BA Argentina X X X   X   

1B A. triste Inta Delta Buenos Aires BA Argentina X X X X X   

1C A. triste Inta Delta Buenos Aires BA Argentina X X X X X   

1D A. triste Inta Delta Buenos Aires BA Argentina   X   X     

1E A. triste Inta Delta Buenos Aires BA Argentina   X   X X   

12A A. triste Reserva El Bagual Formosa FO Argentina X X X X X X 

12B A. triste Reserva El Bagual Formosa FO Argentina   X X   X   

12C A. triste Reserva El Bagual Formosa FO Argentina   X X X     

12D A. triste Reserva El Bagual Formosa FO Argentina X X X X     

12E A. triste Reserva El Bagual Formosa FO Argentina X X X X     

15A A. triste Colonia Pellegrini Corrientes CR Argentina X X X X X   

16A A. tigrinum Pozo Hondo Santiago del Estero SDE Argentina X X   X X X 

16B A. tigrinum Pozo Hondo Santiago del Estero SDE Argentina X X X X X   

17A A. triste Zarate Buenos Aires BA Argentina X X   X X   

17B A. triste Zarate Buenos Aires BA Argentina X X X X X   

17C A. triste Zarate Buenos Aires BA Argentina X X X X X   

Table 2.1. Localities and PCR amplification success for each of the samples, and each of the individual genes markers. 
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18A A. triste Inta Delta Buenos Aires BA Argentina X X X   X   

18B A. triste Inta Delta Buenos Aires BA Argentina X X X X     

18C A. triste Inta Delta Buenos Aires BA Argentina X X X X     

13A A. triste Promissão Sao Paulo SP Brazil X X X   X   

13B A. triste Promissão Sao Paulo SP Brazil   X X X     

13C A. triste Promissão Sao Paulo SP Brazil   X X   X   

AT2A A. triste Promissão Sao Paulo SP Brazil X       X   

AT2B A. triste Promissão Sao Paulo SP Brazil X   X   X   

AT2C A. triste Promissão Sao Paulo SP Brazil X   X       

AT2D A. triste Promissão Sao Paulo SP Brazil X           

AT2E A. triste Promissão Sao Paulo SP Brazil         X   

AT2F A. triste Promissão Sao Paulo SP Brazil X   X     X 

AT2G A. triste Promissão Sao Paulo SP Brazil X       X   

2A A. triste Promissão Sao Paulo SP Brazil   X         

2B A. triste Promissão Sao Paulo SP Brazil X X     X   

2C A. triste Promissão Sao Paulo SP Brazil X X X     X 

3A1 A. triste Mineros Goias SP Brazil X X X X X   

5A A. tigrinum Mineros Goias GO Brazil X X X   X X 

5A2 A. tigrinum Mineros Goias GO Brazil X X X   X   

5B A. tigrinum Mineros Goias GO Brazil X X     X   

5C A. tigrinum Mineros Goias GO Brazil X X X   X X 

5D A. tigrinum Mineros Goias GO Brazil   X X       

5E A. tigrinum Mineros Goias GO Brazil X X X       

6A A. triste Pantanal Mato Grosso do Sul MGS Brazil X X   X X   

6A2 A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X X X   

6B A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X X X   

6C A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X X X   
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6D A. triste Pantanal Mato Grosso do Sul MGS Brazil X X X X X   

6E A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X X     

6F A. triste Pantanal  Mato Grosso do Sul MGS Brazil   X X   X   

6G A. triste Pantanal  Mato Grosso do Sul MGS Brazil   X X   X   

7A A. triste Colonia Uberlandia      Brazil X X X X X   

7B A. triste Colonia Uberlandia      Brazil X X X X X   

7C A. triste Colonia Uberlandia      Brazil   X X X X   

8A A. triste Pantanal Mato Grosso do Sul MGS Brazil X X X X X   

8A2 A. triste Pantanal Mato Grosso do Sul MGS Brazil X X X X X   

8B A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X X X   

8C A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X X     

8D A. triste Pantanal  Mato Grosso do Sul MGS Brazil   X   X X   

8E A. triste Pantanal  Mato Grosso do Sul MGS Brazil   X X X     

8F A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X X X   

8G A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X   X   

8H A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X   X   

8I A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X X     

8J A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X X     

8K A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X X     

8L A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X       

8M A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X       

8N A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X X     

8O A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X       

8P A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X X     

8Q A. triste Pantanal  Mato Grosso do Sul MGS Brazil X X X X     

11A A. tigrinum Caldas Novas Goias GO Brazil X X X   X   

19A A. maculatum Bulloch Co. Georgia GA USA X X X X X   
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19B A. maculatum Bulloch Co. Georgia GA USA X       X   

20A A. maculatum Bulloch Co. Georgia GA USA X X X X X   

21A A. maculatum Bulloch Co. Georgia GA USA X X X X X   

21B A. maculatum Bulloch Co. Georgia GA USA X X X   X   

21C A. maculatum Bulloch Co. Georgia GA USA X X X X X   

21D A. maculatum Bulloch Co. Georgia GA USA X X X   X   

22A A. maculatum Monroe Co. Georgia GA USA X X X X X X 

23A A. maculatum Bulloch Co. Georgia GA USA X X X X X   

24A A. maculatum Howard Co. Florida FL USA X X X X X X 

4A A. maculatum Poima Santander SR Colombia   X X   X   

Macu_1 A. maculatum 17 Pirua   PU Peru X X X   X X 

Macu_2 A. maculatum 17 Pirua   PU Peru X X X   X X 

865995_1 A. triste Tumbes TU PU Peru X X X   X   

865995_2 A. triste Tumbes TU PU Peru X X X       

714617 A. triste     PU Peru X X X X X   

10A A. triste Ica Ica PU Perú   X         

Total per 

gene 
          75 79 73 50 67 11 

Total # 

samples 
          95           
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12S 

                     Species by Country 1A 1B 1C 1D 1E 1F 1G 1H 1I 1J 1K 1L 1M 1N 1O 1P 

     A. triste Arg 0 0 0 0 0 1 0 1 0 0 0 15 0 1 0 0 

     A. triste Bra 0 1 1 6 2 0 1 0 0 0 0 23 0 0 0 0 

     A. triste Peru 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 

     A. tigrinum Arg 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

     A. tigrinum Bra 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

     A. maculatum PU 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

     A. maculatum U.S. 0 0 0 0 0 0 0 0 1 1 0 0 0 0 8 0 

     

                      16S 

                     Species by Country 2A 2B 2C 2D 2E 2F 2G 2H 2I 2J 2K 2L 2M 2N 2O 2P 2Q 2R 2S 

  A. triste Arg 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 12 0 1 

  A. triste Bra 1 0 1 3 2 0 0 0 0 2 1 12 1 0 0 0 15 3 0 

  A. triste Peru 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

  A. tigrinum Arg 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

  A. tigrinum Bra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  A. maculatum PU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  A. maculatum U.S. 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 

  A. maculatum CO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  

                      

      

 

 

 

 

                

Table 2.2. Haplotypes by species and by region/country for each of the molecular markers analyzed. Distinct haplotypes are named with letters, 

and combined with a number for each gene marker as follows: 1, 12S; 2, 16S; 3, DL; 4, COI; 5, COII and 6, ITS2. 
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2T 2U 2V 2W 2X 2Y 2Z 2AA 2BB 2CC 2DD 2EE 

       

   

0 0 0 0 0 0 0 0 0 0 0 0 

       

   

1 1 0 0 0 0 0 0 0 0 0 0 

       

   

0 0 0 0 0 0 0 0 0 3 0 0 

       

   

0 0 0 0 0 0 0 0 0 0 0 0 

       

   

0 0 0 0 0 0 0 0 0 0 0 0 

       

   

0 0 0 0 0 0 0 0 0 0 1 1 

       

   

0 0 1 1 1 1 1 1 0 0 0 0 

       

   

0 0 0 0 0 0 0 0 1 0 0 0 

       

                      

                      DL 

                     Species/Country 3A 3B 3C 3D 3E 3F 3G 3H 3I 3J 3K 3L 3M 3N 3O 3P 3Q 3R 3S 

  A. triste Arg 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 

  A. triste Bra 1 0 1 1 1 1 1 0 1 3 1 0 4 0 2 1 1 0 1 

  A. triste Peru 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  A. tigrinum Arg 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  A. tigrinum Bra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  A. maculatum PU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  A. maculatum U.S. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  A. maculatum CO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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3T 3U 3V 

3

W 3X 3Y 3Z 

3A

A 3BB 3CC 

3D

D 3EE 3FF 3GG 

3H

H 3II 3JJ 

3K

K 

3L

L 

  

 

0 0 7 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

  

 

1 2 3 0 0 0 1 0 0 0 0 2 3 2 1 0 0 0 0 

  

 

0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 

  

 

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

  

 

0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 5 1 0 0 

  

 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

  

                      

 

3M

M 

3N

N 

                   

 

0 0 

                   

 

0 0 

                   

 

0 0 

                   

 

0 1 

                   

 

1 0 

                   

 

0 0 

                   

 

0 0 

                   

 

0 0 

                    

 

 

 

 

 

 

 

                     



85 

 

COI 

Species by Country 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L 4M 4N 4O 4P 4Q 4R 4S 

4

T 

 A. triste Arg 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 2 0 2 2 

 A. triste Bra 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 3 0 0 

 A. triste Peru 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 A. tigrinum Arg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 A. tigrinum Bra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 A. maculatum PU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 A. maculatum U.S. 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 A. maculatum CO 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

                      

 

4U 4V 4W 4X 4Y 4Z 4AA 4BB 4CC 

4D

D 4EE 4FF 4GG 4HH 4II 

4J

J 

4K

K 4LL 

   

 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   

 

8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

   

 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 

   

 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 

   

 

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

   

 

0 3 1 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 

   

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

   

                       

 

 

 

 

 

                     



86 

 

COII 

Species by Country 5A 5B 5C 5D 5E 5F 5G 5H 

             A. triste Arg 1 0 0 0 1 0 0 0 

             A. triste Bra 1 0 1 0 0 0 0 0 

             A. tigrinum Arg 0 0 0 0 0 1 0 0 

             A. tigrinum Bra 0 0 0 0 0 0 1 1 

             A. maculatum PU 0 2 0 0 0 0 0 0 

             A. maculatum U.S. 0 0 0 1 1 0 0 0 

             

                      ITS2 

                     Species by Country 6A 6B 6C 6D 6E 6F 6G 6H 6I 6J 6K 6L 6M 

        A. triste Arg 2 1 1 0 0 0 0 0 1 1 0 0 10 

        A. triste Bra 0 0 0 0 0 0 1 0 0 0 0 1 22 

        A. triste Peru 0 0 0 0 0 0 0 1 0 0 0 0 0 

        A. tigrinum Arg 0 0 0 0 1 1 0 0 0 0 0 0 0 

        A. maculatum U.S. 0 0 0 6 0 0 0 0 0 0 1 0 0 
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12S/16S A. triste A. maculatum A. tigrinum Out 

A. triste 0-2.1/0.2-2.7 0.5-2.7 3.4-4.6 10.8-12.6 

A. maculatum 0.6-2.1 0.3-1.8/0.2-2.5 3.2-4.4 10.8-11.6 

A. tigrinum 1.8-2.7 2.4-2.7 n/a/0-1.7 11.0-12.6 

Out 11.9-16.2 11.9-16.2 12.2-16.2 11.0-11.7/10.1 

ITS2/DL A. triste A. maculatum A. tigrinum Out 

A. triste 0-1.1/0.3-2.4 0.3-4.6 9.4-11.1 27.6-28.9 

A. maculatum 0.3-1.3 0.1/0.3-3.5 9.5-11.3 27.9-29.5 

A. tigrinum 1.0-1.7 1.2-1.4 0.3/0.5-1.6 29-30.1 

Out 17.2-21.8 17.5-21.4 17.9-21.7 7.9/n/a 

Table 2.3. ML pairwise distances for 12S (bold) and 16S (italics). The values are expressed as 

percentage. 

Table 2.4. ML pairwise distances for ITS2 (bold) and DL (italics). The values are expressed 

as percentage. 
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COI/COII A. triste A. maculatum A. tigrinum Out 

A. triste 0-1.8/0.7-1.0 0.8-1.7 5.9-6.6 12.7-16.3 

A. maculatum 0.0-4.0 0.2-3.5/1.7 5.8-6.4 12.9-16.3 

A. tigrinum 6.0-7.5 5.6-7.8 0.2-1.2/0.3-1.0 11.7-16.8 

Out 15.4-18.4 15.9-18.7 15.4-17.9 15.7-17.9/11.4 

Concat_mit A. triste-PU A. triste-BA  A. maculatum-PU A. maculatum-US A. tigrinum Out 

A. triste-PU 0.1 

A. triste-BA  1.2-1.6 0.0-1.0 
  

A. maculatum-PU 0.5 1.1-1.6 0.3 
  

A. maculatum-US 1.2-1.5 1.0-1.6 1.1-1.5 0.1-0.5 
  

A. tigrinum 4.3-4.5 4.6-5.1 4.3-4.6 4.7-5.1 0.1-0.5 

 Out 13.6-15.1 13.5-15.4 13.8-15.2 13.9-15.7 13.5-15.4 12.7 

Table 2.5. ML pairwise distances for COI (bold) and COII (italics). The values are expressed as percentage. 

Table 2.6. ML pairwise distances for the concatenated mitochondrial dataset. Abbreviations: PU, Peru; BA, Brazil and Argentina; 

US, the United States of America. The values are expressed as percentage. 
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Concat_mit+nuclear A. triste  A. maculatum A. tigrinum Out 

A. triste 0.0-1.6 

A. maculatum 0.8-1.1 0.0-0.3 
 

A. tigrinum 3.1-3.4 3.2-3.4 n/a 

 Out 15.7-17.9 15.7-18.0 15.8-17.9 11.4 

Table 2.7. ML pairwise distances for the nuclear + mitochondrial concatenated dataset. The 

values are expressed as percentage. 
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Chapter 3 
 

Conclusions 
 
 

The overall objective of this work was to resolve taxonomic controversial 

issues among some lineages within the genus Amblyomma (Acari: Ixodidae). We 

chose to study two groups of taxa with similar large geographical distribution 

ranges: Amblyomma parvum and its morphologically related taxa (Chapter 1), 

and the A. maculatum group of species (Chapter 2). Their systematics was 

reassessed by analyzing mitochondrial and nuclear gene markers. 

Although these groups of taxa were set apart by dissimilar and independent 

taxonomic problems, the successful unravelling of their evolutionary history and 

their systematic relationships was achieved through the use of the same 

methodology and the same molecular gene markers (12SrDNA, 16SrDNA, DL, 

COI, COII and ITS2). The data obtained in the present study confirmed that 

these markers are phylogenetically informative at the specific and/or intra-

specific level, as previously reported by Beati et al. (2013). The resolution 

obtained in most of the phylogenetic analyses was good, allowing us to 

determine the taxonomic relationships between and within the taxa, and 

therefore, accomplishing our main objectives. The analyses strongly supported 

the hypothesis of cryptic speciation occurring in A. parvum, with populations from 

northern latitudes (Central America) corresponding to a different and yet to be 

described species, whereas populations from southern latitudes (Argentina and 

Brazil) were conspecific, and corresponded to A. parvum. As for the A. 

maculatum group of species, the phylogenetic reconstructions together with ML 

pairwise distances values strongly suggested that A. triste should be 

synonymized with A. maculatum. In conclusion, although the two groups of taxa 

had, both, large distribution ranges, the molecular analysis of their genetic 

diversity revealed two opposite scenarios, one involving cryptic speciation 

(morphological similarities masking genetic differentiation),  and the other 

involving intraspecific morphological polymorphism without corresponding 
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genetic divergence. In addition, this study has revealed additional taxonomic 

issues that should further be investigated. 
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