Spring 2015

Constructing the World's Largest Prison: Understanding Identity by Examining Labor

Hubert J. Gibson

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

Part of the African American Studies Commons, Archaeological Anthropology Commons, Labor History Commons, Military History Commons, and the United States History Commons

Recommended Citation
https://digitalcommons.georgiasouthern.edu/etd/1246

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
CONSTRUCTING THE WORLD’S LARGEST PRISON: UNDERSTANDING
IDENTITY BY EXAMINING LABOR

by

HUBERT J. GIBSON

Under the Direction of Lance Greene

ABSTRACT

A Civil War prison camp operated by the Confederacy known as Camp Lawton was once considered the largest prison in the world. This label was attributed to the fact that Lawton’s stockade enclosed 42 acres. The historical record does not have a clear picture of who built it. Newspaper interviews claim the construction was carried out by 500 impressed slave laborers and 300 Union POWs, but these lack the credibility of official orders. Unfortunately, many Confederate documents were lost when Sherman’s army came through Millen, GA. This study archaeologically examines construction techniques utilized for building stockades in an effort to understand labor patterns and provide identity for the builders of Lawton’s stockade.

INDEX WORDS: Camp Lawton, Civil War Prison, Stockade, Millen, Georgia, Lawton, Slaves, POWs, Labor, Identity
Constructing the World’s Largest Prison: Understanding Identity by Examining Labor

by

Hubert J. Gibson

B.A. Anthropology and History, University of Tennessee, 2012

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment of the Requirements for the Degree

Master of Social Science

Statesboro, Georgia 2014
CONSTRUCTING THE WORLD'S LARGEST PRISON: UNDERSTANDING IDENTITY BY EXAMINING LABOR

by

HUBERT J. GIBSON

Major Professor: Lance Greene
Committee: Sue Moore
Steve Smith

Electronic Version Approved:
Spring 2015
Completing this work has taken a lot of time, thought, and effort, but it would not have been possible without a little help from my friends. First and foremost, I would like to thank my committee. I want to thank Dr. Sue Moore for turning me on to theory with her class. Her instruction on the subject helped me find meaning in the discipline and set me on a journey to discover my own theoretical principles. I applaud Dr. Steve Smith for his strong objectivity, advice, and support. It was an honor being able to work with you. With his input my thesis is a stronger work. As for my chair Lance Greene, words cannot describe my gratitude, but I’ll give it a try. Since I started the program you served enthusiastically as my mentor. You taught me how to organize my thoughts into a coherent discourse on the subject. You also nurtured my theoretical and topical interests and encouraged me to further my career and write an article in the future for publication. Your guidance and input has helped me become a better writer and archaeologist. I thank you for teaching me other skills such as electrolysis, total station, metal detection, and other useful field methods.

I would also like to extend my gratitude to non-committee members. Dr. Malcolm Wood, I thank you for all the wisdom you have imparted to me. I know it will help further my career. Dr. Barbara Heath, since my days at UT you are still one of my mentors, thank you for giving me my start in the field and your input on this topic. To Blake Ayalla and Ryan Sipe, I thank you for your friendship and your assistance with the excavations that are discussed in this work. In addition, I want to thank Heather Amaral, Lilith Logan, Matt Newberry, and William Brant for their involvement with Camp Lawton, and their friendship. I am also thankful to all the undergraduates, field school students, and volunteers who were a part of the project. Without their involvement and numerous contributions the project would not be where it is today.

Outside of school, I also received much support from family and friends. I want to thank Michael Lamb and Mike Alamo for being friends to this stranger in a new land. I want to thank my parents Janice and Luther Gibson for their love and support. Most of all I want to thank my lovely wife Jackie and our daughter Tiffany. Your love is my inspiration and your dedication has given me the strength to move a lot of dirt since we met. Thank you for the past nine years and your ongoing support. I love you with all my heart.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .............................................................................. v

LIST OF FIGURES .................................................................................. vii

CHAPTERS

1 INTRODUCTION .................................................................................. 1

2 BACKGROUND ..................................................................................... 5

3 THEORY ............................................................................................... 28

4 ARCHAEOLOGICAL DATA ..................................................................... 34

5 INTERPRETATIONS AND FINDINGS ................................................... 48

6 CONCLUSIONS ................................................................................... 56

REFERENCES .......................................................................................... 57
List of Figures

1. Site location........................................................................................................................................2

2. Robert K. Sneden watercolor of Camp Lawton..............................................................................14

3. Stockade trench feature from Andersonville illustrating construction by enslaved labor......21

4. Stockade trench feature from Andersonville illustrating construction by Union POWs.........22

5. Stockade trench feature from Camp Ford illustrating construction by enslaved labor........27

6. Locations of stockade trench feature sections at Camp Lawton.................................................36

7. Section 1 feature surface..................................................................................................................38

8. Section 1, base of level 3..................................................................................................................40

9. Section 1, profile view.......................................................................................................................41

10. Section 2, plan view.........................................................................................................................42

11. Section 2, bisection...........................................................................................................................43

12. Section 3 plan view...........................................................................................................................46

13. General John Winder map of Camp Lawton stockade...............................................................49

14. Robert K. Sneden watercolor of Camp Lawton stockade............................................................50
CHAPTER 1
INTRODUCTION

On the morning of October 16, 1864, a group of Union POWs arrived at Lawton Station by train outside Millen, Georgia. After marching half a mile north, they were welcomed by a pine-log stockade and a “negro” hanging from the gallows near the main gate. When they saw the inside of the pen there were shanties and the sight of Confederate artillery pointing down from the nearby hill (Sneden, 2000). Among Camp Lawton’s most distinguishing features was its stockade. Overall, it encompassed 42 acres and the camp’s overseer, General John H. Winder, remembered it as “the largest prison in the world.” However, despite Lawton’s monumental size, its presence on the historical landscape was short lived. Over a period of six weeks, 10,000 Union POWs were detained in the fall of 1864. Roughly 800 of these men met their demise within the compound (Derden, 2012). The survivors were evacuated prior to the arrival of Sherman’s cavalry. Subsequently the prisoners were shuffled between temporary camps such as Blakshear or other prison complexes such as Florence and Andersonville. When Sherman’s army arrived, many Union soldiers were infuriated by the conditions their comrades had faced. Thus, they dismantled shanties and burned the camp along with portions of its stockade (Derden, 2012).

Afterwards, Camp Lawton faded into obscurity with local legend kindling its memory. However, interest in the site has been renewed in recent years. Archaeological research, conducted by faculty and students from Georgia Southern University, has attracted national media attention. It has provided great insight into the lives of POWs and their material culture. This work expands upon this research to understand the construction of the stockade and the people involved with it (Figure 1).

To understand the origin of “The Largest Prison in the World,” it is necessary to discuss Andersonville. Prior to Lawton’s construction, most of its inhabitants were imprisoned there. At its final stage, the Andersonville stockade was about half of Lawton’s size; however, it was the most crowded prison of the Civil War. Its peak population was 33,000, all of which were
Figure 1. Site location.
enclosed in a 26 acre space (Derden, 2012). Naturally, these cramped conditions caused illness and increased mortality rates. Nearly 13,000 Union soldiers died at Andersonville. This overcrowding coupled with disease and dying motivated General John H. Winder (later the Confederate Commissary General of Prisons East of the Mississippi), to propose the creation of a new prison to accommodate the large numbers at Andersonville (Derden, 2012).

The historical record of Lawton’s construction is vague. This is because many military documents written by Confederate officials did not survive the war. During Sherman’s march through Millen, the train depot was burned along with military records for Camp Lawton (Derden, pers.comm). From the documents that still exist, there are only a few known facts. Construction of the prison complex began in August and ended in October (Chapman, 2012). It is also known that General Winder had authority to impress slave laborers. However, it is unknown whether he used it (Chapman, 2012). The only hints of who built the stockade are derived from newspaper interviews from the early 20th century. Citizens of Millen, who remembered the Civil War, recalled that local plantation owners sent about 500 slaves to work on the stockade. Three hundred Union POWs were also utilized for this (Derden, 2012). Unfortunately, these recollections lack the credibility of other documents such as military orders. They also lack detail about who was working where and other logistical matters. In order to truly reconstruct the past events at Camp Lawton, archaeological investigations are necessary.

This work was inspired by past excavations of prison stockades from the Civil War. The most relevant of these include Andersonville and Camp Ford. Collectively, these studies have discussed differing construction methods that were used by impressed slaves and Union POWs when building stockades for the Confederacy. The work at Andersonville carried out by Guy Prentice and Marie Mathison was the first to differentiate between slave and POW building strategies. When they excavated portions of the Andersonville stockade they had the luxury of a rich historical record. Documents showed that the impressed slaves constructed the original 16 acre stockade and the Union prisoners built the 10 acre northern extension (Prentice and Mathison, 1989).

Camp Ford is another Confederate prison that has yielded similar results. Alston V. Thoms (2000c) discovered that hundreds of impressed laborers were used to build a three acre
stockade and then extend it to either 10 to 16 acres in Tyler, Texas. The historical record verified that the work was almost exclusively carried out by slave laborers. Thoms mostly paid attention to how they adapted to a differing environment and landscapes. By comparing stockade features from Camp Lawton to others found at these prison complexes, it is possible to understand their construction methods. I hypothesize that these labor techniques can be evaluated to discern the identity and general background of the stockade builders. This process of using archaeology to identify labor groups can help fill in the gaps within the historical record at Camp Lawton.

To begin, a history of Civil War prisons and their conditions will be discussed to provide context for the archeological research conducted. This will focus on how prison camps early in the war evolved from makeshift to highly organized, but lacking prison compounds. This will include more detailed histories of Camp Lawton and Andersonville. Following this, related sites will be discussed in more detail to examine how archaeology has examined this topic before and what findings were important in the development of the research design. After a background of relevant sites, theoretical principles will be discussed. This section will focus on how archaeologists have attempted to discuss ethnicity and identity using labor and how this study contributes to that research. After this, methods of excavation and the archaeological data from the stockade excavations will be described in detail. In the conclusion, I will provide my interpretations of the findings at Camp Lawton.
CHAPTER 2  
BACKGROUND

When analyzing the POW experience of the Civil War, it is fair to say that both sides were unprepared for the numbers of those captured. Many believed the war would be over quickly and did not anticipate how long and grueling the conflict would be (Derden, 2012). Therefore, well planned preparations were not made for POWs. These include proper prison facilities and an organized exchange cartel established at the beginning of the war. Because these issues were not resolved in the early years of the war, prison conditions throughout the conflict were miserable and escalated beyond repair. Overall, the Union was better in handling these issues than the Confederacy, but prisons on both sides had high casualty rates.

The problems of the Civil War POW system takes root in Virginia. Here we see some of the first large engagements and Richmond becomes the host for the initial waves of Union POWs. After the First Battle of Bull Run, 1,300 Union POWs were captured and the Confederates were unsure of how to contain them (Speer, 1999). At this time all of the jails in Richmond were occupied to full capacity with political prisoners, deserters, disorderly Confederate soldiers, and common criminals (Speer, 1999). Lacking the proper institutions to hold POWs captured at Manassas, Confederate officials improvised. General John H. Winder was involved with prison planning during the beginning, and ultimately became the foremost administrator of all prisons east of the Mississippi. His solution was to transform existing tobacco warehouses and factories into makeshift prisons. Among the first was John L. Ligon and Sons Tobacco factory. This building was three stories high and its rooms were 75 by 30 feet (Speer, 1999). Initially, enlisted men were kept on the third floor, guards occupied the second, and federal officers were on the first. As the war progressed, more POWs were captured and prisoners eventually occupied the entire building. This eventually spilled over to neighboring tobacco factories and warehouses (Speer, 1999). From July 21 to late December of 1861, captured POWs increased the city’s population by 12 percent. By the end of the war, a quarter of Richmond’s tobacco facilities were transitioned to either prison or hospital use. The large numbers held within the Richmond prisons were also a strain on resources and even affected the economy of the city (Speer, 1999).
The conditions that prisoners faced in the tobacco facilities were poor. Many POWs recall having to deal with overcrowding, insufficient rations, lack of supplies, filth, and brutality. Within the tobacco factories, half of the available floor space was occupied by tobacco presses and other machinery. This created cramped conditions for those occupying the ground floor (Speer, 1999). The rations for enlisted men were given once a day and included “brown bread, a little beef and water, with rice soup occasionally substituting beef” (Speer, 1999). Federal officers had more available to them. Their rations were given three times a day and in exchange for money they could procure other substances such as vegetables, butter and coffee. They also had the privilege to hire cooks and servants, but this was eventually suspended (Speer, 1999).

While the officers were comparatively pampered, enlisted men lacked blankets, pillows, shoes and coats. They also had to sleep on the floor without bedding. It was not until three months after capture that the initial occupants of Ligon Military Prison received straw and cotton coverlets (Speer, 1999). Overtime the prisoners’ clothing was reduced to rags. Many had to deal with unsanitary conditions propagated by the absence of proper bathrooms. Many of the occupants in Richmond left their excrement in the corners of their room or the basement of a facility. Sometimes buckets were used and dumped outside when the prison lacked a latrine. It was also reported that some defecated where they slept (Speer, 1999). Another prison’s basement was filled with human excrement. With these unsanitary practices vermin and lice propagated throughout the facilities (Speer, 1999).

Prisoners also remember dealing with brutality from Confederate guards and commanding officers. A major example includes the actions of Lieutenant David H. Todd. Todd became the administrator of the prison facilities on Richmond’s 25th Street. He was also the cousin of Mary Todd Lincoln (Speer, 1999). While Richmond newspapers praised Todd as a gentleman, prisoners remember him for his cruelty. Some of the most extreme reports remember Todd shooting at a prisoner standing near a window and stabbing another in the leg with his sword. Some other accusations included assault and battery (Speer, 1999).

The lack of a formal prisoner exchange system promulgated overcrowding. This in turn created the poor conditions described and escalated the crisis beyond repair during the early years of the war. In the beginning, there was no outlined plan for prisoner exchange because the
Union did not want to engage in negotiations that would recognize the Confederate government. Thus, prisoner exchange was initially handled by generals and carried out under informal circumstances (Cloyd, 2010). Unfortunately, this system was not able to exchange a great number of prisoners and failed to alleviate overcrowding. It would not be until a year after the first battle of Bull Run (July 21, 1861) that a formal exchange cartel would be organized (Speer, 1999). By this time the Union possessed 20,000 Confederates and the Confederacy held 9,000 to 12,000 Union prisoners (Speer, 1999). To make exchange more efficient, The Union and the Confederacy reached an agreement through the Dix-Hill Cartel. This established a more expedient prisoner exchange without formally recognizing the Confederacy (Cloyd, 2010). However, this ended 307 days after its announcement on July 22, 1862 (Speer, 1999).

The Dix-Hill Cartel was based on precedents outlined during the American revolution, The War of 1812, and The Mexican War (Derden, 2012) However, the exchange terms developed by General William H. Winder during the War of 1812 were the essential template for the new terms (Derden, 2012). Overall, this was a man for man of equal rank exchange. For example, a private would be exchanged for a private and a captain for a captain. However, during the Civil War, greater numbers of lower rank soldiers could be exchanged for people of higher rank. “One commanding general, for instance, could be exchanged for sixty privates, one lieutenant general for forty, one major general for thirty one brigadier general for twenty, one colonel for fifteen, one lieutenant colonel for ten, one major for eight, one captain for six, one first lieutenant for four, one second lieutenant for three, and one noncommissioned officer for two men” (Speer 1999, p. 58).

Unfortunately, the system met with flawed implementation. Some generals would greatly miscalculate the numbers for exchanging between ranks; For example, Union Commandant Dimick of Fort Warren Prison demanded 480 privates for a brigadier general and 30 privates for a Captain (Speer, 1999). While errors such as this strained relations between the Union and Confederate exchange agents, one of the major problems was the parole system. This was because parole status was not clearly defined. Terms dictating assimilation back into the regular army was a major point of contention between exchange agents. Under oath, those under parole were not allowed to raise arms against the enemy until properly exchanged (Speer, 1999).
Ideally, exchange was supposed to occur within ten days, but typically transpired after thirty due to meticulous paperwork and other administrative difficulties (Speer, 1999). Active servicemen were important for both sides of the conflict and both were unhappy with the turnover rates.

Parole status also allowed soldiers to resist active duty. Initially, many troops were either sent home or remained near their station until exchange occurred (Speer, 1999). This inspired many soldiers to deliberately be captured (Speer, 1999). Once paroled, their status helped them resist returning to the front lines (Cloyd, 2010). To control the situation both sides instituted parole camps to contain soldiers awaiting exchange and preserve their numbers of military personnel (Cloyd, 2010; Speer, 1999). Theoretically, this assured quick mobilization of parolees, but it triggered other problems (Cloyd, 2010). Parole camps created a red tape nightmare which prompted long delays in exchange (Speer, 1999). It was also an expensive strain on resources such as food, supplies and space that could have gone toward prisoners (Cloyd, 2010). After a prolonged time both sides were tired of housing these inactive recruits. The eyewitness account of Union Colonel William Wallace best summarizes the issue. He witnessed over 3,000 inactive Union Soldiers when he assumed command of Camp Chase. He characterized them as “lazy, ragged, dirty, louse infected, and demoralized” (Speer, 1999).

The parole camps and status affected diplomacy and stirred emotions between the exchange agents themselves. It resulted in frequent episodes of feuding and flinging accusations. The issue eventually reached a critical point when the Confederate Commissioner of Exchange Robert Ould declared Vicksburg parolees exchanged. Ould’s motivation was to strengthen Confederate forces in the west and to resolve financial expenditure for inactive paroled troops. The Union condemned the maneuver (Cloyd, 2010). As a result of the episode, prisoner exchange was slowed. However, what ultimately destroyed the Dix-Hill Cartel was the introduction of black troops to the war (Cloyd, 2010).

The Confederacy’s policies toward “colored” troops were cutthroat. In their perspective, African Americans serving the Union were slaves in revolt (Cloyd, 2010). The penalties for this were harsh. Many black soldiers were often executed or sold back into slavery (Cloyd, 2010). The massacre at Fort Pillow is one of the best examples of this brutality. At Fort Pillow, Nathan Bedford Forest, later the founder of the Ku Klux Klan massacred colored troops at Fort Pillow.
Jefferson Davis also promoted harsh treatment of white officers leading these “colored” regiments and ordered them to be put to death for leading a slave insurrection (Speer, 1999). In response, Secretary of War Edwin Stanton suspended the exchange of commissioned officers on December 28, 1862 (Speer, 1999). When Confederate Congress backed Jefferson Davis’s proclamation, prisoner exchange of enlisted men was suspended by Gen. Henry Halleck on May 25 1863 (Speer, 1999).

With the cessation of the Dix-Hill Cartel overcrowding grew worse. Eventually, the Confederates realized that the tobacco warehouses of Richmond were insufficient institutions to hold prisoners. General Robert E. Lee also proposed that they were a threat to the security of Richmond. Should the prisoners be freed by invading Union forces the resulting damage would be catastrophic to the capital (Derden, 2012). Therefore, it was much safer to move them into the Confederate interior.

**Prison Compounds**

This drove the development of large prison compounds. In total, there were 8 prisons that had the capacity to hold more than 5,000 men. Out of these, seven were pine log stockades (Chapman, 2012; Speer, 1997). The most notable were Andersonville, Camp Ford, Florence, Salisbury, and Camp Lawton. All of these were wooden stockades that spanned acres of land and held thousands of POWs. Camp Ford was initially 3 acres and was extended to 16 acres. Florence was 23.5 acres. Originally, Andersonville’s stockade was 16 acres and later extended to 26 acres. It was designed to hold 10,000 prisoners inside barracks. Camp Lawton was the largest, encompassing 42 acres. With this design, General Winder hoped to hold between 32,000 to 40,000 prisoners more comfortably (Derden, 2012).

When established in the late summer of 1862, Camp Ford was not a prison. It was initially proposed to be a training camp for fresh Confederate soldiers (Thoms, 2000a). However, as time passed, Camp Ford grew to be the largest prison west of the Mississippi River (Thoms, 2000b). The camp was located between the front and Shreveport, LA, the latter being a major POW exchange center. Logistically, Camp Ford acted as a temporary detention area for captured POWs awaiting exchange. Here prisoners were placed in the open and guarded by a perimeter of Confederate troops (Glover, 2000). At this time POWs were manageable and numbers detained
were less than a hundred. However, this changed in the summer of 1863, after 461 Union soldiers were captured in southern Louisiana. Initially, these men were housed at Camp Groce, but were transferred to Camp Ford in November of 1863. This escalated the prison population to 500 (Glover, 2000). This number of POWs would have been difficult to detain out in the open. Eventually, Confederate officials and local civilians learned of a prisoner plot to escape and attack the city of Tyler. This prompted the creation of a stockade (Glover, 2000).

Camp Ford’s initial 3 acre stockade was constructed by approximately 600 slaves within a ten day period (Thoms, Clabaugh, & Olive 2000). When the stockade was extended to encompass 16 acres, just as many were impressed to carry out the construction within 2-4 days (Thoms et al., 2000). Overall, Thoms believes that 1000 or more slaves built the stockades at Camp Ford (Thoms et al., 2000). Historical records and archaeological research verify that the original stockade was an irregular rectangle holding about three acres (Glover 2000; Thoms et al., 2000). On April 13, 1864, the commandant of the Camp received orders to house 2,000 to 3,000 more POWs from the Battle of Mansfield, Louisiana (Glover, 2000). With this new influx of POWs the original north stockade wall was extended 600 feet. Because of the irregular shape of the stockade, measurements collected by a former prisoner suggest that it encompassed sixteen acres (Thoms, 2000c). If this is accurate, the stockade was about the same size as the initial Andersonville stockade.

Andersonville was the most notorious prison of the Civil War. It accumulated the highest mortality rate compared to all the other prisons. Of the 45,000 POWs that were held at the site 13,000 died (Derden, 2012). The main part of the problem was overcrowding. At its peak, the prison held 33,000 men in a 26 acre space at one time (Derden, 2012). This made Andersonville the Confederacy’s 5th most populated area (Speer, 1999). While the quality of life was poor there, it was originally planned that Andersonville would remedy the problems at the Richmond tobacco facilities by providing better land, food, water and other resources (Derden, 2012). Additionally, movement into the southern interior made it more difficult for the Union Army to free the POWs (Derden, 2012).

Overall, General John H. Winder seemed to be distant in his administration of Andersonville. He dictated his orders to the officers below him, mainly his sons and nephews.
Winder’s third son, Captain William S. Winder, was responsible for choosing the location of the prison. He believed that Andersonville in west central Georgia was the best place to build the prison compound (Derden, 2012). Land was leased from two owners, Benjamin B. Dykes and Westly W. Turner (Prentice and Mathison, 1989). The scattered population of the area worked to the advantage of the Confederates. Only about 20 landowners lived in the area, and this created less resistance for the construction of the prison. Additionally, it was also a short distance from the southwestern railroad (Prentice and Mathison, 1989).

Captain Richard B. Winder oversaw construction and was instructed to build a prison capable of holding 6,000 prisoners (Prentice and Mathison, 1989) Nine Hundred slaves were used to construct the original 16 acre pine-log stockade (Grant, 1993; Derden, 2012). Richard Winder believed this was sufficient to hold up to 10,000 prisoners in barracks (Prentice and Mathison, 1989). Officially known as Camp Sumter, the prison opened in February 1864, before completion (Derden, 2012). Meanwhile, General Winder stayed in Richmond and was not directly involved until his arrival on June 17, 1864 (Derden, 2012).

As an administrator, General John Winder was capable of his duty (Derden, 2012) but, he was unable to acquire the needed resources. In his absence, the situation at Andersonville degraded into chaos. Overcrowding of the prison drained resources such as food, water, medical supplies and clothing. This triggered a number of ailments such as dysentery, small pox, gangrene, scurvy, and other illnesses (Derden, 2012). From May 8th to June 20th the prison population increased from 12,000 to 20,000 (Prentice and Mathison, 1989). To accommodate these numbers areas of swamp were drained, and the northern portion of the stockade was extended 610 feet north which enlarged the area to 26.5 acres (Prentice and Mathison, 1989). Union prisoners were used for this detail. In total, there were 100 white and 30 black soldiers used for the extension and they finished the project in 14 days (Prentice and Prentice, 2000). The original materials used for building were recycled or burned to fuel fires.

Confederates grew more concerned in late summer 1864 when they learned that Sherman might attack the prison. Because of the advance, Winder added a middle and outer stockade. These were made of unhewn logs and inserted four feet into the ground. The middle stockade was 12 feet above ground surface and encompassed the original interior stockade. The middle
stockade was completed September 1st and the outer stockade was never completed. It was supposed to encompass the entire complex including earthworks and extend 5 feet above the ground (Prentice and Mathison, 1989). Winder also tried to solve the issue by moving prisoners to other prisons in South Carolina and other portions of Georgia.

The creation of Camp Lawton was triggered by the deteriorating situation at Andersonville. The overcrowding was increasing the rates of disease and death. In addition, the prison’s notoriety put the compound in danger of attack by Sherman. It was deemed most likely by John Winder and other officials that Sherman would attempt to liberate the prisoners. To avoid this, Winder and other Confederate strategists proposed to move the Andersonville prisoners to a new prison and other camps (U. S. Dept. of War, 1880-1901). Because of these circumstances, Winder wanted the prison in Millen to be completed as quickly as possible. On August 7, Winder wrote to General S. Cooper for permission to impress construction materials and “Negros.” This message was forwarded to Confederate Secretary of War James Seddon. Seddon authorized the impressments as long as the law was followed (U.S. Dept. of War, 1880-1901). While Winder was hesitant to impress slaves, he felt that it was necessary for rapid completion of the camp (U.S. Dept. of War, 1880-1901).

Millen, Georgia circa 1864 was a strategic location to construct a prison. Its railroads connected with major cities such as Savannah, Atlanta, and Macon, as well as other railroads in Tennessee, South Carolina, and Alabama (Derden, 2012). This made Millen an important military resource. With this wide array of connections, it would be easy to deliver or receive any resources in the Confederacy. Millen at the time was located in Burke County, which held the second largest slave population in Georgia. The 1860 census shows that the slaves numbered 12,052 (Derden, 2012). There were also plentiful natural resources. A copious amount of timber had been scarcely touched, mills produced a large amount of flour and meal, and the plantation economy supplied abundant amounts of corn and other crops (Derden, 2012). With all of these components it would be possible to accumulate a large slave work force, necessary construction materials, and a food supply for all involved. Thus, in 1864, General Winder leased the land for the prison from Caroline Jones, the widow of Batt Jones. The Jones family possessed around 121
slaves which made them one of the largest plantation owners in Burke County (U.S. Census, 1860).

Because Winder had a history of using impressed slave labor and conditions at Andersonville required quick remedy, it is most likely that he used impressed slaves to construct the stockade wall of Camp Lawton. If so, where did they come from? In a letter from Winder to Lieutenant R. S. Hopkins at Andersonville, he requested that Hopkins visit planters in counties from Florida and Georgia to hire slaves for construction of Camp Lawton in Millen (U.S Dept. of War, 1880-1901). While slaves could have come as far as Florida, it is most likely that many slaves were from the local plantations of Burke County. In an article published on June 7, 1924 in a Waynesboro newspaper The True Citizen, a local informant stated that local farmers in the surrounding area sent approximately 500 slaves to build the stockade walls of Camp Lawton (Garlick, 1924; Chapman, 2012; Derden, 2012). This is important because it recognizes that slaves were a part of the construction of the camp. However, to make things more interesting a newspaper article published in the Millen News on September 24, 1955 indicates that prisoners may also have been used in addition to the slave laborers for the construction of the wall at Camp Lawton. It is estimated that approximately 300 union prisoners were used for this purpose (Brannen, 1955; Chapman, 2012; Derden, 2012). As opposed to other prisons, Camp Lawton was relatively well planned. Overall, the stockade encompasses 42 acres and had a fresh water source. It was also properly divided. The portions upstream were used for drinking and subsequent portions downstream were used for bathing and waste removal. These measures provided prisoners with plenty of space and clean water (Figure 2) (Derden, 2012).

Camp Lawton was only in operation for 6 weeks. In that time over 10,000 men were imprisoned there. However, like other prisons, Lawton had its fair share of problems. The estimates of casualties vary but range from 450 to 1,600. However, the most accepted number is about 800. Most of the problems centered on available resources. There were no quarters for the
POWs at Lawton and many were forced to live in makeshift structures known as shebangs (Derden, 2012). This no doubt contributed to illness and death through exposure. In some instances the rations were unsanitary. For instance, bugs were often found in the food. Some soldiers picked them out while others considered them extra protein (Derden, 2012). Normal meat rations would be cow heads and soldiers would share these among themselves and try to get as much fat as possible (Derden, 2012). After all the meat was eaten, sometimes the bones were boiled to make a broth or bones were burned to powder and eaten (Derden, 2012). At Lawton, some fragmented and burned pieces of bone have been found in shebangs and a cow mandible was present within an ash layer associated with an oven. This corresponds to the historical record for normal prisoners trying their hardest to get a meal (Greene, 2015: Pers. comm). Because rations at Lawton were insufficient, many prisoners resorted to foraging in order to supplement their diet. Published accounts mention a variety of exotic meals such as snakes, gophers, and alligators (Derden, 2012). Also, a lack of vegetables caused scurvy.

Clothing was also another issue. There was only one occasion where the Confederates issued clothing. Normally prisoners only possessed what they wore and their attire had a tendency to wear out (Derden, 2012). Some men were so desperate for clothing that they would
volunteer at the hospital to steal clothes from the dead (Derden, 2012). Shootings were another reminder of mortality present at Lawton, but occurrences were less numerous than Andersonville. The events that did occur included crossing the deadline, escape attempts, and breaking rank. There is also one account of guards shooting a prisoner for sport (Derden, 2012). Despite these problems, the main killer at Lawton was disease. Like at other prisons, undernourishment or human contact contributed to illness. These include cases of scurvy, dysentery, gangrene, smallpox and other illnesses (Derden, 2012). Prisoners were also plagued by vermin and lice (Derden, 2012).

Camp Lawton’s demise was ultimately triggered by Sherman’s March to the Sea. Instead of moving the Andersonville prisoners out of the way of Sherman’s warpath, the movement to Camp Lawton stepped right in the way. As Sherman’s army marched towards Millen, officials at Lawton scrambled to get the prisoners out. On the 19th of November 1864, Winder telegraphed James Seddon that he had ordered Lieutenant General Hardee to move the prisoners from Camp Lawton to Savannah and establish a prison in Waresboro, Georgia (Derden, 2012). Many prisoners were shuffled by train to Savannah, Charleston, Blackshear, Florence, and back to Andersonville. Some notable prisoner accounts such as Robert Knox Sneden date their evacuation from the camp to November 22 (Derden, 2012). Winder’s last communication from the prison was dated to November 25, and the next day scouts arrived and found the prison abandoned (Derden, 2012). By November 27 the Union army arrived in Waynesboro, Georgia. Here Sherman’s cavalry commander, General Judson Kilpatrick, learned and reported that Camp Lawton had been fully evacuated (Derden, 2012). What happened to the stockade after this is unclear. Initially, Union scouts claimed to have destroyed the stockade by fire on 26 November (Derden, 2012). Reports of this activity continue to December 3 (Derden, 2012). Afterwards, the prison was abandoned. Some portions of the stockade may have been standing as late as 1893 (Derden, 2012) From then on Camp Lawton passed into obscurity.

Engineering

Prior to the Civil War, prison complexes of this size had never been a part of the American landscape. To build these compounds required sound principles of engineering and a large labor force. The technique of building a stockade was not new. A number of them were
erected during previous American conflicts. However, stockades the size of Andersonville and Camp Lawton were unprecedented. Because of their size, these projects would theoretically require major feats of engineering. Before the Civil War, Dennis Hart Mahan was a leading authority in military engineering. Throughout his career at The United States Military Academy at West Point, he wrote a number of books discussing engineering in relation to warfare. In addition, he taught many officers who fought on both sides of the Civil War. Much of his work focused on the construction of entrenchments and fortifications. This includes the construction of palisades and stockades. Many of his ideas were originally written in the 1830s, but he updated them from time to time, up to and during the Civil War.

Overall, he provides the basics of how to construct a proper stockade. The first matter of importance is building materials. Mahan details that the best types of trees for timber include varieties of oak and pine. Strong samples include white oak, post oak, chestnut white oak, yellow pine, long leaved pine, and white pine (Mahan, 1871). The most important part of the tree is the heart and it is essential for creating sturdy material. It is noted that while oak is superior to pine, both are sturdy enough for construction. However, one notable exception is red oak because it is fairly weak (Mahan, 1871). He further details that trees should not be harvested until maturity because the resulting timber would not be as strong or sturdy enough for construction (Mahan, 1871). All of the bark and sap wood must also be stripped. Sap and bark increase the rate of decay for the timber. Mahan writes that the sap flows are at their lowest in the midsummer and the autumn which is among the best times to harvest. The ideal specimens for stockade posts are 9 to 12 inches in diameter (Mahan, 1863). These would then need to be “cut into suitable dimensions and seasoned” (Mahan 1871, p. 46-47).

In the case of posts used in a stockade, Mahan recommended charring the bases to protect them from decay. Yet, this was only effective if the wood was seasoned; if green wood was charred it would accelerate decomposition (Mahan, 1871). Also, the logs needed to be deposited into the ground about three feet deep and extend above ground at least nine feet vertically (Mahan, 1863). Strangely, Mahan does not detail the dimensions of the trench other than depth. He also neglects to account for changes in soil.
Impressed Slave Labor during the Civil War

During the American Civil War, African Americans played an important part as non-combatant military laborers. These people were significant to both sides throughout the conflict and were key in executing tasks such as building forts, breastworks, roads, and other fortifications (Glymph, 2012). However, the use of slave labor in the South was controversial. Initially, the Confederate government planned to keep slaves on the plantations to continue cultivating crops such as rice and cotton. This would allow the Confederacy to feed and fund itself. However, many argued that slaves were needed during the campaigns because menial labor was beneath white soldiers. Initially, some planters volunteered their slaves, but were frustrated when slaves missed the harvest, ran away, became ill, or died (Ash, 2010; Glymph, 2012).

With these issues, the Confederacy had difficulty hiring a sufficient numbers of slaves from plantation owners. Eventually Confederates utilized impressment to mobilize a larger labor force. The Confederate Congress authorized impressment of private property in March of 1863 (Thoms, 2000c). However, in 1864 the Confederate Congress decided to create a more organized system for black labor impressments (Glymph, 2012).

Impressment allowed the Confederate army to borrow slaves for 30-60 days in exchange for compensation to their owners (Ash, 2010). For example, in Georgia a number of slaves were impressed to fortify Savannah. As outlined by the order, planters were to be paid 25 dollars per slave every month for involvement with military projects. If a slave was killed, injured, or captured by the Union, the planter was paid $2,500 for compensation (Grant, 1993). In Tyler and Smith counties located in Texas, standard pay rates for impressment include 15 dollars a month and this was eventually increased to 30 dollars a month. This was not as profitable as when masters hired out their slaves. The fees typically associated with this were 50 to 75 dollars a month (Thoms, 2000c). However, many planters were upset because the army would undercompensate them and hold their slaves overtime (Ash, 2010). Eventually, the system evolved into the military forcefully borrowing slaves from planters. Many planters hesitated to send off their slaves until the impressment squads arrived on their doorstep (Ash, 2010).
Those that suffered the most were the impressed slaves themselves. Overall, the conditions for these laborers were poor. In many cases they were undernourished. As part of the regulations for impressment, slaves were supposed to receive rations equal to Confederate soldiers. This would typically consist of meat and vegetables. However, the normal military ration was less food than what was provided on the plantation, and most often they did not receive their full rations. Instead, they were given bread or molasses (Ash, 2010).

In addition to malnourishment, slaves were also not provided with adequate supplies. Clothing and lodging were scant. Many slaves were gathered from the plantations before they could attain proper dress and had to put up shanties or tents to protect themselves from the elements. Despite these attempts to create shelter, slaves suffered from exposure and died of disease. In addition, work environments were sometimes in dangerous areas such as swamps or mudflats. Additionally, causes of death can be compounded with poor medical care and exposure to Union artillery fire (Ash, 2010).

In some cases Confederate overseers were more brutal than plantation masters. One example includes the testimony of Tine Kendricks a former slave interviewed by the WPA. He remembered that lashings were given more frequently all day long. Some people were continually whipped until they lost consciousness, however this did not stop the attacker (Ash, 2010). At Camp Lawton, prisoner Robert Knox Sneden remembered that a “negro” was hung from the gallows next to the entrance of the stockade (Sneden, 2000). Quite possibly this person was an impressed laborer at the camp. These conditions influenced slaves to run away and avoid impressment gangs. Many also fled to Union lines and offered their services to the Union in exchange for freedom. However, despite all their efforts, most did not escape and lived through the experience of impressment working on fortifications and earthworks.

Some major occurrences of slave impressment in Georgia are well described by Donald L. Grant, in his book, *The Way It Was in the South*. On some occasions large numbers of people were impressed. This provides helpful generalizations of what impressment was like in Georgia. The Confederacy enforced impressed slave labor quotas. For example, in December 1864 Georgia plantation owners were required to provide 2,500 bondsmen in addition to those already being used. In all, historians have estimated that at least 10,000 (including slaves and free blacks)
were forced to labor on Georgia’s Confederate military projects (Grant 1993: 84). Many of these required great numbers of laborers. A major example includes the fortification of Savannah. Ash recalls that 2,000 slaves were used to construct the fortifications of Savannah (Ash, 2010). At the time it was reported that the order designated by Brigadier General H.W. Mercer of Savannah impressed 20 percent of Georgia’s slave population (Grant, 1993)). The fortification of Atlanta and Columbus after the battle of Vicksburg also required great numbers. Here thousands of slaves were impressed as far away as Macon, Georgia. Similar numbers were also used to fortify Augusta and Athens (Grant, 1993). However not all projects drew upon slaves from all over the state. Some utilized local enslaved communities. For example, 20 percent of slaves in the Macon area were impressed to construct local fortifications (Grant, 1993). Slaves were also used in the construction of prisons. Most notable in Georgia is Andersonville.

Andersonville Archaeology

Relevant work at Andersonville was conducted by the Southeastern Archaeological Center (SEAC) in 1989 by Guy Prentice and Marie Mathison (1989). This research aimed to locate and understand the construction of the original stockade, the northern extension, and north gate, of the prison. It was an effort to provide guidance for the reconstruction of a portion of the wall and the north gate (Prentice and Mathison, 1989). Areas studied included the northern and western sections of the original stockade, the western section of the stockade extension, and the north gate (Prentice and Mathison, 1989).

In total, 120 square meters of west stockade wall and 99 square meters of the North Gate were uncovered during a six week field season. The plow zone was stripped with a box blade tractor and opened seventeen cross-sections of the stockade (Prentice and Mathison, 1989). These trenches were then used to investigate construction techniques. The soils were naturally a yellowish red to dark red sandy clay loam at the surface and alternate bands of white and dark red slightly loamy sands were found below the surface (Prentice and Mathison, 1989). The surface layer registers in the munsell as 10 yr 4/6 red. At about 1.5 meters below surface the soil changed to 10yr 3/6 dark red (Prentice and Mathison, 1989). Within this soil background, the stockade wall trench features were typified by two distinct patterns. Each of these displayed
different construction techniques. The first was used for the original stockade and the other was utilized for the northern extension.

The wall trenches of the original stockade possessed a flat bottom and inward sloping walls. In most cases the posts were set five feet below the ground surface (Prentice and Mathison, 1989). The feature fill possessed an interior red band of soil, dark post fill in the middle, and an exterior band of orange clay. Prentice and Mathison (1989) determined that this displayed a more methodological digging and backfill pattern. The backfill piles of the uppermost orange clayey soils were placed toward the exterior of the prison while the deeper red clayey soils were thrown toward the interior. The posts were then inserted. When the trench was backfilled, the posts prevented the soils from mixing and created a banding effect (Prentice and Mathison, 1989). This pattern was present in all areas where the original stockade was located (Figure 3).

Another attribute consistent with the original stockade was the style of posts utilized. The areas yielding posts revealed that they were hewn and post diameter ranged between six to fourteen inches. However, most were between nine and twelve inches (Prentice and Mathison, 1989). The best post samples of the original stockade came from trenches six and sixteen. Trench six yielded twelve preserved posts. Ten of these were hewn, but the remainder was round (Prentice and Mathison, 1989). At the time of deposition, these may have been squared, but lost shape due to poor preservation. Trench sixteen was placed in an area of good preservation. It exposed 17 preserved posts Prentice and Mathison, 1989). These trenches reinforced historical descriptions that the posts of the original stockade were hewn and set close together (Prentice and Mathison, 1989).

All of the cross-sections of the northern extension revealed a different pattern. Trench 4 was a good example; it cross-cut part of the extended west stockade wall (Prentice and Mathison, 1989). It maintained the inward sloping walls and flat bottom of the original wall trenches, but lacks the banding pattern of the original stockade. Instead the soils were mixed (Prentice and Mathison, 1989). This showed that no discrimination was made between soil colors. The backfill piles were randomly placed and the soil was deposited in a similar fashion. This reflected that the builders of this area were less organized and methodical than the builders of the
original stockade (Prentice and Mathison, 1989). There was no pattern in the distribution of the back fill (Figure 4).

Figure 3. Stockade trench feature from Andersonville showing construction by enslaved labor (adapted from Prentice and Mathison, 1989 p. 37).
Figure 4. Stockade trench feature from Andersonville showing construction by Union prisoners (adapted from Prentice and Mathison, 1989 p. 51)
The posts were also different. As opposed to the original square stockade posts, those of the extension were unhewn round poles. It is estimated that over 2375 poles were collected for this stockade (Prentice and Mathison, 1989). The posts were also found to be set further apart than the original stockade. Prentice and Mathison (1989) cite previous work by John W. Walker, excavations of the northeast corner revealed non square posts with larger gaps between them. However, some of the posts composing the north gate were found to be hewn. For the extension, the posts of the original north wall were pulled out and recycled. Trench three was a cross-section of the original stockade and part of the north wall. Here features document a disturbance associated with posts being pulled to the east (Prentice and Mathison, 1989). Despite the disturbance, preserved areas reveal the same banding pattern consistent with construction techniques utilized for the west wall (Prentice and Mathison, 1989). It is likely that these posts were used in the construction of the north gate since there are hewn posts are present in well preserved sections.

Trench 5 provides a stark contrast between construction techniques. It effectively illustrates the differences in the construction methods between the original stockade and the extension. It followed the west stockade and intersected an area that displayed the original north and west wall and the northern extension of the west wall. This was used to understand how the extension was achieved. The feature was 4.6 feet below ground surface. In the original half of the trench, posts were removed from the northern portion, but posts and fill were still preserved at some levels (Prentice and Mathison, 1989). Here the posts were hewn square and the fill was banded. In the half representing the extension, posts were not hewn and the banding was not present. Additionally, when examining the posts of the extension as a whole, these were not as tightly fitted together as the original stockade posts. This reinforces the difference in construction techniques (Prentice and Mathison, 1989).

The north gate which was part of the extension, was also constructed in a similar manner as the rest of the extended stockade. There was also a less organized mixing of fill (Prentice and Mathison, 1989). This was seen in all of gate’s walls (Prentice and Mathison, 1989). Part of the north gate was also found to be swaying out of the planned stockade line. This was seen in trench
10 located on the north half of the west wall of the north gate, and here some of the preserved posts all leaned down slope. This was also observed in the historical record (Prentice and Mathison, 1989). The posts preservation within the north gate was poor; however some of the posts remaining were hewn. This reflects the use of pulled posts in the construction effort. On paper, the north gate was a rectangular enclosure planned to be 30 x 30 feet. In actuality it measured 10.6 x 8.4 meters (34.8 x 27.6 feet). It possessed two gateways that were 2.9 to 3.0 meters wide (9.5 feet) as opposed to the planned 12 feet wide (Prentice and Mathison, 1989).

Prentice and Mathison (1989). attribute the differences in construction methods to different labor groups. Based on historical evidence, the original stockade was built by impressed slave laborers. Beginning in January of 1864, they were brought in to harvest trees and dig ditches. The northern extension was built by POWs captive at Andersonville (Prentice and Mathison, 1989). Their work was carried out in June 1864, and they finished the extension within two weeks.

Prentice and Mathison concluded that the labor conducted by the slaves was more organized when compared to the prisoners. This is argued because of the systematic backfilling pattern that they utilized. It is also noted that posts were hewn and more tightly fitted together. The resulting labor of the prisoners paled in comparison. Prisoners maintained no organized backfilling pattern, their posts were loosely fitted together, none were hewn, and some of the implanted posts sway out of line. In addition, the north gate does not quite meet the measurements planned. Since slave labor was more organized, it probably allowed for more sturdy construction. The prisoners work was probably sufficient, but not as well planned or executed. Since the clay content of the area is high the posts would have been sturdy enough, but should the deposits had been sandier the posts could have toppled over.

Since the extension was achieved within two weeks, their lesser result could be explained by time constraints. This is probably the main reason the posts were not hewn. However, some of the other factors such as backfilling and fitting the posts together may reflect their inexperience with local soils and lesser skill. Skeptics might say the same about the enslaved laborers since a portion of the original stockade collapsed during severe weather in August of 1864 (Prentice and Mathison, 1989). However, it is important to note that soil erosion was a major problem where
the stockade was built. With their skill set they probably built the stockade as best as possible, but they were not responsible for choosing the location. This was Richard Winder’s job.

Camp Ford Archaeology

Another important site for understanding the construction of Camp Lawton is Camp Ford in Tyler, Texas. Alston V. Thoms was the principle investigator of the site. His study displays how the stockade builders adapted to variations in soil. During two phases of field work in 1997 and 1998, numerous features related to Union prisoners and Confederates were uncovered. However, the most relevant to this study was the stockade and Thoms’s (2000) interpretations of how environmental aspects such as soil composition influenced the construction of it. In total, 22 sections of stockade trench were uncovered using a combination of back hoe trenching and unit excavation (Thoms et al., 2000). These located all the walls of the original stockade and all of the walls of its extension except for the north (Thoms and Olive, 2000).

Despite a long history of impact, (relic hunting, farming, development, and erosion) Camp Ford is relatively intact thanks to an accumulation of a protective clay layer (Thoms, 2000b) Surviving features include entrenchments, refuse pits, and most notably the stockade trenches (Thoms et al, 2000). However, most if not all of the stockade posts have decayed without leaving post molds. This is probably due to the environment. Tyler, Texas, is located in the eastern portion of the state where the climate is subtropical. This creates a hot and humid surrounding which is bad for preservation (Thoms et al, 2000). Out of all the trenches excavated, one possible post was found. This was located in the hand excavated Block A, and is likely from the stockade (Thoms et al, 2000). In addition, the absence of posts may also reflect that local citizens harvested most of them after the war. Fortunately, judging by the consistent size and shape of the builder’s trench it was possible to confirm stockade walls.

The archaeology at Camp Ford can be used to understand stockade construction techniques and see how it compares to Andersonville and Camp Lawton. As typical in stockade construction, the surrounding vegetation was cleared and suitable trees were harvested for posts. For the original stockade over a thousand pine and oak logs about eighteen feet tall were gathered and split vertically (Thoms et al, 2000). These posts were then set into the ground tightly together within the 1,500 feet of wall trench that was dug by slaves (Thoms et al, 2000).
The resulting stockade stood about 15 feet high (Thoms et al., 2000). For the stockade extension, the original north and east wall posts were cut in half horizontally and used in the extension (Thoms, 2000c). Then 15-20 acres of forest standing within or near the proposed extension was cleared (Thoms, 2000c). From this, several hundred new logs were made into posts (Thoms, 2000c). To add these new posts to the enlarged stockade, 2,500 feet of wall trench were dug (Thoms, 2000c). The resulting stockade stood about eye-level (Glover, 2000).

Constructing the stockade was not as straightforward as just digging a trench and depositing a post. Judging from the archaeology, much thought was placed on the soil composition and the dimensions of the trench. One notable attribute is that impressed slaves adapted to the variations in soil thus displaying a similar level of organization seen at Andersonville. Overall, the size and depth of the stockade trenches were dependent on the thickness of sand deposits. In total, there were four different construction techniques used based on soil variation (Figure 5; Thoms et al., 2000). The first occurred in areas where the clayey subsoil was near the surface. These trenches were typically narrow and deep averaging one foot wide and three feet deep (Thoms et al., 2000). The second occurred in areas where the sandy mantle was two feet thick. Here the trenches were three to four feet wide (Thoms et al., 2000). The top of the trench was sloped outward, posts were set one to two feet into the clay and the trench was straight walled near the bottom. Its width measured one and a half to two feet (Thoms et al., 2000). The third was utilized in areas where the sand was two to four feet thick. Here two trenches were dug on top of each other. The first trench was cut like a road between fifteen to twenty feet wide (Thoms et al., 2000). This removed most of the sandy mantle and the resulting backfill formed a berm along one side of the wall (Thoms et al., 2000). This probably provided extra stability. The footing trench was then placed within the first. It was two feet wide and cut into the clay about three to four feet deep (Thoms et al., 2000). The last technique was seen near the SW corner. Here the sandy mantle was between four to seven feet deep. The trench utilized was 9 feet wide and six feet deep. There was also an intentional mixing of clay and sand to solidify the post footing (Thoms et al., 2000) Everything described in this chapter displays the context and the events that triggered the creation of Camp Lawton. It also chronicles past archaeological attempts to interpret similar types of sites. Both POW’s and impressed slaves were major characters in the story above. They both were utilized to build prison compounds for
Figure 5. Stockade trench feature from Camp Ford showing soil adaptations by slave laborers (adapted from Thoms et al, 2000 p. 80).

the Confederacy. In this strange situation, POW’s were building their own prison, and African Americans were placing their liberators in captivity. The archaeology above provides clues as to how both parties performed this task. These clues backed by a theoretical focus upon labor can help identify those who toiled to build the walls at Camp Lawton.
CHAPTER 3
LABOR, ETHNICITY, AND IDENTITY

Historical archaeologists have attempted to investigate many aspects of identity based on material culture. For example, beginning in the 1970s, the search for “Africanisms” focused on artifacts such as blue glass beads, figas, and minkisi (Leone and Fry, 1999; Otto, 1974; Smith, 1977; Stine et al, 1996; Thomas, 1998). Archaeologists have also investigated aspects of identity using archaeological features, such as patterns of architectural construction. An example is the well-known study of changes in African architecture of slave housing on two South Carolina plantations (Wheaton, Garrow, and Friedlander, 1983).

Architecture at Yaughan and Curriboo Plantations

Wheaton, Friedlander, and Garrow (1983) investigated changes in architectural styles at the Yaughan and Curriboo plantations in Berkeley County, South Carolina. The first mention of Yaughan in the historical record dates to 1737 and the property was subdivided 1857 Curriboo’s earliest mention also dates to 1737 and the property was subdivided in 1858 (Wheaton et al, 1983). They argue that architecture and the method of construction as well as site location are conservative aspects of culture. Therefore, architecture is a reliable basis to make inferences about acculturation (Wheaton et al, 1983).

At these plantations three different periods of acculturation were distinguished from the assemblages. Yaughan displayed all three phases, but Curriboo only displayed one that was similar to the second phase present at Yaughan. The first phase at Yaughan can be described as the period of minimal acculturation. This took place from the 1740s to the 1780s. During this period, the enslaved community was isolated and had minimal contact with whites (Wheaton et al, 1983). The second phase ranged from the 1780s to 1805. This represents the first influx of native born African Americans and an increase in population and interaction with whites (Wheaton et al., 1983). The third phase dates from 1805 to 1825, and reflects an economic lapse of the plantation prompted by the death of the owner. During this phase slaves were hired out by the mistress of the house. During their time off of the plantation they encountered and interacted with more whites and other enslaved African Americans that were forced to acculturate and tear
down their traditional housing (Wheaton et al., 1983). Wheaton Friedlander and Garrow’s study illustrates that African Americans adopted European culture as time progressed. This was influenced by the domineering white planter and interactions with other whites outside of the plantation (Wheaton et al., 1983).

At Yaughan plantation, two groups of structures were excavated at sites 38BK75 and 38BK76. Site 38BK75 was the most recent group (Wheaton et al., 1983). This area had three posthole structures and one wall trench structure. Site 38BK76 was an earlier grouping and possessed five posthole structures and with nine wall trench structures. At Curriboo plantation the earliest sites had five wall trench structures and one or possibly two post structures (Wheaton et al., 1983).

Wheaton et al. noticed that housing differed temporally between some of the structures structures. At 38BK76 there were two housing groups. This was verified by the orientation of the structures and mean ceramic dating. The orientation displayed that there were two different building episodes between the wall trench and post structures (Wheaton et al., 1983). Group A averaged an orientation of 121.5 degrees while the other Group B averaged 139.6 (Wheaton et al., 1983). The mean ceramic date for A was 1761.6 and there was a range of 1731.0-1770.1. Group B possessed a mean ceramic date of 1775.7 and a range of 1767.3 and 1793.8 (Wheaton et al., 1983). Wheaton et al believes that these were statistically different enough to justify two building phases (Wheaton et al., 1983) Early structures from the first phase at Yaughan plantation (38BK75 and 38BK76) were wall trench construction. These were followed by posthole construction in the later phases and in some cases posthole structures were invasive upon features corresponding to wall trench architecture (Wheaton et al., 1983). At Curriboo (38BK245), the pattern was similar. Initially, there was wall trench construction followed by posthole construction. However, these were followed by brick pier construction for special outbuildings such as a naval stores structure and brick office building (Wheaton et al., 1983).

The trenches at Yaughan and Curriboo reflect mud wall architecture. In the process of construction, trenches were filled with clay mixed with water. The wall of the trench was undercut to a certain degree to withstand lateral pressure. The trench base would be a foot or more in width to support the heavy tapering walls. Closely set posts would also add additional
strength (Wheaton et al, 1983). Roofs were most likely made of thatch tied to roof supports which were attached to the vertical posts. The roof line would have extended beyond the wall to prevent water damage to the walls during rainfall (Wheaton et al, 1983). Interior hearths were not identified within the structure. Since thatch is easily flammable, using a hearth inside the structure would have been a fire risk. Because there is no evidence of burning, Wheaton proposes that temporary hearths were used outside the structures (Wheaton et al, 1983).

This construction method is similar to rammed earth architecture which is common in certain parts of central and western Africa. It is most likely that the builders of these mud wall structures were from Africa and modified their knowledge of house construction to the local setting of the low country (Wheaton et al, 1983). Because of the African style of mud wall architecture, Wheaton and Garrow proposed that this style means that their inhabitants were not yet acculturated, and that the earlier mode of construction was replaced by post frame houses and brick pier construction reflecting an adoption of European culture (Wheaton et al, 1983). As noted by Brian Thomas at The Hermitage Plantation, this could also have been a forced acculturation by the plantation owner (Thomas, 1995).

An Interpretation through Labor

Wheaton, Friedlander and Garrow’s study is closely related to understanding identity through a labor perspective. Historical archaeologist Stephen Silliman suggests that labor goes beyond the expenditure of energy. He believes that there are cultural and societal aspects that influence its execution (Silliman, 2006). When placed in the context of colonization or institutionalized slavery he proposes we can identify how and why labor was carried out and the social atmosphere of its execution. It can provide more nuanced interpretations of the economic and political factors controlling labor (Silliman, 2006). Under this perspective, Wheaton, Friedlander and Garrow’s research demonstrates that labor/architecture can examine identity. Early African slaves in America built these structures based on their past experience. These were the structures that they knew how to build and they constructed them to meet their needs in the Southeast. Their contact with whites eventually influenced the changes seen at Yaughan and Curriboo.
My study is somewhat similar to Wheaton’s (Wheaton et al. 1983). They analyzed the labor of building homes to study acculturation. However, I am examining the labor associated with the construction of the stockade in an effort to display the differing backgrounds between labor groups. Intrinsically, labor is influenced by experience. Where people are from and their status in life plays a major role in how their labor is executed and its resulting quality. These factors can be observed archaeologically and can provide clues into the backgrounds of the laborers.

Silliman believes that laborers need to be depicted as more than victims. “Focusing on labor allows archaeologists to see the ways that administrators, overseers, capitalists, managers, and supervisors structured and often imposed labor and the ways that those laboring accommodated, resisted, made use of, and lived through labor situations” (Silliman, 2006). With this perspective, Silliman believes we can discuss topics such as “class, gender, agency, and identity” (Silliman, 2006). To understand this it is important to examine how southern society organized labor.

J.W. Joseph writes that hierarchical structures of the plantation were initially influenced by the concept of race (Joseph, 1993). Planters made distinctions between blacks and whites and developed an ideology that made it “natural” for black slaves to be subservient to white planters. This was inspired by and defended using religion and pseudoscience (Joseph, 1993). Carl Linnaeus’s system of classification was the crux that allowed proto-anthropologists to distinguish between races and reinforce the existing social hierarchy. However, Linnaeus himself never made distinctions between people. He objectively placed humans equal to all other animals (Joseph, 1993). Early scientists that misused Linnaeus’s system include Peter Camper and Sir William Petty. Camper measured facial angles of apes, blacks and whites. He claimed that blacks were the intermediary step in this evolutionary hierarchy (Joseph, 1993). Petty supported this opinion and added that all features of the African face as well as their mind and manners differ from Europeans (Joseph, 1993). All of their research labeled African Americans as primitive. These misguided attempts of classification was embraced by white southerners who used these arguments to justify slavery (Joseph, 1993). These kinds of ideas lead planters to believe that blacks were naturally subservient to whites.
While racism was still a major ideological facet at the turn of the 18th century, inventories began to define slaves less on a racial basis and focused on more of a labor oriented perspective. There was an increased amount of specialization that yielded slave craftsmen such as blacksmiths, seamstresses, coopers, and other tasks requiring skilled labor (Joseph, 1993). At this time white planters were dependent upon the labor of African Americans and their labor molded the economic income of the plantation. To efficiently control this, planters in the low country of Georgia and South Carolina increasingly tried to measure the work of their slaves and this lead to the development of the hand system (Joseph, 1993). Under this system, slaves would be categorized as either a quarter, half or full hand. This status was judged based on the capacity an individual had for work. For example, children would be considered quarter hands, the elderly or ill half hands, and average healthy adults were full hands (Joseph, 1993). Each of these groups were expected to meet quotas whether it be moving earth or gathering crops. Planters used these averages to estimate the labor force needed to complete a task and how long it would take. Slave housing was also planned logistically. Some settlements were placed near work areas such as “rice fields; the planters house, barns, livestock pens and other buildings housing non-human resources were clustered and centrally located” (Joseph, 1993). All of this allowed quicker mobilization of slaves for labor. Therefore labor was an important aspect of the plantation. However, examinations of slave labor off the plantation could provide a wealth of context for other places such as military sites. It is most likely that the same logic toward labor used on the plantation was executed in a similar manner by the Confederacy.

**Stockade Architecture and Labor at Camp Lawton**

In order to discuss ethnicity and identity at Camp Lawton, discussing the labor of constructing the stockade is the most relevant concept. Silliman has noticed that while archaeologists focus on the laborers themselves they leave out factors of social context such as the process of labor and the relations of those involved (Silliman, 2006). Such factors play into the laborers’ perceptions of themselves. For example, laborers could group themselves by either class or ethnic identity (Silliman, 2006). One of Silliman’s case studies mentions that Apache construction workers in the American Southwest did not form a class consciousness with their non-Indian counterparts (Silliman, 2006). The same can be said for African Americans and
European Americans because “working conditions seem less likely to share a class based identity when people are simultaneously racialized into other social and (presumed) biological categories” (Silliman, 2006). Using Silliman’s theoretical approach to labor, my goal is to use archaeological features to understand how labor was executed and how it was influenced by the differing backgrounds of impressed slaves and Union POWs.
CHAPTER 4
ARCHAEOLOGICAL DATA

Introduction

The stockade trench at Camp Lawton was initially uncovered in October 2012 during filming of an episode of the PBS show Time Team America. Ground penetrating radar (GPR) surveys were conducted in a flood plain adjoining the entrance road to Magnolia Springs State Park. A second GPR survey was also performed north of the creek on USFW land. Both of these surveys yielded subsurface anomalies consistent with stockade trench features. These areas were tested using invasive measures to verify the presence of stockade features. A backhoe equipped with a flat bladed rear bucket was utilized to uncover the anomalies on state park land. Backhoe trenching here was very successful and hundreds of meters of a linear feature was uncovered. This was the stockade builders’ trench of Camp Lawton’s southeastern wall.

GPR survey was further utilized to find the location of the southwest wall. The anomalies here were consistent with the south corner and the southwest wall. A section of the trench was exposed with a six-meter-long backhoe trench. This yielded a cross-section of the builders’ trench on the south west wall near the south corner. The corner was left untouched due to its close proximity to the park entrance road. Tests on the federal land utilized block excavations. A 1x2 meter unit was used to verify the stockade trench. The unit was excavated to a depth of 30 cm bed then suspended. These excavations yielded unclear evidence of the builder’s trench.

These excavations served as the platform for ongoing research of the stockade at Camp Lawton. Study of the stockade continued during the July 2013 Camp Lawton field school. The main initiative was to document the construction methods of the stockade and any variations in technique. Excavations at Camp Lawton are similar to those at Camp Ford. Both of these display adaptations to the surrounding environment and soil composition.
Methods

To test these ideas archaeologically three sections of the stockade were excavated to sample and understand construction techniques. The areas selected were based on two criteria: relative distance from each other and land formation (Figure 6). Distance is a major consideration because labor groups would most likely have been segregated spatially or temporally. For example, like Andersonville, impressed slave laborers may have constructed earlier portions and prisoners constructed the later portions (Prentice and Mathison, 1989). If they were working simultaneously, it is possible that they were segregated. Land formations are important criteria as well because work at Camp Ford displayed that construction techniques were modified to adapt to different topography or soil composition (Thoms et al, 2000).

Section 1 was located on the southwestern wall near the south corner of the stockade. Today it is in a flood plain adjacent to the parking lot and south of the creek. It is approximately 10 meters north of the entrance road to Magnolia Springs State park and was initially uncovered by backhoe. This was chosen because it was a known point of the wall with less disruption than the south east wall. According to eye witness testimony, this area of the stockade had a low prisoner population. Thus, artifact distribution would be low. This was also influenced by the enforced deadline approximately 30 feet around the stockades interior perimeter. This area was also close to some Confederate support structures. Across the entrance road on a hill top to the south are earthworks that defended the main gate of the prison. Here was a gunpowder magazine and artillery ramps aimed toward the prison to subdue riots.

Section 2 was located on the northwestern wall closer to the north corner. This area was north of the creek and located in an open field approximately 30 meters southwest of buildings associated with the Bo Ginn National Fish Hatchery. It is higher in elevation than Section 1 and subsoils are much sandier. Section 2 was a continuation of excavations conducted during Time Team America filming. Since initial excavations could not pinpoint the exact location of the stockade, the original 1x2 meter unit was reopened and extended to provide conclusive evidence. Historically, this area of the stockade had a higher prisoner population than near Section 1. This is corroborated by the discovery of numerous shebang features concentrated nearby. Also,
numerous artifacts have been found by metal detection surveys such as general service eagle buttons and personal possessions, denoting the presence of Union prisoners.

Figure 6. Location of stockade trench feature sections at Camp Lawton.
Section 3 was located on the south eastern wall closer to the east corner of the stockade. It is located on a hillside about 30 meters north of a picnic shelter and 60 meters north from a playground operated by Magnolia Springs State Park. This area was pinpointed using a soil probe survey. It was excavated in an attempt to find the south-east corner of the wall as well as adaptations to topography.

With the exception of Section 1, block excavations were utilized to uncover stockade trenches. All were excavated in 10 cm arbitrary levels until stockade features were identified. In some cases, levels of feature fill were excavated in this manner because the stockade was not clearly visible. Once the builders’ trench was confirmed, stockade features were bisected and excavated in 20 cm levels. This level increment was determined to be small enough for a controlled excavation of the feature, but large enough to move a great amount of fill. This allowed excavators to see changes in the feature and clearly evaluate construction techniques. Within the builders’ trenches were a number of internal features such as post stains. As opposed to excavating these internal features individually, the builders’ trench as a whole was excavated in levels to expose larger areas within the trench floor. This allows for clearer evaluation of the construction techniques. All levels were photographed and mapped in plan-view to best view changes in stockade construction techniques. Profiles were also mapped and photographed to understand deposition of the fills. The feature fill was screened for artifacts and faunal remains using dry ¼” mesh. Soil samples were also collected for flotation in five quart bags.

**Section 1**

This section was initially uncovered during filming for an episode of Time Team America in October 2012. It was located using ground penetrating radar and uncovered using a backhoe equipped with a flat bladed rear bucket. It exposed a section of the stockade trench in 1.4 m long. The trench dug by the backhoe measured approximately 6 meters long. The exposed surface of the stockade trench was approximately 50cm below ground surface. Part of the feature fill was disturbed because the feature was unclear during backhoe excavation. Once the stockade trench was confirmed, the backhoe ceased operation. The surface was scraped by trowel and photographed in planview. The unit was covered until it was revisited in the spring of 2013. The feature was then bisected and it was decided arbitrarily that the south-western half would be
excavated to its base. Two bisection pins were installed at each end of the feature’s mid-point. A 10 cm elevated datum was inserted the north corner of the feature. This allowed for consistent depth measurements for each level. Feature fill was excavated in arbitrary 20 cm levels.

The opening of level 1 clearly showed a stockade builder’s trench. On a subsoil of light yellowish brown coarse sand was a rectilinear feature composed of mixed sand and clayey sand (Figure 7). The feature was oriented roughly 48-228 degrees, the same compass bearing as the wall. In width it measured approximately 1 meter. In length, its northern side was 125 cm and on its southern side 140 cm. The midsection measured 137 cm. The feature surface revealed three unclear internal features. Internal feature A was near the north western corner of the builders’ trench. It was comprised of olive brown loose coarse sand. Internal feature B was mottled with olive brown (2.5y 4/3) loose coarse sand and dark olive brown (2.5y 2.5/1) loose coarse sand. Internal feature 3 was comprised of olive brown (2.5y 4/) loose coarse sand and (7.5yr 5/8), compact clayey sand and yellowish red (5yr 5/8) compact clayey sand.

Figure 7. Section 1 feature surface.
At this level, the internal features were not entirely clear and were seemingly affected by bioturbation. Internal feature B was determined to be an animal burrow and the others were also varying forms of bioturbation.

The base of level 1 (30cm BED) provided more clarity about the stockade. Present in the floor of the level was a banding pattern of the soil. The exterior section was a mostly a band of soil comprised of strong brown clayey sand. Bordering this in the middle were three circular stains and an amorphous feature comprised of black, grey, and very dark grey loose sand. The interior band was brownish yellow coarse sand. The row of posts were located on the southwestern half of the floor and oriented 48-228 degrees. Of the three posts the first contained a preserved yellow pine heart.

The base of level 2 (50 cm BED) continued the banding pattern, but revealed five concentric stains arranged like stockade posts. From north to south the three post stains from the previous level remained intact. The larger amorphous feature was revealed to be two separate post stains. The fourth stain to the south was very small compared to the others and may be a support post. The fifth was larger with a strong brown circular clay nodule in the center. The floor of the level maintained the banding throughout excavation of the feature.

The base of level 3 (70 cm BED) revealed clear evidence of the construction method utilized for this section of stockade (Figure 8). The strong brown exterior band disappears from this level. Most likely this band of soil in the earlier levels was post depositional fill after the Civil War. Instead there are two bands of soil. The first is brownish yellow sand and the second is a layer of degraded post fills. The profile reveals layers of brownish yellow coarse sands, strong brown and red subsoil clayey sand mottled with light olive brown, dark olive gray and black sands. The soil layers band in diagonal slopes from bottom to top. This reflects a single deposition event of sloped backfilling (Figure 9). Level four maintains the banding, but there is a clear recession in the brownish yellow being replaced by more post fill.

Halfway through level five, water began seeping into the unit. Water continued to flood during excavation of level 6. At 120 cm BED excavations of the feature were suspended to avoid collapse of the profile wall. It was fortified with plywood and sandbags. The unit was then
backfilled. Feature deposits were verified by soil probe to descend to 140 cm below elevated datum, roughly 190 cm below ground surface. Despite this impediment, the construction methods were clearly documented.

Figure 8. Section 1, base of Level 3.

The high percentage of clay in the subsoil of this location was a guiding factor in the construction of the stockade wall. Logs were placed directly against the outer wall of the trench. This subsoil clay wall would have provided ample support to hold up the stockade posts. The rest of the soils were shoveled back into the trench behind them. No care was taken to differentiate the backfill soils. In essence, the builders of this trench were trying to create a stable row of posts. First they dug a vertical trench about 6 feet deep and 4 feet wide. Upon completion of digging the trench, the posts were leaned against a subsoil clay wall. The remainder of the trench was backfilled mixing the soils together to create a more stable soil composition.
Section 2

A section of the northwestern stockade was discovered during GPR survey in the fall of 2012. To examine this, a 1x2 meter unit was excavated to verify the anomalous feature. An elevated datum was established in the Southwest corner for consistent measuring and the unit was excavated in 10 cm arbitrary levels. The plow zone (Stratum I) was encountered from 10 to 20 cm BED. Stratum II was comprised of mottled tan, brown, and yellowish-brown sand. At 30 cm BED the feature boundaries were unclear and it was not known if the stockade trench was present in this unit. At the termination of filming the unit excavation was suspended. It was reopened during the 2013 GSU summer field school. The backfill (10-30cm BED) was removed and excavation of the unit continued. To determine where to expand, the unit floor was excavated to 40 cm BED. The unit then was expanded into a 2x2 meter block for better examination. This was done by adding a 1x2 to the southern wall of the initial unit. Excavations were carried out in 10 cm arbitrary levels until clear feature edges were encountered. At 50 cm
BED a linear portion of the stockade was visible in the northwest corner, but not clearly defined. It was oriented approximately 225 degrees. Additionally there was a patch of clay and dark staining that was either a post mold or deposited clay.

To further decipher the feature, another expansion was necessary. A soil probe was used to pinpoint feature fill west of the unit. Definitive results of probing yielded nodules of clay in otherwise sandy deposits. This denoted builders’ trench fill. The unit was expanded into a 3x2 by adding a 1x2 to the western side of it. Once excavated to about 35 cm this revealed the outline of the trench and three more orange clay molds were visible (Figure 10). Once this portion was excavated to 50 cm BED, the exterior portion of the stockade trench was clearly visible. The area exposed was roughly 60 cm in width and 2 meters in length. In plan view, the soils comprising the feature included zones A-D. Zone A was a layer of sub soil sand that represented the outside of the prison wall unaffected by construction. Zone B was a layer of clayey sand fill that was the exterior boundary of the stockade wall. Zone C was a layer of dark brown fill that was possibly
post fill. Zone D was a layer of mixed coarse sands that were placed into the unit as backfill during the construction of the wall. The interior edge of the trench uncovered displayed that the trench was relatively narrow and measured about 50cm. While the outline of the stockade trench was clear, the location of stockade posts within the feature was not. At 50 cm bed, there were not any well-defined post stains similar to Section 1. There was also speculation that the clay soils reflected a mold where a post collapsed or a patch that represented a clay cap. To understand where the posts actually were, excavation of the unit using 10 cm arbitrary levels was suspended, and a series of bisections was utilized. An arbitrary 50 cm wide trench was placed at the midpoint of the possible post fill in soil layer C. The southeastern half was excavated in 20 cm levels like Section 1 because of the large volume of fill. Zones B, C, and D were removed and screened separately in order to accurately pinpoint artifact locations between the soil layers (Figure 11).

Figure 11. Section 2, bisection.
Two levels were excavated from this initial bisection. Level 1 was from 50 to 70 cm BED at this level the posts remained unclear. Level two excavations ranged from 70 cm BED to 96 cm BED. This was caused by a disturbance of the elevated datum. At the conclusion of level 2, post stains were still unclear although it was surmised that this was most likely where the posts were located. Upon completion of the Zone C bisection, Zone B clay fill was bisected to further understand post position and the function of the clay. One level was excavated and it revealed triangular shaped clay wedges that appeared to represent clay, intentionally placed between the posts. This verified that the post layer was exclusively represented by Zone C.

After this, Zone A was excavated for one 20 cm level to understand its soil composition. This reflected the sub soil of the area. The loose nature of the soil within Zone D and the rest of the unit required that it be leveled to 70 cm BED in order to meet safety standards and prevent the unit from caving in. It was later surmised that this was mixed fills deposited during stockade trench construction. The interior of the stockade was not found. Most likely, this is because the trench for the stockade in this area was very wide. A wider trench would be necessary since the deposits in this area are sandy. A wider trench would ensure more stability for the stockade wall.

Like Section 1, this feature displayed a banding pattern similar to those viewed at Andersonville. Three soil bands were distinguished during excavation. Zone A was oriented toward the interior of the prison. It was mostly comprised of dark yellowish brown loose sand. Zone B was in the middle and was comprised of brown loose sand and interpreted as post fill. Zone C was on the exterior portion of the wall. It was comprised of yellowish brown clayey sand. No artifacts were encountered. Compared to Section 1 the post fill was less clear due to the sandy nature of the soil. The soil was still mixed but zone B was beginning to form some dark post like stains at the opening of Level 2 (70 to 90 cm BED) However, when comparing zones B and C together there is strong evidence that posts were there. The side of zone C bordering the post fill layer possessed triangular shaped extensions that reflect the clay molding into the space between the posts. The feature was mapped and photographed at the close of the level.

The process of construction would have been very similar to Section 1. However there are a few notable differences. Instead of digging a vertical trench, the builders would have cut a
slope on the exterior wall. As the trench was dug, arrangement of soil into backfill patterns would not have been necessary since the soil is homogenous brownish yellow coarse sand. After completion of the trench the posts would be leaned against a sandy wall. The composition of this soil was unstable, and the builders were aware of this fact. To create a more stable wall, clay was carted in from another portion of the site. The posts would have been held up and this clay was wedged into the slope creating more stability for the posts. The other side of the trench was backfilled like Section 1, but only with the coarse sand in the area. Despite how relatively narrow the trench was, the clay wedge was sufficient enough to keep the post standing. There were features uncovered that suggested collapse.

Section 3

Initially, this section was identified using a soil probe survey. A soil probe survey was used to follow the trench feature initially observed in the backhoe trenching to a hill top near a playground and picnic area. The feature ended 30 meters away from a picnic shelter associated with a nearby playground. It was hypothesized that this was either the corner or that more eastern sections may be disturbed during construction of picnic area. Efforts to find a continuation of the wall using a soil probe were unsuccessful. To determine the location of the stockade trench a 1x3 test unit was excavated. This was oriented southeast going down the hill. A 10 cm elevated datum was placed on the south corner to allow consistent measuring of levels. These units were excavated in 10 cm arbitrary levels. While the feature was encountered at a depth of 50 cm BED in the middle and southeastern sections of the unit, 10 cm arbitrary levels were continued due to the unclear nature of the feature. Excavation of the northernmost unit was terminated at a depth of 30 cm BED because of the presence of subsoil clay possibly redistributed by heavy machinery. In the other two units, the stockade trench could be defined at 60 cm BED. Approximately 30 cm from the southeast wall, the exterior border of the trench was visible; the soils composing it were yellowish red clayey sand mottled with yellowish brown silty sand. However, construction techniques could not be observed at this level because there were notable events of bioturbation such as root burn and tree fall.

The middle and southeastern sections were excavated to 70 cm bed except for a section of subsoil clay 30 cm from the southeast wall. The feature and the rest of the unit were leveled.
While there were notable events of bioturbation recorded at this level, construction events were clear (Figure 12). Instead of utilizing a four-foot wide trench, this one only measured two-foot wide. Clear post stains are also absent from the feature, but there is a layer of dark fill next to the sub soil clay wall. It can be surmised from this pattern that the posts were leaned against the clay wall and backfilled the same way as Section 1. The narrowing of the trench was an adaptation to landform. Since the hillside provided ample amounts of subsoil clay, a larger trench was not necessary. This method would have created a more stable stockade wall.

![Figure 12: Section 3, plan view.](image)

No artifacts were recovered from any of the trench excavations. However, all sections yielded insight into construction techniques. This has clarified that builders’ trenches were modified to adapt to land formation. The patterns of this organization may also yield clues as to the identity of their builders. The excavation of these trenches yielded two distinct construction
methods for the stockade wall. Both are highly organized, suggesting the laborers were familiar with the soils, and had performed this kind of work before.
CHAPTER 5
INTERPRETATIONS AND FINDINGS

By combining the archaeological data gathered at Camp Lawton with historical documents and archaeological literature from other sites, it is possible to make solid interpretations about the construction of the stockade wall. The first to be discussed will be the appearance of the wall and how it compares to the historical record. The second will be the identity of those who constructed the wall.

Physical Characteristics of the Stockade

Prior to the construction of Camp Lawton, the site would have been a yellow pine forest (Derden, 2010). Its builders would have cleared the area and utilized this timber for the wall and the ancillary structures. Historical sources indicate that construction began in early August (OR, Ser. II, Vol. VII, p.593). At this time, sap flows would be at their lowest and this would ensure stronger materials for construction (Mahan, 1871). Stockade posts on average would be 18 inches in diameter and 20 feet long. Estimates of more than 3,000 of these posts would have been necessary for the construction of the 42 acre stockade and this does not include the structure of the main gate (Derden, 2012). Prisoners remember the stockade posts extending 15 feet above the ground and also recall that posts were in their natural green state (Derden, 2012).

Historic documents contradicted each other regarding the shape of the stockade. Winder’s plan shows a square stockade (Figure 13) However; watercolor portraits by Robert Knox Sneden recall a rectangular one (Figure 14). Sneden also depicted hewn posts. The sections of the stockade identified have been helpful in resolving these issues. The spatial relationship between the three sections excavated suggests that the actual stockade was very close to the square plan laid out by General Winder. However, the posts uncovered during excavations do not resolve whether or not they were hewn or not because only the hearts remain after a century and a half of decay. The discrepancies between Sneden’s maps and the archaeological record can best be explained by lapses in Sneden’s memory. His watercolors were made years after the Civil War. He also spent much time in Andersonville. He likely mixed up features between the two prisons.
Alternatively, it could be possible that both hewn and unhewn green logs were used, but archaeological specimens may be too poorly preserved to resolve the issue.

Winder clearly did not follow all of Mahan’s rules. Mahan recommended that posts be 10 feet high. He also stated that timber needed to be properly seasoned and hewn. Winder’s posts were larger, green and unhewn. Winder did select a sturdy material based on Mahan’s guideline,
but this may not have been a conscious decision and merely dictated by environmental happenstance. He also cut the timber during a time of low sap flows; however, this was probably due to coincidence as opposed to methodical planning. Unlike Andersonville, Camp Lawton seems to have been built expediently by cutting corners. This was most likely prompted by degrading conditions at Andersonville and the necessity for a new prison compound to accommodate greater numbers of prisoners. Thus the discrepancies between Mahan’s guideline and Winder’s execution at Lawton were most likely acts of administrative desperation instead of an error on the part of the stockade builders.

In Mahan’s writings, he details the materials necessary for construction and the basic execution of building a stockade. At Camp Lawton, the excavation of the stockade trenches was key to understanding the stockade construction. Overall, two distinct methods of construction were uncovered during these excavations. Sections one and three are both located on the southern section of the site. Here a six-foot-deep vertical trench was dug. The width varies between two to four feet. This is seemingly related to the clay content of the soil. In both of these examples, posts were leaned against a subsoil clay wall and the trench was backfilled using a mix of sand and clay.
The second method is similar, but slightly different than the first. Section two is located on the northern portion of the site. Here the deposits are sandier and clay deposits are more than six feet below ground surface. Similar to the other sections, the posts were leaned against the exterior of the trench and sand filled the interior. However, this foundation of sand would have been unstable. To compensate, clay was carted from another part of the site. Most likely this was from the southern part of the site or another area with higher clay content. The exterior wall sloped outward so that a layer of clay could be packed in to stabilize the post.

The methods described here seem to reflect adaptations to the soil composition. In his work, Mahan does not describe how to adapt his methods to different locations. The only details Mahan provided about stockade trenches were that they needed to be three feet deep. At Lawton the posts are about six feet deep. It is most likely that Mahan’s recommendations would not have suited the soil conditions at Lawton. The soil would need higher clay content to hold the posts at his recommended depth. The stockade features and their organization are an integral clue to the identity of its builders. In both construction styles, the builders display organization and a knowledge of the local soil deposits.

Identity

Judging by the organization of these features, I argue that the stockade trenches uncovered thus far represent construction by impressed slave laborers. This interpretation is based on previously documented cases at Andersonville and Camp Ford. At these sites, slave labor was archaeologically documented to be highly organized and methodologically sound. The examples discovered at Camp Lawton fit into these categories. At Andersonville, the original stockade built by slaves was highly organized. Impressed laborers were arranging fill and depositing it according to stratigraphic layers. This is illustrated by the banding pattern described earlier. The interior wall was red clay and the exterior was orange sandy clay. The posts in the middle kept the soils from mixing. In contrast, the stockade sections built by the prisoners show a completely different archaeological signature. These trenches were composed of mixed fills that display no organization. At Camp Ford, impressed slaves were adapting the stockade construction to differing soil compositions. These adaptations accounted for the thickness of the sandy mantle and concentrations of subsoil clay.
The examples at Camp Lawton mirror these past studies, but display some differences. Section 1 contains a banding feature similar to those located on Andersonville’s original sections. However, instead of placing the posts at the center of the trench, the posts were propped against the exterior wall. The banding of colors is also different. The exterior was a sub soil clay wall and the interior was yellowish brown coarse sand mixed with orange clayey soil. At portions of the original Andersonville stockade, different soils from different layers were not mixed.

Some might argue that the mixing of soils would denote prisoner labor, but this can be explained by adaptations to the soil. In the context of constructing the SW corner at Camp Ford, clay and sand were mixed to provide more cohesion (Thoms et al., 2000). In the environmental setting of Section 1 at Camp Lawton, mixing sand and clay was beneficial because it would have created a more stable footing for the post. However, doing this alone might spell disaster. Leaning the post against the clay wall insured more stability, and it also served as a labor saving technique.

Section 2 also displays a banding pattern like at Andersonville, but here the soils are not mixed like Section 1. An orange clay band is on the exterior, post fill occupies the middle, and the interior section is only composed of coarse yellow sand; however, it bears similarities to sections 1 and 3 as well. Here the posts were also leaned against the exterior wall. However, adaptation to soil composition in Section 2 is clearer. The clay band is not natural; it was inserted to help stabilize the posts. Had it not been used, the posts would have shifted in the sand.

Section 3 is also like section 1 in technique. The post is leaned against the wall and there is mixture on the other side. However, the trench is more narrow and the clay content is higher. It is clear that the builders of this area knew the clay was more stable and did not need to dig an excessively wide trench to ensure a strong footing.

All three sections of the stockade trench excavated at Camp Lawton display more organization than those associated with the POW labor seen at Andersonville. At Andersonville the prisoners placed the posts at the center of the trench and indiscriminately backfilled mixing different soil horizons. They also left posts unhewn and set them with wider gaps (Prentice and
Mathison, 1989). Slaves made a conscious effort to discriminate and separate soil layers. While the labor of the POWs was of lesser quality, they probably could get away with their lack of organization because the clay content was high. Therefore, the posts would be relatively stable despite this.

Overall, the labor at Camp Lawton was an amalgamation of techniques seen at Andersonville and Camp Ford. It displays the organization of Andersonville and the soil adaptations similar to labor at Camp Ford. The reason features between these sites and Lawton are not exactly the same is because the people and the environments are not the same. Impressed slaves would have had different skill sets and labor experiences with different environments. Their labor would attempt to mesh with the local environment based on their prior knowledge of it. However, what is important is that the features related to slave labor at all sites were organized and reflect their ability to adapt to local soil compositions.

The first of the possible groups who built the stockade at Camp Lawton were African American slaves, mostly from the local area within the county. Although some slaves worked as blacksmiths, seamstresses, coopers, and other tasks requiring skilled labor (Joseph 1993:66), most worked in coastal plain soils. Their experience would have included landscaping and digging irrigation ditches. Whatever the task, they would be familiar with these soils and understand its composition. Additionally, slaves were conditioned to perform hard labor in grueling conditions. For example, working all hours of sunlight during the hot Georgia summer was a common experience. In addition, their labor was also held under high scrutiny by plantation owners. If they failed to meet expectations severe punishments could be handed out. This could include whipping, hanging, or any number of cruel and unusual punishments. The threat of being sold to another owner could also separate families or displace individuals.

Union POWs had very different backgrounds. Before the Civil War most, if not all, had never been to Georgia before. They were a nonlocal labor force. Their labor experiences were mixed. Some worked in an industrial setting, and others worked on farms. Some might have had a similar skill sets as slaves, but they were at a disadvantage because they were in a different environment. They did not work in coastal plain soils every day. Many of the crops they harvested in the North were also less labor intensive. Wheat and corn does not require as much
landscaping as cotton or rice for example. They were also not use to the grueling conditions slaves worked in. Most were likely accustomed to a cooler climate and shorter work hours.

They were also a free labor force. They were paid a wage for their work and had the freedom to negotiate or dictate their own working conditions in their past experience. They were not forced to labor like slaves. While they no doubt had some accountability for their labor, they were not held to the unusually high scrutiny slaves faced nor did they receive harsh punishments. In addition, prior to constructing the stockade wall at Camp Lawton, POWs were at Andersonville. They would not have been at their physical peak. Many of the prisoners there suffered starvation, exposure, and disease. Slaves more likely would have been in better health than the POWs. Also, the status of being a POW and having that experience would not have motivated them to do their best constructing their own prison.

Judging by these characteristics, there should be inherent differences in the way they performed labor. Such differences should be visible in the archaeological record. Most likely this would surface as a difference of quality between the two groups. The prior experience and conditioning of enslaved African Americans would allow them to perform more efficiently in an organized manner. Labor was something that dominated their daily lives, and they were constantly threatened with violence and other manipulations. For many people it was necessary to do their best work to survive. POWs would likely be able to accomplish the task at hand, but would have performed a lesser quality job when compared to the slaves. This is because of their lack of experience, conditioning, and motivation to help the enemy imprison themselves and their fellow soldiers.
CHAPTER 6

CONCLUSIONS

I have looked at how archaeologists have examined ethnicity and identity prior to this study and proposed an emphasis of labor based on Stephen Silliman’s work. Excavations at Camp Lawton have demonstrated that it may be possible to distinguish the differences between slave and prisoner labor at Confederate military prisons. These differences are based on the quality of construction and the degree of adaptation to soil composition. To build upon this research more Civil War POW camps need to be excavated. Special attention could be paid to a Union prison stockade built by soldiers or another Confederate stockade where there were different building episodes carried out by different labor groups.

This is important theoretically because studies of labor can further our understanding of ethnicity, identity, resistance, and power structures. The features demonstrated at Camp Ford, Andersonville, and Camp Lawton display a striking degree of similarity. Beyond material culture, archaeologists can examine features that may reflect more clearly discernable patterns of human behavior. Slaves would have had a stronger skill set for building the stockade or any other fortification than Union prisoners because they had a lifelong familiarity of the soils in the area and were more conditioned to hard labor.

This investigation is important because it provides a new avenue to examine the lives of impressed slave laborers on Civil War sites. This allows us to broaden interpretations and create a multi-perspective narrative where slaves can have their stories told in addition to prisoners and guards. This can have a positive impact in the study of the Civil War. It enables us to discuss the war from the slaves’ perspective. By conducting archaeological investigations of slaves on Civil War prisons and battlefields, we can gather more concrete evidence of their story.

In addition, archaeology is very alluring to the public eye. By hosting public events we can openly communicate and reshape the perspectives of the Civil War for visitors. It provides an opportunity to inform the public about the impact of slavery. Creating a more honest history can aid in reconciliation and help reshape opinions about “race.” By coming together and
discussing our shared history, it may shed light on modern problems mired in racism and help us build solutions.
REFERENCES


Mahan, Dennis Hart. (1862) A Treatise on Field Fortification, Containing Instructions on the Methods of Laying Out, Constructing, Defending, and Attacking, Intrenchments, with the General Outlines also of the Arrangement, the Attack and Defense of Permanent Fortifications. New York: John Wiley, 56 Walker Street.

Mahan, Dennis Hart. (187) An Elementary Course of Civil Engineering, for the use of Cadets of The United States’ Military Academy New York: John Wiley and Son.,


The U.S. Census Slave Schedules for Burke County, Georgia (1860) NARA microfilm series M653, Roll 142