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CHAPTER 1

INTRODUCTION

1.1 Dengue Fever

Dengue is a mosquito-borne viral infection that is usually found in tropical and sub-

tropical regions around the world. In recent years, transmission has increased pre-

dominantly in urban and semi-urban areas and has become a major public health

concern, [1].

There are four distinct, but closely related, serotypes of the virus that cause

Dengue (DEN-1, DEN-2, DEN-3 and DEN-4). Recovery from infection by one pro-

vides lifelong immunity against that particular serotype. However, cross-immunity to

the other serotypes after recovery is only partial and temporary. Subsequent infec-

tions by other serotypes increase the risk of developing severe Dengue.

Accordingly to the World Health Organization (WHO), [1], over 2.5 billion people

are now at risk for Dengue. Currently, the WHO estimates that there may be 50-100

million Dengue infections worldwide.

Not only is the number of cases increasing as the disease spreads to new areas,

but explosive outbreaks are also occurring. The threat of a possible outbreak of

Dengue fever now exists in Europe and local transmission of Dengue was reported

for the first time in France and Croatia in 2010 and imported cases were detected in

three other European countries. In 2012, an outbreak of Dengue on Madeira islands

of Portugal resulted in over 2000 cases and imported cases were detected in 10 other

countries in Europe apart from mainland Portugal. In 2013, cases have occurred in

Florida (United States of America) and Yunnan (province of China), [1].

Mathematical modeling is a powerful tool to test and compare different inter-

vention strategies that might be useful in controlling or eliminating Dengue, which

is especially important in our world of limited resources. The various mathematical
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models help us conceptualize the transmission dynamics in a quantitative way as well

as allow us to test different hypotheses to understand their importance.

In this paper we compare and contrast five different models of Dengue and iden-

tify their best features along with their performance for various scenarios.

1.2 Basic S − I −R model and concepts

The S − I −R model. The basic model is a model in which a constant population is

divided into three compartments of individuals depending on their infection status:

susceptible S, infected I and recovered R.

This is usually known as the S−I−R model. These compartments are explained

as follows:

1. S is used to represent the number of individuals who are susceptible to the

disease at time t

2. I denotes the number of individuals who have been infected with the disease

and are capable of spreading the disease to those in the susceptible category

3. R represents the number of individuals who have been infected and recovered

from the disease. Those in this category are immune to infection and they would

not transmit the infection to others.

4. Assumptions. Each compartment is assumed to be homogeneous. In other

words, individuals in each compartment are randomly mixing with each other.

This is similar to mass action model in chemistry. The per capita rate of

infection and the per capita rate of recovery are assumed to be independent of

the length of time the person has spent in each compartment. They are assumed

to follow an exponential distribution.
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The basic S − I −R model is formulated as:

dS

dt
= −λS, dI

dt
= λS − γI,

dR

dt
= γI, S + I +R = N

where λ is the force of infection and γ is the mean recovery rate and N is the total

population.

S−I−R models can have separate formulations, depending on the basic assump-

tions regarding the force of infection: density-dependent and frequency-dependent.

1. Density-dependent model. The density-dependent model assumes that all mem-

bers of a population existing in a fixed area come in contact with one another

no matter how many individuals are present in the population. Therefore, the

force of infection is defined as λ = βI where β denotes the transmission coeffi-

cient (which is the product of the number of contact per susceptible person per

unit time and the probability of a successful transmission of the infection given

the contact). Assuming that β is a constant, the force of infection depends on

the number of infected persons in the population, [10].

2. Frequency-dependent model. However, it has been shown that for most human

infections, the number of people each person is in contact with per day is fairly

constant across the world, regardless of the population density of the place.

That is why an alternative, known as the “frequency-dependent,” formulation of

the SIR model is often used to model the transmission of human diseases, where

the force of infection is defined as λ = β( I
N

). The term I/N is the probability

that any random contact that a susceptible person makes will be with someone

infectious, which is equivalent to the proportion of the total population that is

infectious, [10].



CHAPTER 2

DEROUICH MODEL OF DENGUE FEVER

We first study the model of Dengue fever developed by Derouich et al in [3]. Their

model is based on the compartmental diagram shown in Figure 2.1. The host popula-

tion, Nh, consists of susceptibles, Sh, infectives, Ih, and removed, Rh. The correspond-

ing vector population, Nv, consists of susceptibles, Sv and infectives Iv. Mosquitos

are a reservoir host for the four viruses that cause Dengue fever: they are carriers

of the virus but not negatively affected by it. Hence, there is not a “removed vector

population” to consider.

For the human population, the model developed by Derouich et al., [3], takes the

form

dSh
dt

= µhNh − (µh + p+ CvhIv/Nh)Sh

dIh
dt

= (CvhIv/Nh)Sh − (µh + γh)Ih

dRh

dt
= (pSh + γ)hIh − µhRh.

(2.1)

The parameter values are described in Table 2.1. One of the key features of the model

is the fraction, p, that represents a (random) fraction of the human population that

can be permanently immunized against the four serotypes that cause Dengue fever.

For the vector population,

dSv
dt

= µvNv − (µv + ClwIh/Nh)Sv

dIv
dt

= (ChvIh/Nh)Sv − µvIv.
(2.2)

Because Sh+Ih+Rh = Nh and Sv+Iv = Nv, Rh = Nh−Sh−Ih and Sv = Nv−Iv,

equations (2.1) and (2.2) can be combined into the single system
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Figure 2.1: The compartmental diagram used by Derouich et al in [3] in the formu-

lation of their model of Dengue fever.

dSh
dt

= µhNh − (µh + p+ CvhIv/Nh)Sh

dIh
dt

= (CvhIv/Nh)Sh − (µh + γh)Ih

dIv
dt

= (ChvIh/Nh)(Nv − Iv)− µvIv.

(2.3)

The main result of Derouich et al in [3] is that system (2.3) has two equilibrium

points, E1 = (Nh/(1 + p/µh), 0, 0) and E2 = (Sh
∗, Ih

∗, Iv
∗), where

Sh
∗ =

Nh(β +M)

(1 + p/µh)β +MR
,

Ih
∗ =

Nh(R− 1− p/µh)
(1 + p/µh)β +MR

,

Iv
∗ =

βNv(R− 1− p/ uh)
R(β +M)

.

β, M , andR are given by β = Chv/µv, M = (µh+γh)/µh, andR = CvhChvNv/(µv(µh+

γh)Nh). Analysis of the Jacobian at E1 and E2 shows that E1 is globally asymptoti-

cally stable if R ≤ 1 + p/µ and E2 is locally stable if R > 1 + p/µ.

To develop a deeper understanding of the model we conduct several simulations.



6

Parameter Notation Base Value

Transmission probability of vector to human phv 0.75

Transmission probability of human to vector pvh 0.75

Bites per susceptible mosquito per day bs 0.5

Bites per infectious mosquito per day bi 1.0

Effective contact rate: human to vector Chv = phvbs 0.375

Effective contact rate: vector to human Cvh = pvhbi 0.75

Human life span 1/µh 25000 days

Vector life span 1/µv 4 days

Host infection duration 1/(µh + γh) 3 days

Table 2.1: Parameter values used following the same choices as in Derouich et al, [3].

Note that all simulations in this thesis were conducted using Wolfram Mathematica,

[9].

Our first simulation is based on the variation of vaccination levels of a whole

population. We numerically demonstrate the change in outbreak behavior using four

levels of total population vaccinated in Figure 2.2. In Figures 2.2 and 2.3, Sh is in

black, Ih is in gray, and Iv is dashed.

From Figure 2.2. we see that if 20% of the population is vaccinated, the outbreak

of the epidemic decreases the number of infected hosts during the outbreak by three

times. If half of the population is vaccinated, there is almost no outbreak and if 90%

of the population is vaccinated there is no outbreak.

The second scenario is based on the assumption that for different environment

temperatures the activity level of mosquitoes differs [2].

For this model, our final simulation is based on the hypothetical size of mosquito

population and its influence on the size of the outbreak in the human population.



7

10 20 30 40 50

10000

20000

30000

0% vaccinated

10 20 30 40 50

5000

10000

15000

20000

25000
20% vaccinated

10 20 30 40 50

2000

4000

6000

8000

10000

50% vaccinated

10 20 30 40 50

2000

4000

6000

8000

10000

90% vaccinated

Figure 2.2: Numerical simulations of the model by Derouich et al., [3] for the different

levels of population vaccinated (0/20/50/90 % of a total population vaccinated).
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Figure 2.3: Numerical simulations of the model by Derouich et al., [3], for different

levels of mosquito activity (0.5-1/1-2/1.5-2.25/2-3) bites per susceptible/infectious

mosquito per day).
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Figure 2.4: Numerical simulations of the model by Derouich et al., [3] for different

levels of mosquito population (150000/50000/25000/5000).

Figure 2.3 indicates that we can observe that if the bite rate of mosquitoes increases,

the number of infected mosquitoes increases drastically. Consequently, the size of the

outbreak in the human population increases as well. This scenario is important be-

cause of global warming and the permanent of the average temperature on the Earth.

Generally, it is thought that warmer weather will cause vectors such as mosquitoes

to increase in population size.

The last simulation illustrates the importance of different control measures of

mosquito population. In Figure 2.4, we see that a considerable decrease of mosquito

population can almost prevent an outbreak of Dengue in the human population.

According to these scenarios it is difficult to identify which parameter affects

the severity of an outbreak the most. However, the number of mosquitoes and the

vaccination level of the susceptible population appear to be of high importance.

Despite the fact that vaccination campaigns can be easily implemented, they are

effective only if just one strain of the virus is present in the environment. Otherwise,
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the vaccination program is just a waste of resources. So, the best way to decrease the

severity of the outbreak is to reduce the actual of mosquitoes.



CHAPTER 3

FENG MODEL OF DENGUE FEVER

Next, we study the model developed by Feng at al., [4]. For the Feng model, the host

has size

N = S + I1 + I2 + Y1 + Y2 +R,

where S represents the number of susceptibles, Ii represents the number with primary

infection by strain i, Yj represents the number with secondary infection by strain

j, and R represents the recovered population. For the vector (mosquitoes), T =

M + V1 + V2, where M represents the number not infected and Vi represents the

number infected by strain i. The model assumes that the vector can only be infected

by a single strain of the virus. The remaining parameter values are defined in Table

3.1. The model constructed by Feng at al., [4], is

dS

dt
= h− (B1 +B2)S − uS

dI1
dt

= B1S − σ2B2I1 − uI1
dI2
dt

= B2S − σ1B1I2 − uI2
dY1
dt

= σ1B1I2 − (e1 + u+ r)Y1

dY2
dt

= σ2B2I1 − (e2 + u+ r)Y2

dR

dt
= r(Y1 + Y2)− uR

(3.1)

and

dM

dt
= q − (A1 + A2)M − δM

dV1
dt

= A1M − δV1
dV2
dt

= A2M − δV2.

(3.2)

In (3.1) and (3.2), primary infections in humans are produced at rate

Bi =
βiVi

C + ωhN
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by the vector infected with strain i. Similarly, infections in vectors (mosquitos) are

produced at rate

Ai =
αi(Ii + Yi)

c+ ωvN
.

The main result of Feng at al., [4], is that the system (3.1) has two equilibrium

points, E1
∗ = (S1

∗, I1
∗, 0, 0, 0, 0, V1

∗, 0) and E2
∗ = (S2

∗, 0, I1
∗, 0, 0, 0, 0, V1

∗). To obtain

the precise result on the existence and stability properties of these equilibrium points

it was assumed that Dengue does not produce significant mortality. So, the dimension

of the model was reduced by one. Finally, two equilibrium values were considered:

E1
∗ = (V1

∗, I1
∗, 0, 0, 0, 0, 0) and E2

∗ = (0, 0, V2
∗, I2

∗, 0, 0, 0), where

Vi
∗ =

uδ(Ri − 1)

bi(δ + aiN)
and Ii

∗ =
uδ(Ri − 1)

ai(b1T + u)
, i = 1, 2

and

ai =
αi

c+ ωN
and bi =

βi
c+ ωN

, i = 1, 2.

For each of the equilibrium points the parameters are defined as

σ∗
1 = max

{
0,

(
R2

R1

− 1

)
δ + a1N

δ(R1 − 1)

}
,

f(σ1) = (σ2)
∗ =

(
δ(u+ r)

a2b2I1
∗(T − V1∗)

)(
1− uR2

R1(u+ σ1b1I1
∗)

)
for E1

∗ and

σ+
2 = max

{
0,

(
R1

R2

− 1

)
δ + a2N

δ(R2 − 1)

}
,

g(σ2) = (σ1)
+ =

(
δ(u+ r)

a1b1I2
∗(T − V2∗)

)(
1− uR1

R2(u+ σ2b2I2
∗)

)
for E2

∗ respectively.

Analysis of E1
∗ and E2

∗ shows that:

• E1
∗ is locally asymptotically stable if σ2 < f(σ1) for every σ1 > 1, and unstable

if σ2 > f(σ1)
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Figure 3.1: Numerical simulations of the model by Feng et al., [4] for different levels

of mosquito population (50000/25000/5000).

• E2
∗ is locally asymptotically stable if σ2 < g−1(σ1) for every σ1 > 1, and

unstable if σ2 > g−1(σ1)

• E1
∗ and E2

∗ are locally asymptomatically stable if g−1(σ1) < σ2 < f(σ1)

For the model three different scenarios were considered and simulations conducted:

1. Different numbers of mosquito population.

2. Different mosquito recruitment rate.

3. Different mosquito activity levels.
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Figure 3.2: Numerical simulations of the model by Feng et al., [4] for different levels

of mosquito recruitment rate (50/750).

First scenario (Figure 3.1) demonstrates that a considerable decrease in a mosquito

population can significantly decrease the size of the outbreak. From the figure we see

that the dependence is almost linear. If we decrease the number of mosquitoes by

two times, we get almost 50 % decrease of infected population. Another interesting

observation is that the day when the peak of the outbreak is reached remains the

same and does not depend on the number of mosquitoes. In Figures 3.1-3.3, the first

graphic represents S in black and R in gray, the second graphic represents I1 and I2

in black and dashed black and Y1 and Y2 in grey and dashed grey respectively. The

third graphic represents M in black and V1 and V2 in gray.

The second scenario (Figure 3.2) demonstrates that the mosquito recruitment

rate has almost no impact on the outbreak. However, the mosquito recruitment rate

can considerably shift the susceptible-infected distribution among vectors.

The third scenario (Figure 3.3) describes the outbreak given different mosquito
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Figure 3.3: Numerical simulations of the model by Feng et al., [4] for different levels

of infection rate (.05,.05/.05,.5/.1,.5).
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activity levels. The infection rate represents the probability of getting infected by

infected host or infected vector after the bite. So, the more active the mosquitoes

become, the rate at which the number of hosts and vectors are getting infected in-

creases. We see that even a slight increase of infection rate can significantly affect

the form of the outbreak.

After varying several parameters of the current model we see that both vector

population and vector activity level affect the severity of the outbreak. However,

even though mosquito activity level appears to have higher impact on the outbreak,

it seems difficult to control it. The easier way to control the outbreak is to implement

public policies to reduce the size of the mosquito population. Examples of such policies

include: destroying sites where larvae develop or using strategies to prevent larvae

development when water-filled containers are present. At the same time, simpler

approaches like household screening, air-conditioning and other methods to seal living

area from mosquitoes are also effective in preventing dengue, [10].



CHAPTER 4

SYAFRUDDIN AND NOORANI MODELS OF DENGUE FEVER

The third and fourth models of Dengue fever studied were developed by Syafruddin

and Noorani, [7] and [8] respectively. The parameter values they used in both models

are the same and are defined in Table 4.1.

4.1 The First Syafruddin and Noorani Model

The susceptible-infected recovered (S−I−R) model used by Syafruddin and Noorani

in [8] simplifies to

dx

dt
= µh(1− x)− αxz

dy

dt
= αxz − βy

dz

dt
= γ(1− z)y − δz.

(4.1)

In system (4.1), x =
Sh
Nh

, y =
Ih
Nh

, z =
Iv
Nv

=
Iv

A/µv
, α =

bβhA

µvNh

, β = γh+µh, γ = bβv,

and δ = µv. The parameter values are described in Table 4.1. The probability of a

susceptible human being infected with Dengue is
βhbIv
Nh

.

The main result of the first Syafruddin and Noorani model, [7] is that system

(4.1) has two equilibrium points E1 = (1, 0, 0) and E2 = (x0, y0, z0) with the values:

x0 =
µhγ + βδ

γ(µh + α)
, y0 =

µH(γα + βδ)

βγ(µH + α)
and z0 =

µH(γα + βδ)

α(γµH + βδ)
.

Analysis of those equilibrium points for the South Sulawesi outbreak shows that

E1 is globally asymptotically stable point and E2 is asymptotically stable point, [7].

To illustrate the behavior of this model several simulations were performed. In

the first simulation we assumed that the proportions of susceptible and infected pop-

ulation can vary initially (see Figure 4.1).

As shown in Figure 4.1, this scenario illustrates that the more people initially

infected, the faster the remaining susceptible population will decrease.
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Parameter Notation Base Value

Human Population Nh variable

Human Birth Rate µh 0.0045

Humans Exposed to Virus Eh variable

Rate Humans Exposed to Virus Proportionality Constant φh 0.16667

Death Rate of Humans µH variable

Recovery Rate of Infected Humans γh 0.328833

Susceptible Human Population Sh variable

Infected Human Population Ih variable

Death Rate of Infected Human Population αh 0.0000002

Recovered Human Population Rh variable

Vector Population Nv variable

Percentage of Vector Population Infected p 0.09

Susceptible Vector Population Sv variable

Death Rate of Vectors µv 0.02941

Infected Vector Population Iv variable

Death Rate of Infected Vectors γv variable

Average Number of Bites per Infected Mosquito b variable

Probability of Uninfected Vector being Infected by Human βh (bβh) 0.75

Probability of Uninfected Human being Infected by Vector βv (γ = bβv) (0.375)

Table 4.1: Parameter values used by Syafruddin and Noorani, [7] and [8].
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Figure 4.1: Numerical simulations of the model by Syafruddin et al., [8] for different

proportions of susceptible and infected population (0.9-0.1/0.7-0.3/0.5-0.5/0.2-0.8).

The second scenario describes the situation with different activity levels of mosquitoes.

Figure 4.2 illustrates different situations depending on the probability of the mosquito

to infect a human during a bite. We see that if the probability of being bitten by an

infected mosquito is relatively small, there will not be any outbreak. However, if the

probability of being bitten by an infected mosquito becomes high, the outbreak can

be very severe with a high peak.

The last scenario describes the situation when we have different proportions of

initially infected mosquitoes.

Interestingly, Figure 4.3 indicates that if initially not all mosquitoes are infected,

we get the shift in the peak of the outbreak along with the decrease of the severity

of the outbreak. At the same time, the percentage of infected mosquitoes will grow

and reach some peak. However, the situation when all mosquitoes would be infected

is practically impossible.
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Figure 4.2: Numerical simulations of the model by Syafruddin et al., [8] for different

probabilities of humans being bitten by a mosquito and being infected by Dengue

(0.1/0.15/0.35/0.7).
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Figure 4.3: Numerical simulations of the model by Syafruddin et al., [8] for different

proportions of initially infected mosquitoes (1/0.6/0.25/0.01).
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4.2 The Second Syafruddin and Noorani Model

Using x =
Sh
Nh

, u =
Eh
Nh

, y =
Ih
Nh

, w =
Ev
Nv

, and z =
Iv
NV

, the susceptible-exposed-

infected-recovered (S − E − I − R) model used by Syafruddin and Noorani in [8]

simplifies to

dx

dt
= µh(1− x)− (αz + p)x

du

dt
= (αz + p)x− (µh + φh)u

dy

dt
= φhu− (µh + γh + αh) y

dw

dt
= γv(1− z − w)y − (µv + δv)w

dz

dt
= δw − µvz,

(4.2)

where α =
βhbNv

Nh

.

Refer to Table 4.1 for the meanings of the parameter values. The main result of

the second Syafruddin and Noorani model, [8], is that system (4.2) has one equilibrium

point E1. This time, equilibrium point were numerically calculated for the Selangor

(Malaysia) outbreak data and E1 is asymptotically stable.

In comparison to the previous models, the scaled Syafruddin and Noorani models

are convenient because x, u, y, w, and z represent population percents rather than

specific numbers. This makes it easier to compare the effects of the virus on the

mosquito and human populations.
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NURAINI MODEL OF DENGUE FEVER

For i, j = 1, 2, i 6= j, the normalized Dengue model developed by Nuraini, Soewong,

and Sidarto, [6], takes the form

dS

dt
= (1− µh)S − (B1V1 +B2V2)S

dIi
dt

= BiViS − (γ + µh)Ii

dRi

dt
= γIi − σBjVjRi − µhRi

dD

dt
= q (σ2B2V2R1 + σ1B1V1R2)− (µh + γ)D

dYi
dt

= (1− q)σiBiViRj − (γ + µh)Yi

dVi
dt

= Ai(Ii + Yi)(1− V1 − V2)− µvVi

(5.1)

In system (5.1), for the host, S + I1 + I2 + Y1 + Y2 + R + D = 1. S represents

the percent of the population susceptible, Ii the percent infected with strain i, Ri

represents the percent immune to strain i, Yi the percent of the population immune

to strain j (j = 2, 1) but are infected with strain i (i = 1, 2), R the percent immune

to both strains, and D the percent for those who are immune to one strain but

become infected with the other strain and develop severe symptoms (severe Dengue

Hemorrhagic fever). For the vector (mosquitoes), V0 + V1 + V2 = 1. Vi represents the

percent infected with strain i. The parameter values are listed in Table 5.1.

The main result of the Nuraini et al. model [6] is that the system (5.1) has 4 equi-

librium points: E0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0), E1 = (S1
∗, I1

∗, 0, R1
∗, 0, 0, 0, 0, V1

∗, 0),

E2 = (S2
∗, 0, I2

∗, 0, R2
∗, 0, 0, 0, 0, V2

∗), where

Si
∗ =

µhTi +Bi

Ti(µh +Bi)
, Ii

∗ =
µhBi(Ti − 1)

(µh + γ)(µh +Bi)Ti
,

Ri
∗ =

γIi
∗

µh(µh + γ)
, Vi

∗ =
µh(Ti − 1)

µhTi +Bi

, i = 1, 2
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and E3 = (S∗∗, Ii
∗∗ = I∗∗, Ri

∗∗ = R∗∗, Yi
∗∗ = Y ∗∗, D∗∗), where

S∗∗ =
µh

µh + 2BV ∗∗ Ii
∗∗ =

BV ∗∗S∗∗

µh + γ
Ri

∗∗ =
γI∗∗

σBV ∗∗ + µh

Yi
∗∗ =

(1− q)σBV ∗∗R∗∗

µh + γ
D∗∗ =

2q(µh + γ)Y ∗∗

(1− q)(µh + γ)
i = 1, 2

For each of those points the following results were obtained:

E0 is locally asymptotically stable if and only if Ti < 1.

E1 and E2, equilibrium points for one serotype are locally asymptotically stable

when

Ti > 1 and Tj <
Ti

1 +
γσjBi(1−q)(Ti−1)

(µhTi+Bi)(µh+γ)2

, i, j = 1, 2, i 6= j.

The last equilibrium point E3 unlike the previous ones, represents the coexistence

of two serotypes of viruses. It is locally asymptotically stable if and only if

1 < T <
B(Bσµv + 2Aµh

2 + Γ(2 + σ))

2µhΓ
+ 1, Γ = µhµv(µh + γ)

where

Ti =
AiBi

µv(µh + γ), i = 1, 2

and is defined as the expected number of cases in individuals of type 1 caused by the

infected individual of type 1 in a completely susceptible population.

As for previous models, we also explored the behavior of this model based on dif-

ferent biting rates of mosquitoes. As described above, with an increase of atmospheric

temperature, mosquitoes become more active and, consequently, the probability to

infect an individual increases.

It can be observed that those graphs are different from all previous, which can

be explained by the fact that this model describes not only an epidemic outbreak of

the disease but the endemic situation of the disease. According to this, after the end

of the outbreak the disease will not vanish, but will hide until the required number of



24

50 100 150 200
t

2

4

6

8

S,I1 ,I2

50 100 150 200
t

0.02

0.04

0.06

0.08

R1 ,R2 ,D

50 100 150 200
t

5.×10-8

1.×10-7

1.5×10-7

2.×10-7

2.5×10-7

Y1 ,Y2

50 100 150 200
t

0.1

0.2

0.3

0.4

V1 ,V2

50 100 150 200
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S,I1 ,I2

50 100 150 200
t

0.02

0.04

0.06

0.08

R1 ,R2 ,D

50 100 150 200
t

1.×10-7

2.×10-7

3.×10-7

4.×10-7

Y1 ,Y2

50 100 150 200
t

0.05

0.10

0.15

0.20

V1 ,V2

Figure 5.1: Numerical simulations for the model by Nuraini et al., [6] for different lev-

els of mosquito activity (3,2/7,6) (These numbers represent the number of susceptible

hosts which can be infected by an infected vector and vice versa).
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Parameter Notation Base Value

Host life expectancy µh
−1 70 years

Vector life expectancy µv
−1 14 days

Mean length of infections period in host γ−1 10-15 days

Biting rate × successful transmission from host to vector Ai variable

Biting rate × successful transmission from vector to host Bi variable

Susceptibility index σi [0, 5]

Probability of severe Dengue Hemorrhagic fever q [0, 1]

Table 5.1: Parameter values used by Nuraini, Soewong, and Sidarto, [6].

susceptible hosts will not reappear in the environment. After that, a new outbreak

will take place in the society.

As we can observe from the top left graphic in Figure 5.1, the each next outbreak

is smaller than the previous one. This phenomena is because of the immunity of the

group of the population that had a disease during previous outbreaks.

Also, it can be observed that with the increase of the activity of the vectors

(mosquitoes), peaks of the outbreaks becomes sharper. However, this does not mean

that the number of infected hosts grows.

Unlike some of the previous models, this model does not take deaths into ac-

count. However, when compared to the previous models, this model appears to be

the most comprehensive yet attempts to capture only the most relevant parameters.

For example, compare the number of values used in system (4.2) to those used in

system (5.1).
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CONCLUSION

6.1 General conclusions

This thesis reviewed several ODE mathematical models of dengue fever. Five models

with different approximations to modeling and different assumptions were considered

and for each of them several outbreak scenarios were reviewed.

It was observed that every model is different. The models by Derouich et al. [3]

and by Syafruddin et al. [7] are among the simplest one. Both of them are S− I −R

ODE models of one strain of the virus.

The model developed by Feng et al.[4] is a more complicated one. This one is

also S − I −R ODE model, but of two different strains of dengue.

The most comprehensive model is developed by Nuraini et al. [6]. It not only

describes the outbreak with two strains, but also takes into account the separate

severe Dengue Hemorrhagic Fever state which is not taken into consideration in any

of previous models. In addition, this model describes the endemic behavior of the

disease, whereas the other models are modeling only epidemic outbreak.

The other interesting model was developed by Syafruddin et al. [8]. This is the

only example of S − E − I − R model considered here, which divide the whole hu-

man population into four compartments: susceptible, exposed, infected and recovered

(removed).

On the next step in the investigation several hypothetic scenarios for each of the

outbreaks were conducted to investigate the behavior of the each model and try to

answer the question, ”which intervention can be the most efficient in terms of de-

creasing the number of infected population?” Two different types of interventions are

available to reach those goals: vaccination and the direct decrease of the mosquitoes

population. Some models show that vaccination can be useful. However, those models
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assume only one strain of the virus. If there are more strains in the environment vacci-

nation becomes practically useless since currently available vaccines can only protect

from one strain, leaving the whole population completely susceptible to others. So,

the only feasible working strategy is to decrease the number of mosquitoes.

At the same time another interesting phenomenon was observed. Since the ac-

tivity of mosquitoes is based on weather condition, mostly on the temperature, global

warming, will increase the possibility of being infected and, consequently, the risk of

outbreaks.

Finally, there are other problems to consider. One is to develop more models to

catch observe important features during the progression of an epidemic. For example,

the development of an S − E − I − R model of two different strains will be a step

forward in this direction. The ultimate goal is to build a model that will describe the

outbreak of four different strains at the same time. However, even a small increase

in complexity of the initial model drastically increase the difficulty of its validation.

Moreover, the amount of real data needed for validation also increases and this data

is not easy to obtain.

6.2 Computational Notes

The graphics and computations in this paper were carried out using Mathematica, [9].

Jim Braselton will send you copies of the notebooks used here if you send a request

to him at jbraselton@georgiasouthern.edu.
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