
Georgia Southern University

Georgia Southern Commons

Electronic Theses and Dissertations Jack N. Averitt College of Graduate Studies

Spring 2015

Graphs of Classroom Networks
Rebecca Holliday

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

 Part of the Discrete Mathematics and Combinatorics Commons, and the Other Applied
Mathematics Commons

Recommended Citation
Holliday, Rebecca, "Graphs of Classroom Networks" (2015). Electronic Theses and
Dissertations. 1284.
https://digitalcommons.georgiasouthern.edu/etd/1284

This thesis (open access) is brought to you for free and open access by the Jack N. Averitt College
of Graduate Studies at Georgia Southern Commons. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of Georgia Southern Commons. For more
information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/122?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/122?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1284?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

GRAPHS OF CLASSROOM NETWORKS

by

REBECCA HOLLIDAY

(Under the Direction of Colton Magnant)

ABSTRACT

In this work, we use the Havel-Hakimi algorithm to visualize data collected from

students to investigate classroom networks. The Havel-Hakimi algorithm uses a re-

cursive method to create a simple graph from a graphical degree sequence. In this

case, the degree sequence is a representation of the students in a classroom, and we

use the number of peers with whom a student studied or collaborated to determine

the degree of each. We expand upon the Havel-Hakimi algorithm by coding a pro-

gram in Matlab that generates random graphs with the same degree sequence. Then,

we run another algorithm to find the isomorphism classes within the randomly gener-

ated graphs. Once we have reduced the problem to the isomorphism classes, we then

choose a graph we think most accurately describes the classroom network. At the

end of this work, we will make a note on the rainbow connection number in oriented

graphs with diameter 2.

Key Words : Havel-Hakimi, graphs, degree sequence, isomorphism classes

2009 Mathematics Subject Classification: 90C35, 05C60, 05C80, 05C85, 05C90

GRAPHS OF CLASSROOM NETWORKS

by

REBECCA HOLLIDAY

B.S. in Applied Mathematics

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment

of the Requirement for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

2015

GRAPHS OF CLASSROOM NETWORKS

by

REBECCA HOLLIDAY

Major Professor: Colton Magnant

Committee: Jonathan Hilpert

Colton Magnant

Hua Wang

Electronic Version Approved:

Spring 2015

iii

ACKNOWLEDGMENTS

I would like to thank my committee, Dr. Jonathan Hilpert, Dr. Colton Magnant,

and Dr. Hua Wang, for all of their help and support. I wish to acknowledge the

National Science Foundation (NSF) for funding this research (NSF TUES Type 1

REC-1245081). This funding has allowed us the opportunity to look at a common

problem in a new way.

iv

Contents

ACKNOWLEDGMENTS . iv

1 Classroom Data Graphs . 3

1.1 Introduction . 3

1.2 Is this Graphical? . 7

1.3 Procedures . 8

1.4 Results of Procedures . 14

1.5 Putting it all together . 16

2 Note on rainbow connection in oriented graphs with diameter 2 . . 18

2.1 Introduction . 18

2.2 Proof of Theorem 4 . 20

2.3 Proof of Theorem 5 . 22

2.4 Proof of Theorem 6 . 23

v

2.5 Concluding Remarks . 25

REFERENCES . 26

A Matlab code . 28

A.1 classesFromDegreeSequence 28

A.2 isGraphic . 31

A.3 randomGraphFromDegreeSequence 33

A.4 adj2edgeL . 37

A.5 edgeL2adj . 38

A.6 rewireThisEdge . 39

A.7 kneighbors . 43

A.8 isIsom . 44

A.9 sgnFreq . 47

A.10 SUV . 49

1

A.11 simpleDijkstra . 50

2

CHAPTER 1

CLASSROOM DATA GRAPHS

1.1 Introduction

The goal of this work is to create an accurate graphical representation of student

interactions in a classroom. For this pursuit, we develop a method to analyze survey

data gathered from two research universities. The students of these classes report the

number of interactions with fellow classmates, and we use this information to create

a degree sequence where each student is a vertex and the number of classmates a

student typically collaborates with during classroom activities is the degree. Using

this information, we take that degree sequence and use it to create classroom graphs.

Note, for the purposes of this work, the graphs are not directed, meaning the rela-

tionship between students is mutual (Student A collaborates with Student B if and

only if Student B collaborates with Student A).

The data are gathered from engineering students attending two universities, who

participate in a twenty minute survey. This survey begins by asking how many

students with whom the participant collaborated in the classroom and outside the

classroom. After reporting the degree sequence, students rate the instructors teaching

style (i.e. lecture, group work, etc) using a Likert scale rating system. Student re-

sponses to these questions allow us to determine the kind of instructions the professor

gives to the class.

These answers are particularity important because we believe the teaching style

greatly influences the overall structure graph of student relationships while in the

classroom. For instance, in a classroom setting where students listen to the professor

lecture, we expect to see Figure 2.1(a). However, in a classroom where the professor

assigns problems to groups, we expect to see a graph resembling Figure 2.1(b).

(a) Lecture class (b) Collaborative classroom

Figure 1.1: Expected graphs for different class styles

The collaborative classroom is particularly difficult to estimate since there are

unknown factors that influence group interaction, which will be discussed later.

Next, we gather information on what the students experience in different aspects

of the course. These questions help us identify contribution level of each group mem-

ber. The survey then gives group scenarios for the students to compare similarities

to the scenario in their group’s behavior. These comparisons give us a chance to see

if the group works on in-depth the problems that take a lengthy amount of time to

resolve or if solutions are quick to find (which will influence the connected-ness of the

group in the graph).

Next, we ask questions pertaining to the individual. Here we learn several traits

that tell us how motivated the student is to learning the course material and how much

the student enjoys the course and/or is challenged by the course. This information

we believe will help us in ensuring we find the best fitting graph to the data.

It should be noted that, as with any survey, some reports had to be removed.

These are typically students who took the survey in an improbable amount of time

or tried to take the survey several times.

In order to develop graphs from our classroom degree sequences, we first need

to ensure the degree sequences taken from the survey data are graphical. To check

if the sequence is graphical, we use criteria proven by Erdös and Gallai [10] in their

4

theorem:

Theorem 1. A sequence of non-negative integers d1 ≥ . . . ≥ dn can be represented

as the degree sequence of a finite simple graph on n vertices if and only if d1 + . . .+dn

is even and
k∑

i=1

di ≤ k(k − 1) +
n∑

i=k+1

min(di, k)

holds for 1 ≤ k ≤ n.

If necessary, the degree sequence is altered to make it graphical. The methods

for altering the degree sequence will be explained later in Section 2.3. Once the

sequence is graphical, the next goal is to find all possible graphs that could represent

the degree sequence. Rather, we attempt to answer the equivalent question, how

many isomorphism classes can be generated from a given degree sequence?

A graph G is said to be isomorphic to another graph H if there exists a bijective

map ϕ : V (G) → V (H) such that (a, b) ∈ E(G) if and only if (ϕ(a), ϕ(b)) ∈ E(H).

This equivalence relationship is denoted by G ∼= H. The equivalence classes with

respect to isomorphism are a called isomorphism classes. Note, that a degree sequence

can have more than one isomorphism class, meaning there can be more than one graph

that can represent a degree sequence.

Since the number of isomorphism classes (or, if preferred, the number of non-

isomorphic graphs up to isomorphism) from a given degree sequence is not easy to

calculate, we implement the following two procedures, Randomizing Havel-Hakimi

and The Isomorphism Algorithm, in Matlab to estimate the number of isomorphism

classes. These procedures can be seen in more detail in Section 2.4.

Randomizing Havel-Hakimi stems from programs written by Gergana Bounova

[2] and the Havel-Hakimi algorithm [11, 12] stating:

Theorem 2 (Havel (1955), Hakimi (1962)). Let S = (d1, . . . , dn) be a finite list of

5

nonnegative integers that is nonincreasing. List S is graphic if and only if the finite

list S ′ = (d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . dn) has nonnegative integers and is

graphic.

To visualize the algorithm, consider the degree sequence {3, 2, 3, 3, 1}. Then, by

the Havel-Hakimi Algorithm, we have:

Remaining

Sequence
Sorted Sequence Graph

{3, 2, 3, 3, 1} S = {3, 3, 3, 2, 1}

{0, 2, 2, 1, 1} S ′ = {2, 2, 1, 1, 0}

{0, 1, 0, 1, 0} S ′′ = {1, 1, 0, 0, 0}

{0, 0, 0, 0, 0} S ′′′ = {0, 0, 0, 0, 0}

As seen above, the placement of edges is specific, however, other choices could

have been made. Notice the Havel-Hakimi Algorithm will produce a single graph for

a given degree sequence.

Randomizing Havel-Hakimi expands the above algorithm by allowing the pro-

gram to randomly pick plausible edges. This procedure generates k random graphs of

the same degree sequence, where k is a sufficiently large natural number determined

by the user. These k randomly generated graphs may be isomorphic or be in separate

isomorphism classes (if more than one isomorphism class exists).

From here, we use the second procedure, The Isomorphism Algorithm, created

by Dharwadker and Tevet [7], to determine the number of isomorphism classes in

the k random graphs. This procedure compares two graphs to determine if they are

6

isomorphic or not isomorphic in polynomial time. From here, we need to pick which

of these isomorphism classes we think is the best fit to the classroom. At the end of

Chapter 2, we will mention the method we think might be best in determining which

isomorphism class is the best fit.

1.2 Is this Graphical?

Unfortunately, some of the data is not graphical by the Havel-Hakimi requirements.

This is caused by either students reporting the wrong number of ingroup peers or

by not having all students in the class take the survey, or some combination of the

above. Hence, further modifications are needed to make the sequence graphical.

In degree sequences where not all students had participated in the survey, several

tests had to be run. The degree sequences sometimes have an odd sum. In this case,

we need to decide to either add a student (one we could assume existed somewhere

in the classroom outside of the gathered information) or remove a student (an outlier

in the degree sequence).

The first test we run is a median test. This tells us the median of the degree

sequence. The purpose of this test is to add another hypothetical student with the

median degree. We choose not to use the mean test since the results would frequently

not be integers. Another benefit to adding a student is that it occasionally helped us

avoid deleting students who took the survey. Sometimes students who had shown up

as outliers in the original degree sequence would no longer be significant outliers in the

new sequence with the additional hypothetical student. These situations are usually

when we do not have enough students to meet the degree sequence requirements, but

we are very close. However, in some situations, this technique is not enough. In the

situations where adding another student does not make the degree sequence graphical,

we perform a normality test to see which degrees are outliers. In these cases, the

7

outliers report such a high degree that we would have to add an unjustifiable amount

of hypothetical students. Since the median test does not work in these scenarios, we

have to remove any student who is more than 2 standard deviations away from center.

In some cases, removing outliers makes the degree sequence graphical. However,

in other cases, the first process, the median test, should be performed again after

removing outliers to make an even sum.

1.3 Procedures

Once the data is graphical, we can start finding all the isomorphism classes using

Matlab code A.1, which calls Randomizing Havel-Hakimi and The Isomorphism Algo-

rithm. To demonstrate these algorithms, consider the graphical sequence {2, 2, 2, 1, 1}

with vertices {v1, v2, v3, v4, v5} respectively.

Randomizing Havel-Hakimi. For this procedure, Matlab code A.3, begin by

constructing a graph G1 using the following algorithm.

Select a vertex n1 such that it is the first highest degree in the nonincreasing

sequence. For this example, n1 = v1. Now, to add an edge to the graph, randomly

select a target vertex n2 that satisfies the following:

1. n2 6= n1 (no self-loops).

2. An edge (n2, n1) does not already exist (no double/parallel edges).

3. remdeg(n2) > 0, where remdeg(n2) is the entry of the current degree sequence

corresponding to n2.

Without loss of generality, let n2 = v2. Then, we place an edge from v1 to v2 and

update the sequence to {1, 1, 2, 1, 1}. Now, we begin the process again. since v3 has

the highest degree, v3 = n1. Again, randomly select n2 with the same criteria above.

8

Continue this process until the graph G1 has been constructed (the sum of the degree

sequence is zero).

If the last edge cannot be placed, then the algorithm A.6 will be used to rewire

edges. In this event, there will be a vertex x and a vertex y each with remaining

degree 1 that have an existing edge between them. Let A = V (G) \ {x, y} and let

B = N(x) ∪N(y) (shown in gray in Figure 2.2), where N(x) is the set of all vertices

that neighbor x. Suppose there exists an edge (s, t) such that s, t ∈ A \ B. Note, if

(s, t) does not exist, then the algorithm stops and A.3 starts over. Then, the algorithm

will randomly choose between the following two cases:

1. The edges (x, s) and (y, t) will be added (in green) and the edge (s, t) will be

removed (in purple in Figure 2.2).

2. The edges (x, t) and (y, s) will be added (in red) and the edges (s, t) will be

removed (again, in purple).

Figure 1.2: Cases for rewire algorithm

This completes the rewiring algorithm and completes G1. This process is re-

peated to find G2. Since we have two graphs to compare, we can move on to Procedure

2 to check if they are isomorphic.

The Isomorphism Algorithm. In this procedure, A.8, we determine which

of the graphs found in Randomizing Havel-Hakimi are isomorphic. For simplicity,

9

we will run this example on two graphs that could have been found in Randomizing

Havel-Hakimi, GA and GB, with the above degree sequence to determine if GA
∼= GB.

(a) GA (b) GB

Figure 1.3: Two isomorphic graphs

First, using Dijkstra’s Algorithm [8], we will find the length of the shortest paths

between all vertices in GA. Begin with the collateral graph GA \ v1v2 (GA with edge

(v1, v2) removed). Note, the edge from (v1, v2) does not exist in GA, but that is ok.

Now, we will find the lengths of the shortest paths from v1 → vi for all i and v2 → vj

for all j.

Start/End Path

v1 → v1 (v1)

v1 → v2 (v1, v3, v2)

v1 → v3 (v1, v3)

v1 → v4 (v1, v3, v2, v4)

v1 → v5 (v1, v5)

v2 → v2 (v2)

v2 → v1 (v2, v1)

v2 → v3 (v2, v3, v1)

v2 → v4 (v2, v3, v1)

v2 → v5 (v2, v3, v1, v5)

From the table to the right, we know

the shortest distance is d(v1, v2) = 2. We

will denote the shortest distance from u

to v in GA \ uv by sd(u,v). Note that

sd(u, u) = 0. Also, if the graph is not

connected, hence there is no path from u

to v, then sd(u, v) =∞.

Also, we can make the pair graph

Gv1v2 by removing any vertices in the col-

lateral graph that are not contained in

the shortest path(s) from v1 to v2 and

vice versa. For this example, Gv1v2 is as

10

follows:

Figure 1.4: Pair Graph Gv1v2 for GA

For all the pairs (u, v) in GA, we say the (u, v)-sign, denoted suv, is as follows:

suv = (±)sd(u, v).|V (Guv)|.|E(Guv)|

where the leading binary sign is positive if the edge (u, v) ∈ E(GA) and negative

if (u, v) /∈ E(GA). In the above example, s12 = −2.3.2. Now, we compute all sij to

make the sign matrix S.

SA v1 v2 v3 v4 v5

v1 -0.1.0 -2.3.2 ∞.5.3 -3.4.3 ∞.5.3

v2 -2.3.2 -0.1.0 ∞.5.3 ∞.5.3 -3.4.3

v3 ∞.5.3 ∞.5.3 -0.1.0 -2.3.2 -2.3.2

v4 -3.4.3 ∞.5.3 -2.3.2 -0.1.0 -4.5.4

v5 ∞.5.3 -3.4.3 -2.3.2 -4.5.4 -0.1.0

We make the frequency table FA by sorting the unique signs listed in SA in

lexicographical order and counting the occurrence of each sign in SA.

Now, we want the rows of FA to be in lexicographical order, denote this sorted

matrix F ∗A . To do this, we need to switch columns v1 and v3.

The corresponding swap needs to be in SA to make S∗A. To do this, we swap

both the columns v1 and v3 and the rows v1 and v3.

11

FA v1 v2 v3 v4 v5

-4.5.4 0 0 0 1 1

-3.4.3 1 1 0 1 1

-2.3.2 1 1 2 1 1

-0.1.0 1 1 1 1 1

∞.5.3 2 2 2 1 1

F ∗A v3 v2 v1 v4 v5

-4.5.4 0 0 0 1 1

-3.4.3 0 1 1 1 1

-2.3.2 2 1 1 1 1

-0.1.0 1 1 1 1 1

∞.5.3 2 2 2 1 1

We call S∗A the canonical representation of SA. Repeat the previous process to

find S∗B and F ∗B.

Now the algorithm checks the statement F ∗A = F ∗B. If this statement is false,

F ∗A 6= F ∗B, then GA 6∼= GB. However, the converse is not true. Hence, if F ∗A = F ∗B,

then GA and GB might be isomorphic or might not be. In our example, F ∗A = F ∗B,

however, S∗A 6= S∗B. To continue investigating if GA
∼= GB, the algorithm then tries

to find an explicit isomorphism.

To do this, the algorithm compares each entry of S∗A to the respective entry in

S∗B. When two entries do not match, the algorithm begins row-swapping S∗B (and

column swapping since the S matrices are symmetric) until the mismatched entry

matches. Then, it repeats this process looking for other mismatched entries. After

performing the swap, two scenarios can occur. Either S∗B cannot be written as a

permutation of S∗A meaning GA 6∼= GB. Or S∗B can be written as a permutation of S∗A

12

S∗A v3 v2 v1 v4 v5

v3 -0.1.0 ∞.5.3 ∞.5.3 -2.3.2 -2.3.2

v2 ∞.5.3 -0.1.0 -2.3.2 -3.4.3 ∞.5.3

v1 ∞.5.3 -2.3.2 -0.1.0 ∞.5.3 -3.4.3

v4 -2.3.2 -3.4.3 ∞.5.3 -0.1.0 -4.5.4

v5 -2.3.2 ∞.5.3 -3.4.3 -4.5.4 -0.1.0

F ∗B v3 v2 v1 v4 v5

-4.5.4 0 0 0 1 1

-3.4.3 0 1 1 1 1

-2.3.2 2 1 1 1 1

-0.1.0 1 1 1 1 1

∞.5.3 2 2 2 1 1

(which in our example is true), thus GA
∼= GB.

In summary, we begin by producing a random graph by using procedure 1. We

then produce a second graph with procedure 1, and check if it is isomorphic to the

first with procedure 2. If it is, we do not store the new graph, rather we increase

the multiplicity of the graph that it was isomorphic to. If it is not isomorphic to

the first graph, then we store it. Next we move on to generate a third graph and

compare it to the stored graphs. We continue this process for k iterations, where k

is sufficiently large to increase our confidence that all isomorphism classes appear in

our list of stored graphs.

Overall, for this example ({2, 2, 2, 1, 1}), it can be easily checked that there are

2 isomorphism classes and they are: a Hamiltonian Path, and a disconnected graph

where the components are a K3 and K2. Using the previously mentioned procedures,

we found 2 isomorphism classes for k = 100. More specifically, the multiplicity showed

13

S∗B v3 v2 v1 v4 v5

v3 -0.1.0 ∞.5.3 ∞.5.3 -2.3.2 -2.3.2

v2 ∞.5.3 -0.1.0 -2.3.2 ∞.5.3 -3.4.3

v1 ∞.5.3 -2.3.2 -0.1.0 -3.4.3 ∞.5.3

v4 -2.3.2 ∞.5.3 -3.4.3 -0.1.0 -4.5.4

v5 -2.3.2 -3.4.3 ∞.5.3 -4.5.4 -0.1.0

83 Hamiltonian Paths and 17 disconnected graphs.

1.4 Results of Procedures

Although the procedures we use to find the number of isomorphism classes are effective

in helping us find graphs to represent the classroom, the algorithms themselves can

be improved. For instance, recall in Section 2.5 that the randomly generated graphs

were not equally distributed between the two isomorphism classes. The program more

readily found the Hamilton Path instead of the disconnected graph.

This phenomena can be easily explained, but not easily corrected. When looking

more closely at the degree sequence {2, 2, 2, 1, 1}, we see that after the first few

selections for edges have been made, the graph is already destined to be a specific

isomorphism class. Consider the following scenario. Recall that the program will

start with v1 when generating a random graph. Now, the program has a 50% chance

of choosing to connect with a vertex of degree 2 and a 50% chance of choosing to

connect with a vertex of degree 1.

Case 1. If the program picks a vertex of degree 2, the same probabilities kick in.

The program, again, will either add an edge with a vertex that was originally degree

2 or degree 1.

Subcase 1. Suppose again, another vertex originally of degree 2 has been chosen.

14

In this case, have 33% chance of selecting a vertex originally of degree 2 and a 66%

chance of selecting a vertex originally of degree 1. This next selection is important to

which isomorphism class the graph will be in. Until this point, we could be in either of

the two classes. Now, if the program chooses a vertex originally of degree 2, then we

have a K3, and the final graph will be in the disconnected graph isomorphism class.

If the program selects a vertex originally of degree 1 then we will get a Hamiltonian

Path.

Subcase 2. Now suppose the program selects one of the vertices originally with

degree 1. Then, we already know the graph will be a Hamiltonian path.

Case 2. As stated, the algorithm will be with v1, which is of degree 2. If the

program then randomly picks one of the degree 1 vertices in the list, the graph will

be a Hamiltonian Path. Then, after only one edge has been placed in the graph, we

automatically know what type of graph will be produced.

From the above, we see that the algorithm has a much higher chance of mak-

ing a Hamiltonian Path than the disconnected graph. This was confirmed by our

multiplicity output which showed us that the Hamilitonian Path had been randomly

generated 83 times and the disconnected graph only 17 times. Although these num-

bers will slightly fluctuate with each run, we expect the distribution to resemble the

Hamiltonian Path being randomly generated approximately 11
12

of the time, and the

disconnected graph being randomly generated only approximately 1
12

of the time.

It should also be noted that, unfortunately, our implementation of the previously

mentioned procedures cannot run on directed graphs. We plan on improving upon

this, as well as the overall efficiency of the algorithms by implementing them in a

faster language.

15

1.5 Putting it all together

The output of our program is several isomorphism classes. We now turn to the

problem of deciding which of those isomorphism classes to use as the representative

of the classroom.

A common scenario that happens frequently in the real world can be modeled

with a K3, which represents an easily visualized scenario. If Person A knows Person

B and Person B knows Person C, then we can almost assume that in a classroom

(especially of small class size) that Person A and Person C know each other. Although

it might be expected that this real world scenario would be inherited in classrooms,

classroom interactions may not always have many copies of K3.

There exist scenarios where, in the above example, Person A and Person C did

not know each other. Hence, creating multiple induced P3 subgraphs in our classroom

graph. One way this happens is in the following scenario: a professor tells the students

to work with one other student. Another day, he gives the same instruction but the

previously consulted peer is absent that day. Another scenario is if the professor

specifies who the students should work with, such as “work with the student to your

left.” Once we knew such scenarios existed, we realized we cannot just select the

graph containing the most K3 subgraphs as an accurate representation.

Now, consider the following three graphs (each from a different isomorphism

class) of an actual classroom:

Clearly, there are more isomorphism classes than the three shown above for that

16

degree sequence. However, it is important to note that there are clear structural

differences in these particular graphs. For instance, consider the sizes of each group

of students represented by the graphs. In the graph on the left, there are two groups:

one containing six students and the other containing five students. Turning to the

middle graph, there are also two groups, but one contains eight students and the other

contains three. Lastly, the graph on the right, contains four distinct groups: three

groups each with two students and another with five students. Since the isomorphism

classes can have significant differences, we need an efficient method for choosing the

best representation of the data.

We conjecture that anaylzing the random walks on these graphs will give us an

indication of the classroom structure and help us in narrowing down our set of graphs

which we consider realistic. Selecting one of these graphs to represent a real classroom,

with unpredictable elements influencing its structure, is not an easy task. We also

plan to add a method of estimating the missing students who did not participate in

the survey.

17

CHAPTER 2

NOTE ON RAINBOW CONNECTION IN ORIENTED GRAPHS

WITH DIAMETER 2

2.1 Introduction

The concept of rainbow connection was first introduced by Chartrand et al. in [4]. A

path in an edge-colored graph is called rainbow if no two edges in the path receive the

same color. The rainbow connection number of a graph is the minimum number of

colors needed to color the edges of the graph so that there is a rainbow path between

every pair of vertices. This and the more general rainbow k-connection number have

been heavily studied in recent years in [3, 4, 5, 6, 13, 14, 16] and many other works.

In particular, see [15] for a survey of results in the area.

A tournament T is an oriented complete graph. We consider only k-strongly con-

nected (or simply k-strong) tournaments, meaning that there are k internally disjoint

directed paths from each vertex to every other vertex. A directed path between two

vertices in an edge-colored tournament is called rainbow if no two edges have the

same color within the path. If there is a directed rainbow path between every pair

of vertices in a graph, then the coloring is called rainbow connected. The smallest

number of colors needed for a tournament to be rainbow connected is called the (di-

rected) rainbow connection number, denoted −→rc(T). The diameter d of a tournament

is the largest, over all ordered pairs of vertices, number of edges in the shortest path

between the two vertices.

In [9], the following theorem was proven.

Theorem 3 (Dorbec et al. [9]). For any tournament T of diameter d,

d ≤ −→rc(T) ≤ d + 2.

The authors noted that d + 2 may not be the best upper bound.

Question 1. For each diameter d, is d + 1 or d + 2 the sharp upper bound on −→rc(T)

where T has diameter d.

We believe that a (d + 1)-coloring is possible, at least in some cases. Indeed, we

show that for tournaments of diameter 2, this improved upper bound holds.

Theorem 4. For any tournament T of diameter 2,

2 ≤ −→rc(T) ≤ 3.

The proof of this result is provided in Section 2.2.

More generally, we initiate the study of the rainbow k-connection number of a

tournament. An edge-colored tournament is called rainbow k-connected if, between

every pair of vertices, there is a set of k internally disjoint rainbow paths. The rainbow

k-connection number of a tournament, denoted −→rck(T), is then the minimum number

of colors needed to produce a rainbow k-connected coloring of the tournament T . To

state our next result, we let the k-total-diameter, denoted dk(T), be the maximum

(over all pairs of vertices) of the smallest number of edges in a set of k internally

disjoint paths between the vertices.

Theorem 5. Given an integer k ≥ 2 and a tournament T of order n with dk(T) = d,

−→rck(T) ≤ d

1− (1− 1
n2)1/d

.

The proof of Theorem 5 is an easy application of the probabilistic method and

is presented in Section 2.3.

Next we define some more notation. Say a set of k internally disjoint paths from a

vertex x to a vertex y is minimum if the longest path in the set is as short as possible,

over all such sets of paths. Let the kth diameter denote the maximum length, over

all pairs of vertices u, v, of the longest path in a minimum set of k internally disjoint

19

u − v paths. More formally, if `k(u, v) is the minimum length of the longest path in

a set of k internally disjoint u− v paths, then the kth diameter of a graph G is

max
u,v∈V (G)

`k(u, v).

Note that the 1st diameter is simply the diameter of the graph. Also note that the

kth diameter is at least dk(T)
k

. Our final result considers tournaments with small kth

diameter and provides a bound on the rainbow connection number.

Theorem 6. A strongly connected tournament T of kth diameter 2 has −→rck(T) ≤

3 + k + 2
(
k
2

)
.

The proof of Theorem 6 is presented in Section 2.4. This naturally leads to the

following problem.

Problem 1. Produce sharp bounds on −→rck(T) in terms of the kth diameter of T .

2.2 Proof of Theorem 4

The sharpness of the upper bound is given by the following example. Let A be a

directed triangle and let u and v be single vertices. Direct all edges from v to A, from

A to u and from u to v. Any 2-coloring of this graph must color two edges of A with

a single color. This induces a directed monochromatic P3. Let a1 be the initial vertex

of this P3 and let a3 be the terminal vertex and note that the edge between a1 and

a3 is directed from a3 to a1. See Figure 2.1.

The only possible rainbow path from a1 to a3 must pass through u and v, meaning

that it must use 3 different colors. Thus, this graph has diameter 2 but rainbow

connection number 3. Larger graphs with the same property can be built by replacing

vertices with directed triangles and blowing up edges in the natural way.

We now prove Theorem 4.

20

A

u

v

Figure 2.1: A tournament T with diameter 2 and rainbow connection number 3.

Proof. Let T be a tournament of diameter 2. Let a → b → c be a shortest path

from a vertex a to another vertex c. Let A1 denote the out-neighborhood of a and

let A2 = T \ (A1 ∪ {a}). Note that Ai is the set of vertices at distance i from a and,

in particular, b ∈ A1 and c ∈ A2. Color all edges from a to A1 with color 1 (red in

Figure 2.2). All edges from vertices in A1 to vertices in A2 have color 2 (blue), and all

edges from vertices in A2 to the vertex a have color 3 (green). All edges from vertices

in A2 to vertices in A1 also have color 3. Finally, all edges within the same set, either

A1 or A2, have color 1. This coloring is similar to the one used by Dorbec et al. in

[9] to prove Theorem 3.

A1 A2

a

Figure 2.2: Coloring of the tournament.

In order to show that this coloring is rainbow connected, we consider cases based

on the location of two selected vertices x and y and find rainbow paths between them.

21

If x = a, we trivially find a rainbow path to y for any choice of y ∈ A1 since A1 is

the out-neighborhood of a. If y ∈ A2, then by construction, there is a rainbow path

containing some vertex w ∈ A1 such that x→ w → y with colors 1 and 2 respectively.

If y = a and x ∈ A2, the result is again trivial since a is an out-neighbor of every

vertex in A2. Also, if x ∈ A1, then again there is a rainbow path of length 2, namely

x→ w → y for some w ∈ A2 using colors 2 and 3.

If x ∈ A2 and y ∈ A1, then, by construction, there is a rainbow path x→ a→ y

using colors 3 and 1, respectively.

Finally, suppose x ∈ A1 and y ∈ A2. If the edge x → y is in E(T), then

there is a trivially rainbow path of length 1. Since the diameter is 2, there exists a

vertex with x → w → y. Regardless of the location of w, this path is rainbow by

construction. More specifically, if w ∈ A1, then the path x → w → y uses colors 1

and 2, respectively. If w ∈ A2, then the path x → w → y exists uses colors 2 and

1, respectively. Hence, every tournament with diameter 2 has rainbow connection

number at most 3.

2.3 Proof of Theorem 5

For this proof, we use the probabilistic method as described by Alon and Spencer

in [1]. This bound is likely far from the best possible, particularly when n is much

bigger than d, and we make little effort to optimize it.

We now prove Theorem 5.

Proof. Consider a tournament on n vertices and set c = d
1−(1− 1

n2)
1/d . Label the vertices

of T with {v1, v2, . . . , vn}. Randomly color the edges of T using c colors. Let Xi,j be

an indicator variable which takes the value 1 if there is no set of k internally disjoint

rainbow paths from vi to vj. Since there is a set of such paths on at most d edges, we

22

compute the expectation of Xi,j to be

E(Xi,j) = 1− c!

(c− d + 1)!cd
< 1−

(
1− d

c

)d

.

By linearity of expectation, if we set X =
∑

i,j Xi,j, we get

E(X) =
∑

E(Xi,j) ≤ 2

(
n

2

)(
1−

(
1− d

c

)d
)
.

Since c = d
1−(1− 1

n2)
1/d , we see that E(X) < 1 so, by the probabilistic method, there is

a coloring of T with c colors that is rainbow k-connected.

2.4 Proof of Theorem 6

For a tournament T of kth diameter 2, we use the following coloring. Select a k-subset

of vertices A := {v1, v2, . . . , vk}. Now, let the set of all out-neighbors of A be called

A1 and color all edges of the form A → A1 with the color C1 and edges of the form

A1 → A with color C2. Let N ′i ⊆ A1 be the out-neighborhood of vi for each 1 ≤ i ≤ k.

Define sets

Ni = N ′i \ (∪j<iNj)

for all 1 ≤ i ≤ k. We use one distinct color CNi
on all edges within each set Ni for

all i for a total of k colors. Use at most 2
(
k
2

)
distinct colors to color the remaining

edges of A1 such that edges of the form Ni → Nj have a different color from those of

the form Nj → Ni for all i 6= j. This uses a total of 2
(
k
2

)
+ k colors to color A1.

Let A2 be the set of all remaining vertices so that A2 is in the out-neighborhood

of A1 and A is in the out-neighborhood of A2. It should be noted that A2 = ∅ is

allowed. Color all edges of the form A1 → A2 with color C2 and the edges from

A2 → A with color C3. All edges from A to A2 have color C1 and all edges from A2

to A1 have color C3. The edges within the set A are colored using
(
k
2

)
of the colors

23

previously used between sets in A1. The edges within the set A2, if they exist, are

allowed to be any color except C3. Hence 3 + k + 2
(
k
2

)
colors are used to color T .

In order to show that this coloring is rainbow connected, we consider cases based

on the location of vertices x and y and find k rainbow paths from x to y.

If x = vi and y = vj for some i 6= j, then there are k internally disjoint paths

of length at most 2 that each must be one the following: x → y, x → Ni → y, or

x→ vh → y for some h 6= i, j. All paths of these forms are rainbow by construction.

If x, y ∈ A2 then there are k internally disjoint paths of length 3 that each must

be one of the following: x → vi → Ni → y, or x → vi → Nj → y for all i with

1 ≤ i ≤ k and for some j 6= i. All such paths are rainbow by construction.

If x ∈ A1 and y = vi then there are k internally disjoint rainbow paths of length

at most 2, each having one the following forms: x → vk → y, or x → w → y, where

w ∈ A1 and w = y is allowed. If x = vi and y ∈ A1 then there exist k internally

disjoint rainbow paths of the form x → w → y where each w ∈ A1 and w = y is

allowed.

If x = vi and y ∈ A2 then there are k internally disjoint rainbow paths of the

form x→ A1 → y. If x ∈ A2 and y = vi then there exist k internally disjoint rainbow

paths x→ w → y where each w is anywhere and w = y is allowed.

If x ∈ A1, say x ∈ Ni, and y ∈ A2, then there are easily k internally disjoint

rainbow paths from x to y as in previous cases. If x ∈ A2 and y ∈ A1 then there are

k internally disjoint rainbow paths such that x→ vi → Ni → y for all i.

Finally, suppose x, y ∈ A1. If x ∈ Ni and y /∈ Ni, then there are k internally

disjoint rainbow paths of the form x → w → y, where w is anywhere. Now let

x, y ∈ Ni. Since there are k internally disjoint paths of length at most 2 from x→ vi,

there exist k out-neighbors of x that are outside Ni. Call this set Nx. Since the

diameter is 2, there are k internally disjoint paths of the form Nx → w → y where w

24

can be anywhere. Hence, there are k internally disjoint rainbow paths from x to y of

the form x→ Nx → w → y.

This completes the proof of Theorem 6.

2.5 Concluding Remarks

Unfortunately our method used in the proofs of Theorems 4 and 6 does not extend to

tournaments of diameter larger than 2 so the question of a sharp result in Question 1

and Problem 1 remains open even for diameter 3. The bottleneck is clearly going

from vertices in A1 to vertices in A2 as defined in the proofs.

25

REFERENCES

[1] N. Alon and J. H. Spencer. The probabilistic method. Wiley-Interscience Series in
Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ,
third edition, 2008. With an appendix on the life and work of Paul Erdös.

[2] G. Bounova. Octave Networks Toolbox First Release. Zenodo. 2014. DOI:
10.5281/zenodo.10778

[3] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster. On rainbow connection.
Electron. J. Combin., 15(1):Research paper 57, 13, 2008.

[4] G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang. Rainbow connection
in graphs. Math. Bohem., 133(1):8598, 2008.

[5] L. Chen, X. Li, and H. Lian. Nordhaus-Gaddum-type theorem for rainbow con-
nection number of graphs. Graphs Combin., 29(5):12351247, 2013.

[6] D. Dellamonica, Jr., C. Magnant, and D. M. Martin. Rainbow paths. Discrete
Math., 310(4):774781, 2010.

[7] A. Dharwadker, J.T. Tevet. The graph isomorphism algorithm. The Structure
Semiotics Research Group S.E.R.R. Eurouniversity Tallinn. 2009.

[8] E.W. Dijkstra, A note on two problems in connection with graphs. Numerische
Math. 1, 269-271, 1959.

[9] T. P. Dorbec, I. Schiermeyer, E. Sidorowicz, and E. Sopena. Rainbow connection
in oriented graphs. Manuscript.

[10] P. Erdös, T. Gallai, Gráfok elört fokszámú pontokkal, Matematikai Lapok 11:
264274, 1960.

[11] Hakimi, S. L. , On realizability of a set of integers as degrees of the vertices of
a linear graph. I, Journal of the Society for Industrial and Applied Mathematics
10: 496506, 1962.

[12] Havel, V. , A remark on the existence of finite graphs, C̆asopis pro pĕstováńı
matematiky (in Czech) 80: 477480, 1955.

26

[13] A. Kemnitz, J. Przybylo, I. Schiermeyer, and M. Wózniak. Rainbow connection
in sparse graphs. Discuss. Math. Graph Theory, 33(1):181192, 2013.

[14] X. Li, M. Liu, and I. Schiermeyer. Rainbow connection number of dense graphs.
Discuss. Math. Graph Theory, 33(3):603611, 2013.

[15] X. Li, Y. Shi, and Y. Sun. Rainbow connections of graphs: a survey. Graphs
Combin., 29(1):138, 2013.

[16] I. Schiermeyer. Bounds for the rainbow connection number of graphs. Discuss.
Math. Graph Theory, 31(2):387395, 2011.

27

Appendix A

MATLAB CODE

These are the codes for the previously mentioned procedures.

A.1 classesFromDegreeSequence

% Finds the isomorphism c l a s s e s o f a degree sequence .

%

% INPUT: A degree sequence d and number o f i t e r a t i o n s k .

% OUTPUT: Adjacency Matrix f o r each c l a s s and the

% m u l t i p l i c i t y o f each c l a s s .

%

% Note , the matr ices in the output are in nonincreas ing degree

% order . Although i t i s NOT r e q u i r e d f o r t h i s program ,

% the degree sequence input shou ld a l s o be in nonincreas ing

% order i f the output needs to correspond to the input

% v e r t e x numbering .

%

% Modif ied : March 21 , 2015

function [A, mults] = classesFromDegreeSequence (d , k)

% F i r s t checks i f d i s g r a p h i c a l

d = d(find (d)) ;

i f ˜ i sGraphic (d)

disp (’The sequence i s not graphic . ’) ;

return

end

A = randomGraphFromDegreeSequence (d) ;

[˜ , ind] = sort(−sum(A)) ;

A = A(ind , ind) ;

n = length (A) ;

[F , Sd , Sn , Sm] = sgnFreq (A) ;

c l a s s e s = 1 ;

mults = [1] ;

for i = 1 : k

% Optiona l wai t bar so user can watch p r o g r e s s

waitbar (i /k) ;

M = randomGraphFromDegreeSequence (d) ;

newclass = true ;

% Check i f we have a new c l a s s

for j = 1 : c l a s s e s

i f i s I som (A(: , : , j) , M)

mults (j) += 1 ;

newclass = f a l s e ;

break ;

end

end

29

i f newclass

[˜ , ind] = sort(−sum(M)) ;

M = M(ind , ind) ;

c l a s s e s += 1 ;

A(: , : , c l a s s e s) = M;

mults = [mults 1] ;

end

end

end

30

A.2 isGraphic

% Checks whether a degree sequence i s g r a p h i c a l .

%

% Source : E r d s , P. and Gal la i , T. ”Graphs wi th P r e s c r i b e d

% Degrees o f V e r t i c e s ” [Hungarian] . Mat . Lapok . 11 , 264−274,

% 1960.

%

% INPUT: a sequence (v e c t o r) o f numbers

% OUTPUT: boolean , t r u e or f a l s e

%

% Note : Not g e n e r a l i z e d to d i r e c t e d graph degree sequences .

% Modif ied : March 21 , 2015

function B = isGraphic (seq)

i f not (isempty (find (seq <=0))) | | mod(sum(seq) ,2)==1

% t h e r e are non−p o s i t i v e degrees or t h e i r sum i s odd

B = f a l s e ; return ;

end

n=length (seq) ;

seq=−sort(−seq) ; % s o r t in d e c r e a s i n g order

for k=1:n−1

sum dk = sum(seq (1 : k)) ;

31

sum dk1 = sum(min ([k∗ones (1 , n−k) ; seq (k+1:n)])) ;

i f sum dk > k∗(k−1) + sum dk1 ; B = f a l s e ; return ; end

end

B = true ;

32

A.3 randomGraphFromDegreeSequence

% Construc t ing a random graph based on a g iven degree sequence .

% Source : Molloy M. & Reed , B. (1995) Random S t r u c t u r e s

% and Algori thms 6 , 161−179

%

% INPUT: a graph ic sequence o f numbers , 1xn

% OUTPUT: adjacency matrix o f r e s u l t i n g graph , nxn

%

% Note : The s imple v e r s i o n o f t h i s a l gor i thm g e t s s t u c k about

% h a l f o f the time , so in t h i s implementat ion the l a s t

% p r o b l e m a t i c edge i s rewired .

%

% Other r o u t i n e s used : adj2edgeL .m, rewireThisEdge .m,

% and edgeL2adj .m

% Modif ied : March 21 , 2015

function adj= randomGraphFromDegreeSequence (Nseq)

n i t e r = 0 ;

stubs=Nseq ; % a s s i g n degrees to s t u b s

adj = zeros (length (Nseq)) ; % i n i t i a l i z e adjacency matrix

perm = [2 : length (s tubs) 1] ;

33

old sum = 0 ;

cnt =0;

while sum(s tubs)>0 % w h i l e s t u b s are l e f t to connect

% catch problem graphs (debugg ing purposes)

n i t e r += 1 ;

i f n i t e r > 1000

fpr intf (’ f a i l e d a f t e r 1000 i t e r a t i o n s \n ’) ;

s tubs

adj

return ;

end

i f sum(s tubs)==2 && cnt>length (s tubs)

% rewire the l a s t edge when s t u c k

e l = adj2edgeL (adj) ;

ind = find (stubs >0);

i f length (ind) == 1 ;

e l r = rewireThisEdge ([e l ; ind (1) ind (1) 1] ,

ind (1) , ind (1)) ;

end

i f length (ind) == 2 ;

34

e l r = rewireThisEdge ([e l ; ind (1) ind (2) 1 ;

ind (2) ind (1) 1] ,

ind (1) , ind (2)) ;

end

i f isempty (e l r) % r e s t a r t a l gor i thm c o m p l e t e l y

fpr intf (’ S t a r t i ng over\n ’) ;

s tubs = Nseq ;

adj = zeros (length (Nseq)) ;

old sum = 0 ;

cnt =0;

else

adj = edgeL2adj (e l r) ;

% return matrix wi th l a s t edge rewired

return

end

end

new sum = sum(s tubs) ;

i f old sum==new sum

cnt = cnt +1;

35

s tubs = stubs (perm) ;

adj = adj (perm , perm) ;

end % no new nodes have been connected , counter+1

i f old sum˜=new sum ; cnt =0; end

% new connect ions , r e s t a r t count

[˜ , n1] = max(s tubs) ;

% p i c k the node wi th h i g h e s t number o f remaining s t u b s

old sum = sum(s tubs) ;

ind = find (s tubs .∗(1− adj (n1 , :))) ; % no doub le edges

ind = ind (ind ˜= n1) ; % no s e l f−l o o p s

i f length (ind) == 0 ; cont inue ; end

n2 = ind (randi (length (ind))) ;

adj (n1 , n2)=1; adj (n2 , n1)=1;

stubs (n1) = stubs (n1) − 1 ;

s tubs (n2) = stubs (n2) − 1 ;

end

36

A.4 adj2edgeL

% Convert adjacency matrix (nxn) to edge l i s t (mx3)

%

% INPUT: adjacency matrix : nxn

% OUTPUT: edge l i s t : mx3

%

% GB: l a s t updated , Sep 24 , 2012

function e l=adj2edgeL (adj)

n=length (adj) ; % number o f nodes

edges=find (adj >0); % i n d i c e s o f a l l edges

e l = [] ;

for e=1: length (edges)

[i , j]= ind2sub ([n , n] , edges (e)) ; % node i n d i c e s o f edge e

e l =[e l ; i j adj (i , j)] ;

end

37

A.5 edgeL2adj

% Convert edge l i s t to adjacency matrix .

%

% INPUT: edge l i s t : mx3 , m − number o f edges

% OUTPUT: adjacency matrix nxn , n − number o f nodes

%

% Note : in format ion about nodes i s l o s t : i n d i c e s on ly (i1 , . . . in)

% remain

%

% GB: l a s t updated , Sep 25 , 2012

function adj=edgeL2adj (e l)

nodes=sort (unique ([e l (: , 1) e l (: , 2)])) ; % g e t a l l nodes , s o r t e d

adj=zeros (numel (nodes)) ; % i n i t i a l i z e adjacency matrix

% across a l l edges

for i =1: s ize (e l , 1) ;

adj (find (nodes==e l (i , 1)) , find (nodes==e l (i , 2)))= e l (i , 3) ;

end

38

A.6 rewireThisEdge

% Degree−p r e s e r v i n g r e w i r i n g o f 1 g iven edge .

% Note : Assume unweighted u n d i r e c t e d graph .

%

% INPUT: edge l i s t , e l (mx3) and the two nodes o f the

% edge to be rewired .

% OUTPUT: rewired edge l i s t , same s i z e and same degree

% d i s t r i b u t i o n

%

% Note : There are cases when r e w i r i n g i s not p o s s i b l e

% w h i l e s i m u l t a n e o u s l y keep ing the graph simple ,

% so an empty edge l i s t i s re turned .

%

% Other r o u t i n e s used : edgeL2adj .m, k n e i g h b o r s .m

% GB: l a s t updated , Oct 25 , 2012

function e l = rewireThisEdge (e l , i1 , i 2)

% check whether the edge can a c t u a l l y be rewired

adj = edgeL2adj (e l) ;

ne ighbors = [i1 , i 2] ;

ne ighbors = [ne ighbors kne ighbors (adj , i1 , 1)] ;

ne ighbors = [ne ighbors kne ighbors (adj , i2 , 1)] ;

d i s j o i n t e d g e s = [] ;

39

for e=1: length (e l)

i f (sum(ismember (neighbors , e l (e ,1)))==0 &&

sum(ismember (neighbors , e l (e ,2)))==0)

d i s j o i n t e d g e s = [d i s j o i n t e d g e s ; e l (e , :)] ;

end

end

i f isempty (d i s j o i n t e d g e s)

errmsg = s t r c a t (’ rewireThisEdge () : cannot r ew i r e t h i s ’ ,

’ graph without adding a double edge ’ ,

’ or a loop \n ’) ;

fpr intf (errmsg) ;

e l = [] ;

return

end

[˜ , row] = ismember ([i 1 i 2 1] , e l , ’ rows ’) ;

ind = [row] ;

edge1=e l (ind (1) , :) ;

% p i c k a random second edge from the d i s j o i n t edges

randind = randi ([1 , s ize (d i s j o i n t e d g e s , 1)]) ;

edge2=d i s j o i n t e d g e s (randind , :) ;

[˜ , ind2] = ismember ([edge2 (1) edge2 (2) 1] , e l , ’ rows ’) ;

40

ind = [ind ind2] ;

i f rand<0.5

% f i r s t p o s s i b i l i t y : (e11 , e22) & (e12 , e21)

e l (ind (1) , :) = [edge1 (1) , edge2 (2) , 1] ;

e l (ind (2) , :) = [edge1 (2) , edge2 (1) , 1] ;

% add the symmetric e q u i v a l e n t s

[˜ , inds1] = ismember ([edge1 (2) , edge1 (1) , 1] , e l , ’ rows ’) ;

e l (inds1 , :) = [edge2 (2) , edge1 (1) , 1] ;

[˜ , inds2] = ismember ([edge2 (2) , edge2 (1) , 1] , e l , ’ rows ’) ;

e l (inds2 , :) = [edge2 (1) , edge1 (2) , 1] ;

else

% second p o s s i b i l i t y : (e11 , e21) & (e12 , e22)

e l (ind (1) , :) = [edge1 (1) , edge2 (1) , 1] ;

e l (ind (2) , :) = [edge1 (2) , edge2 (2) , 1] ;

% add the symmetric e q u i v a l e n t s

[˜ , inds1] = ismember ([edge1 (2) , edge1 (1) , 1] , e l , ’ rows ’) ;

e l (inds1 , :) = [edge2 (1) , edge1 (1) , 1] ;

41

[˜ , inds2] = ismember ([edge2 (2) , edge2 (1) , 1] , e l , ’ rows ’) ;

e l (inds2 , :) = [edge2 (2) , edge1 (2) , 1] ;

end

42

A.7 kneighbors

% Finds the number o f k−n e i g h b o r s (k l i n k s away) f o r every node

%

% INPUT: adjacency matrix (nxn) , s t a r t node index ,

% k − number o f l i n k s

% OUTPUT: v e c t o r o f k−n e i g h b o r s i n d i c e s

%

% GB: l a s t updated , Oct 7 2012

function kneigh = kne ighbors (adj , ind , k)

adjk = adj ;

for i =1:k−1; adjk = adjk∗ adj ; end ;

kneigh = find (adjk (ind , :) >0) ;

43

A.8 isIsom

% Checks i f two graphs are isomorphic .

%

% Dharwadker , Tevet . (2 0 0 9) . ”The Graph Isomorphism Algorithm ”

%

% INPUT: Adjacency matrix o f two graphs .

% OUTPUT: True or Fa lse

%

% Modif ied : March 21 , 2015

function i s I som = isI som (G1, G2)

[F1 , d1 , n1 , m1] = sgnFreq (G1) ;

[F2 , d2 , n2 , m2] = sgnFreq (G2) ;

i s I som = true ;

[F1 , s i g 1] = sor t rows (F1) ;

[F2 , s i g 2] = sor t rows (F2) ;

i f prod (s ize (F1) == s ize (F2))==0 | | (F1 ˜= F2)

i s I som = f a l s e ;

return

end

d1 = d1 (s ig1 , s i g 1) ;

44

n1 = n1 (s ig1 , s i g 1) ;

m1 = m1(s ig1 , s i g 1) ;

d2 = d2 (s ig2 , s i g 2) ;

n2 = n2 (s ig2 , s i g 2) ;

m2 = m2(s ig2 , s i g 2) ;

% Find f i r s t mismatch

d0 = find (˜ (d1==d2)) ;

n0 = find (˜ (n1==n2)) ;

m0 = find (˜ (m1==m2)) ;

n i t e r = 0 ;

while (˜ (isempty (d0) && isempty (n0) && isempty (m0)))

i f n i t e r > length (d1)ˆ2

disp (’ i s I som f a i l e d ’)

return

end

n i t e r += 1 ;

% Find an element to swap wi th mismatch

misMatch = min ([d0 ; n0 ; m0]) ;

[row , c o l] = ind2sub ([length (d1) , length (d1)] , misMatch) ;

matchd = find (d2 (row , c o l : end) == d1 (row , c o l)) ;

45

matchn = find (n2 (row , c o l : end) == n1 (row , c o l)) ;

matchm = find (m2(row , c o l : end) == m1(row , c o l)) ;

matches = i n t e r s e c t (i n t e r s e c t (matchd , matchn) , matchm) ;

% Nothing to swap to , graphs are not isomorphic

i f isempty (matches)

i s I som = f a l s e ;

return

end

newCol = min(matches) + c o l − 1 ;

% Swap the rows and columns o f the s i g n matrix o f graph 2

d2 (: , [co l , newCol]) = d2 (: , [newCol , c o l]) ;

n2 (: , [co l , newCol]) = n2 (: , [newCol , c o l]) ;

m2 (: , [co l , newCol]) = m2 (: , [newCol , c o l]) ;

d2 ([co l , newCol] , :) = d2 ([newCol , c o l] , :) ;

n2 ([co l , newCol] , :) = n2 ([newCol , c o l] , :) ;

m2([co l , newCol] , :) = m2([newCol , c o l] , :) ;

% Find f i r s t mismatch

d0 = find (˜ (d1==d2)) ;

n0 = find (˜ (n1==n2)) ;

m0 = find (˜ (m1==m2)) ;

end

46

A.9 sgnFreq

% Creates the Sign Frequency Matrix and Sign Matrix o f a graph .

%

% Dharwadker , Tevet . (2 0 0 9) . ”The Graph Isomorphism Algorithm ”

%

% INPUT: Adjacency matrix o f a graph .

% OUTPUT: Sign Frequency Matrix and Sign Matrix

%

% Modif ied : March 21 , 2015

function [F , Sd , Sn , Sm] = sgnFreq (G)

n = length (G(: , 1)) ;

Sd = zeros (n) ;

Sn = zeros (n) ;

Sm = zeros (n) ;

s = zeros (n∗(n−1)/2 , 3) ;

k = 1 ;

for i =1:n

for j=i : n

[Sd (i , j) , Sn (i , j) ,Sm(i , j)] = SUV(G, i , j) ;

s (k , :) = [Sd(i , j) , Sn (i , j) ,Sm(i , j)] ;

k += 1 ;

end

47

end

Sd = Sd + Sd ’ ;

Sn = Sn + Sn ’ − eye (n) ;

Sm = Sm + Sm’ ;

s = unique (sor t rows (s) , ’ rows ’)

r = length (s (: , 1)) ;

F = zeros (n , r) ;

for i = 1 : n

a = [Sd (: , i) , Sn (: , i) , Sm(: , i)] ;

for j = 1 : r

for l = 1 : n

i f a (l , :) == s (j , :)

F(i , j) += 1 ;

end

end

end

end

48

A.10 SUV

% Creates the e n t r i e s f o r the Sign Matrix o f a graph .

%

% Dharwadker , Tevet . (2 0 0 9) . ”The Graph Isomorphism Algorithm ”

%

% INPUT: Adjacency matrix o f a graph , c o o r d i n a t e s o f s i g n matrix

% OUTPUT: The v a l u e s o f the s i g n matrix

%

% Modif ied : March 21 , 2015

function [d , n ,m] = SUV(G, u , v)

Guv = G;

sgn = (−1)ˆ(Guv(u , v) + 1) ;

Guv(u , v) = 0 ;

Guv(v , u) = 0 ;

ind = s imp l eD i j k s t r a (Guv , u) ;

d = ind (v) ;

ind = ind + s imp l eD i j k s t r a (Guv , v) ;

ind = find (ind == s imp l eD i j k s t r a (Guv , u) (v)) ;

Guv = Guv(ind , ind) ;

n = length (Guv (: , 1)) ;

m = sum(sum(Guv)) / 2 ;

d = sgn∗d ;

49

A.11 simpleDijkstra

% Implementation o f a s imple v e r s i o n o f the D i j k s t r a s h o r t e s t

% path a l gor i thm . Returns the d i s t a n c e s from a s i n g l e v e r t e x

% to a l l o thers , doesn ’ t save the path

%

% INPUTS: adjacency matrix , ad j (nxn) , s t a r t node s (index

% between 1 and n)

% OUTPUTS: s h o r t e s t path l e n g t h from the s t a r t node to a l l

% other nodes , 1xn

%

% Note : Works f o r a weigh ted / d i r e c t e d graph .

% GB: l a s t updated , September 28 , 2012

function d = s imp l eD i j k s t r a (adj , s)

n=length (adj) ;

d = i n f ∗ones (1 , n) ; % d i s t a n c e s−a l l nodes

d(s) = 0 ; % s−s d i s t a n c e

T = 1 : n ; % node s e t wi th s h o r t e s t paths not found y e t

while not (isempty (T))

[dmin , ind] = min(d(T)) ;

for j =1: length (T)

i f (adj (T(ind) ,T(j))>0 &&

d(T(j))>d(T(ind))+ adj (T(ind) ,T(j)))

50

d(T(j))=d(T(ind))+ adj (T(ind) ,T(j)) ;

end

end

T = s e t d i f f (T,T(ind)) ;

end

51

	Graphs of Classroom Networks
	Recommended Citation

	tmp.1430852717.pdf.tIgxh

