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Figure 3.1 The Turtlebot with Kinect and Laptop 

 

3.2 ROS Code Platform 

 

The Robot Operating System (ROS) code structure in this study was done in C++ and made the 

Turtlebot’s on-board laptop, Microsoft Kinect sensor, and Kobuki base as the key nodes within 

the different network configurations (with the on-board simple neural network or the off-board 

GPU based SNN). The main program flow in ROS (Figure 3.2) followed that the Microsoft 

Kinect node sent sensory data and the Kobuki node sent important diagnostic data to the on-

board laptop to be used as inputs for the neural network. If the neural network used was within 

the on-board laptop, the on-board calculations were made and movement data containing the 

appropriate action was sent to the Kobuki base. If the neural network used was on the cloud 

server, the sensory data received from the Kinect was sent to the cloud network through the 

laptop and the robot waited for a response back from the cloud node. Once the cloud node 

returned with the correct response, this was sent to the Kobuki base through the on-board laptop 

which sent the appropriate action commands to the mobile robotic base. 
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Figure 3.2 ROS code structure layout 

 

3.3 Simple Neuromodulation Model and States 

 

The 3-layer neural network structure of Figure 3.3 was used to study how efficiently it would 

perform to control an autonomous robot’s behavior, similar to (Prince and Samanta 2013). 

Previous work with this model has been reported by (J. L. Krichmar 2012) in the field of 

autonomous robotics. The model consisted of three groups of neurons - event neurons from 

sensory signals, neuromodulatory neurons and behavior state neurons. The first layer of neurons 

indicated the incidents happening in the real world environment for the robot. The entire 

experiment was run to test how the robot would respond if any of events on the first layer took 

place. This network structure was designed in such a way that it would be capable of 

accommodating several events taking place simultaneously in the real world environment. 
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For this work, four events neurons were used. These event neurons wee simple activated 

meaning if there was an event, it would be set as 1, and reset to 0 otherwise.  These four events 

were – OBJECT, BATTERY, BUMP, and BEAM. The robot swept in a 180 degree arc to read 

the distances of objects in its environment. Event Object occurred if any of the distance 

parameters were less than 0.52 m. Event Battery got triggered when the battery level of the robot 

dropped below certain percentage (while running the experiment) since its last charge. Event 

Bump neuron was initiated and triggered by the built-in bump sensor of the Kobuki Turtlebot 

base when it physically bumped against any object. The Bump event was also activated if 

distance measured by any of the parameters was less than 0.72 m. Event Beam was triggered 

when one or more of the infrared emitters of the robot’s docking “home” base were detected. 

 

Figure 3.3 The structure of the simple neural simulation model (J. L. Krichmar 2012). 
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The neuromodulatory layer consisted of four ACh/NE neurons, one for each event, one 

dopaminergic neuron (DA), and one serotonergic neuron (5-HT). The last layer of four neurons 

indicated the four different behavioral outputs as states. The four behavior states were: 1) Wall-

Following, 2) Open-field, 3) Explore Object, and 4) Find Home. There were also two sub-states 

of Find Home called At Home and Leave Home when the actual docking station was found. The 

simulation cycle time was about 14 s which accounted for the time to read sensor data, update 

neural simulation, and send a command to the robot motors.   The robot would stay on one of the 

states at the end of each simulation cycle but kept switching in between those states based on 

neuromodulatory response during the entire run period.  

 The connection weights between event neurons and the state neurons were 1 and these weights 

did not get updated. The connection weights between the event neurons to the ACh/NE neurons 

were initialized at 1. The connections between event neurons and ACh/NE neurons were kept 

depressive and both DA and 5-HT neurons were kept facilitative. The connection weights 

between event neurons and neuromodulatory neurons go updated after the end of the every 

simulation cycle especially when the robot was running in both risk-taking and risk-aversive 

modes. In distracted behavior mode, the connection weights between the event neurons and the 

neuromodulatory neurons were kept at 1 throughout the run period. The state neurons were 

connected internally all-to-all.  The connections indicated the intrinsic inhibitory weight 

connections with value of -1 and intrinsic excitatory connections with a value of 0.5.   

The relationships for neuronal activity, neuronal inputs and weight updating are presented briefly 

here for completeness. The activation function for all neuromodulatory and state neurons was 

governed by sigmoid function: 

݊ሺ݇ሻ ൌ ଵ

ଵାషሺೖሻ
                                   (3.1) 

where I was the input to the neuron, g was the gain of the function, and k denoted the simulation 

cycle index. Since the activation function for all neurons were governed by the sigmoid function, 

the activity values of these neurons remained within 0 to 1.   

The input to the neurons for all the neuromodulatory neurons and the state neurons was given as: 
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ሺ݇ሻܫ ൌ ܾ  ∑ ܿሺ݇ሻ݊ ሺ݇ሻݓሺ݇ሻ   ݊ሺ݇ െ 1ሻ  ݊݉ሺ݇ሻ     (3.2) 

 where b was the baseline input set to -1.0 for DA and 5-HT neurons, -0.5 for ACh/NE neurons, 

and -1.0+rand (0.0,0.5) for state neurons, c(k) was set to the sum of DA and 5-HT neuronal 

activity for inhibitory connections, otherwise c(k) was set to 1.0 [3]. p was the persistence set to 

0.25 for all neurons and nm(k) is the neuromodulatory input into last layer of state neurons: 

݊݉ሺ݇ሻ ൌ 	∑ ∑ ݊ ሺ݇ሻݓሺ݇ሻܧ݄ܰܥܣሺ݇ሻ ݁ሺ݇ሻݓሺ݇ሻ           (3.3) 

where nmi(k) was the neuromodulatory input into state neuron i, nl(k), was the activity of either 

the DA or 5-HT neuron, wli(k) was the weight from neuromodulatory neuron l to state neuron i, 

AChNEj(k) and ej(k) were the activities of ACh/NE and event neurons corresponding to event j, 

and wji(k) was the weight from event neuron j to state neuron i. 

The updating of the connection weights was based on both the occurred events and the synaptic 

plasticity which was given by the following equation:  

ሺ݇ሻݓ ൌ ቐ
ݐሺݓ െ 1ሻ				݂݅					݁ ൌ 1																				

ሺ݇ݓ െ 1ሻ 
ଵି௪ೕሺିଵሻ

ఛ
݁ݏ݅ݓݎ݄݁ݐ					

																																																																										

      (3.4) 

where i was the index of the event neuron, j was the index of the 5-HT, DA, or ACh/NE neuron, 

p was the amount of change in response to an event, and τ, which was set to 50, was a time 

constant that governed the rate at which weights returned to their original value. 

3.4 Spiking Neuromodulation Model and States 

 

To integrate the biologically realistic Izhikevich artificial neuron model in the control system two 

computers using NVIDIA graphics processing units (GPUs) with CUDA architecture are used for 

parallel computing. Each computer used the same copy of a SNN simulator platform that was 

optimized to take advantage of the parallel processing capability of the GPUs. The SNN 

simulator used in this paper is a publicly available self-contained resource used in previous work 

(Richert, et al. 2011). The simulator also uses a code interface based on neural group 

construction. For every type of input into the neural network there would be a group of neurons 

defined as “spike generators” to inject a start to the network. These generators would replicate 
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the stimuli a vertebrate’s brain would encounter when using “spike coding” (Verken 2003) as a 

way of processing information. Then each of the neuromodulators used in the neural network 

would be defined as individual groups of neurons in the spiking neuromodulation simulator with 

the four Izhikevich parameters defining the spiking behavior of each group. . For this simulation, 

all groups used the Regular Spiking Izhikevich model (Izhikevich 2003, 2) with parameters of a 

= 0.02, b =0.2, c = -65.0, and d = 8.0. 

The actual synaptic connections between each neurons group were defined as either inhibitory or 

excitatory in nature. That is, whether or not an incoming spike from a pre-synaptic neuron would 

increase or decrease the ability of the post-synaptic neuron to activate. The data flow for the 

simulation was as follows: once the robot received its network inputs during its quarter-sweep, 

the data would be transferred to a cloud computing platform waiting on said inputs. The 

simulation created a “spike generator” group for each of the present stimuli. The simulated 

spikes from the sensory inputs is sent to through the various pre-defined synaptic connections.  

After the simulation was done for its one second run, the time and number of each event, 

neuromodulator, and state neuron spike was recorded in a data file located on the cloud PC. A 

MATLAB script was then run in the background to calculate the number of spikes of each type. 

ROS, which handled the automation of the simulation process also handled transmitting the 

number of resulting spikes back to the robot. Reading the number of spikes and taking in 

consideration its surroundings, the robot took the appropriate (most active) action. 

The synaptic connections between all groups of neurons were set as excitatory except for the 

connection between the dopamine and serotonin groups. This synaptic connection was set to be 

inhibitory, mirroring the opposing effect that each neuromodulator had on each other (J. L. 

Krichmar 2013). Every excitatory connection had a weight of +1.0 and every inhibitory 

connection had a weight of -1.0. Synaptic plasticity (Alexander and Sporns 2002) was included 

to duplicate the phenomenon of a synaptic connection becoming stronger as it received constant 

spikes between two neurons. The dopamine and serotonin groups totaled 1,000 neurons each. 

The state neuron groups totaled 100 neurons each. The spike generating event inputs also totaled 

100 neurons each. The ACh/NE group totaled 4 neurons (to facilitate as many spikes as possible 

to induce the “tunnel vision” effect). Altogether there were up to 2,804 neurons simulated at any 

time during the runs. The number of neurons used to represent each group came from the 
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increasing tradeoff between neuron complexities for stability. With neuron counts over 5,000 in 

the simulation, output states and neuromodulator levels stopped correlating and the results 

became more random.   Simulation time of the network could be defined down to the millisecond 

but for this study they were set to one second. The structure of the SNN model is shown in 

Figure 3.4. 

 

Figure 3.4 The structure of the spiking neural simulation model 
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3.5 Cloud Computing Configuration 

 

To facilitate the necessary amount of computing power for the Spiking Neural Network cases, 

two different PCs were used as cloud servers for the study. One server used an NVIDIA Tesla 

K20c GPU as the parallel processing unit along with 32 GB of RAM and a six-core Intel E2620 

CPU running a 64-bit partition of Ubuntu Linux. In the other server were two NVIDIA Tesla 

C2075 GPUs within a PC using 16 GB of RAM and a quad-core Intel E5620 CPU also running 

the 64-bit edition of Ubuntu Linux. Used to facilitate the data traffic between Turtlebot and 

server was a Linksys E2500 router. Each server ran the Groovy Galapagos (sixth edition) 

distribution of ROS.  
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CHAPTER 4  . EXPERIMENTAL RESULTS AND DISCUSSIONS 
 

4.1 Simple Neuron Model (Single Robot) 
 

A series of experiments were run in a lab studio environment where many tables, chairs and 

other solid objects were kept. Initially, 5 minutes of experiments were carried out to see the 

robot’s behavioral performance under three different running conditions. 1) Risk aversive 

behavior: Bumps were treated as potentially harmful by connecting bump event neurons to the 5-

HT neuron. 2) Risk taking behavior: Bumps were treated as novel and interesting by connecting 

bump event neurons to the DA neuron. 3) Distracted behavior: The second condition was 

repeated with the ACh/NE neurons kept always active (activity value =1). 

4.1.1 Risk-Aversive Robot 

During this mode of operation, in the neural network, the bump event neuron was connected to 

the 5-HT neuron. Results of robot run in this mode are shown in Figure 4.1 through Figure 4.5. 

As can be seen in Figure 4.1, the robot started off near an object and roamed until it was close to 

a wall, resulting in two bump events. In Figure 4.2, the robot was near a wall and the home base 

resulting in an increase of ACh/NE neural activity to focus on those events. And while both the 

bump and beam events occurred again near the end of the run, the ACh/NE neural activity was 

not as high since these events were not as novel as before. In Figure 4.3, while there were spikes 

of dopamine throughout the run, there was a consistent value of serotonin through the middle of 

the run. The neural activity as depicted in Figure 4.4, gives insight on how the states in Figure 

4.5 were selected. The Wall Follow state is the default state and it was not until an object came 

into view that another state was selected. A larger value of neural activity by the Explore Object 

neuron over the Open-Field neuron resulted in the first state switch into briefly the Explore 

Object state followed by detecting the home base. After constantly detecting the home base by 

being in its field but not being able to find the charging portion of the base, an internal timer 

ended the Find Home state as the robot left the search for home and continued to follow walls as 

a way of avoiding danger. The neural activity in this run successfully mimicked a small animal 
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staying out of danger to find home, only breaking a pattern for a short while to explore a new 

object for a very brief amount of time. 

 

Figure 4.1 Events during the robot motion (Single Robot, Risk Aversive) 

 

 

Figure 4.2 Activity of ACh/NE during the robot motion (Single Robot, Risk Aversive) 
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Figure 4.3 The activity of DA and 5-HT neurons during the robot motion (Single Robot, Risk 

Aversive) 

 

 

 

Figure 4.4 Activity of State Neurons greater than threshold (0.67) (Single Robot, Risk Aversive) 
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Figure 4.5 State transition during the robot motion (Single Robot, Risk Aversive) 

 

4.1.2 Risk-Taking Robot 

During this behavior mode of the robot, in the neural network the bump event neuron was 

connected to the DA neuron making the event interesting and worth exploring. The results for 

this mode are presented in Figure 4.6 through Figure 4.10.  

As seen in Figure 4.6, in the risk-taking mode the robot had enough room to move around while 

not running into many objects or walls, partly due to the fact that being in a more adventurous 

mode kept it away from walls. There were two bump events halfway through the run and 

meeting with an object near the home base towards the end of the run. In Figure 4.7, the ACh/NE 

neural activity was focused first on the wall bump, then the home beam and then finally the 

object near the home beam. In risk-taking mode, the bump event was linked to dopamine, 

resulting in the spikes in dopamine activity. In Figure 4.8, when the home base was detected this 

caused a spike in serotonin activity, but then this was drowned out by a larger spike in dopamine 

activity when an object was detected near the end of the run. In Figure 4.9, the Open Field and 

Explore Object neurons were most active in the beginning of the run with a spike in neural 

activity of the Find Home neuron (explained the by the robot’s proximity to the base) and Wall 

Follow neuron with a final spike of the Explore Object neuron to end the simulation. As seen in 

Figure 4.10, once the transition from the default state of Wall Following was made most of the 

time was spent exploring objects in the robot’s field of vision or roaming in the Open Field state. 

Throughout the run there was not a single transition to any of the “home” states due to being 
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linked to serotonin based actions. The difference between the risk-adverse and risk-taking modes 

can be illustrated by the two behavior switching figures (Figure 4.5 and Figure 4.10) 

  

 

Figure 4.6 Events during the robot motion (Single Robot, Risk Taking) 

 

 

Figure 4.7 Activity of Ach/NE during the robot motion (Single Robot, Risk Taking) 
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Figure 4.8 The activity of 5-HT and DA neurons during the robot motion (Single Robot, Risk 

Taking) 

 

 

 

Figure 4.9 Activity of state neurons greater than threshold (0.67) (Single Robot, Risk Taking) 

 



33 

 

 

Figure 4.10 State transition during the robot motion (Single Robot, Risk Taking) 

 

4.1.3 Distracted Robot 

The third condition was experimented to see how the robot behaved as its attention system was 

marred. The third mode was a risk-taking subset to see how the robot behaved as its attention 

system was always active. This had the effect of not allowing the robot to focus on a single 

event. In Figure 4.11, the robot began the run around the home base and then had repeated events 

around walls and objects. In Figure 4.12, the neural activity of the ACh/NE neurons was at their 

maximum. As the distracted mode was a subset of the risk-taking mode, bumps were linked to 

dopamine resulting in the large amount of dopamine-related neuromodulator activity in Figure 

4.13.  Due to the maximally active ACh/NE, the robot tried to respond to every frequent event 

and was unable to ignore any unimportant events. This was why the robot was more prone to 

switching between the states quicker than the risk-taking and risk-averse modes. Figure 4.11 

through Figure 4.15 show the importance of the ACh/NE neurons in focusing attention for the 

robot to respond to novel events as interesting and ignore the recurrent ones as uninteresting.  
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Figure 4.11 Events during the robot motion (Single Robot, Distracted) 

 

 

Figure 4.12 Activity of Ach/NE during the robot motion (Single Robot, Distracted) 
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Figure 4.13 The activity of 5-HT and DA neurons during the robot motion (Single Robot, 

Distracted) 

 

Figure 4.14 Activity of state neurons greater than threshold (0.67) (Single Robot, Distracted) 

 

 

Figure 4.15 State transition during the robot motion (Single Robot, Distracted) 


