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1 Introduction

1.1 Example and Thesis Motivation

Let us start by constructing the Fibonacci sequence, arguably the most famous of integer sequences.

We define the first two terms of the sequence as F1 = 1 and F2 = 2 and let each successive term be the

sum of the two previous ones. For example, F3 = F2 +F1 = 2+1= 3, F4 = F3 +F2 = 5, F5 = F4 +F3 = 8,

and so on. In this way, we construct the infinite sequence {1,2,3,5,8,13,21,34,55, . . .}. This sequence’s

interesting properties, useful not only in the realm of Number Theory but also in computer science

and biology, have spurred the development of new questions that make scholars delve deeper into its

unique characteristics. This thesis will focus on the property of the Fibonacci sequence described in

Theorem 2.6, also known as Zeckendorf ’s Theorem, and its generalizations to other similar sequences.

To prompt the reader to pose this question by himself, let us first consider another well-known

sequence, the powers of 2 (i.e. {20,21,22,23,24,25, . . .} = {1,2,4,8,16,32, . . .}). Known most commonly

for being the "language of modern computers," this sequence, as well as other power sequences, has

been used to express numbers as a sum of its terms. Let us take, for example, the number 86, which

can be expressed as

86= 64+16+4+2= 26 +24 +22 +21.

However, this representation of 86 is not the only one using powers of 2. This number can also be

represented as

86= 32+32+16+2+2+1+1= 25 +25 +24 +21 +21 +20 +20.

Nevertheless, due to the fact that for every n, we have 2n + 2n = 2n+1, we could repeatedly apply

this property to the above representation, or to any other for that matter, and arrive to the first

representation of 86 we considered. Additionally, using the property that for every n,
∑n

k=1 2k = 2n+1−1

we can prove that this first representation is unique. We call this expression of a number as the sum

of distinct powers of 2 the base 2 or binary representation of a number. Furthermore, using strong

induction, we can prove that every positive integer has a binary representation. Thus, for every

number we can find its unique binary representation, a unique expression of the number as the sum

of distinct powers of 2.

Going back to the case above, since every power of 2 less than 86 can be or not be in the binary

representation of 86, the usual binary representation arises as a way to shorten notation. We express

86= (1010110)2 in an analogous way to the decimal expansion, where each digit represents the value

assigned to the corresponding power of 10. That is,

8 ·101 +6 ·100 = 1 ·26 +0 ·25 +1 ·24 +0 ·23 +1 ·22 +1 ·21 +0 ·20.

Notice, however, that the only “digits” that can be present in this representation are 0 and 1 because

of the first property described above. Most importantly, any binary representation we construct has a

corresponding number represented in the usual base 10, and every positive integer also has a unique

representation in base 2. Consequently, we can always find a simple representation of any number as

the sum of terms of a sequence without the need for other coefficients other than 0 or 1.

This perfect correspondence between representations in base 10 and base 2, especially considering

the simplicity of the latter, might prompt us to ask if this property is unique to this sequence. In
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particular, considering the case where we try to represent numbers as the sum of terms of Fibonacci

numbers might seem logical, even if the result is not exactly the same as that with powers of 2.

However, when we try to express 86, again, as the sum of distinct Fibonacci numbers, we arrive at a

similar problem as before. We notice

86= 55+21+8+2= F9 +F7 +F5 +F2,

but since Fn+2 = Fn+1 +Fn for all n,

86= F9 +F7 +F4 +F3 +F2 = F9 +F6 +F5 +F4 +F3 +F2 = F9 +F7 +2F4 = . . .

In light of this, we might be inclined to impose one more restriction on this Fibonacci sum represen-

tation in search for a parallel result for this sequence. Since consecutive terms add up to yet another

term in the sequence, it is only natural to add the condition that not only the terms in the sequence be

distinct, but also that no two consecutive terms be present in the representation. This representation

will be introduced in section 2 and is known as the Zeckendorf representation of a number.

Furthermore, if a result is achieved for this sequence, what can be said about similar sequences

constructed with different initial terms or with recurrence relations that could restrict three or more

consecutive terms from being present in the representation? Can all numbers be represented with

these conditions? If not, what ratio of numbers, approximately, can we estimate to have such repre-

sentations? These questions are the main concern of the paper that follows.

1.2 Existing Literaure

As mentioned, mathematicians have always been fascinated with sequences of integers, and one that

has captivated many a scholar’s attention has been the Fibonacci sequence. In 1939, Édouard Zeck-

endorf (1901-1983), a Belgian mathematician, discovered an interesting property of this sequence:

all positive integers can be uniquely expressed as the sum of distinct non-consecutive Fibonacci num-
bers. However, it was not until 1972 that Zeckendorf published [2] explaining his decades-long ideas

claiming this theorem that now holds his name. (see [3]) Independently, Dutch mathematician Gerrit

Lekkerkerker published [4] in 1951, producing similar results that later inspired the research team

that published [5] in 1960, proving the Fibonacci sequence to be the only sequence of natural numbers

to uniquely represent numbers in what we now call Zeckendorf representation.

In recent years, many mathematicians have been diving deeper into the implications of this the-

orem and its generalizations. A group that stands out is the authors of [6]–a research group from

Williams College that has been generalizing this result to other sequences defined by different recur-

rence relations. They have developed a “Zeroing Algorithm" that might help produce a generalized

Zeckendorf representation for sequences generated by homogeneous recurrence relations with positive

coefficients, albeit sacrificing the distinct terms condition. In light of the Fibonacci sequence being the

only sequence satisfying Zeckendorf ’s theorem, studied in [1] is the ratio of numbers expected to have

Zeckendorf representation for Fibonacci-like sequences where a unique representation is guaranteed.

[1]
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2 Counting Third Order Zeckendorf Integers

Before introducing the results that lay most of the groundwork for our central question, the reader

must first be familiarized with the notation provided in the next subsection. We will start by providing

simplified generalized definitions used in the existing literature and will later narrow down the scope

of our investigation to third order sequences and representations.

2.1 Preliminary Definitions and Notation

Let N denote the set of positive integers. A sequence {Gk}∞k=1 of numbers is simply denoted by the

capital letter G. Given a sequence G and a finite subset A of N, let
∑

A Gk denote
∑

k∈A Gk.

Definition 2.1. Let N ≥ 2 be a positive integer. Let a sequence G be defined by the following linear

recurrence where k ∈N and ai are pairwise distinct positive integers for i ∈ {1,2, . . . , N}

Gk+N =Gk+N−1 +Gk+N−2 +·· ·+Gk, (G1,G2, . . . ,GN )= (a1,a2, . . . ,aN )

Then, G is said to satisfy the N-th order Fibonacci recurrence. Furthermore, if ai = 2i−1 for all i ∈
{1,2, . . . , N}, then G is called the N-th order Fibonacci sequence.

In particular, if N = 2 and a1 = 1,a2 = 2, this sequence is denoted by F and is called the Fibonacci
sequence. In addition, in the case where N = 3, a1 = 1, a2 = 2, and a3 = 4, H will denote this sequence,

which will be referred to as the third order Fibonacci sequence. Notice that in most of the literature,

the initial terms of the Fibonacci sequence are usually set to be either (F1,F2) = (0,1) or (1,1). How-

ever, using this “shifted” sequence facilitates the description of the uniqueness property introduced in

Definition 2.5 and its relation to Fibonacci recurrences.

Definition 2.2. Let FN be the set of all finite sets A ⊂ N such that if {k,k+1, . . . ,k+ N −2} ⊆ A for

k ∈N, then k+N −1 ∉ A. Such set A is then called an N-th order Zeckendorf index subset and FN the

collection of N-th order Zeckendorf expressions.

Thus, considering any particular N, Zeckendorf index subsets are sets of positive integers that

contain no more than N −1 consecutive integers. This construction is then applied to the indices of

the terms of any particular sequence G (hence the name) as described in the definition below. Most

of the thesis will focus on third order Zeckendorf representations; therefore most of the index subsets

we will deal with involve index subsets with no more than two consecutive integers.

Definition 2.3. Let G be a sequence that satisfies the N-th order Fibonacci recurrence. A positive

integer m is called an N-th order Zeckendorf integer for G if m =∑
A Gk for some set A ∈FN . Further-

more, the expression
∑

A Gk is called an N-th order Zeckendorf expansion of m with G.

As an example, in a third order Zeckendorf representation context,

86= 81+4+1= H8 +H3 +H1

would be considered a (third order) Zeckendorf expansion of 86 with H, but

86= 44+24+13+4+1= H7 +H6 +H5 +H3 +H1
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would not since it contains 3 consecutive terms of H in the expansion.

Definition 2.4. In the context of N-th order Zeckendorf representations, let

RG :=
{

n ∈N : ∃ A ∈FN : n =∑
A

Gk

}

be the set of N-th order Zeckendorf integers for G, and let RG(X )= {m ∈ RG | m ≤ X }. It is said that G
represents N if RG =N.

As we will discuss later, it will be important to know that the only sequence that satisfies the N-th

order Fibonacci recurrence and uniquely represents N in the context of N-th order representations

is the N-th order Fibonacci sequence, result found in Theorem 2.8. For example, if we consider a

sequence G that satisfies the third order Fibonacci recurrence with (G1,G2,G3)= (5,2,3), the number

86 is a third order Zeckendorf integer for G since it can be represented as

86= 53+28+5=G7 +G6 +G1,

but there is no third order Zeckendorf expansion of 87 with G. Therefore, for any other sequence G
that satisfies the N-th order Fibonacci recurrence, our focus will be on calculating an approximation

of RG(X ) for all X .

For the Fibonacci sequence, it is easier to find all Zeckendorf integers since every integer has its

unique Zeckendorf representation (see Theorem 2.6), similar to that discussed for the binary repre-

sentation. Unfortunately, not every sequence has this property. Using the example above,

86= 53+28+5=G7 +G6 +G1

= 53+28+3+2=G7 +G6 +G3 +G2

Therefore, for this particular sequence G there are some numbers that may have more than one

valid Zeckendorf representation. This motivates the following distinction:

Definition 2.5. Let {A,B} ⊂FN . It is said that a sequence G satisfies the unique expansion property
under FN if

∑
A Gk =∑

B Gk implies that A = B.

Dealing with sequences that satisfy this uniqueness property facilitates the counting process be-

cause using the injective relationship between Zeckendorf expressions and Zeckendorf integers, one

can count the number of Zeckendorf expressions and consequently find the number of Zeckendorf

integers in return. (see Theorem 2.7) However, for sequences that do not satisfy this property, this

process produces double countings of Zeckendorf integers by just considering the count of Zeckendorf

expressions. It is the main concern of this paper, then, to determine when these repeated expressions

occur in order to find the average number of third order Zeckendorf integers for sequences that do not

satisfy the uniqueness property.

2.2 Zeckendorf’s Theorem and Some of its Generalizations

This next subsection is dedicated to introducing some important results that prepare us to understand

the context of our research question.

6



Theorem 2.6 ([2], Zeckendorf ’s Theorem). Every positive integer m can be uniquely expressed as the
sum of distinct, non-consecutive terms of F.

That is, for every positive integer m, there exists one and only one (second order) Zeckendorf index

subset A ∈F2 such that m =∑
A Fk. The proof of this theorem by Zeckendorf himself can be found in

his article[2].

We can generalize this result to any sequence that satisfies the N-th order Fibonacci recurrence

as follows:

Theorem 2.7 (Generalized Zeckendorf ’s Theorem). For every positive integer m and for all N ∈ N,
there exists one and only one N-th order Zeckendorf index subset A ∈FN such that m =∑

A Hk, where
H is the N-th order Fibonacci sequence.

Furthermore, the following result provides a better understanding of why this property is stated

for Fibonacci sequences and not other sequences in general.

Theorem 2.8 ([5], Weak Converse of Zeckendorf ’s Theorem). In the context of N-th order Zeckendorf
representations, if RG =N with unique representation and G is an increasing sequence, then G is the
N-th order Fibonacci sequence.

In other words, the only increasing sequence and uniquely represents represents N with N-th

order Zeckendorf expressions is the N-th order Fibonacci sequence.

Definition 2.9. In the context of A ∈FN , if A =∅ then define max(A)= 0 and min(A)=∞.

Theorem 2.10 ([1], Theorem 6). A sequence G that satisfies the N-th order Fibonacci recurrence also
satisfies the unique expansion property under FN if and only if there are disjoint index subsets A∗ ̸= {}

and B∗ contained in {1,2, . . . , N −1} and a sequence ϵ′k = 0,1,2 such that j0 :=max A∗ ≥maxB∗ and

∑
k∈A∗

Gk = ∑
k∈B∗

Gk +
N∑

k= j0+1
ϵ′kGk

This now gives us a characterization of the sequences that do not satisfy the uniqueness property.

Determining with certainty the kinds of sequences that have multiple representations for Zeckendorf

integers and describing the shape of those corresponding representations will form a major part of

this paper.

2.3 Third Order Fibonacci Sequences that Satisfy the Uniqueness Prop-
erty

We now shift our attention only to third order Zeckendorf expressions and sequences that satisfy the

third order Fibonacci recurrence. In this manner, we will use the notation described above assuming

N = 3, also omitting the order of Zeckendorf representations or index subsets (e.g. F =F3) from now

on to simplify readability.
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By Theorem 2.10, a Fibonacci recurrence G has the property of unique expansion if and only if

none of the following are satisfied:

(1) G1 = 2G2

(2) G1 =G2 +G3

(3) G1 =G2 +2G3

(4) G1 = 2G2 +G3

(5) G1 = 2G2 +2G3

(6) G1 = 2G3

(7) G2 =G1 +G3

(8) G2 =G1 +2G3

(9) G2 = 2G3

(10) G1 +G2 =G3

(11) G1 +G2 = 2G3

We notice that the sequence H = {1,2,4,7,13,24,44,81, . . .} as defined in Section 2.1 does not satisfy

any of these conditions. Thus, H satisfies the unique expansion property, also clearly observed, since

H represents N uniquely by Theorem 2.7.

Example 2.11. We can extend this notion to other Fibonacci recurrences that are not the Fibonacci

sequence. For example, let us consider a truncated version of H, that is, this sequence without its first

term H1 = 1. That is

Ĥ = {2,4,7,13,24,44,81,149, . . .}

This sequence has now lost its property of complete representation of N since numbers like 86, which

had a unique representation under H that included H1 (86= H8+H3+H1), now lack a representation

under Ĥ. However, all other numbers whose representation with H did not include H1 now keep their

unique representation under Ĥ. Therefore, Ĥ still maintains the uniqueness property, also observed

when comparing the conditions stated at the beginning of this section with the initial terms of Ĥ.

Example 2.12. Another example sequence that satisfies the uniqueness property based on its in-

adherence to any of the above conditions is the Fibonacci recurrence G with (G1,G2,G3) = (2,5,6).

However, a sequence with a slight change in initial terms like (G1,G2,G3) = (2,5,7) is such that

G1 +G2 = G3, creating double representations for numbers such as 21, which can be represented

as G4 +G2 +G1 = 14+5+2 or G4 +G3 = 14+7. In these specific cases, Zeckendorf expressions are not

in one-to-one correspondence with Zeckendorf integers. Therefore, finding a bijective mapping from

Zeckendorf representations to Zeckendorf integers is only possible for sequences that do not satisfy

the conditions above and therefore satisfy the unique expansion property.

Now, for those sequences that satisfy the uniqueness representation, we notice that not all repre-

sent N. Therefore, a question we might ask ourselves is "what proportion of numbers can we actually

represent with this sequence?". For sequences satisfying the uniqueness property, the act of counting

how many possible representations it can generate whose sum does not exceed a certain X corre-

sponds exactly to the Zeckendorf integers less than X because of the presence of one and only one

representation for each of these integers. This was the method used in [1] and described in detail in

Section 3.3.1 to calculate the average number of Zeckendorf integers for sequences that satisfy the

uniqueness property. For now, we concentrate on describing the relevant parts of a Fibonacci recur-

rence sequence G that define when the expansion is not unique to be able to calculate the proportion

of representable numbers for any G.

8



3 Non-unique Expansions for Third Order Sequences

As discussed previously, some Fibonacci recurrence sequences might have more than one represen-

tation for each of their Zeckendorf integers. Since the proof of the statements described above relied

on the sequence G satisfying the uniqueness property in order to create a bijection between Zeck-

endorf representations and Zeckendorf integers, a new method has to be established to calculate
|RG(X )| for all other sequences that do not satisfy the unique expansion property. By analyzing the

correspondence between initial conditions of the first terms of G and the structure of the repeated

representations, we aim to achieve this goal in the following section.

To understand the structure of non-unique expansions, we will discuss further some aspects

present in the proof of Theorem 2.10 for third order expansions. We will assume that G is any third

order Fibonacci recurrence sequence in this section with pairwise distinct G1,G2,G3.

3.1 Analysis on Body Parts and its Expansions

In this section, we introduce the notions of tails and bodies of a sequence, which will prove useful

when describing the conditions when a Zeckendorf integer could have multiple representations. We

start by providing some results on the sum of the first terms of a Fibonacci recurrence sequence; for

this, recall F from Definition 2.2 and Section 2.3.

Lemma 3.1. G1 <G4, and if A ∈F and m :=max(A)≥ 2, then
∑

A Gk <Gm+2.

Proof. Notice G1 < G1 +G2 +G3 = G4. Now assume that A ∈ F and m := max(A) ≥ 2. We proceed to

prove the lemma by induction on m.

For m = 2, ∑
A

Gk ≤G1 +G2 <G1 +G2 +G3 =G4 =Gm+2.

Assume the proposition holds for all 2 ≤ m < M for some M > 2. Let A ∈ F be such that max(A) = M
and let A′ = A− {M}. Then, since max(A′)≤ M−1

∑
A

Gk =GM +∑
A′

Gk <GM +GM+1 <GM−1 +GM +GM+1 =GM+2.

Therefore, this result holds for all m ≥ 2 by induction.

Corollary 3.2. Let {A,B}⊂F such that A and B are disjoint,
∑

A Gk =∑
B Gk, m :=max(A)<max(B),

and m ≥ 2. Then, max(B)= m+1.

Proof. Assume for the sake of contradiction that max(B)≥ m+2. Then

∑
B

Gk ≥Gm+2 >
∑
A

Gk.

Thus, m =max(A)<max(B)< m+2 ⇒max(B)= m+1.

Definition 3.3. Let F◦ := {A ∈ F : min(A) ≥ 3}, and let F := {A ∈ F : max(A) ≤ 2}. Let G0 := 0 and

G∞ =∞.

Lemma 3.4. If A ∈F◦ and m :=max(A), then
∑

A Gk <Gm+1.

9



Proof. Let A ∈F . If m = 0, with min(A)=∞ and A =;, then
∑

A Gk = 0<G1. Consider, then, A to be

nonempty and m ≥min(A)≥ 3. We will proceed by induction to prove this proposition.

Assume the base case where m = 3. Then,
∑

A Gk = G3 < G1 +G2 +G3 = G4. Now assume that the

proposition is true for all 3≤ m < M for some M > 3, and let A ∈F◦ such that max(A)= M. If M−1 ∈ A,

let A′ = A− {M−1, M}. If A′ =; then
∑

A Gk =GM−1+GM <GM−2+GM−1+GM =GM+1, where M ≥ 4.

If, on the other hand, A′ ̸= ;, then
∑

A Gk = ∑
A′ Gk +GM−1 +GM . Since A′ ∈ F◦, by the induction

hypothesis with m′ := max(A′) ≤ M −3,
∑

A′ Gk < GM−2. Thus,
∑

A Gk < GM−2 +GM−1 +GM = GM+1.

If M −1 ∉ A, let A′ = A − {M}. If A′ = ; then
∑

A Gk = GM < GM−2 +GM−1 +GM = GM+1. If, on the

other hand, A′ ̸= ;, then
∑

A Gk = ∑
A′ Gk +GM . Since A′ ∈ F◦, by the induction hypothesis with

m′ := max(A′) ≤ M − 2,
∑

A′ Gk < GM−1. Thus,
∑

A Gk < GM−1 +GM < GM−2 +GM−1 +GM = GM+1.

Therefore, for all A ∈F◦, we have
∑

A Gk <Gm+1.

Definition 3.5. Let P be the collection of finite subsets of N. Let {A,B}⊂P .

Define A < B if max(A−S)<max(B−S) where S = A∩B. We call this order on P the lexicographical
order on the collection of finite subsets of N.

Note that under the lexicographical order, the set of finite subsets of N is totally ordered. Let us

focus now on the conditions that might cause two Zeckendorf expressions to yield the same numerical

value.

Theorem 3.6. Let {A,B} ⊂F◦. Then A < B if and only if
∑

A Gk <∑
B Gk, and

∑
A Gk =∑

B Gk implies
A = B.

Proof. (⇒) Suppose that A < B. Then A′ < B′ and m′ = max(A′) < n′ = max(B′), which implies∑
A′ Gk <Gm′+1 ≤Gn′ ≤∑

B′ Gk. Therefore
∑

A Gk <∑
B Gk.

(⇐) Now assume that
∑

A Gk < ∑
B Gk. Then,

∑
A′ Gk < ∑

B′ Gk. If n′ = max(B′) < m′ = max(A′), then∑
B′ Gk <Gn′+1 ≤Gm′ ≤∑

A′ Gk, which contradicts the supposition. Since m′ ̸= n′, then m′ < n′, that is

A < B.

Now, consider the case when
∑

A Gk = ∑
B Gk. Since

∑
A Gk ̸> ∑

B Gk, then A ̸> B. Similarly, since∑
A Gk ̸<∑

B Gk, then A ̸< B. Therefore, A = B.

This provides now our first insight into a characterization for when a sequence satisfies the unique-

ness property. If for a sequence G there exist distinct A,B ∈F such that
∑

A Gk =∑
B Gk, then A and

B cannot be both members of F◦. That is, the first two terms in G are relevant to describe the rela-

tionship between representation sets of the same Zeckendorf integer. This is the motivation for the

following definition, accompanied by three lemmas that describe the behavior of these first terms on

sets A and B when considering the case when
∑

A Gk =∑
B Gk,but A ̸= B and the restrictions that lead

to the full characterization of sequences G that do not satisfy the uniqueness property. Moreover, if a

sequence G′ is generated by shifting any Fibonacci recurrence sequence by at least two terms, it must

satisfy the uniqueness representation property.

Definition 3.7. Let A ⊂N. Define A[k, l] := {n ∈ A : k ≤ n ≤ l} where k, l ∈R∪ {∞}.

Define b(A) := A[3,∞] and t(A) := A[1,2]. The subset b(A) is called the body of A, and t(A) is called

the tail of A.

Lemma 3.8. If A ∈F , then b(A) ∈F◦ and t(A) ∈F .

Proof. The proof of this statement follows from the definitions.
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Note that it is not necessarily true that A∪B ∈F if A ∈F◦ and B ∈F . For example, A = {3} ∈F◦
and B = {1,2} ∈F , but A∪B = {1,2,3} ∉F .

Lemma 3.9. If {A,B} ⊂ F , then
∣∣∑A Gk −

∑
B Gk

∣∣ ∈ {
0,

∣∣G1 −G2
∣∣,G1,G2,G1 +G2

}
, and in particular,∣∣∑A Gk −

∑
B Gk

∣∣≤G1 +G2.

Proof. This follows from the fact that F = {;, {1}, {2}, {1,2}}.

Lemma 3.10. Let {A,B} ⊂ F be such that A < B and
∑

A Gk = ∑
B Gk. Then,

∑
b(B) Gk −

∑
b(A) Gk ≤

G1 +G2. Moreover, if 3 ∈ A, then
∑

b(B) Gk −
∑

b(A) Gk <G1 +G2.

Proof. Since A < B, then b(A)≤ b(B). This is because max(A)<max(B) by Definition 3.5.

If max(B) ∈ b(B), then b(A)< b(B); otherwise, b(A)= b(B)=∅. Then, since b(A),b(B) ∈F◦, by Theorem

3.6,
∑

b(B) Gk −
∑

b(A) Gk ≥ 0. Moreover, if
∑

A Gk =∑
B Gk

⇒ ∑
b(A)

Gk +
∑
t(A)

Gk = ∑
b(B)

Gk +
∑
t(B)

Gk

⇒ ∑
t(A)

Gk −
∑
t(B)

Gk = ∑
b(B)

Gk −
∑

b(A)
Gk

≤G1 +G2.

Furthermore, if 3 ∈ A, then
∑

t(A) Gk ̸=G1 +G2.

⇒ ∑
b(B)

Gk −
∑

b(A)
Gk = ∑

t(A)
Gk −

∑
t(B)

Gk <G1 +G2.

3.2 Double Expansions of Zeckendorf Integers

This section introduces the concept of least upper bounds and provides detailed directed graph di-

agrams that describe the relationship between the shapes of the first terms of a sequence and the

possible structures of double expansions for the same Zeckendorf integer. However, for some of these

results, the proof will be omitted and provided in a subsequent paper given that they are out of the

scope of this paper.

Definition 3.11. Let T be an infinite subcollection of P , and let A ∈T . The subset lubT (A) is called

the the least upper bound of A in T if B ∈ T and A < B implies A < lubT (A) ≤ B. Given n ∈ N0,

let lubn
T (A) denote the nth iteration of lubT on A. Furthermore, if A ∈ F◦, then we denote lubF◦ (A)

simply by Ã.

Proposition 3.12. Let T be an infinite subcollection of P . Then, lubT (A) exists for all A ∈T .

Proposition 3.13. Let A ∈ F◦. Then, A[3,5] is one of the subsets listed below. The arrows in the

diagram below point to Ã[3,5], and
∑

Ã Gk =∑
A Gk+

∑
A Gk, where A ⊂ {1,2,3} and

∑
A Gk is the value

attached to the arrow:
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{3} {4} {3,4}

∅

{4,5} {3,5} {5}

G1+G2 G3

G2

G2G3

G3

G1+G2

G1+G2

G3

Proposition 3.14. Let {A,B} ⊂F◦ be such that A[3,5] = {3,4} and B[3,5] = {3,5}. Then, Ã[3,5] =; if

and only if {6,7}⊂ A, and B̃[3,5]=; if and only {6}⊂ B.

Now, consider the situation where
∑

A Gk = ∑
B Gk, and take into account the note under Lemma

3.8, particularly when considering
∑

A Gk. By Lemma 3.10 and since 3 ∈ {3} and 3 ∈ {3,5}, for the

purposes of calculating Ã[3,5] ∈ F , the following diagram, which we will refer to as ΛG , is more

appropriate.

{3} {4} {3,4}

∅

{4,5} {3,5} {5}

G3

G2

G2G3

G3

G3

Definition 3.15. We define Path(ΛG) as the nonrepeated paths in ΛG . Given γ ∈Path(ΛG), let len(γ)

denote the number of edges in γ, and let wt(γ) be the sum of the weights along γ.

Definition 3.16. Let B := {G2,G3,G2 +G3,G2 + 2G3,2G3} denote the the set of the sums of the

weights of non-repeated paths in Λ, and let T := {G1,G2,G1 +G2,G2 −G1,G1 −G2} denote the set of∣∣∑t(A) Gk −
∑

t(B) Gk
∣∣ where {A,B}⊂F and t(A) ̸= t(B).

Theorem 3.17. Let {A,B} ∈F such that A < B. Let A∗ = A[3,5] and B∗ = B[3,5].
Then,

∑
A Gk =∑

B Gk if and only if all the following are satisfied:

(1) There is a non-repeated path γ in Λ beginning at A∗ and ending at B∗ such that n := len(γ)≥ 1,

(2) lubn
F◦ (b(A))= b(B),

(3) wt(γ) ∈B and wt(γ)=∑
b(B) Gk −

∑
b(A) Gk,

(4)
∑

t(A) Gk −
∑

t(B) Gk ∈T and
∑

t(A) Gk −
∑

t(B) Gk =∑
b(B) Gk −

∑
b(A) Gk.

Using the above theorem, we devise an algorithm that translates paths in G into body and tail

shapes corresponding to the conditions described before that create double countings in sequences

that do not satisfy the uniqueness property. The following subsection dicusses this in detail.

3.3 Average Number of Zeckendorf Integers

We will use Theorem 3.17 to categorize all paths of Λ and the corresponding body and tail differences

possible with those restrictions. The first of these algorithms can be observed in Appendix A, where a

path is chosen, which determines the body difference in question. Parting from there, determine the

possible existence of tails that do not contradict any of the conditions already imposed on members of

F such as nonzero pairwise distinct initial terms of the sequence G or the absence of three consecutive

integers in A.
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3.3.1 Counting Formulas

Definition 3.18. Let α denote the only positive real root of x3− x2− x−1= 0, which is approximately

1.839.

Recall Definition 2.4. The following theorem describes the cardinality of this set linearly in terms

of a positive integer X .

Theorem 3.19. Let G be a sequence of positive integers satisfying the third order Fibonacci recurrence
and the unique expansion property under F . Then, the number of positive integers ≤ X that have
F -expansions in terms of G is

∣∣RG(X )
∣∣= 4+6α+7α2

G3 + (G2 +G3)α+G4α2 X +O(1).

We can observe that this quantity increases linearly in terms of X , and it is therefore meaningful

to calculate the average number of Zeckendorf integers with respect to X as X grows larger, at least

for sequences that satisfy the uniqueness property.

Definition 3.20. In the context of any third order Fibonacci recurrence G, we define the average

number of Zeckendorf integers (with respect to N) to be

RG = lim
X→∞

∣∣RG(X )
∣∣

X
.

Using the formula in Theorem 2.12 we observe that this agrees with the result in Theorem 2.7 in

the case of H, as RH = limX→∞ X+O(1)
X = 1 where we had said that RG = N. Moreover, for sequences

like Ĥ (as defined in Example 2.11) we can now calculate the average number of Zeckendorf integers

using only the first terms of the sequence, which in this case yields

RĤ = 4+6α+7α2

7+11α+13α2 ≈ 0.5437.

In light of this example, it will prove to be helpful to calculate the ratio that corresponds to the linear

coefficient of X in Theorem 2.14 for more than just the first four terms of a sequence. Thus, we define

the following:

Definition 3.21. In the context of any third order Fibonacci recurrence G, for any n ∈N define

rn(G)= 4+6α+7α2

Gn+2 + (Gn+1 +Gn+2)α+ (Gn+3)α2 .

We will shorten the notation to rn if the sequence G is known or implied.

It is important to notice now that for all sequences G that satisfy the unique representation prop-

erty, RG = r1(G). In addition, now there is a way of relating these averages whenever the sequences

themselves are related. Using the sequence Ĥ defined in Example 2.11 and H from Definition 2.1, we

can see that

RĤ = r1(Ĥ)= r2(H).

However, for other Fibonacci recurrences that do not satisfy the uniqueness property like the one

defined by (G1,G2,G3)= (5,2,3), incorrectly using Theorem 2.14 would yield an overestimation of the
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actual average. In the case of this particular sequence, for example, we can observe, as will be shown

in Section 4, that RG = r2 + r4 + r7 + r8 ≈ 0.6261 while r1 ≈ 0.8412. Therefore, in general RG ̸= r1(G),

and the necessity arises for us to find the correct value of RG for third order Fibonacci recurrences G
that do not satisfy the uniqueness property.

3.3.2 Counting Formulas for Non-Unique Expansions

The following propositions set the basis for the development of further algorithms to determine the

value of RG depending on the initial conditions that the sequence G might satisfy. Since we have

described in Proposition 3.14 the double representations that can arise and the corresponding shapes

of the bodies and difference of tails, our goal is to calculate the proportion of integers that are repeated

in these cases by adapting Definition 3.20 to a more general case that takes into account these shapes.

Definition 3.22. In the context of G being a sequence that satisfies the Fibonacci recurrence, let

A ∈F and l ≥max(A) be a positive integer. Define RG(X , A, l) := {
∑

A′ Gk ≤ X : A′ ∈F , A′[1, l]= A}

Definition 3.23. Let G be a sequence of positive integers satisfying the third order Fibonacci recur-

rence and let F be the set of finite subsets of N. Define evalG : F → N to be the function given by

A 7→∑
A Gk.

Definition 3.24. Let {a1,a2, . . . ,am,∗n} ∈ F denote any ordered representation A ∈ F such that

A[1,n−1] = {a1,a2, . . . ,am} with am ̸= n−1, and let {a1,a2, . . . ,am,∆n} ∈ F denote any representation

A ∈F such that A[1,n−1]= {a1,a2, . . . ,am} and A[n,n+1] ̸= {n,n+1}.

Notice that the condition am ̸= n−1 for the ∗n case and the condition A[n,n+1] ̸= {n,n+1} in the

∆n case are to ensure that A ∈ F . Without these we could consider a set such as {1,3,4,5,7} as one

that could be included in the representations {1,3,4,∗5} or {1,3,∆4}. However, {1,3,4,5,7} ∉F .

Proposition 3.25. Let G be a sequence that satisfies the Fibonacci recurrence and the uniqueness

representation property. Let A ∈F , and a positive integer l ≥ m =max(A). Then,

lim
X→∞

|RG(X , A, l)|
X

=


r l+1 if l > m

r l+2 if l = m and m−1 ∈ A

r l+2 + r l+3 if l = m and m−1 ∉ A

Proof. If l > m then consider G′ to be the sequence such that G′
k =Gk+l . Notice that G′ also satisfies

the uniqueness property. Now, since A is fixed and l ̸= m, every expression in terms G′ less than

Y = X −evalG(A) corresponds to one and only one expression in terms of G less than X such that its

first l terms correspond with those of A. That is,

|RG′ (Y )| = |RG(X , A, l)|

⇒ lim
Y→∞

|RG′ (Y )|
Y

= lim
X→∞

|RG(X , A, l)|
X

⇒ RG′ = r1(G′)= lim
X→∞

|RG(X , A, l)|
X

⇒ r l+1(G)= lim
X→∞

|RG(X , A, l)|
X
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If l = m and m−1 ∈ A, then m+1 ∉ A since A ∈F . Then,

lim
X→∞

|RG(X , A,m)|
X

= lim
X→∞

|RG(X , A,m+1)|
X

= r(m+1)+1 = rm+2.

For the case when l = m and m−1 ∉ A see Corollary 3.27.

Proposition 3.26. For any n ∈N, rn = rn+1 + rn+2 + rn+3.

Proof. Suppose that G is a sequence that satisfies the uniqueness property. Fix C = {a1,a2, . . . ,am} ∈F

with am ̸= n−1. Let S = {A ∈F : A = {a1,a2, . . . ,am,∗n}}.

Let P = {A ∈F : A = {a1,a2, . . . ,am,∗n+1}}, Q = {A ∈F : A = {a1,a2, . . . ,am,n,∗n+2}},

R = {A ∈F : A = {a1,a2, . . . ,am,n,n+1,∗n+3}}.

Since P,Q,R are pairwise disjoint and S = P ∪Q∪R, then

|S| = |P|+ |Q|+ |R|
⇒ |RG(X ,C,n−1)| = |RG(X ,C,n)|+ |RG(X ,C∪ {n},n+1)|+ |RG(X ,C∪ {n,n+1},n+2)|

⇒ lim
X→∞

|RG(X ,C,n−1)|
X

= lim
X→∞

|RG(X ,C,n)|
X

+ lim
X→∞

|RG(X ,C∪ {n},n+1)|
X

+ lim
X→∞

|RG(X ,C∪ {n,n+1},n+2)|
X

⇒ rn = rn+1 + rn+2 + rn+3.

This property is also satisfied for sequences G that do not satisfy the uniqueness property, although

the proof of this will be omitted in this paper.

Corollary 3.27. Fix C = {a1,a2, . . . ,am,n−1} ∈F with am ̸= n−2. Let S = {A ∈F : A = {a1,a2, . . . ,am,n−
1,∆n}}. Then, S is equivalent to the union of the following four pairwise disjoint sets:

• P = {A ∈F : A = {a1,a2, . . . ,am,n−1,n,∗n+2}}

• Q = {A ∈F : A = {a1,a2, . . . ,am,n−1,n+1,∗n+3}}

• R = {A ∈F : A = {a1,a2, . . . ,am,n−1,n+1,n+2,∗n+4}}

• T = {A ∈F : A = {a1,a2, . . . ,am,n−1,∗n+2}},

and thus, lim
X→∞

|RG(X ,C,n−1)|
X

= 2rn+2 + rn+3 + rn+4 = rn+1 + rn+2.

Example 3.28. Consider the sequence H from Section 2.1 and sets A = {2,3} and B = {1,3}.

• RH(X , A,4) is the set of all expressions of H of the form {2,3,∗5}. By proposition 3.25, the limit

of the proportion of this set to X as X grows large is r5(H)≈ 0.087. Notice this is the same result

as if we were calculating RG = r1(G), where G is the shifted version of H by 5 terms.

• Similarly, RH(X ,B,3) is the set of all expressions of H of the form {1,3,∆4}. By proposition 3.25,

the limit of the proportion of this set to X as X grows large is r5(H)+ r6(H)≈ 0.135.

The propositions above give way to the procedures now performed in the appendices, which we

describe here. The first appendix tries to show the process of finding the possible conditions the body

difference and tail difference can satisfy when a path in Λ is fixed. In this way, a correspondence
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between initial conditions of the sequence G and body and tail shapes of corresponding Zeckendorf

representations is established. The second appendix deals with describing the shapes of the corre-

sponding representations more in detail. It also sheds light on the total possible representations with

G using a fixed transformation described in Appendix A. Finally, Appendix C uses Proposition 3.26 to

simplify the calculations performed with Proposition 3.25 to find the formula error caused by double

counting of repeated representations and the actual value of RG for each initial condition case.

3.3.3 RG per Initial Conditions of G

Init. Cond. Body Diff. Tail Diff. A[3,5] B[3,5] # Double Ct RG

G1 = 2G2 G2 G1 −G2
{1,3,4} {2,5} r7 + r8 r2 + r3 + r5 + r7{1,3,4} {2} r9

G1 =G2 +G3

G3 G1 −G2

{1,5} {2,3,5} r7 + r8

r2 + r4 + r7 + r8

{1,4,5} {2} r7
{1} {2,3} r6

G2 +G3 G1

{1,4} {5} r7 + r8
{1,2,4} {2,5} r7 + r8
{1,4} ; r9

{1,2,4} {2} r9
{1,3,4} {3,5} r7 + r8
{1,3,4} {3} r9

G1 =G2 +2G3
G2 +2G3 G1

{1,4} {3,5} r7 + r8

r2 + r3 + r7 + r8

{1,2,4} {2,3,5} r7 + r8
{1,4} {3} r9

{1,2,4} {2,3} r9
2G3 G1 −G2 {1,4,5} {2,3} r7

G1 = 2G2 +G3 G2 +G3 G1 −G2

{1,4} {2,5} r7 + r8

r2 + r3 + r6 + r8 + r10
{1,4} {2} r9

{1,3,4} {2,3,5} r7 + r8
{1,3,4} {2,3} r9

G1 = 2G2 +2G3 G2 +2G3 G1 −G2
{1,4} {2,3,5} r7 + r8 r2 + r3 + r5 + r7{1,4} {2,3} r9

G1 = 2G3

2G3 G1
{1,4,5} {3} r7

r2 + r3 + r6 + r8
{1,2,4,5} {2,3} r7

G2 +2G3 G1 +G2
{1,2,4} {3,5} r7 + r8
{1,2,4} {3} r9

G2 =G1 +G3 G3 G2 −G1

{2,4} {1,3,4} r6

r2 + r3
{2,5} {1,3,5} r7 + r8

{2,4,5} {1} r7
{2} {1,3} r6

G2 =G1 +2G3 2G3 G2 −G1 {1,4,5} {2,3} r7 r2 + r3 + r5 + r6

G2 = 2G3 2G3 G2
{2,4,5} {3} r7 r2 + r3 + r6 + r8{1,2,4,5} {1,3} r7

G1 +G2 =G3 G3 G1 +G2

{1,2,4} {3,4} r6

r2 + r3
{1,2,5} {3,5} r7 + r8

{1,2,4,5} ; r7
{1,2} {3} r6

G1 +G2 = 2G3 2G3 G1 +G2 {1,2,4,5} {3} r7 r2 + r3 + r5 + r6

Table A: RG for every Fibonacci recurrence sequence that does not satisfy the uniqueness property by
one and only one condition.
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Using the previous propositions, the above table summarizes the data recovered from the proce-

dures shown in the three appendices. Most importantly, now for every sequence G that satisfies one

and only one of the following 11 initial conditions shown in Table A, we can calculate RG by looking

into the last column corresponding to each case and making use of Definition 3.21.

Now, we notice that this only accounts for the cases where there is only one initial value is sat-

isfied. We can observe from the shapes of A[3,5] and B[3,5] in Table A that that there is no overlap

where a representation can have multiple duplicates. That is, if there are A,B ∈ F such that A < B
and

∑
A Gk =∑

B Gk, then there cannot exist a C ∈F such that B < C and
∑

B Gk =∑
C Gk. Therefore,

unless there is a sequence G for which two (or more) of the conditions shown in the table above are

satisfied simultaneously, then there is no possibility for any sequence to contain more duplicates than

the ones shown in Table A. Thus, we focus our attention to those cases where multiple conditions

are satisfied by the initial terms of G and how to handle those cases. This is the motivation behind

Table B, which contains all the possible groupings of initial conditions that can be met simultaneously

without violating any of the guidelines set for a sequence G found in Definition 2.1.

Init. Conds. Tot. Double Ct RG (G1,G2,G3) shape
G1 = 2G2

r4 + r6 + r7 + r9 + r10 r2 + r4 + r6 + r11 (4,2,1)G1 =G2 +2G3

G2 = 2G3

G1 = 2G2 r4 + r6 r2 + r4 + r5 (2,1,3)
G1 +G2 =G3

G1 = 2G2 r6 + r7 r2 + r3 + r5 (4,2,3)
G1 +G2 = 2G3

G1 =G2 +G3 r3 + r9 + r10 r2 + r5 + r6 + r8 (3,2,1)
G2 = 2G3

G1 =G2 +G3 r4 + r5 + r7 + r9 r2 + r4 + r8 (3,1,2)
G1 +G2 = 2G3

G1 = 2G2 +G3 r4 + r7 + r9 r2 + r4 + r5 + r8 (4,1,2)
G1 = 2G3

G1 = 2G2 +G3 r5 + r6 + r9 + r10 r2 + r3 + r8 (5,2,1)
G2 = 2G3

G1 = 2G2 +G3 r5 + r7 + r9 r2 + r3 + r7 + r8 (5,1,3)
G1 +G2 = 2G3

G1 = 2G2 +2G3 r5 + r9 + r10 r2 + r3 + r6 + r8 (6,2,1)
G2 = 2G3

G1 = 2G3 r4 + r5 + r9 + r10 r2 + r4 + r7 + r9 + r11 (2,3,1)
G2 =G1 +G3

G1 = 2G3 r5 + r7 + r9 + r10 r2 + r3 + r5 + r7 + r9 + r11 (2,4,1)
G2 =G1 +2G3

G2 =G1 +G3 r4 + r7 r2 + r4 + r5 + r8 + r9 (1,3,2)
G1 +G2 = 2G3

Table B: RG for every Fibonacci recurrence sequence that does not satisfy the uniqueness property by

more than one condition.
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3.4 Case Studies

• (G1,G2,G3)= (5,2,3)

This sequence satisfies the condition G1 = G2 +G3, therefore numbers such as 20 = G5 +G1 =
G5 +G3 +G2 have two representations. Thus, according to Table A, the value of RG is given by

r2 + r4 + r7 + r8 = 4+6α+7α2

G4 + (G3 +G4)α+G5α2 + 4+6α+7α2

G6 + (G5 +G6)α+G7α2

+ 4+6α+7α2

G9 + (G8 +G9)α+G10α2 + 4+6α+7α2

G10 + (G9 +G10)α+G11α2

= 4+6α+7α2

10+13α+15α2 + 4+6α+7α2

28+43α+53α2

+ 4+6α+7α2

177+273α+326α2 + 4+6α+7α2

326+503α+599α2

≈ 0.62607

Therefore, whereas r1 ≈ 0.84119, RG ≈ 0.62607.

• (G1,G2,G3)= (6,4,3)

This sequence satisfies the condition G1 = 2G3, therefore numbers such as 23 = G4 +G2 +G1 =
G5 +G3 have two representations. Thus, according to Table A, the value of RG is given by

r2 + r3 + r6 + r8 = 4+6α+7α2

G4 + (G3 +G4)α+G5α2 + 4+6α+7α2

G5 + (G4 +G5)α+G6α2

+ 4+6α+7α2

G8 + (G7 +G8)α+G9α2 + 4+6α+7α2

G10 + (G9 +G10)α+G11α2

= 4+6α+7α2

13+16α+20α2 + 4+6α+7α2

20+33α+36α2

+ 4+6α+7α2

125+194α+230α2 + 4+6α+7α2

424+654α+779α2

≈ 0.58271

Therefore, whereas r1 ≈ 0.64685, RG ≈ 0.58271.

• (G1,G2,G3)= (2,6,4)

Since (G1,G2,G3) ∼ (1,3,2) (that is, 3G1 = G2 and 2G1 = G3), this sequence satisfies the condi-

tions G2 =G1 +G3 and G1 +G2 = 2G3. Therefore numbers such as 18 = G4 +G2 =G4 +G3 +G1

and 42=G5 +G4 +G2 +G1 =G6 +G3 have two representations. Thus, according to Table B, the

value of RG is given by

r4 + r7 = 4+6α+7α2

G6 + (G5 +G6)α+G7α2 + 4+6α+7α2

G9 + (G8 +G9)α+G10α2

= 4+6α+7α2

38+60α+72α2 + 4+6α+7α2

242+374α+446α2

≈ 0.11466

Therefore, whereas r1 ≈ 0.61466, RG ≈ 0.11466.
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4 Future Work

Some of the results in this paper are missing a proof. Further papers about this topic might delve

deeper into the intricacies of every theorem or proposition used in this paper to construct the process

of eliminating double counts per initial condition of the sequences. More detailed examples for specific

sequences might also be provided in the future.

Also, the process used to arrive at our results was purely mechanical and based on categorization

rather than on intrinsic properties of the sequences that hold said initial conditions that cause the

double Zeckendorf representations. An in-depth analysis of the properties of the values of r i, i ∈ N,

might yield interesting results. If a direct link can be found between the initial conditions of the first

terms of the sequence and the corresponding values r i that add up to RG , significant improvement can

be made to understand the structure of these recurrences and their relation to the ratio of Zeckendorf

integers they produce.

Finally, extensions of these principles can be made to higher-order Zeckendorf representations. A

generalized Zeckendorf count seems to be quite challenging, considering the amount of cases just the

third order case produces. However, if a generalizing statement is achieved for third order Fibonacci

recurrences that may or may not satisfy the unique expansion property, then these principles can be

extrapolated for further orders.
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Appendix A: Body-Tail Difference Comparisons per Path in Λ

t(A) t(B) Tail Difference Implied Condition Validity
G1 0 G1 G1 =G2
G1 G2 G1 −G2 G1 = 2G2 ✓
G2 0 G2 A ∉F

G2 G1 G2 −G1 A ∉F

G1 +G2 0 G1 +G2 A ∉F

G1 +G2 G1 G2 A ∉F

G1 +G2 G2 G1 A ∉F

Table 1: {3,4}→ {5}, where
∑

b(B) Gk −
∑

b(A) Gk =G2

t(A) t(B) Tail Difference Implied Condition Validity
G1 0 G1 G1 =G2
G1 G2 G1 −G2 G1 = 2G2 ✓
G2 0 G2 A ∉F

G2 G1 G2 −G1 A ∉F

G1 +G2 0 G1 +G2 A ∉F

G1 +G2 G1 G2 A ∉F

G1 +G2 G2 G1 A ∉F

Table 2: {3,4}→;, where
∑

b(B) Gk −
∑

b(A) Gk =G2

t(A) t(B) Tail Difference Implied Condition Validity
G1 0 G1 G1 =G3
G1 G2 G1 −G2 G1 =G2 +G3 ✓
G2 0 G2 G2 =G3
G2 G1 G2 −G1 G2 =G1 +G3 ✓

G1 +G2 0 G1 +G2 G1 +G2 =G3 ✓
G1 +G2 G1 G2 G2 =G3
G1 +G2 G2 G1 G1 =G3

Table 3: {5}→ {3,5}, where
∑

b(B) Gk −
∑

b(A) Gk =G3

t(A) t(B) Tail Difference Implied Condition Validity
G1 0 G1 G1 =G3
G1 G2 G1 −G2 A ∉F

G2 0 G2 G2 =G3
G2 G1 G2 −G1 G2 =G1 +G3 ✓

G1 +G2 0 G1 +G2 G1 +G2 =G3 ✓
G1 +G2 G1 G2 G2 =G3
G1 +G2 G2 G1 A ∉F

Table 4: {4}→ {3,4}, where
∑

b(B) Gk −
∑

b(A) Gk =G3
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t(A) t(B) Tail Difference Implied Condition Validity
G1 0 G1 G1 =G2 +G3 ✓
G1 G2 G1 −G2 G1 = 2G2 +G3 ✓
G2 0 G2 0=G3
G2 G1 G2 −G1 0=G1 +G3

G1 +G2 0 G1 +G2 G1 =G3
G1 +G2 G1 G2 0=G3
G1 +G2 G2 G1 G1 =G2 +G3 ✓

Table 5: {4}→ {5}, where
∑

b(B) Gk −
∑

b(A) Gk =G2 +G3

t(A) t(B) Tail Difference Implied Condition Validity
G1 0 G1 G1 =G2 +2G3 ✓
G1 G2 G1 −G2 G1 = 2G2 +2G3 ✓
G2 0 G2 0= 2G3
G2 G1 G2 −G1 0=G1 +2G3

G1 +G2 0 G1 +G2 G1 = 2G3 ✓
G1 +G2 G1 G2 0= 2G3
G1 +G2 G2 G1 G1 =G2 +2G3 ✓

Table 6: {4}→ {3,5}, where
∑

b(B) Gk −
∑

b(A) Gk =G2 +2G3

t(A) t(B) Tail Difference Implied Condition Validity
G1 0 G1 G1 =G2 +G3 ✓
G1 G2 G1 −G2 G1 = 2G2 +G3 ✓
G2 0 G2 A ∉F

G2 G1 G2 −G1 A ∉F

G1 +G2 0 G1 +G2 A ∉F

G1 +G2 G1 G2 A ∉F

G1 +G2 G2 G1 A ∉F

Table 7: {3,4}→ {3,5}, where
∑

b(B) Gk −
∑

b(A) Gk =G2 +G3

t(A) t(B) Tail Difference Implied Condition Validity
G1 0 G1 G1 =G2 +G3 ✓
G1 G2 G1 −G2 G1 = 2G2 +G3 ✓
G2 0 G2 A ∉F

G2 G1 G2 −G1 A ∉F

G1 +G2 0 G1 +G2 A ∉F

G1 +G2 G1 G2 A ∉F

G1 +G2 G2 G1 A ∉F

Table 8: {3,4}→ {3}, where
∑

b(B) Gk −
∑

b(A) Gk =G2 +G3

t(A) t(B) Tail Difference Implied Condition Validity

G1 0 G1 G1 =G2 +2G3 ✓

G1 G2 G1 −G2 G1 = 2G2 +2G3 ✓

G2 0 G2 0= 2G3

G2 G1 G2 −G1 0=G1 +2G3

G1 +G2 0 G1 +G2 G1 = 2G3 ✓

G1 +G2 G1 G2 0= 2G3

G1 +G2 G2 G1 G1 =G2 +2G3 ✓

Table 10: {4}→ {3}, where
∑

b(B) Gk −
∑

b(A) Gk =G2 +2G3
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t(A) t(B) Tail Difference Implied Condition Validity
G1 0 G1 G1 =G2 +G3 ✓
G1 G2 G1 −G2 G1 = 2G2 +G3 ✓
G2 0 G2 0=G3
G2 G1 G2 −G1 0=G1 +G3

G1 +G2 0 G1 +G2 G1 =G3
G1 +G2 G1 G2 0=G3
G1 +G2 G2 G1 G1 =G2 +G3 ✓

Table 9: {4}→;, where
∑

b(B) Gk −
∑

b(A) Gk =G2 +G3

t(A) t(B) Tail Difference Implied Condition Validity
G1 0 G1 G1 =G3
G1 G2 G1 −G2 G1 =G2 +G3 ✓
G2 0 G2 G2 =G3
G2 G1 G2 −G1 G2 =G1 +G3 ✓

G1 +G2 0 G1 +G2 G1 +G2 =G3 ✓
G1 +G2 G1 G2 G2 =G3
G1 +G2 G2 G1 G1 =G3

Table 11: {4,5}→;, where
∑

b(B) Gk −
∑

b(A) Gk =G3

t(A) t(B) Tail Difference Implied Condition Validity
G1 0 G1 G1 = 2G3 ✓
G1 G2 G1 −G2 G1 =G2 +2G3 ✓
G2 0 G2 G2 = 2G3 ✓
G2 G1 G2 −G1 G2 =G1 +2G3 ✓

G1 +G2 0 G1 +G2 G1 +G2 = 2G3 ✓
G1 +G2 G1 G2 G2 = 2G3 ✓
G1 +G2 G2 G1 G1 = 2G3 ✓

Table 12: {4,5}→ {3}, where
∑

b(B) Gk −
∑

b(A) Gk = 2G3

t(A) t(B) Tail Difference Implied Condition Validity
G1 0 G1 G1 =G3
G1 G2 G1 −G2 G1 =G2 +G3 ✓
G2 0 G2 G2 =G3
G2 G1 G2 −G1 G2 =G1 +G3 ✓

G1 +G2 0 G1 +G2 G1 +G2 =G3 ✓
G1 +G2 G1 G2 G2 =G3
G1 +G2 G2 G1 G1 =G3

Table 13: ;→ {3}, where
∑

b(B) Gk −
∑

b(A) Gk =G3
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Appendix B: Calculations for Double Counts per Initial Condi-
tion

Recall Definition 3.23 and Definition 3.24.

(1) G1 = 2G2

• {1,3,4}→ {2,5}

evalG{2,3,4,∆6}= evalG{5,∆6} (G2 +G3 +G4 =G5)

⇒ evalG{1,3,4,∆6}= evalG{2,5,∆6} (G1 −G2 =G2)

• {1,3,4}→ {2}

evalG{2,3,4,6,7,∗9}= evalG{5,6,7,∗9} (G2 +G3 +G4 =G5)

⇒ evalG{2,3,4,6,7,∗9}= evalG{8,∗9} (G5 +G6 +G7 =G8)

⇒ evalG{1,3,4,6,7,∗9}= evalG{2,8,∗9} (G1 −G2 =G2)

(shape of B ∈F might change depending on G9,G10)

(2) G1 =G2 +G3

• {1,5}→ {2,3,5}

evalG{1,5,∆6}= evalG{2,3,5,∆6} (G1 =G2 +G3)

• {1,4,5}→ {2}

evalG{1,4,5,∗7}= evalG{2,3,4,5,∗7} (G1 =G2 +G3)

⇒ evalG{1,4,5,∗7}= evalG{2,6,∗7} (G3 +G4 +G5 =G6)

(shape of B ∈F might change depending on G7,G8)

• {1}→ {2,3}

evalG{1,∗6}= evalG{2,3,∗6} (G1 =G2 +G3)

• {1,4}→ {5}

evalG{2,3,4,∆6}= evalG{5,∆6}

⇒ evalG{1,4,∆6}= evalG{5,∆6} (G1 −G2 −G3 = 0)
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• {1,2,4}→ {2,5}

evalG{2,3,4,∆6}= evalG{5,∆6}

⇒ evalG{1,4,∆6}= evalG{2,5,∆6} (G1 −G3 =G2)

• {1,4}→;

evalG{1,4,6,7,∗9}= evalG{2,3,4,6,7,∗9} (G1 =G2 +G3)

⇒ evalG{1,4,6,7,∗9}= evalG{5,6,7,∗9} (G2 +G3 +G4 =G5)

⇒ evalG{1,4,6,7,∗9}= evalG{8,∗9} (G5 +G6 +G7 =G8)

(shape of B ∈F might change depending on G9,G10)

• {1,2,4}→ {2}

evalG{2,3,4,6,7,∗9}= evalG{5,6,7,∗9} (G2 +G3 +G4 =G5)

⇒ evalG{1,4,6,7,∗9}= evalG{8,∗9} (G5 +G6 +G7 =G8)

⇒ evalG{1,4,6,7,∗9}= evalG{2,8,∗9} (G1 −G3 =G2)

(shape of B ∈F might change depending on G9,G10)

• {1,3,4}→ {3,5}

evalG{2,3,4,∆6}= evalG{5,∆6} (G2 +G3 +G4 =G5)

⇒ evalG{1,3,4,∆6}= evalG{3,5,∆6} (G1 −G2 =G3)

• {1,3,4}→ {3}

evalG{2,3,4,6,7,∗9}= evalG{5,6,7,∗9} (G2 +G3 +G4 =G5)

⇒ evalG{2,3,4,6,7,∗9}= evalG{8,∗9} (G5 +G6 +G7 =G8)

⇒ evalG{1,3,4,6,7,∗9}= evalG{3,8,∗9} (G1 −G2 =G3)

(shape of B ∈F might change depending on G9,G10)

(3) G1 =G2 +2G3

• {1,4}→ {3,5}

evalG{2,3,4,∆6}= evalG{5,∆6} (G2 +G3 +G4 =G5)

⇒ evalG{1,4,∆6}= evalG{3,5,∆6} (G1 −G2 −G3 =G3)
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• {1,2,4}→ {2,3,5}

evalG{2,3,4,∆6}= evalG{5,∆6} (G2 +G3 +G4 =G5)

⇒ evalG{1,2,4,∆6}= evalG{2,3,5,∆6} (G1 −G3 =G2 +G3)

• {1,4}→ {3}

evalG{2,3,4,6,7,∗9}= evalG{5,6,7,∗9} (G2 +G3 +G4 =G5)

⇒ evalG{2,3,4,6,7,∗9}= evalG{8,∗9} (G5 +G6 +G7 =G8)

⇒ evalG{1,4,6,7,∗9}= evalG{3,8,∗9} (G1 −G2 −G3 =G3)

(shape of B ∈F might change depending on G9,G10)

• {1,2,4}→ {2,3}

evalG{2,3,4,6,7,∗9}= evalG{5,6,7,∗9} (G2 +G3 +G4 =G5)

⇒ evalG{2,3,4,6,7,∗9}= evalG{8,∗9} (G5 +G6 +G7 =G8)

⇒ evalG{1,2,4,6,7,∗9}= evalG{2,3,8,∗9} (G1 −G3 =G2 +G3)

(shape of B ∈F might change depending on G9,G10)

• {1,4,5}→ {2,3}

evalG{3,4,5,∗7}= evalG{6,∗7} (G3 +G4 +G5 =G6)

⇒ evalG{1,4,5,∗7}= evalG{2,3,6,∗7} (G1 −G3 =G2 +G3)

(shape of B ∈F might change depending on G7,G8)

(4) G1 = 2G2 +G3

• {1,4}→ {2,5}

evalG{2,3,4,∆6}= evalG{5,∆6} (G2 +G3 +G4 =G5)

⇒ evalG{1,4,∆6}= evalG{2,5,∆6} (G1 −G2 −G3 =G2)

• {1,4}→ {2}

evalG{2,3,4,6,7,∗9}= evalG{5,6,7,∗9} (G2 +G3 +G4 =G5)

⇒ evalG{2,3,4,6,7,∗9}= evalG{8,∗9} (G5 +G6 +G7 =G8)

⇒ evalG{1,4,6,7,∗9}= evalG{2,8,∗9} (G1 −G2 −G3 =G2)

• {1,3,4}→ {2,3,5}

evalG{2,3,4,∆6}= evalG{5,∆6} (G2 +G3 +G4 =G5)

⇒ evalG{1,3,4,∆6}= evalG{2,3,5,∆6} (G1 −G2 =G2 +G3)
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• {1,3,4}→ {2,3}

evalG{2,3,4,6,7,∗9}= evalG{5,6,7,∗9} (G2 +G3 +G4 =G5)

⇒ evalG{2,3,4,6,7,∗9}= evalG{8,∗9} (G5 +G6 +G7 =G8)

⇒ evalG{1,3,4,6,7,∗9}= evalG{2,3,8,∗9} (G1 −G2 =G2 +G3)

(5) G1 = 2G2 +2G3

• {1,4}→ {2,3,5}

evalG{2,3,4,∆6}= evalG{5,∆6} (G2 +G3 +G4 =G5)

⇒ evalG{1,4,∆6}= evalG{2,3,5,∆6} (G1 −G2 −G3 =G2 +G3)

• {1,4}→ {2}

evalG{2,3,4,6,7,∗9}= evalG{5,6,7,∗9} (G2 +G3 +G4 =G5)

⇒ evalG{2,3,4,6,7,∗9}= evalG{8,∗9} (G5 +G6 +G7 =G8)

⇒ evalG{1,4,6,7,∗9}= evalG{2,3,8,∗9} (G1 −G2 −G3 =G2 +G3)

(6) G1 = 2G3

• {1,4,5}→ {3}

evalG{3,4,5,∗7}= evalG{6,∗7} (G3 +G4 +G5 =G6)

⇒ evalG{1,4,5,∗7}= evalG{3,6,∗7} (G1 −G3 =G3)

(shape of B ∈F might change depending on G7,G8)

• {1,2,4,5}→ {2,3}

evalG{2,3,4,5,∗7}= evalG{2,6,∗7} (G3 +G4 +G5 =G6)

⇒ evalG{1,2,4,5,∗7}= evalG{2,3,6,∗7} (G1 −G3 =G3)

(shape of B ∈F might change depending on G7,G8)

• {1,2,4}→ {3,5}

evalG{2,3,4,∆6}= evalG{5,∆6} (G3 +G4 +G5 =G6)

⇒ evalG{1,2,4,∆6}= evalG{3,5,∆6} (G1 −G3 =G3)
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• {1,2,4}→ {5}

evalG{2,3,4,6,7,∗9}= evalG{5,6,7,∗9} (G2 +G3 +G4 =G5)

⇒ evalG{2,3,4,6,7,∗9}= evalG{8,∗9} (G5 +G6 +G7 =G5)

⇒ evalG{1,2,4,6,7,∗9}= evalG{3,8,∗9} (G1 −G3 =G3)

(shape of B ∈F might change depending on G7,G8)

(7) G2 =G1 +G3

• {2,4}→ {1,3,4}

evalG{2,4,∗6}= evalG{1,3,4,∗6} (G2 =G1 +G3)

• {2,5}→ {1,3,5}

evalG{2,5,∆6}= evalG{1,3,5,∆6} (G2 =G1 +G3)

• {2,4,5}→ {1}

evalG{3,4,5,∗7}= evalG{6,∗7} (G3 +G4 +G5 =G6)

⇒ evalG{2,4,5,∗7}= evalG{1,6,∗7} (G2 −G3 =G1)

(shape of B ∈F might change depending on G7,G8)

• {2}→ {1,3}

evalG{2,∗6}= evalG{1,3,∗6} (G2 =G1 +G3)

(8) G2 =G1 +2G3

• {2,4,5}→ {1,3}

evalG{3,4,5,∗7}= evalG{6,∗7} (G3 +G4 +G5 =G6)

⇒ evalG{2,4,5,∗7}= evalG{1,3,6,∗7} (G2 −G3 =G1 +G3)

(shape of B ∈F might change depending on G7,G8)
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(9) G2 = 2G3

• {2,4,5}→ {3}

evalG{3,4,5,∗7}= evalG{6,∗7} (G3 +G4 +G5 =G6)

⇒ evalG{2,4,5,∗7}= evalG{3,6,∗7} (G2 −G3 =G3)

(shape of B ∈F might change depending on G7,G8)

• {1,2,4,5}→ {1,3}

evalG{1,3,4,5,∗7}= evalG{1,6,∗7} (G3 +G4 +G5 =G6)

⇒ evalG{1,2,4,5,∗7}= evalG{1,3,6,∗7} (G2 −G3 =G3)

(shape of B ∈F might change depending on G7,G8)

(10) G1 +G2 =G3

• {1,2,4}→ {3}

evalG{1,2,4,∗6}= evalG{3,4,∗6} (G1 +G2 =G3)

• {1,2,5}→ {3,5}

evalG{1,2,5,∆6}= evalG{3,5,∆6} (G1 +G2 =G3)

• {1,2,4,5}→;

evalG{3,4,5,∗7}= evalG{6,∗7} (G3 +G4 +G5 =G6)

⇒ evalG{1,2,4,5,∗7}= evalG{6,∗7} (G1 +G2 −G3 = 0)

(shape of B ∈F might change depending on G7,G8)

• {1,2}→ {3}

evalG{1,2,∗6}= evalG{3,∗a6} (G1 +G2 =G3)

(11) G1 +G2 = 2G3

• {1,2,4,5}→ {3}

evalG{3,4,5,∗7}= evalG{6,∗7} (G3 +G4 +G5 =G6)

⇒ evalG{1,2,4,5,∗7}= evalG{3,6,∗7} (G1 +G2 −G3 =G3)

(shape of B ∈F might change depending on G7,G8)
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Appendix C: Counts of Zeckendorf Integers per Initial Condi-
tion

(1) G1 = 2G2

# Double Counts:

(r7 + r8)+ r9 = r6

RG :

r1 − r6 = r2 + r3 + r4 − r6

= r2 + r3 + r5 + r7

(2) G1 =G2 +G3

# Double Counts:

r6 +4(r7 + r8)+ r7 +3r9 = 4r6 +2r7 + r8

= r5 +3r6 + r7

= r4 +2r6

= r4 + r6 + r7 + r8 + r9

= r4 + r5 + r9

RG :

r1 − r4 − r5 − r9 = r2 + r3 − r5 − r9

= r2 + r4 + r6 − r9

= r2 + r4 + r7 + r8

(3) G1 =G2 +2G3

# Double Counts:

2(r7 + r8)+ r7 +2r9 = 2r6 + r7

= r6 +2r7 + r8 + r9

= r5 + r7 + r9

RG :

r1 − r5 − r7 − r9 = r2 + r3 + r4 − r5 − r7 − r9

= r2 + r3 + r6 − r9

= r2 + r3 + r7 + r8
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(4) G1 = 2G2 +G3

# Double Counts:

2(r7 + r8)+2r9 = 2r6

= r6 + r7 + r8 + r9

= r5 + r9

RG :

r1 − r5 − r9 = r2 + r3 + r4 − r5 − r9

= r2 + r3 + r6 + r7 − r9

= r2 + r3 + r6 + r8 + r10

(5) G1 = 2G2 +2G3

# Double Counts:

(r7 + r8)+ r9 = r6

RG :

r1 − r6 = r2 + r3 + r4 − r6

= r2 + r3 + r5 + r7

(6) G1 = 2G3

# Double Counts:

(r7 + r8)+2r7 + r9 = r6 +2r7

= r6 + r7 + r8 + r9 + r10

= r5 + r9 + r10

RG :

r1 − r5 − r9 − r10 = r2 + r3 + r4 − r5 − r9 − r10

= r2 + r3 + r6 + r7 − r9 − r10

= r2 + r3 + r6 + r8
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(7) G2 =G1 +G3

# Double Counts:

(r7 + r8)+2r6 + r7 = r5 + r6 + r7

= r4

RG :

r1 − r4 = r2 + r3

(8) G2 =G1 +2G3

# Double Counts:

r7

RG :

r1 − r7 = r2 + r3 + r4 − r7

= r2 + r3 + r5 + r6

(9) G2 = 2G3

# Double Counts:

2r7 = r7 + r8 + r9 + r10

= r6 + r10

RG :

r1 − r5 − r9 − r10 = r2 + r3 + r4 − r5 − r9 − r10

= r2 + r3 + r6 + r7 − r9 − r10

= r2 + r3 + r6 + r8

(10) G1 +G2 =G3

# Double Counts:

(r7 + r8)+2r6 + r7 = r5 + r6 + r7

= r4

RG :

r1 − r4 = r2 + r3
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(11) G1 +G2 = 2G3

# Double Counts:

r7

RG :

r1 − r7 = r2 + r3 + r4 − r7

= r2 + r3 + r5 + r6

(12) G1 = 2G2, G1 =G2 +2G3, G2 = 2G3

# Double Counts:

r6 + r5 + r7 + r9 + r6 + r10 = r4 + r6 + r7 + r9 + r10

RG :

r1 − r4 − r6 − r7 − r9 − r10 = r2 + r3 − r6 − r7 − r9 − r10

= r2 + r4 + r5 − r7 − r9 − r10

= r2 + r4 + r6 + r8 − r9 − r10

= r2 + r4 + r6 + r11

(13) G1 = 2G2, G1 +G2 =G3

# Double Counts:

r6 + r4 = r4 + r6

RG :

r1 − r4 − r6 = r2 + r3 − r6

= r2 + r4 + r5

(14) G1 = 2G2, G1 +G2 = 2G3

# Double Counts:

r6 + r7

RG :

r1 − r6 − r7 = r2 + r3 + r4 − r6 − r7

= r2 + r3 + r5
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(15) G1 =G2 +G3, G2 = 2G3

# Double Counts:

r4 + r5 + r9 + r6 + r10 = r3 + r9 + r10

RG :

r1 − r3 − r9 − r10 = r2 + r4 − r9 − r10

= r2 + r5 + r6 + r7 − r9 − r10

= r2 + r5 + r6 + r8

(16) G1 =G2 +G3, G1 +G2 = 2G3

# Double Counts:

r4 + r5 + r9 + r7 = r4 + r5 + r7 + r9

RG :

r1 − r4 − r5 − r7 − r9 = r2 + r3 − r5 − r7 − r9

= r2 + r4 + r6 − r7 − r9

= r2 + r4 + r8

(17) G1 =G2 +2G3, G1 = 2G3

# Double Counts:

r5 + r9 + r5 + r9 + r10 = r5 + r6 + r7 + r8 + r9 + r9 + r10

= r4 + r7 + r9

RG :

r1 − r4 − r7 − r9 = r2 + r3 − r7 − r9

= r2 + r4 + r5 + r6 − r7 − r9

= r2 + r4 + r5 + r8
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(18) G1 =G2 +2G3, G2 = 2G3

# Double Counts:

r5 + r9 + r6 + r10 = r5 + r6 + r9 + r10

RG :

r1 − r5 − r6 − r9 − r10 = r2 + r3 + r4 − r5 − r6 − r9 − r10

= r2 + r3 + r7 − r9 − r10

= r2 + r3 + r8

(19) G1 = 2G2 +2G3, G2 = 2G3

# Double Counts:

r6 + r6 + r10 = r6 + r7 + r8 + r9 + r10

= r5 + r9 + r10

RG :

r1 − r5 − r9 − r10 = r2 + r3 + r4 − r5 − r9 − r10

= r2 + r3 + r6 + r7 − r9 − r10

= r2 + r3 + r6 + r8

(20) G1 = 2G3, G2 =G1 +G3

# Double Counts:

r5 + r9 + r10 + r4 = r4 + r5 + r9 + r10

RG :

r1 − r4 − r5 − r9 − r10 = r2 + r3 − r5 − r9 − r10

= r2 + r4 + r6 − r9 − r10

= r2 + r4 + r7 + r8 − r10

= r2 + r4 + r7 + r9 + r11
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(21) G1 = 2G3, G2 =G1 +2G3

# Double Counts:

r5 + r9 + r10 + r7 = r5 + r7 + r9 + r10

RG :

r1 − r5 − r7 − r9 − r10 = r2 + r3 + r4 − r5 − r7 − r9 − r10

= r2 + r3 + r6 − r9 − r10

= r2 + r3 + r7 + r8 − r10

= r2 + r3 + r7 + r9 + r11

(22) G2 =G1 +G3, G1 +G2 = 2G3

# Double Counts:

r4 + r7

RG :

r1 − r4 − r7 = r2 + r3 − r7

= r2 + r4 + r5 + r6 − r7

= r2 + r4 + r5 + r8 + r9
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Appendix D: Evaluation of Plausibility of Multiple Initial Con-
ditions on (G1,G2,G3)

Condition 1 Condition 2 Implied Condition Validity
G1 = 2G2 G1 =G2 +G3 G2 =G3
G1 = 2G2 G1 =G2 +2G3 (G1,G2,G3)∼ (4,2,1) ✓
G1 = 2G2 G1 = 2G2 +G3 G3 = 0
G1 = 2G2 G1 = 2G2 +2G3 G3 = 0
G1 = 2G2 G1 = 2G3 G2 =G3
G1 = 2G2 G2 =G1 +G3 G1 +2G3 = 0
G1 = 2G2 G2 =G1 +2G3 G1 +3G3 = 0
G1 = 2G2 G2 = 2G3 (G1,G2,G3)∼ (4,2,1) ✓
G1 = 2G2 G1 +G2 =G3 (G1,G2,G3)∼ (2,1,3) ✓
G1 = 2G2 G1 +G2 = 2G3 (G1,G2,G3)∼ (4,2,3) ✓

G1 =G2 +G3 G1 =G2 +2G3 G3 = 0
G1 =G2 +G3 G1 = 2G2 +G3 G2 = 0
G1 =G2 +G3 G1 = 2G2 +2G3 G2 +G3 = 0
G1 =G2 +G3 G1 = 2G3 G2 =G3
G1 =G2 +G3 G2 =G1 +G3 G3 = 0
G1 =G2 +G3 G2 =G1 +2G3 G3 = 0
G1 =G2 +G3 G2 = 2G3 (G1,G2,G3)∼ (3,2,1) ✓
G1 =G2 +G3 G1 +G2 =G3 G2 = 0
G1 =G2 +G3 G1 +G2 = 2G3 (G1,G2,G3)∼ (3,1,2) ✓
G1 =G2 +2G3 G1 = 2G2 +G3 G2 =G3
G1 =G2 +2G3 G1 = 2G2 +2G3 G2 = 0
G1 =G2 +2G3 G1 = 2G3 G2 = 0
G1 =G2 +2G3 G2 =G1 +G3 G3 = 0
G1 =G2 +2G3 G2 =G1 +2G3 G3 = 0
G1 =G2 +2G3 G2 = 2G3 (G1,G2,G3)∼ (4,2,1) ✓
G1 =G2 +2G3 G1 +G2 =G3 2G2 +G3 = 0
G1 =G2 +2G3 G1 +G2 = 2G3 G2 = 0
G1 = 2G2 +G3 G1 = 2G2 +2G3 G3 = 0
G1 = 2G2 +G3 G1 = 2G3 (G1,G2,G3)∼ (4,1,2) ✓
G1 = 2G2 +G3 G2 =G1 +G3 G1 +3G3 = 0
G1 = 2G2 +G3 G2 =G1 +2G3 G1 +5G3 = 0
G1 = 2G2 +G3 G2 = 2G3 (G1,G2,G3)∼ (5,2,1) ✓
G1 = 2G2 +G3 G1 +G2 =G3 G2 = 0
G1 = 2G2 +G3 G1 +G2 = 2G3 (G1,G2,G3)∼ (5,1,3) ✓
G1 = 2G2 +2G3 G1 = 2G3 G2 = 0
G1 = 2G2 +2G3 G2 =G1 +G3 G1 +4G3 = 0
G1 = 2G2 +2G3 G2 =G1 +2G3 G1 +6G3 = 0
G1 = 2G2 +2G3 G2 = 2G3 (G1,G2,G3)∼ (6,2,1) ✓
G1 = 2G2 +2G3 G1 +G2 =G3 3G2 +G3 = 0
G1 = 2G2 +2G3 G1 +G2 = 2G3 G2 = 0

G1 = 2G3 G2 =G1 +G3 (G1,G2,G3)∼ (2,3,1) ✓
G1 = 2G3 G2 =G1 +2G3 (G1,G2,G3)∼ (2,4,1) ✓
G1 = 2G3 G2 = 2G3 G1 =G2
G1 = 2G3 G1 +G2 =G3 G2 +G3 = 0
G1 = 2G3 G1 +G2 = 2G3 G2 = 0
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Condition 1 Condition 2 Implied Condition Validity
G2 =G1 +G3 G2 =G1 +2G3 G3 = 0
G2 =G1 +G3 G2 = 2G3 G1 =G3
G2 =G1 +G3 G1 +G2 =G3 G1 = 0
G2 =G1 +G3 G1 +G2 = 2G3 (G1,G2,G3)∼ (1,3,2) ✓

G2 =G1 +2G3 G2 = 2G3 G1 = 0
G2 =G1 +2G3 G1 +G2 =G3 2G1 +G3 = 0
G2 =G1 +2G3 G1 +G2 = 2G3 G1 = 0

G2 = 2G3 G1 +G2 =G3 G1 +G3 = 0
G2 = 2G3 G1 +G2 = 2G3 G1 = 0

G1 +G2 =G3 G1 +G2 = 2G3 G3 = 0
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