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ABSTRACT

In this thesis, tail conditional expectation (TCE) in risk analysis, an impor-

tant measure for right-tail risk, is presented. This value is generally based

on the quantile of the loss distribution. Explicit formulas of several tail con-

ditional expectations and inequality measures for Dagum-type models are

derived. In addition, a new class of weighted Burr-III (WBIII) distribution

is presented. The statistical properties of this distribution including hazard

and reverse hazard functions, moments, coefficient of variation, skewness, and

kurtosis, inequality measures, entropy are derived. Also, Fisher information

and maximum likelihood estimates of the model parameters are obtained.
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CHAPTER 1

INTRODUCTION

1.1 Generalized Dagum Distribution

The generalized beta distribution of the second kind (GB2) with four param-

eters is a flexible distribution for modeling income and wealth distributions.

In addition, GB2 includes special cases of other distributions such as inverse

Burr with shape parameter p=1, with q=1 for Dagum, and exponential dis-

tributions. The probability density function (pdf) of the generalized beta

distribution of the second kind (GB2) is given by:

fGB2(x; a, b, p, q) =
axap−1

bapB(p, q)[1 + (x
b
)a]p+q

, for x > 0, (1.1)

where a,p,q are the shape parameters, b is the scale parameter, B(p, q) =

Γ(p)Γ(q)
Γ(p+q)

is the beta function, and a, b, p, q are positive real values. See Mc-

Donald (1984), McDonald and Xu (1995) for additional details.

Dagum distribution is a special case of GB2 named after Camilo Dagum

(1977). The cdf and pdf are given by:

GD(x; β, λ, δ) = (1 + λx−δ)−β, (1.2)

and

g
D

(x; β, λ, δ) = βλδx−δ−1(1 + λx−δ)−β−1, (1.3)

for x > 0, and β, δ, λ > 0, respectively. Note that λ is a scale parameter,

while δ and β are shape parameters. Furthermore, the q-th quantile is

xq = λ
1
δ (q

−1
β − 1)

−1
δ , (1.4)
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and the r-th moment is given by

E[Xr; β, λ, δ] = βλ
r
δB

(
r

δ
+ β, 1− r

δ

)
, (1.5)

where B(., .) is the beta function and δ > r. See kleiber (2007), Kleiber and

Kotz (2003) for additional details.

1.1.1 Mc-Dagum Distribution

The McDonald Dagum distribution (Oluyede and Rajasooriya (2013)) is a

generalization of the Dagum distribution and includes the beta Dagum dis-

tribution (Domma and Condino (2013)) as a sub model. The cdf of the

Mc-Dagum distribution is given by:

FMD(x; ξ) =
1

B(a/c, b)

∫ GD(x;θ)

0

za/c−1(1− z)b−1dz. (1.6)

The corresponding series representation of the cdf is

FMD(x; ξ) =
∞∑
j=0

(−1)jΓ(a/c+ b)

Γ(a/c)Γ(b− j)Γ(j + 1)(a/c+ j)
GD(x; θ)a/c+j

=
∞∑
j=0

pjGD(x; β(a/c+ j), λ, δ),

(1.7)

where GD(x; θ)a/c+j = (1 + λx−δ)−β(a/c+j) = GD(x; β(a/c + j), λ, δ), and

pj = (−1)jΓ(a/c+b)
Γ(a/c)Γ(b−j)Γ(j+1)(a/c+j)

. The pdf is given by:

fMD(x; ξ) =
1

B(a/c, b)
[GD(x; θ)](a/c−1)[1−GD(x; θ)](b−1)g

D
(x; θ)

=
βλδx−δ−1

B(a/c, b)
(1 + λx−δ)−aβ/c−1[1− (1 + λx−δ)−β]b−1,

(1.8)
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for x > 0, and ξ = (β, λ, δ, a, b, c) > 0. The corresponding series representa-

tion of the pdf is

fMD(x; ξ) =
∞∑
j=0

pjgD(x; β(a/c+ j), λ, δ). (1.9)

However, if b is an integer, then the Mc-Dagum cdf is

FMD(x; ξ) =
b−1∑
j=0

pjGD(x; β(a/c+ j), λ, δ), (1.10)

and the pdf is

fMD(x; ξ) =
b−1∑
j=0

pjgD(x; β(a/c+ j), λ, δ). (1.11)

The r-th moment is given by:

E[Xr; ξ] =
∞∑
j=0

pjβ(a/c+ j)λ
r
δB

(
r

δ
+ β(a/c+ j), 1− r

δ

)
, (1.12)

and the r-th conditional moment is

E[Xr|X ≤ x] =

∑∞
j=0 pjβ(a/c+ j)λ

r
δ∑∞

j=0 pjG(x; β(a/c+ j), λ, δ)
B

(
y∗;

r

δ
+ β(a/c+ j), 1− r

δ

)
,

(1.13)

for δ > r, 0 < y∗ < 1, y∗ = (1 + λx−δ)−1, where B(y∗;α, β) is incomplete

beta function (Gradshteyn and Ryzhik (2000)).

1.1.2 Special Cases

In this section, we present several distributions that can be readily obtained

from Mc-Dagum density function:
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(1) If c = 1, then the random variable X has a beta-Dagum distribution

with the pdf:

fBD(x; β, λ, δ, a, b) =
βλδx−δ−1

B(a, b)
(1 + λx−δ)

−aβ−1
[1− (1 + λx−δ)−β]b−1,

for x > 0, and β, λ, δ, a, b > 0, where B(.,.) is the beta function.

(2) If a = b = c = 1, then X has a Dagum distribution with the pdf:

fD(x; β, λ, δ) = βλδx−δ−1(1 + λx−δ)−β−1, for x > 0, and β, δ, λ > 0.

(3) If b = c = 1, then X has a Dagum distribution with parameters aβ,

λ, δ and pdf:

fD(x; aβ, λ, δ) = aβλδx−δ−1(1 + λx−δ)−aβ−1, for x > 0, and β, λ, δ, a > 0.

(4) If a = c = 1, then X has a reduced beta-Dagum distribution with

the pdf:

fBD(x; β, λ, δ, b) = bβλδx−δ−1(1 + λx−δ)−β−1[1− (1 + λx−δ)−β]b−1,

for x > 0, and β, λ, δ, b > 0.

(5) If a = c = λ = 1, then X has a beta-BurrIII distribution with the

pdf:

fBB(x; β, δ, b) = bβδx−δ−1(1 + x−δ)−β−1[1− (1 + x−δ)−β]b−1,

for x > 0, and β, δ, b > 0.

(6) If c = β = 1, then X has a beta-Fisk distribution with the pdf:

fBF (x;λ, δ, a, b) =
λδx−δ−1

B(a, b)
(1 + λx−δ)−a−1[1− (1 + λx−δ)−1]b−1,
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for x > 0, and λ, δ, a, b > 0.

(7) If b = c = 1, then X has the Exponentiated-Dagum distribution with

the pdf:

fED(x;αβ, λ, δ) = αβλδx−δ−1(1 + λx−δ)−αβ−1, for x > 0, and β, λ, δ > 0.

Note that, when α = 1, then we have Dagum distribution.

1.2 Weighted Distribution

Let X be a random variable with pdf f(x; θ), where θ ∈ Ω is a natural

parameter and Ω is the parameter space. Let w(x; ε) be a positive function

with parameter ε representing the recording (sighting) mechanism. The pdf

of the weighted random variable Xw corresponding to w(x, ε) is given by:

fw(x; θ, ε) =
w(x; ε)f(x; θ)

E[w(X; ε)]
,

(1.14)

where 0 < E[w(X; ε)] < ∞ is normalizing factor. In addition, the random

variable Xw is known as the weighted version of the random variable X with

weighted distribution fw(x; θ, ε) and weight function w. See Patil and Rao

(1978), Rao (1965), Nanda and Jain (1999), Oluyede (1999), and Patil (1991)

for additional details.
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1.2.1 Some Special Weight Functions

A general class of weight functions (Riabi et al. (2010)) is given by:

w(x; ε) = w(x; k, l,m, r) = xkelxFm(x)F
r
(x), (1.15)

where F (x) = 1− F (x).

Remark:

(1) By setting l = 0, we get the weights corresponding to the probability

weighted moments (PWMs):

w(x; k,m, r) = xkFm(x)F
r
(x).

(2) If k = r = m = 0, we get the weights corresponding to the moment

generating functions:

w(x; l) = elx.

(3) By putting l = r = m = 0, we have the weights for the moments:

w(x; k) = xk.

(4) If k = l = 0, m→ m− 1, and r → n−m, we get the weights for the

order statistics as follows:

w(x;m,n) = Fm−1(x)F
n−m

(x).

(5) By setting k = l = m = 0, we have proportional hazard weight

functions:

w(x; r) = F
r
(x).
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(6) If k = l = r = 0, we get proportional reversed hazard weight func-

tions:

w(x;m) = Fm(x).

1.3 Some Utility Notions and Basic Results

For b > 0, real non-integer, and |z| < 1, we have

(1− z)b−1 =
∞∑
j=0

(−1)jΓ(b)

Γ(b− j)Γ(j + 1)
zj. (1.16)

1.3.1 Lorenz and Bonferroni Curves

Lorenz and Bonferroni curves are widely used tools for analyzing and visu-

alizing income inequality. Lorenz and Bonferroni Curves are given by

L(F (x)) =
E[X|X ≤ x]

E[X]
, (1.17)

and

B(F (x)) =
L(F (x))

F (x)
, (1.18)

respectively.

1.3.2 Mean Residual Life Function

The mean residual life function is well-known concept in reliability and sur-

vival analysis, denoted by MRLF (t), that is given by:

MRLF (t) = E[X − t|X > t] = E[X|X > t]− t. (1.19)
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1.4 Entropy

The entropy concept plays a vital role in information theory. The entropy of

a random variable is a good measure of randomness or uncertainty.

1.4.1 ε-Entropy

The applications of ε-entropy can be find in many physical systems. Let X

be a random variable with the Dagum pdf:

g
D

(x; β, λ, δ) = βλδx−δ−1(1 + λx−δ)−β−1,

and cdf

GD(x; β, λ, δ) = (1 + λx−δ)−β.

The ε-entropy is given by:

Hε(gD) =
1

ε− 1

[
1−

∫ ∞
0

gε
D

(x; β, λ, δ)dx

]
,

for ε > 0 and ε 6= 1. Note that for the Dagum pdf:∫ ∞
0

gε
D

(x; β, λ, δ)dx = (βλδ)ε
∫ ∞

0

x−ε(δ+1)(1 + λx−δ)−ε(β+1)dx,

we set t = (1 + λx−δ)−1, so that dt = (1 + λx−δ)−2λδx−δ−1dx, and∫ ∞
0

gε
D

(x; β, λ, δ)dx = βελ
1−ε
δ δε−1

∫ 1

0

t
1
δ

+εβ− ε
δ
−1(1− t)

1
δ

(ε−1)+ε−1dt

= βελ
1−ε
δ δε−1B

(
1

δ
+ εβ − ε

δ
,
1

δ
(ε− 1) + ε

)
,

for δ > ε. Hence, ε-entropy for Dagum distribution is given by:

Hε(gD) =
1

ε− 1

[
1− βελ

1−ε
δ δε−1B

(
1

δ
+ εβ − ε

δ
,
1

δ
(ε− 1) + ε

)]
,

for δ > ε, ε > 0 and ε 6= 1.
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1.4.2 Renyi Entropy

Renyi entropy (Renyi, 1961) for Dagum distribution is given by

HR(g
D

) = (1− τ)−1log

[∫ ∞
0

gτD(x;λ, δ, β)dx

]
= (1− τ)−1log

[
βτλ

1−τ
δ δτ−1B

(
1

δ
+ τβ − τ

δ
,
1

δ
(τ − 1) + τ

)]
,

for τ > 0, τ 6= 1, δ > τ − 1.

1.5 Probability Weighted Moments for Dagum

Distribution

The probability weighted moments (PWMs) for the Dagum distribution is

given by:

E[XkGm
D(X)G

r

D(X)]

=

∫ ∞
0

xk(1 + λx−δ)−βm[1− (1 + λx−δ)−β]rβλδx−δ−1(1 + λx−δ)−β−1dx

= βλ
k
δ

∫ 1

0

t
k
δ

+βm+β−1(1− t)−
k
δ

+1−1(1− tβ)rdt

= βλ
k
δ

∞∑
j=0

(−1)jΓ(r + 1)

Γ(r + 1− j)Γ(j + 1)

∫ 1

0

tβj+
k
δ

+βm+β−1(1− t)1− k
δ
−1dt

= βλ
k
δ

∞∑
j=0

(−1)jΓ(r + 1)

Γ(r + 1− j)Γ(j + 1)
B

(
βj +

k

δ
+ βm+ β, 1− k

δ

)

= βλ
k
δ

∞∑
j=0

pjB

(
βj +

k

δ
+ βm+ β, 1− k

δ

)
,

where we have set t = (1 + λx−δ)−1, and used the result (1 − tβ)r =∑∞
j=0

(−1)jΓ(r+1)
Γ(r+1−j)Γ(j+1)

tβj, for r > 0 and |tβ| < 1, and pj = (−1)jΓ(r+1)
Γ(r+1−j)Γ(j+1)

, for

δ > k.
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Remark:

(1) If l = 0 in E[XkelXFm(X)F
r
(X)], we get the PWMs:

E[XkGm(X)G
r
(X)] = βλ

k
δ

∞∑
j=0

pjB

(
k

δ
+ βm+ βj + β, 1− k

δ

)
, for δ > k.

(2) If m = r = 0, we have the moments of order k:

E[Xk] = βλ
k
δB

(
k

δ
+ β, 1− k

δ

)
, for k < δ.

(3) By setting k = m = 0, we have the proportional hazard moments:

E[G
r
(X)] = β

∞∑
j=0

(−1)jΓ(r + 1)

Γ(r + 1− j)j!
B(βj + β, 1).

(4) When r = k = 0, we get the proportional reverse hazards moments:

E[Gm(X)] = βB(βm+ β, 1) =
1

m+ 1
.

(5) If k = 0, m → m − 1, r = n −m, then we obtain moments corre-

sponding to the order statistics.

1.5.1 Tail Conditional Expectation

The tail conditional expectation of a continuous loss random variable X

shares four axioms : subadditivity, monotonicity, positive homogeneity, and

translation invariance. The tail conditional expectation (TCE) of a random

variable X is

TCEX(xq) = E[X|X > xq]. (1.20)
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This risk measure can be interpreted as the mean of worse possible losses

given an average amount of the tail of the distribution. See Landsman and

Valdez (2005) for additional details. In addition, this tail is based on the q-th

quantile, xq, of the loss distribution and is defined as xq = inf{x|F (x) ≥ q}.

It is uniquely defined as xq = F−1(q), for a random variable with monotonic,

continuous distribution function and it is usually appropriate to assume that

the loss variable X has non-negative support in insurance contexts, and we

have assumed that in this section. However, the risk measures that we de-

scribe can be applied to random variables with a sample space spanning any

part of the real line. To evaluate this tail conditional expectation, we use the

following formula

TCEX(xq) =
1

F (xq)

∫ ∞
xq

xf(x)dx, (1.21)

where F (xq) > 0. In the next result, we obtain TCE(xq) for Dagum distri-

bution.

1.6 Tail Conditional Expectation and Inequality Measures for

Dagum Distribution

In this section, we establish the relationship between TCE and income in-

equality measures for Dagum-type distributions. We derive the most used

point inequality measures such as Lorenz and Bonferroni curves.

Theorem.

Let X be a loss random variable with Dagum distribution and xq the
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q-th quantile, where 0 < q < 1. The TCEr for Dagum distribution is given

by:

TCEr(xq) =
βλ

r
δ

1− (1 + λx−δq )−β

[
B

(
r

δ
+ β, 1− r

δ

)
−B

(
yq;

r

δ
+ β, 1− r

δ

)]
,

(1.22)

equivalently,

TCEr(xq) = βλ
r
δ

B(rδ + β, 1− r

δ

)
−
B

(
yq;

r
δ

+ β, 1− r
δ

)
(1 + λx−δq )−β

, (1.23)

for δ > r, 0 < yq < y < 1, 0 < xq < x <∞, and yq = (1 + λxq
−δ)−1.

Proof. To prove (1.22), we use the following formula

TCEr(xq) =
1

GD(xq)

∫ ∞
xq

xrg
D

(x)dx

=
1

1− (1 + λx−δq )−β

∫ ∞
xq

βλδxr−δ−1(1 + λx−δ)−β−1dx.

Let y = (1 + λx−δ)−1, dy = (1 + λx−δ)−2λδx−δ−1dx, dx = (λy)1+
1
δ dy

λδ(1−y)1+
1
δ y2

, and

TCEr(xq) =
βλ

r
δ

1− (1 + λx−δq )−β

∫ 1

yq

y
r
δ

+β−1(1− y)−
r
δ

+1−1dy

=
βλ

r
δ

1− (1 + λx−δq )−β

[
B

(
r

δ
+ β, 1− r

δ

)
−B

(
yq;

r

δ
+ β, 1− r

δ

)]
,

where yq = (1 + λxq
−δ)−1, for δ > r, 0 < yq < y < 1, and 0 < xq < x <∞.

To obtain (1.23), we use the following formula

TCEr(xq) = [E(Xr)− E(Xr|X ≤ xq)].
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Note that

E[Xr] = E[Xr|X > xq] + E[Xr|X ≤ xq].

Now,

E[Xr|X ≤ xq] =
1

GD(xq)

∫ xq

0

xrg
D

(x)dx

=
1

(1 + λx−δq )−β

∫ xq

0

βλδxr−δ−1(1 + λx−δ)−β−1dx,

so that

E[Xr|X ≤ xq] =
βλ

r
δ

(1 + λx−δq )−β

∫ yq

0

y
r
δ

+β−1(1− y)−
r
δ

+1−1dy

=
βλ

r
δ

(1 + λx−δq )−β
B

(
yq;

r

δ
+ β, 1− r

δ

)
,

for 0 < yq < y < 1, where yq = (1 + λxq
−δ)−1, and δ > r. Therefore, TCEr

for Dagum distribution is given by:

TCEr(xq) = βλ
r
δ

B(rδ + β, 1− r

δ

)
−
B

(
yq;

r
δ

+ β, 1− r
δ

)
(1 + λx−δq )−β

 ,
for δ > r, 0 < yq < y < 1, and 0 < xq < x <∞. When r = 1, we have:

TCE(xq) = βλ
1
δ

B(1

δ
+ β, 1− 1

δ

)
−
B

(
yq;

1
δ

+ β, 1− 1
δ

)
(1 + λx−δq )−β

 ,
for δ > 1.

Lorenz curve for Dagum distribution is

L(G(x)) =

B

(
y; 1

δ
+ β, 1− 1

δ

)
(1 + λx−δ)−βB

(
1
δ

+ β, 1− 1
δ

) ,
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for 0 < y < 1, 0 < x <∞, and δ > 1, so that

L(G(xq)) =

B

(
yq;

1
δ

+ β, 1− 1
δ

)
(1 + λx−δq )−βB

(
1
δ

+ β, 1− 1
δ

) ,
for 0 < yq < y < 1, 0 < xq < x <∞, and δ > 1.

Tail conditional expectation can be written in terms of Lorenz curve as

follows:

TCE(xq) = µ

[
1− L(G(xq))

G(xq)

]
= βλ

1
δB

(
1

δ
+ β, 1− 1

δ

)

∗

1−
B

(
yq;

1
δ

+ β, 1− 1
δ

)
(1 + λx−δq )−2βB

(
1
δ

+ β, 1− 1
δ

)
 ,

for δ > 1, 0 < yq < 1, and 0 < xq <∞.

Bonferroni curve for Dagum distribution is

B(G(x)) =

B

(
y; 1

δ
+ β, 1− 1

δ

)
(1 + λx−δ)−2βB

(
1
δ

+ β, 1− 1
δ

) ,
for 0 < y < 1, 0 < x <∞, and δ > 1, so that

B(G(xq)) =

B

(
yq;

1
δ

+ β, 1− 1
δ

)
(1 + λx−δq )−2βB

(
1
δ

+ β, 1− 1
δ

) ,
for δ > 1, 0 < yq < y < 1, and 0 < xq < x <∞.
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Also, tail conditional expectation can be written in terms of Bonferroni

curve as follows:

TCE(xq) = µ

[
1− G(xq)B(G(xq))

G(xq)

]
= µ

[
1−B(G(xq))

]
= βλ

1
δB

(
1

δ
+ β, 1− 1

δ

)

∗

1−
B

(
yq;

1
δ

+ β, 1− 1
δ

)
(1 + λx−δq )−2βB

(
1
δ

+ β, 1− 1
δ

)
 ,

for δ > 1, 0 < yq < 1, and 0 < xq <∞.

The mean residual life function for Dagum distribution by:

MRLF (t) = E[(X − t)|X > t]

= TCE(t)− t

=
βλ

1
δ

1− (1 + λt−δ)−β

∗
[
B

(
1

δ
+ β, 1− 1

δ

)
−B

(
y;

1

δ
+ β, 1− 1

δ

)]
− t,

for 0 < y < 1, where y = (1 + λt−δ)−1, and δ > 1.

1.7 Outline of Thesis

The remaining of this thesis is organized as follows. Explicit formulas for

computing tail conditional expectation (TCE) of Dagum-types models are

presented in chapter 2. TCE in term of Inequality measures for Mc-Dagum
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distribution and its sub-models are given. Chapter 3 contains TCE, mean

residual life function(MRLF), and entropy measures for Dagum-Weibull and

related distributions. Chapter 4 introduces and presents the statistical prop-

erties of a new class of weighted Burr III (WBIII) distribution, including

mean, variance, standard deviation, coefficients of variation, skewness, and

kurtosis. Inequality and entropy measures are presented. In addition, maxi-

mum likelihood estimates (MLE), Fisher information, asymptotic confidence

intervals for parameters of the WBIII distribution are obtained. Applications

and examples are presented in chapter 5.



CHAPTER 2

TAIL CONDITIONAL EXPECTATION AND INEQUALITY

MEASURES FOR GENERALIZED DAGUM-TYPE

DISTRIBUTIONS

2.1 Useful Functions

In this section, some useful functions employed in subsequent chapters are

presented. The gamma function is given by:

Γ(x) =

∫ ∞
0

tx−1e−t dt. (2.1)

The first and the second derivative of the gamma function are given by:

Γ
′
(x) =

∫ ∞
0

tx−1(log t)e−t dt, and Γ
′′
(x) =

∫ ∞
0

tx−1(log t)2e−tdt, (2.2)

respectively. The digamma function is defined by:

Ψ(x) =
Γ
′
(x)

Γ(x)
. (2.3)

The lower incomplete gamma function and the upper incomplete gamma

function are

γ(s, x) =

∫ x

0

ts−1e−t dt, and Γ(s, x) =

∫ ∞
x

ts−1e−t dt, (2.4)

respectively.
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2.2 Tail Conditional Expectation and Inequality Measures for

Mc-Dagum Distribution and Sub-Models

The TCEr for Mc-Dagum distribution is

TCEr(xq) = [E(Xr)− E(Xr|X ≤ xq)]

=
∞∑
j=0

pjβ(a/c+ j)λr/δ
[
B(r/δ + β(a/c+ j), 1− r/δ)

− B(yq
∗; r/δ + β(a/c+ j), 1− r/δ)∑∞
j=0 pjG(xq; β(a/c+ j), λ, δ)

]
,

for δ > r. When r = 1, we have:

TCE(xq) = [E(X)− E(X|X ≤ xq)]

=
∞∑
j=0

pjβ(a/c+ j)λ1/δ

[
B(1/δ + β(a/c+ j), 1− 1/δ)

− B(yq
∗; 1/δ + β(a/c+ j), 1− 1/δ)∑∞
j=0 pjG(xq; β(a/c+ j), λ, δ)

]
,

(2.5)

for δ > 1, 0 < yq
∗ = (1 + λxq

−δ)−1 < 1, where G(xq; β(a/c + j), λ, δ) =

(1 + λxq
−δ)−β(a/c+j), and pj = (−1)jΓ(a/c+b)

Γ(a/c)Γ(b−j)Γ(j+1)(a/c+j)
. The model with the

parameters (λ = 6.5, β = 1.5, δ = 5, a = 1.005, b = 1.04, c = 1.9) in Figure

2.1 corresponds to Mc-Dagum distribution.

We derive income inequality measures for Mc-Dagum distribution. Lorenz
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Figure 2.1: TCE for Mc-Dagum and sub-models for different values of pa-

rameters.

curve for Mc-Dagum distribution is

L(F (x)) =

∑∞
j=0 pjβ(a/c+ j)λ1/δB(y∗; 1/δ + β(a/c+ j), 1− 1/δ)∑∞

j=0 pjG(x; β(a/c+ j), λ, δ)

∗ 1∑∞
j=0 pjβ(a/c+ j)λ1/δB(1/δ + β(a/c+ j), 1− 1/δ)

,

(2.6)

for δ > 1, 0 < y∗ < 1, and 0 < x <∞.

Tail conditional expectation for Mc-Dagum distribution can be written
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in terms of Lorenz curve as follows:

TCE(xq) = µ

[
1− L(F (xq))

F (xq)

]
=

∞∑
j=0

pjβ(a/c+ j)λ
1
δB

(
1

δ
+ β(a/c+ j), 1− 1

δ

)

∗

[
1−

∑∞
j=0 pjβ(a/c+ j)λ1/δB(y∗; 1/δ + β(a/c+ j), 1− 1/δ)

F 2(xq)
∑∞

j=0 pjβ(a/c+ j)λ1/δB(1/δ + β(a/c+ j), 1− 1/δ)

]
,

(2.7)

where F (xq) =
∑∞

j=0 pjG(xq; β(a/c + j), λ, δ), F (xq) = 1 − F (xq), δ > 1,

0 < y∗ < 1, and 0 < x <∞.

Bonferroni curve for Mc-Dagum distribution is

B(F (x)) =

∑∞
j=0 pjβ(a/c+ j)λ1/δB(y∗; 1/δ + β(a/c+ j), 1− 1/δ)∑∞

j=0 pjG(x; β(a/c+ j), λ, δ)

∗ 1

F (x)
∑∞

j=0 pjβ(a/c+ j)λ1/δB(1/δ + β(a/c+ j), 1− 1/δ)
,

(2.8)

for δ > 1, 0 < y∗ < 1, and 0 < x < ∞. Also, tail conditional expectation

for Mc-Dagum distribution can be written in terms of Bonferroni curve as

follows:

TCE(xq) = µ

[
1−B(F (xq))

]
=

∞∑
j=0

pjβ(a/c+ j)λ
1
δB

(
1

δ
+ β(a/c+ j), 1− 1

δ

)

∗

[
1−

∑∞
j=0 pjβ(a/c+ j)λ1/δB(y∗; 1/δ + β(a/c+ j), 1− 1/δ)

F 2(xq)
∑∞

j=0 pjβ(a/c+ j)λ1/δB(1/δ + β(a/c+ j), 1− 1/δ)

]
,

(2.9)
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where F (xq) =
∑∞

j=0 pjG(xq; β(a/c + j), λ, δ), F (xq) = 1 − F (xq), δ > 1,

0 < y∗ < 1, and 0 < x <∞.

The mean residual life function (MRLF) for Mc-Dagum distribution is

MRLF (t) = TCE(t)− t

=

∑∞
j=0 pjβ(a/c+ j)λ1/δ

1−
∑∞

j=0 pjG(t; β(a/c+ j), λ, δ)

[
B(1/δ + β(a/c+ j), 1− 1/δ)

− B(yq
∗; 1/δ + β(a/c+ j), 1− 1/δ)

]
− t,

(2.10)

for 0 < yq
∗ < 1, and δ > 1.

2.2.1 Sub-Models

Several TCE and inequality measures for the sub-distributions can be de-

rived from TCE and inequality measures of Mc-Dagum distribution as special

cases.

Remark:

(1) If c = 1 and b, a > 0, then TCE(xq) for beta-Dagum distribution is

given by:

TCE(xq) =
∞∑
j=0

pjβ(a+ j)λ1/δ

[
B(1/δ + β(a+ j), 1− 1/δ)

− B(yq
∗; 1/δ + β(a+ j), 1− 1/δ)∑∞
j=0 pjG(xq; β(a+ j), λ, δ)

]
,

for δ > 1, 0 < yq
∗ = (1 + λxq

−δ)−1 < 1, where G(xq; β(a + j), λ, δ) =

(1 + λxq
−δ)−β(a+j), and pj = (−1)jΓ(a+b)

Γ(a)Γ(b−j)Γ(j+1)(a+j)
.
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The model with the parameters (λ = 6.5, β = 1.5, δ = 5, a = 1.005,

b = 1.04, c = 1) in Figure 2.1 corresponds to beta-Dagum distribution.

Lorenz curve for beta-Dagum distribution is

L(F (x)) =

∑∞
j=0 pjβ(a+ j)λ1/δB(y∗; 1/δ + β(a+ j), 1− 1/δ)∑∞

j=0 pjG(x; β(a+ j), λ, δ)

∗ 1∑∞
j=0 pjβ(a+ j)λ1/δB(1/δ + β(a+ j), 1− 1/δ)

,

for δ > 1, 0 < y∗ < 1, and 0 < x <∞.

TCE can be written in terms of Lorenz curve as follows:

TCE(xq) =
∞∑
j=0

pjβ(a+ j)λ
1
δB

(
1

δ
+ β(a+ j), 1− 1

δ

)

∗

[
1−

∑∞
j=0 pjβ(a+ j)λ1/δB(y∗; 1/δ + β(a+ j), 1− 1/δ)

F 2(xq)
∑∞

j=0 pjβ(a+ j)λ1/δB(1/δ + β(a+ j), 1− 1/δ)

]
,

where F (xq) =
∑∞

j=0 pjG(xq; β(a+j), λ, δ) and F (xq) = 1−F (xq), for δ > 1,

0 < y∗ < 1, and 0 < x <∞.

Bonferroni curve for beta-Dagum distribution is

B(F (x)) =

∑∞
j=0 pjβ(a+ j)λ1/δB(y∗; 1/δ + β(a+ j), 1− 1/δ)∑∞

j=0 pjG(x; β(a+ j), λ, δ)

∗ 1∑∞
j=0 pjβ(a+ j)λ1/δB(1/δ + β(a+ j), 1− 1/δ)F (x)

,

for δ > 1, 0 < y∗ < 1, and 0 < x <∞.

TCE can be written in terms of Bonferroni curve as follows:

TCE(xq) =
∞∑
j=0

pjβ(a+ j)λ
1
δB

(
1

δ
+ β(a+ j), 1− 1

δ

)

∗

[
1−

∑∞
j=0 pjβ(a+ j)λ1/δB(y∗; 1/δ + β(a+ j), 1− 1/δ)

F 2(xq)
∑∞

j=0 pjβ(a+ j)λ1/δB(1/δ + β(a+ j), 1− 1/δ)

]
,
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where F (xq) =
∑∞

j=0 pjG(xq; β(a/c + j), λ, δ) and F (xq) = 1 − F (xq), for

δ > 1, 0 < y∗ < 1, and 0 < x <∞.

The mean residual life function (MRLF) for beta-Dagum distribution is

MRLF (t) = TCE(t)− t

=

∑∞
j=0 pjβ(a+ j)λ1/δ

1−
∑∞

j=0 pjG(t; β(a+ j), λ, δ)

[
B(1/δ + β(a+ j), 1− 1/δ)

− B(yq
∗; 1/δ + β(a+ j), 1− 1/δ)

]
− t,

for 0 < yq
∗ < 1, and δ > 1.

(2) If a = b = c = 1, then TCE(xq) and inequality measures for Dagum

distribution were mentioned in chapter one. The model with the parameters

(λ = 6.5, β = 1.5, δ = 5, a = 1, b = 1, c = 1) in Figure 2.1 corresponds to

Dagum distribution.

(3) If b = c = 1, then TCE(xq) for Exponentiated-Dagum distribution

is

TCE(xq) = αβλ
1
δ

B(1

δ
+ αβ, 1− 1

δ

)
−
B

(
yq;

1
δ

+ αβ, 1− 1
δ

)
(1 + λx−δq )−αβ

 , for δ > 1.

Lorenz curve for Exponentiated-Dagum distribution is given by:

L(F (x)) =

B

(
y; 1

δ
+ αβ, 1− 1

δ

)
(1 + λx−δ)−αβB

(
1
δ

+ αβ, 1− 1
δ

) , for 0 < y < 1, 0 < x <∞, and δ > 1.
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TCE can be written in terms of Lorenz curve as follows:

TCE(xq) = αβλ
1
δB

(
1

δ
+ αβ, 1− 1

δ

)

∗

1−
B

(
yq;

1
δ

+ αβ, 1− 1
δ

)
(1 + λxq−δ)−2αβB

(
1
δ

+ αβ, 1− 1
δ

)
 ,

for δ > 1, 0 < yq < 1.

Bonferroni curve for Exponentiated-Dagum distribution is

B(F (x)) =

B

(
y; 1

δ
+ αβ, 1− 1

δ

)
(1 + λx−δ)−2αβB

(
1
δ

+ αβ, 1− 1
δ

) , for δ > 1, 0 < y < 1, and 0 < x <∞.

TCE can be written in terms of Bonferroni curve as follows:

TCE(xq) = αβλ
1
δB

(
1

δ
+ αβ, 1− 1

δ

)

∗

1−
B

(
yq;

1
δ

+ αβ, 1− 1
δ

)
(1 + λxq−δ)−2αβB

(
1
δ

+ αβ, 1− 1
δ

)
 ,

for δ > 1, 0 < yq < 1.

The mean residual life function for Exponentiated-Dagum distribution

is given by:

MRLF (t) =
αβλ

1
δ

1− (1 + λt−δ)−αβ

∗
[
B

(
1

δ
+ αβ, 1− 1

δ

)
−B

(
y;

1

δ
+ αβ, 1− 1

δ

)]
− t,

for 0 < y < 1, where y = (1 + λx−δ)−1, and δ > 1.
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2.3 Concluding Remarks

This chapter includes some computations, here are the main results for Mc-

Dagum distribution:

• Tail conditional expectation is given by:

TCE(xq) = [E(X)− E(X|X ≤ xq)]

=
∞∑
j=0

pjβ(a/c+ j)λ1/δ

[
B(1/δ + β(a/c+ j), 1− 1/δ)

− B(yq
∗; 1/δ + β(a/c+ j), 1− 1/δ)∑∞
j=0 pjG(xq; β(a/c+ j), λ, δ)

]
, for δ > 1.

• Lorenz and Bonferroni curves for Mc-Dagum distribution are given by:

L(F (x)) =

∑∞
j=0 pjβ(a/c+ j)λ1/δB(y∗; 1/δ + β(a/c+ j), 1− 1/δ)∑∞

j=0 pjG(x; β(a/c+ j), λ, δ)

∗ 1∑∞
j=0 pjβ(a/c+ j)λ1/δB(1/δ + β(a/c+ j), 1− 1/δ)

,

for δ > 1, 0 < y∗ < 1, 0 < x <∞, and

B(F (x)) =

∑∞
j=0 pjβ(a/c+ j)λ1/δB(y∗; 1/δ + β(a/c+ j), 1− 1/δ)∑∞

j=0 pjG(x; β(a/c+ j), λ, δ)

∗ 1

F (x)
∑∞

j=0 pjβ(a/c+ j)λ1/δB(1/δ + β(a/c+ j), 1− 1/δ)
,

for δ > 1, 0 < y∗ < 1, and 0 < x <∞, respectively.

Tail conditional expectation for Mc-Dagum distribution can be written

in terms of Lorenz and Bonferroni curves.
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• Mean residual life function is given by:

MRLF (t) = TCE(t)− t

=

∑∞
j=0 pjβ(a/c+ j)λ1/δ

1−
∑∞

j=0 pjG(t; β(a/c+ j), λ, δ)

[
B(1/δ + β(a/c+ j), 1− 1/δ)

− B(yq
∗; 1/δ + β(a/c+ j), 1− 1/δ)

]
− t,

for 0 < yq
∗ < 1, and δ > 1.

Note that we have properties of beta-Dagum distribution when c = 1,

and Dagum distribution if a = b = c = 1 as sub-models.



CHAPTER 3

TCE AND UNCERTAINTY MEASURES FOR

DAGUM-WEIBULL DISTRIBUTION

In this chapter, TCE and mean residual life function for the Dagum-Weibull

distribution are presented. Entropy measures including Renyi and ε-Entropy

are also given.

3.1 Dagum-Weibull Distribution

The cdf and pdf of Dagum-Weibull (DW) distribution are given by:

FDW (x; β, λ, δ, γ, c) = (1 + λγcδx−cδ)−β, (3.1)

and

fDW (x; β, λ, δ, γ, c) = βλδγcδcδx−cδ−1(1 + λγcδx−cδ)
−β−1

, (3.2)

for x > 0, and β, δ, λ, γ, and c > 0 , respectively, (Oluyede and Kimitei

(2013)). With parameters β, λγcδ, and cδ, this can be seen as resulting in

Dagum(β, λγcδ, cδ) distribution. In addition, the q-th quantile is

xq = γλ
1
cδ (q

−1
β − 1)

−1
cδ
. (3.3)

Furthermore, the r-th moment is given by:

E[Xr; β, λ, δ, γ, c] = β(γcδλ)
r
cδB

(
r

cδ
+ β, 1− r

cδ

)
, (3.4)

for cδ > r, and β, δ, λ, γ, c > 0.
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3.2 Submodels

Submodels of the DW distribution are given in this section.

Remark:

(1) If c=1, then we have the Dagum-Exponential (DE) distribution with pdf:

fDE(x; β, λ, δ, γ) = βλγδδx−δ−1(1 + λγδx−δ)−β−1, for x > 0, β, δ, γ, and λ > 0.

(2) If λ = γ = c = 1, we have the Burr-III distribution with pdf:

fBIII(x, β, δ) = βδx−δ−1(1 + x−δ)−β−1, for δ, β > 0.

(3) If β = 1, we have Fisk-Weibull (FW) distribution with pdf:

fFW (x;λ, δ, γ, c) = cδλγcδx−cδ−1(1 + λγcδx−cδ)−2, for cδ > 1, and λ, δ, γ, c > 0.

(4) If β = γ = c = 1, we have Fisk distribution with pdf:

fFISK(x;λ, δ) = δλx−δ−1(1 + λx−δ)−2, for δ > 0, and λ > 0.

(5) If γ = c = 1, we have Dagum distribution with pdf:

fD(x; β, λ, δ) = βλδx−δ−1(1 + λx−δ)−β−1, for x > 0, and β, δ, λ > 0.

(6) If c = 2, γ = 1, we have the Dagum-Rayleigh distribution with pdf:

fDAG−RAY (x; β, λ, δ) = (2δ)βλx−2δ−1(1 + λx−2δ)−β−1, for β, λ, δ > 0.
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3.3 Tail Conditional Expectation for Dagum-Weibull

Distribution

The tail conditional expectation (TCE) for Dagum-Weibull Distribution (DW)

is presented in this section. Note that

E[Xr|X > xq] = E[Xr]− E[Xr|X ≤ xq],

and

E[Xr|X ≤ xq] =
1

F (xq)

∫ xq

0

xrfDW (x)dx

=
1

(1 + λγcδx−cδq )−β

∫ xq

0

βλγcδcδxr−cδ−1(1 + λγcδx−cδ)
−β−1

dx.

We set y = (1+λγcδx−cδ)−1, 0 < y < 1, so that dy = (1+λx−δ)−2λδx−δ−1dx,

and dx = (λy)1+
1
δ dy

λδ(1−y)1+
1
δ y2

. Consequently,

E[Xr|X ≤ xq] =
β(γcδλ)

r
cδ

(1 + γcδλx−cδq )−β

∫ yq

0

y
r
cδ

+β−1(1− y)−
r
cδ

+1−1dy

=
β(γcδλ)

r
cδ

(1 + γcδλx−cδq )−β
B

(
yq;

r

cδ
+ β, 1− r

cδ

)
,

for 0 < yq < 1, yq = (1 + γcδλxq
−cδ)−1, and cδ > r. Therefore, the TCEr for

DW distribution is

TCEr(xq) = β(γcδλ)
r
cδ

B( r

cδ
+ β, 1− r

cδ

)
−
B

(
yq;

r
cδ

+ β, 1− r
cδ

)
(1 + γcδλx−cδq )−β

 ,
for cδ > r, 0 < yq < 1, and 0 < xq <∞. When r = 1, we have:

TCE(xq) = β(γcδλ)
1
cδ

B( 1

cδ
+ β, 1− 1

cδ

)
−
B

(
yq;

1
cδ

+ β, 1− 1
cδ

)
(1 + γcδλx−cδq )−β

 ,
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for cδ > 1. Note that tail conditional expectation can be obtained in terms

of Lorenz and Bonferroni curves as previously mentioned in chapter 2.

3.4 Mean Residual Life Function for DW Distribution

The mean residual life function MRLF (t) for DW distribution is given by:

MRLF (t) = TCE(t)− t

=
β(γcδλ)

1
cδ

1− (1 + γcδλt−cδ)−β

∗
[
B

(
1

cδ
+ β, 1− 1

cδ

)
−B

(
yq;

1

cδ
+ β, 1− 1

cδ

)]
− t,

(3.5)

for 0 < yq < 1, and cδ > 1.

3.5 Entropy

In this section, Renyi (1961) and ε-entropies for the DW distribution are

presented.

3.5.1 ε-Entropy

ε-entropy for DW Distribution is given by:

Hε(fDW ) =
1

ε− 1

[
1−

∫ ∞
0

f εDW (x; β, λ, δ, γ, c)dx

]
, ε > 0, and ε 6= 1.
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Now,∫ ∞
0

f εDW (x; β, λ, δ, γ, c)dx = (βλγcδcδ)ε

∗
∫ ∞

0

x−ε(cδ+1)(1 + λγcδx−cδ)−ε(β+1)dx.

We set t = (1 + λγcδx−cδ)−1, then dt = (1 + γcδλx−cδ)−2λγcδcδx−cδ−1dx, and

dx = (λγcδt)1+
1
cδ dt

cδλγcδ(1−t)1+
1
cδ t2

, so that

∫ ∞
0

f εDW (x; β, λ, δ, γ, c)dx = βε(γcδλ)
1−ε
cδ (cδ)ε−1

∗
∫ 1

0

t
1
cδ

+εβ− ε
cδ
−1(1− t)ε+

ε
cδ
− 1
cδ
−1dt

= βε(γcδλ)
1−ε
cδ (cδ)ε−1

∗ B

(
1

cδ
+ εβ − ε

cδ
, ε+

ε

cδ
− 1

cδ

)
,

for cδ > ε− 1. Hence, ε-entropy for DW Distribution is:

Hε(fDW ) =
1

ε− 1

[
1− βε(λγcδ)

1−ε
cδ (cδ)ε−1

∗ B

(
1

cδ
+ εβ − ε

cδ
, ε+

ε

cδ
− 1

cδ

)]
,

for ε > 0, ε 6= 1, and cδ > ε− 1.

3.5.2 Renyi Entropy

Renyi entropy (Renyi, 1961) for DW Distribution is given by:

HR(fDW ) = (1− τ)−1log

[∫ ∞
0

f τDW (x; β, λ, δ, γ, c)dx

]
= (1− τ)−1log

[
βτ (γcδλ)

1−τ
cδ (cδ)τ−1B

(
1

cδ
+ τβ − τ

cδ
, τ +

τ

cδ
− 1

cδ

)]
,
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for τ > 0, τ 6= 1, and cδ > τ − 1.

3.6 Concluding Remarks

This chapter includes some computations, here are the main results for DW

distribution:

• Tail conditional expectation is given by:

TCE(xq) = β(γcδλ)
r
cδ

B( 1

cδ
+ β, 1− 1

cδ

)
−
B

(
yq;

1
cδ

+ β, 1− 1
cδ

)
(1 + γcδλx−cδq )−β

 ,
for cδ > 1.

• Mean residual life function is given by:

MRLF (t) =
β(γcδλ)

1
cδ

1− (1 + γcδλt−cδ)−β

∗
[
B

(
1

cδ
+ β, 1− 1

cδ

)
−B

(
yq;

1

cδ
+ β, 1− 1

cδ

)]
− t,

for 0 < yq < 1, and cδ > 1.

• ε-entropy for DW distribution is:

Hε(fDW ) =
1

ε− 1

[
1− βε(λγcδ)

1−ε
cδ (cδ)ε−1

∗ B

(
1

cδ
+ εβ − ε

cδ
, ε+

ε

cδ
− 1

cδ

)]
,

for ε > 0, ε 6= 1, and cδ > ε− 1.
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• Renyi entropy is given by:

HR(fDW ) = (1−τ)−1log

[
βτ (γcδλ)

1−τ
cδ (cδ)τ−1B

(
1

cδ
+ τβ − τ

cδ
, τ +

τ

cδ
− 1

cδ

)]
,

for τ > 0, τ 6= 1, and cδ > τ − 1.



CHAPTER 4

GENERALIZATIONS VIA WEIGHTING FOR BURR-TYPE III

DISTRIBUTION

4.1 Introduction

In 1942, Irving W. Burr constructed the Burr system of distributions. The

generalized (log-) logistic-Burr distribution is referred to as Dagum distri-

bution (1983) with an additional scale parameter (λ). Dagum distribution

is also known as the generalized (log-) logistic distribution with β = 1. In

this chapter, we present the more important class of weighted BurrIII dis-

tribution which is a flexible parametric model. A number of distributions

are actually limiting forms of Burr distribution. The Burr-XII distribution

is one of the most widely known Burr distribution and has the logistic and

Weibull distributions as sub-models. Paranaiba et al. (2013) developed the

statistical properties of the Kumaraswamy Burr-XII distribution.

4.2 Burr-Type Distributions

The cdf and reliability function of the BurrIII and BurrXII can be written in

closed forms. The cdf and pdf for BurrIII (BIII) distribution are given by:

FBIII(x; c, k, s) = (1 + (x/s)−c)−k, (4.1)

and

fBIII(x; c, k, s) = ckscx−c−1(1 + (x/s)−c)−k−1, (4.2)
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for x > 0, and c, k, s > 0, respectively. Note that, s is a scale parameter,

while c and k are shape parameters. With parameters c, k, and sc, this can

be seen as resulting in Dagum(c, k, sc) distribution. The l-th moment of BIII

distribution is given by:

E[X l] = kslB(k + l/c, 1− l/c),

obtained by setting t = (1 + (x/s)−c)−1, for c > l, (Al-Dayian (1999)). The

cdf and pdf for BurrXII (BXII) distribution are given by:

FBXII(x; c, k, s) = 1− (1 + (x/s)c)−k, (4.3)

and

fBXII(x; c, k, s) = cks−cxc−1(1 + (x/s)c)−k−1, (4.4)

respectively, where c > 0 and k > 0 are shape parameters and s > 0 is a

scale parameter. The l-th moment of BXII distribution is given by:

E[X l] = kslB(k − l/c, 1 + l/c), for c > l.
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4.3 Probability Weighted Moments

Consider the weight function w(x) = xlFm(x)F
r
(x), then the probability

weighted moments (PWMs) corresponding to Burr III pdf are given by:

E[X lFm
BIII(X)F

r

BIII(X)]

=

∫ ∞
0

xl(1 + (x/s)−c)−km[1− (1 + (x/s)−c)−k]r

∗ ckscx−c−1(1 + (x/s)−c)−k−1dx

=

∫ 1

0

(
1− t
sct

)−1
c

[l−c−1]

tkm(1− tk)rcksctk+1−2 (sct)1+ 1
c dt

csc(1− t)1+ 1
c

= ksl
∞∑
j=0

(−1)jΓ(r + 1)

Γ(r + 1− j)Γ(j + 1)

∫ 1

0

tkj+
l
c
+km+k−1(1− t)1− l

c
−1dt

= ksl
∞∑
j=0

qjB

(
kj +

l

c
+ km+ k, 1− l

c

)
,

where qj = (−1)jΓ(r+1)
Γ(r+1−j)Γ(j+1)

, c > l, and we have set t = (1 + (x/s)−c)−1, and

used the result (1− tk)r =
∑∞

j=0
(−1)jΓ(r+1)

Γ(r+1−j)Γ(j+1)
tkj, for r > 0 and |tk| < 1.

Remark:

(1) If m = r = 0, we have the moments of order l:

E[X l] = kslB

(
l

c
+ k, 1− l

c

)
, for c > l.

(2) By setting l = m = 0, we have the proportional hazard moments:

E[F
r
(X)] = k

∞∑
j=0

qjB

(
kj + k, 1

)
.

(3) When r = l = 0, we get the proportional reverse hazards moments:

E[Fm(X)] = kB(km+ k, 1) =
1

m+ 1
.
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(4) When m = 0, we get :

E[X lF
r
(X)] = ksl

∞∑
j=0

qjB

(
kj +

l

c
+ k, 1− l

c

)
, for c > l.

(5) When r = 0, we get :

E[X lFm(X)] = kslB

(
l

c
+ km+ k, 1− l

c

)
, for c > l.

(6) When l = 0, we get :

E[Fm(X)F
r
(X)] = k

∞∑
j=0

qjB

(
kj + km+ k, 1

)
.

(7) If l = 0, m→ m− 1, r = n−m, then we obtain moments corresponding

to the order statistics.

4.4 Weighted Burr-III Distribution with Weight Function

w(x) = xlFm(x)

In this section, the statistical properties of the weighted Burr-III (WBIII)

distribution with the weight function w(x) = xlFm(x) are presented.

The WBIII pdf with weight function w(x) = xlFm(x) is given by:

g
WBIII

(x; c, k, s, l,m) =
xl(1 + (x/s)−c)−kmckscx−c−1(1 + (x/s)−c)−k−1

kslB

(
l
c

+ km+ k, 1− l
c

)
=

csc−lxl−c−1(1 + (x/s)−c)−km−k−1

B

(
l
c

+ km+ k, 1− l
c

) ,

where E
(
w(X)

)
= E

(
X lFm(X)

)
= kslB

(
l
c

+ km + k, 1 − l
c

)
, for c > l,

and c, k, s, l,m > 0. The graphs of pdf for WBIII distribution are given in

Figures 4.1 and 4.2.
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Figure 4.1: WBIII pdf distribution for different values of parameters.

Figure 4.2: WBIII pdf distribution for different values of parameters.
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The corresponding WBIII cdf is given by:

GWBIII(x; c, k, s, l,m) =

∫ x

0

g
WBIII

(y; c, k, s, l,m)dy

=

∫ x

0

csc−lyl−c−1(1 + (y/s)−c)−km−k−1

B

(
l
c

+ km+ k, 1− l
c

) dy.

Let t = (1+(y/s)−c)−1, 0 < t < 1, then dy = (sct)1+
1
c dt

csct2(1−t)1+
1
c
, and y =

(
1−t
sct

)−1
c

.

Now,

GWBIII(x; c, k, s, l,m) =

∫ x∗

0

csc−l
(

1−t
sct

)−1
c

[l−c−1]

tkm+k−1(sct)1+ 1
c

csc(1− t)1+ 1
cB

(
l
c

+ km+ k, 1− l
c

)dt

=

B

(
x∗; l

c
+ km+ k, 1− l

c

)
B

(
l
c

+ km+ k, 1− l
c

) ,

where x∗ = (1 + (x/s)−c)−1, 0 < x < ∞, c, k, s, l,m > 0, and B(x∗;a,b)
B(a,b)

is an

incomplete beta function ratio, Gradshteyn and Ryzhik (2000). The graph

of cdf for WBIII distribution is given in Figure 4.3.

4.4.1 Submodels

Several distributions can be readily obtained from the WBIII distribution.

Remark:

(1) If l = m = 0, then we have BurrIII distribution with pdf:

g
BIII

(x; c, k, s) = ckscx−c−1(1 + (x/s)−c)−k−1, for x > 0, and c, k, s > 0.
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(2) If l = 1 and m = 0, then we have the length-biased BurrIII (LBBIII)

distribution with pdf:

g
LBBIII

(x; c, k, s) =
csc−1x−c(1 + (x/s)−c)−k−1

B

(
1
c

+ k, 1− 1
c

) , for c > 1, x > 0, and k, s > 0.

(3) If k = 1, then we have the weighted Fisk (WF) distribution with pdf:

g
WF

(x; c, l, s,m) =
csc−lxl−c−1(1 + (x/s)−c)−m−2

B

(
l
c

+m+ 1, 1− l
c

) , for c > l, x > 0, and c, l, s,m > 0.

(4) If k = 1 and l = m = 0, then we have Fisk distribution with pdf:

g
FISK

(x; c, s) = cscx−c−1(1 + (x/s)−c)−2, for x > 0 and c, s > 0.

(5) If k = l = 1 and m = 0, then we have the length-biased Fisk

distribution with pdf:

g
LBF

(x; c, s) =
csc−lx−c(1 + (x/s)−c)−2

B

(
1 + 1

c
, 1− 1

c

) , for c > 1, x > 0 and s > 0.

The hazard and reverse hazard functions of the WBIII distribution are

given by:

h
WBIII

(x; c, k, s, l,m) =
g
WBIII

(x; c, k, s, l,m)

ḠWBIII(x; c, k, s, l,m)

=
csc−lxl−c−1(1 + (x/s)−c)−km−k−1

B

(
l
c

+ km+ k, 1− l
c

)
−B

(
x∗; l

c
+ km+ k, 1− l

c

) ,
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Figure 4.3: WBIII cdf distribution for different values of parameters.

and

τ
WBIII

(x; c, k, s, l,m) =
g
WBIII

(x; c, k, s, l,m)

GWBIII(x; c, k, s, l,m)

=
csc−lxl−c−1(1 + (x/s)−c)−km−k−1

B

(
x∗; l

c
+ km+ k, 1− l

c

) ,

respectively.

Figure 4.4 shows unimodal shape for the hazard function of WBIII distri-

bution for different values of parameters. The hazard function is decreasing

and upside down bathtub shapes in Figure 4.5. Also, Figure 4.6 shows dif-

ferent shapes for hazard function of BIII model as a special case of WBIII

distribution for different values of parameters. For example, this plot shows

bathtub followed by upside down bathtub shapes and decreasing hazard func-

tions.

In the next result, we study the monotonicity properties of the WBIII
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Figure 4.4: Hazard function for different values of parameters.

Figure 4.5: Hazard function for different values of parameters.
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Figure 4.6: Hazard function for different values of parameters.

distribution by taking the logarithm of its pdf as follows:

ln(g
WBIII

(x; c, k, s, l,m)) = ln(c) + (c− l)ln(s) + (l − c− 1)ln(x)

− (km+ k + 1)ln(1 + (x/s)−c)

− ln[Γ(l/c+ km+ k)]− ln[Γ(1− l/c)]

+ ln[Γ(km+ k)].

The derivative of the logarithm is

∂lng
WBIII

(x; c, k, s, l,m)

∂x
=
l − c− 1 + (cmk + ck + l − 1)scx−c − c− 1

x+ scx−c+1
.

∂lng
WBIII

(x; c, k, s, l,m)

∂x
> 0⇔ x <

(
(cmk + ck + l − 1)sc

c− l + 1

) 1
c

,

∂lng
WBIII

(x; c, k, s, l,m)

∂x
= 0⇔ x =

(
(cmk + ck + l − 1)sc

c− l + 1

) 1
c

,
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and

∂lng
WBIII

(x; c, k, s, l,m)

∂x
< 0⇔ x >

(
(cmk + ck + l − 1)sc

c− l + 1

) 1
c

.

The second derivative of the logarithm is given by:

∂2lng
WBIII

(x; c, k, s, l,m)

∂x2
=

∂

∂x

[
l − c− 1 + (cmk + ck + l − 1)scx−c − c− 1

x+ scx−c+1

]
= −

[
(cx−c + cscx−2c)[sc(l − 1 + ckm+ ck)]

(x+ scx−c+1)2

]
−

[
(x−c + (1− c)scx−2c)[sc(l − 1 + ckm+ ck)]

(x+ scx−c+1)2

]
.

The second derivative of the logarithm for WBIII distribution is negative,

the mode of WBIII distribution is x0 =

(
(cmk+ck+l−1)sc

c−l+1

) 1
c

.

4.5 Moments

The ith moment of WBIII distribution is given by:

E(X i) =

∫ ∞
0

csc−lxi+l−c−1(1 + (x/s)−c)−km−k−1

B

(
l
c

+ km+ k, 1− l
c

) dx

=

∫ 1

0

csc−l
(

1−t
sct

)−1
c

[i+l−c−1]

tkm+k+1(sct)1+ 1
c

csc(1− t)1+ 1
cB

(
l
c

+ km+ k, 1− l
c

) dt

=

siB

(
km+ k + i+l

c
, 1− i+l

c

)
B

(
l
c

+ km+ k, 1− l
c

) ,

(4.5)
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where t = (1 + (x/s)−c)−1, 0 < t < 1, c > i + l, and c, k, s, l,m > 0. The

mean and variance of WBIII distribution are given by:

µ
WBIII

= EWBIII(X) =

sB

(
km+ k + 1+l

c
, 1− 1+l

c

)
B

(
l
c

+ km+ k, 1− l
c

) ,

and

σ2
WBIII = EWBIII(X

2)− (EWBIII(X))2

=

s2B

(
km+ k + 2+l

c
, 1− 2+l

c

)
B

(
l
c

+ km+ k, 1− l
c

) −
s2B2

(
km+ k + 1+l

c
, 1− 1+l

c

)
B2

(
l
c

+ km+ k, 1− l
c

) ,

(4.6)

respectively. The coefficient of variation (CV ) is given by:

CV =

√
V ar

WBIII
(X)

µ
WBIII

, (4.7)

where µ
WBIII

=

sB

(
km+k+ 1+l

c
,1− 1+l

c

)
B

(
l
c
+km+k,1− l

c

) , and V ar
WBIII

(X) is given by (4.6). The

coefficient of skewness (CS) is given by:

CS = E

[
(X − µ)3

σ3

]
=
E[X3]− 3µE[X2] + 2µ3

σ3
, (4.8)

where E(X i) for i = 1, 2, 3 is given by (4.5), and σ3 = (
√
V ar

WBIII
(X))3,

respectively. The coefficient of kurtosis (CK) is given by:

CK = E

[
(X − µ)4

σ4

]
=
E[X4]− 4µE[X3] + 6µ2E[X2]− 3µ4

σ4
, (4.9)
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where

E[X4] =

s4B

(
km+ k + 4+l

c
, 1− 4+l

c

)
B

(
l
c

+ km+ k, 1− l
c

) , (4.10)

and σ4 = (σ2
WBIII)

2 = (V ar
WBIII

(X))2. Mean residual life function, denoted

by MRLF (t), is given by:

MRLF (t) = E[X − t|X > t]

=

sB

(
km+ k + 1+l

c
, 1− 1+l

c

)
−B

(
x∗; km+ k + 1+l

c
, 1− 1+l

c

)
B

(
l
c

+ km+ k, 1− l
c

)
−B

(
x∗; l

c
+ km+ k, 1− l

c

) − t,

where EWBIII(X) =

sB

(
km+k+ 1+l

c
,1− 1+l

c

)
B

(
l
c
+km+k,1− l

c

) , E[X|X ≤ t] =

B

(
x∗;km+k+ 1+l

c
,1− 1+l

c

)
GWBIII(t)B

(
km+k+ l

c
,1− l

c

) ,

and GWBIII(t) is the cdf of WBIII distribution, x∗ = (1 + (x/s)−c)−1.

4.6 Inequality Measures

Lorenz, Bonferroni and Zenga curves are given in this section. Graphs of

these income inequality measures are presented for selected values of the pa-

rameters of the WBIII distribution. Lorenz curve for the WBIII distribution

is given by

L(GWBIII(x)) =

B

(
l
c

+ km+ k, 1− l
c

)
sB

(
km+ k + 1+l

c
, 1− 1+l

c

)
∗
∫ x

0

csc−ltl−c−1+1(1 + (t/s)−c)−km−k−1

B

(
l
c

+ km+ k, 1− l
c

) dt.
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Let u = (1 + (t/s)−c)−1, then dt = (scu)1+
1
c du

csc(1−u)1+
1
c u2

, and

L(GWBIII(x)) =

B

(
l
c

+ km+ k, 1− l
c

)
sB

(
km+ k + 1+l

c
, 1− 1+l

c

)

∗
∫ x∗

0

csc−l
(

1−u
scu

)−1
c

[l−c]

ukm+k+1(scu)1+ 1
c

csc(1− u)1+ 1
cB

(
l
c

+ km+ k, 1− l
c

)du

=

B

(
x∗; km+ k + 1+l

c
, 1− 1+l

c

)
B

(
km+ k + 1+l

c
, 1− 1+l

c

) ,

for 0 < u < 1, x∗ = (1 + (x/s)−c)−1, and 0 < x∗ < ∞. Figure 4.7 shows

different shapes of Lorenz curve of WBIII distribution for different values

of parameters. These shapes are convex curve that shows inequality mea-

sure and the straight line shows equality measures of Lorenz curve between

percentage of wealth (x-axis) and percentage of population (y-axis).

Tail conditional expectation can be written in terms of Lorenz curve by:

TCE(x) = µ

[
1− L(G(x))

G(x)

]

=

sB

(
km+ k + 1+l

c
, 1− 1+l

c

)
B

(
l
c

+ km+ k, 1− l
c

)

∗

1−
B

(
l
c

+ km+ k, 1− l
c

)
·B
(
x∗; km+ k + 1+l

c
, 1− 1+l

c

)
B

(
x∗; l

c
+ km+ k, 1− l

c

)
·B
(
km+ k + 1+l

c
, 1− 1+l

c

)
 ,



48

for c > 1 + l, 0 < x∗ < ∞. Figure 4.8 shows TCE in terms of Lorenz curve

for different values of parameters.

Bonferroni curve for the WBIII distribution is

B(GWBIII(x)) =

B

(
x∗; km+ k + 1+l

c
, 1− 1+l

c

)
GWBIII(x)B

(
km+ k + 1+l

c
, 1− 1+l

c

) , (4.11)

for c > l + 1, where GWBIII(x) is the weighted BIII cdf. As opposed to

the Lorenz’s singularly convex curve, Bonferroni exhibits both convex and

concave properties which show inequality measures between percentage of

wealth (x-axis) and percentage of population (y-axis) in Figure 4.9.

TCE can be written in terms of Bonferroni curve by:

TCE(x) = µ

[
1−B(G(x))

]

=

sB

(
km+ k + 1+l

c
, 1− 1+l

c

)
B

(
l
c

+ km+ k, 1− l
c

)

∗

1−
B

(
l
c

+ km+ k, 1− l
c

)
·B
(
x∗; km+ k + 1+l

c
, 1− 1+l

c

)
B

(
x∗; l

c
+ km+ k, 1− l

c

)
·B
(
km+ k + 1+l

c
, 1− 1+l

c

)
 ,

for c > 1 + l, 0 < x∗ < ∞. Figure 4.10 shows TCE in terms of Bonferroni

curve for different values of parameters.

Zenga curve for the WBIII distribution is

A(x) = 1−
∫ x

0
tg

WBIII
(t)dt∫∞

x
tg

WBIII
(t)dt

· 1−GWBIII(x)

GWBIII(x)

= 1− L(GWBIII(x))

1− L(GWBIII(x))
· 1−GWBIII(x)

GWBIII(x)
,



49

Figure 4.7: Lorenz curve for different values of parameters.

Figure 4.8: TCE in terms of Lorenz curve for different values of parameters.
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Figure 4.9: Bonferroni curve for different values of parameters.

Figure 4.10: TCE in terms of Bonferroni curve for different values of param-

eters.
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where L(GWBIII(x)) =

B

(
x∗;km+k+ 1+l

c
,1− 1+l

c

)
B

(
km+k+ 1+l

c
,1− 1+l

c

) , and GWBIII(x) is the WBIII

cdf.

4.7 Entropy

In this section, measure of variation of the uncertainty including Renyi and

ε-entropies for the WBIII distribution are presented.

4.7.1 ε-Entropy

The ε-entropy for the WBIII distribution, ε 6= 1, ε > 0, is given by:

Hε(gWBIII
) =

1

ε− 1

[
1−

∫ ∞
0

gε
WBIII

(x; c, k, s, l,m)dx

]

=
1

ε− 1

1−
∫ ∞

0

cεsε(c−l)xε(l−c−1)(1 + (x/s)−c)−ε(km+k+1)

Bε

(
l
c

+ km+ k, 1− l
c

) dx



=
1

ε− 1

1−
∫ 1

0

cεsε(c−l)
(

1−t
sct

)−ε
c

[l−c−1]

tε(km+k+1)(sct)1+ 1
c

csc(1− t)1+ 1
cBε

(
l
c

+ km+ k, 1− l
c

) dt



=
1

ε− 1

1−
cε−1s1−εB

(
εkm+ εk + ε(l−1)

c
+ 1

c
, ε+ ε(1−l)

c
− 1

c

)
Bε

(
l
c

+ km+ k, 1− l
c

)
 .
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4.7.2 Renyi Entropy

Renyi entropy (Renyi (1961)) of a random variable is a measure of variation

of the uncertainty and it is a generalization of Shannon entropy (1948). Renyi

entropy for WBIII distribution is given by:

HR(g
WBIII

) = (1− τ)−1log

∫ ∞
0

gτ
WBIII

(x; c, k, s, l,m)dx

= (1− τ)−1log

c
τ−1s1−τB

(
τkm+ τk + τ(l−1)

c
+ 1

c
, τ + τ(1−l)

c
− 1

c

)
Bτ

(
l
c

+ km+ k, 1− l
c

)
,

for τ > 0, τ 6= 1, c > l.

4.8 Fisher Information Matrix

Let X be an observable random variable that has a vector of unknown pa-

rameters with the WBIII pdf g
WBIII

(x; Θ), where Θ = (θ1, θ2, θ3, θ4, θ5)T =

(c, k, s, l,m)T . If the density g
WBIII

(x; Θ) has second derivative with respect

to Θ and under certain regularity conditions, then Fisher information matrix

(FIM) is the 5× 5 symmetric matrix with elements that are given by:

Iij(Θ) = −EΘ

[
∂2log(g

WBIII
(x; Θ))

∂θi∂θj

]
. (4.12)

Recall the pdf for WBIII distribution with weight function w(x) =

xlFm(x) is given by:

g
WBIII

(x; c, k, s, l,m) =
csc−lxl−c−1(1 + (x/s)−c)−km−k−1

B

(
l
c

+ km+ k, 1− l
c

) , for c > l.
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The logarithm of g
WBIII

(x; c, k, s, l,m) is

log(g
WBIII

(x; c, k, s, l,m)) = log(c) + (c− l)log(s) + (l − c− 1)log(x)

− (km+ k + 1)log(1 + (x/s)−c)

− log[Γ(l/c+ km+ k)]− log[Γ(1− l/c)]

+ log[Γ(km+ k)].

The first, second and mixed partial derivatives for log(g
WBIII

(x)) with

respect to Θ are:

∂log(g
WBIII

(x))

∂c
=

1

c
+ log(s)− log(x)− (km+ k + 1)

scx−clog( s
x
)

(1 + (x/s)−c)

+
l

c2
ψ(l/c+ km+ k)− l

c2
ψ(1− l/c),

∂2log(g
WBIII

(x))

∂c2
=
−1

c2
− (km+ k + 1)

scx−clog( s
x
)2

(1 + (x/s)−c)2
+

2l

c3
ψ(l/c+ km+ k)

− l2

c4
ψ′(l/c+ km+ k) +

2l

c3
ψ(1− l/c) +

l2

c4
ψ′(1− l/c),

∂log(g
WBIII

(x))

∂k
= −(m+1)[ψ(l/c+km+k)+ψ(km+k+1)]−(m+1)log(1+(x/s)−c),

∂2log(g
WBIII

(x))

∂k2
= (m+ 1)2[ψ′(l/c+ km+ k)− ψ′(km+ k + 1)],
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∂log(g
WBIII

(x))

∂s
=

(c− l)
s
− (km+ k + 1)

csc−1x−c

(1 + (x/s)−c)
,

∂2log(g
WBIII

(x))

∂s2
=

(c− l)
s2
−(km+k+1)

[
c(c− 1)sc−2x−c

(1 + (x/s)−c)
− c2s2(c−1)x−2c

(1 + (x/s)−c)2

]
,

∂log(g
WBIII

(x))

∂l
= −log(s) + logx− 1

c
[ψ(l/c+ km+ k) + ψ(1− l/c)],

∂2log(g
WBIII

(x))

∂l2
= − 1

c2
[ψ′(l/c+ km+ k) + ψ′(1− l/c)],

∂log(g
WBIII

(x))

∂m
= −klog(1 + (x/s)−c)− kψ(l/c+ km+ k) + kψ(km+ k+ 1),

∂2log(g
WBIII

(x))

∂m2
= −k2ψ′(l/c+ km+ k) + k2ψ′(km+ k + 1).

Note that ∂θi∂θj = ∂θj∂θi for mixed partial derivatives of log(g
WBIII

(x))

with respect to Θ, so that

∂2log(g
WBIII

(x))

∂c∂k
=
l(m+ 1)

c2
ψ(l/c+ km+ k)− (m+ 1)

scx−clog( s
x
)

(1 + (x/s)−c)
,

∂2log(g
WBIII

(x))

∂s∂c
=

1

s
− (km+ k + 1)

[
csc−1x−clog(s)

(1 + (x/s)−c)2
+
csc−1x−clog(x)

(1 + (x/s)−c)2

− s2c−1x−2c

(1 + (x/s)−c)2
− sc−1x−c

(1 + (x/s)−c)2

]
,
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∂2log(g
WBIII

(x))

∂s∂k
= (m+ 1)

csc−1x−c

(1 + (x/s)−c)
,

∂2log(g
WBIII

(x))

∂l∂c
=

1

c3
ψ′(l/c+ km+ k)− l

c3
ψ′(1− l/c),

∂2log(g
WBIII

(x))

∂l∂k
= −(m+ 1)

c
ψ′(l/c+ km+ k),

∂2log(g
WBIII

(x))

∂l∂s
= −1

s
,

∂2log(g
WBIII

(x))

∂m∂c
= −k

scx−clog( s
x
)

(1 + (x/s)−c)
+
lk

c2
ψ′(l/c+ km+ k),

∂2log(g
WBIII

(x))

∂m∂k
= −k(m+1)[ψ′(l/c+km+k)−ψ′(km+k+1)]−log(1+(x/s)−c),

∂2log(g
WBIII

(x))

∂m∂s
= −k csc−1x−c

(1 + (x/s)−c)
,

and

∂2log(g
WBIII

(x))

∂m∂l
= −k

c
ψ′(l/c+ km+ k).

The entries of FIM for the WBIII distribution are computed with the

assistance of the following expectations, denoted by E1, E2, E3, E4, E5, E6,

E7 and E8.

E1 = E

(
X−c

1 + (X/s)−c

)
=

1

B( l
c

+ km+ k, 1− l
c
)

∫ ∞
0

csc−lxl−2c−1(1 + (x/s)−c)−km−k−2dx.

Let t = (1+(x/s)−c)−1, 0 < t < 1, then dx = (sct)1+
1
c dt

csct2(1−t)1+
1
c
, and x =

(
1−t
sct

)−1
c

.
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Now,

E1 =
1

B( l
c

+ km+ k, 1− l
c
)

∫ 1

0

csc−l
(

1−t
sct

)−1
c

[l−c−1]

tkm+k−1(sct)1+ 1
c

csc(1− t)1+ 1
c

dt

=

s−2cB

(
l
c

+ km+ k, 2− l
c

)
B

(
l
c

+ km+ k, 1− l
c

) .

Similarly,

E2 = E

(
X−c

(1 + (X/s)−c)2

)
=

s−2cB

(
l
c

+ km+ k, 2− l
c

)
B

(
l
c

+ km+ k + 1, 1− l
c

) ,
and

E3 = E

(
X−2c

(1 + (X/s)−c)2

)
=

s−3cB

(
l
c

+ km+ k, 2− l
c

)
B

(
l
c

+ km+ k + 1, 3− l
c

) .
Also,

E4 = E

(
X−clog(X)

1 + (X/s)−c

)
=

1

B( l
c

+ km+ k, 1− l
c
)

∫ ∞
0

csc−lxl−2c−1log(x)(1 + (x/s)−c)−km−k−2dx.

Let t = (1 + (x/s)−c)−1, 0 < t < 1, then x =

(
1−t
sct

)−1
c

, and log(x) =
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−1
c
[log(1− t)− log(sc)− log(t)]. Now,

E4 =
1

B( l
c

+ km+ k, 1− l
c
)

∫ 1

0

csc−l
(

1−t
sct

)−1
c

[l−c−1]

tkm+k−1(sct)1+ 1
c

csc(1− t)1+ 1
c

∗ [log(t) + log(sc)− log(1− t)]dt

=
s−2c

cB

(
l
c

+ km+ k, 1− l
c

)[∫ 1

0

(1− t)1− l
c t

l
c
+km+k−1log(t)dt

+ log(sc)

∫ 1

0

(1− t)1− l
c t

l
c
+km+k−1dt−

∫ 1

0

(1− t)1− l
c t

l
c
+km+k−1log(1− t)dt

]

=

s−2cB

(
l/c+ km+ k, 2− l/c

)
cB

(
l
c

+ km+ k, 1− l
c

) [
ψ(l/c+ km+ k) + log(sc)− ψ(2− l/c)

]
.

Similarly,

E5 = E

(
X−2clog(X)

(1 + (X/s)−c)2

)

=

s−3cB

(
l
c

+ km+ k, 3− l
c

)
cB

(
l
c

+ km+ k, 1− l
c

) [
ψ(l/c+ km+ k) + log(sc)− ψ(3− l/c)

]
,

and

E6 = E

(
X−clog(X)

(1 + (X/s)−c)2

)

=

s−2cB

(
l
c

+ km+ k + 1, 2− l
c

)
cB

(
l
c

+ km+ k, 1− l
c

)
∗
[
ψ(l/c+ km+ k + 1) + log(sc)− ψ(3− l/c)

]
.
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In addition,

E7 = E

(
log(X)

)
=

1

B( l
c

+ km+ k, 1− l
c
)

∫ ∞
0

csc−lxl−c−1log(x)(1 + (x/s)−c)−km−k−1dx.

Let t = (1 + (x/s)−c)−1, 0 < t < 1, then x =

(
1−t
sct

)−1
c

,

and log(x) = −1
c
[log(1− t)− log(sc)− log(t)]. Now,

E7 =
1

B( l
c

+ km+ k, 1− l
c
)

∫ 1

0

csc−l
(

1−t
sct

)−1
c

[l−c−1]

tkm+k−1(sct)1+ 1
c

csc(1− t)1+ 1
c

∗ [log(t) + log(sc)− log(1− t)]dt

=
1

cB

(
l
c

+ km+ k, 1− l
c

)[∫ 1

0

(1− t)1− l
c t

l
c
+km+k−1log(t)dt

+ log(sc)

∫ 1

0

(1− t)1− l
c t

l
c
+km+k−1dt−

∫ 1

0

(1− t)1− l
c t

l
c
+km+k−1log(1− t)dt

]
=

1

c

[
ψ(l/c+ km+ k) + log(sc)− ψ(2− l/c)

]
.

Similarly,

E8 = E

(
log(1 + (X/s)−c)

)
=

[
ψ′(km+ k + 1)− ψ(l/c+ km+ k)

]
.

FIM for WBIII distribution, using E1 to E8 is given by:

I(c, k, s, l,m) =



Icc Ikc Isc Ilc Imc

Ick Ikk Isk Ilk Imk

Ics Iks Iss Ils Ims

Icl Ikl Isl Ill Iml

Icm Ikm Ism Ilm Imm


,
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where

Icc =
1

c2
+ 2(km+ k + 1)sclog(s)E2 − 2(km+ k + 1)scE6 +

2l

c3
ψ(l/c+ km+ k)

+
l2

c4
ψ′(l/c+ km+ k)− 2l

c3
ψ(1− l/c)− l2

c4
ψ′(1− l/c),

Ikk = −(m+ 1)2[ψ′(l/c+ km+ k)− ψ′(km+ k + 1)],

Iss = −(c− l)
s2

− (km+ k + 1)

[
c(c− 1)sc−2E2 − c2s2(c−1)E5

]
,

Ill =
1

c2
[ψ′(l/c+ km+ k) + ψ′(1− l/c)],

Imm = k2ψ′(l/c+ km+ k)− k2ψ′(km+ k + 1),

Ick = − l(m+ 1)

c2
ψ(l/c+ km+ k) + (m+ 1)sclog(s)E1 − scE4,

Ics = −1

s
+ (km+ k + 1)

[
csc−1log(s)E2 + csc−1E6 − s2c−1E3 − sc−1E2

]
,

Icl = − 1

c3
ψ′(l/c+ km+ k) +

l

c3
ψ′(1− l/c),

Icm = ksclog(s)E1 − scE4 −
lk

c2
ψ′(l/c+ km+ k),
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Iks = −(m+ 1)csc−1E1, Ikl =
(m+ 1)

c
ψ′(l/c+ km+ k),

Ikm = k(m+ 1)[ψ′(l/c+ km+ k) + ψ′(km+ k + 1)] + E8,

Isl =
1

s
, Ism = kcsc−1E1,

and

Ilm =
k

c
ψ′(l/c+ km+ k).

4.9 Maximum Likelihood Estimation

In this section, we obtain the maximum likelihood estimates (MLE) of the

parameters of the WBIII distribution. Let x1, x2, ....., xn be a random sample

from a WBIII distribution, then the likelihood function of WBIII is given by:

L(x1, x2, ..., xn; c, k, s, l,m) =
n∏
i=1

(g
WBIII

(x; c, k, s, l,m))

=
n∏
i=1

csc−lxil−c−1(1 + (xi/s)
−c)−km−k−1

B

(
l
c

+ km+ k, 1− l
c

)
 .

The log likelihood function

log(L(x1, x2, ..., xn; c, k, s, l,m)) = L∗(x1, x2, ..., xn; c, k, s, l,m)
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is given by:

L∗(x1, x2, ..., xn; c, k, s, l,m) = nln(c) + n(c− l)ln(s) + (l − c− 1)
n∑
i=0

ln(xi)

− (km+ k + 1)
n∑
i=0

ln(1 + (xi/s)
−c)

− nln[Γ(l/c+ km+ k)]− nln[Γ(1− l/c)]

+ nln[Γ(km+ k)].

The partial derivatives of L∗(x1, x2, ..., xn; c, k, s, l,m) with respect to c, k, s,

l and m are

∂L∗

∂k
= n(m+1)[ψ(l/c+km+k)+ψ(km+k+1)]−(m+1)

n∑
i=0

ln(1+(xi/s)
−c),

∂L∗

∂s
=
n(c− l)

s
− (km+ k + 1)

cxi
−csc−1

(1 + (xi/s)−c)
,

∂L∗

∂c
=

n

c
+ nln(s)−

n∑
i=0

ln(xi)− (km+ k + 1)
n∑
i=0

xi
−cscln( s

xi
)

(1 + (xi/s)−c)

+
nl

c2
ψ(l/c+ km+ k)−

nl
c2

Γ(1− l/c)
,

∂L∗

∂l
= −nln(s) +

n∑
i=0

lnxi −
n

c
[ψ(l/c+ km+ k) + ψ(1− l/c)],

and

∂L∗

∂m
= −k

n∑
i=0

ln(1 + (xi/s)
−c)− nkψ(l/c+ km+ k) + nkψ(km+ k + 1).

Equating ∂L∗

∂k
, ∂L∗

∂s
, ∂L∗

∂c
, ∂L∗

∂l
, ∂L∗

∂m
all to zero, and solving them leads to

the MLE of the parameters c,k, s, l and m, say ĉn, k̂n,ŝn,l̂n, and m̂n. There
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is no closed form solution to these equations, so in this case a numerical

technique must be applied to obtain the solution.

The approximate 100(1−α)% two-sided confidence intervals for c, k, s,

l and m are given by: ĉ ± Zα
2

√
I−1
cc (Θ̂), k̂ ± Zα

2

√
I−1
kk (Θ̂), ŝ ± Zα

2

√
I−1
ss (Θ̂),

l̂ ± Zα
2

√
I−1
ll (Θ̂) and m̂ ± Zα

2

√
I−1
mm(Θ̂), respectively, where Zα

2
is the (α

2
)th

percentile of a standard normal distribution. Note that we can obtain the

FIM of the WBIII distribution with other weight functions. For example, by

setting k = 0, we get the FIM for WBIII distribution with weight function

w(x) = xl.

We can use the likelihood ratio (LR) test to compare the fit of the

WBIII distribution with its sub-models. Specifically, to test l = m = 0, the

LR statistic is w = 2[ln(ĉ, k̂, ŝ, l̂, m̂)− ln(c̃, k̃, s̃, 0, 0)], where ĉ, k̂, ŝ, l̂ and m̂

are the unrestricted MLEs and c̃, k̃ and s̃ are the restricted estimates. The

LR statistic is asymptotically distributed under the null model as χd
2 and

rejects the null hypothesis if w > χd
2, where χd

2 denotes the upper 100d%

of the χ2 with 2 degrees of freedom.

4.10 Concluding Remarks

This chapter includes some computations, here are the main results for WBIII

distribution:
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• Hazard and reverse hazard functions are given by:

h
WBIII

(x; c, k, s, l,m) =
g
WBIII

(x; c, k, s, l,m)

ḠWBIII(x; c, k, s, l,m)

=
csc−lxl−c−1(1 + (x/s)−c)−km−k−1

B

(
l
c

+ km+ k, 1− l
c

)
−B

(
x∗; l

c
+ km+ k, 1− l

c

) ,
and

τ
WBIII

(x; c, k, s, l,m) =
g
WBIII

(x; c, k, s, l,m)

GWBIII(x; c, k, s, l,m)

=
csc−lxl−c−1(1 + (x/s)−c)−km−k−1

B

(
x∗; l

c
+ km+ k, 1− l

c

) ,

for c > l, respectively.

• The ith moment is given by:

E(X i) =

siB

(
km+ k + i+l

c
, 1− i+l

c

)
B

(
l
c

+ km+ k, 1− l
c

) , for c > l.

• Lorenz and Bonferroni curves are given by:

L(GWBIII(x)) =

B

(
x∗; km+ k + 1+l

c
, 1− 1+l

c

)
B

(
km+ k + 1+l

c
, 1− 1+l

c

) ,

and

B(GWBIII(x)) =

B

(
x∗; km+ k + 1+l

c
, 1− 1+l

c

)
GWBIII(x)B

(
km+ k + 1+l

c
, 1− 1+l

c

) ,
for c > l + 1, respectively.
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• Entropy

ε-entropy is given by:

Hε(gWBIII
) =

1

ε− 1

1−
cε−1s1−εB

(
εkm+ εk + ε(l−1)

c
+ 1

c
, ε+ ε(1−l)

c
− 1

c

)
Bε

(
l
c

+ km+ k, 1− l
c

)
 ,

ε 6= 1, ε > 0, c > l. Renyi entropy for WBIII distribution is given by:

HR(g
WBIII

) = (1−τ)−1log

c
τ−1s1−τB

(
τkm+ τk + τ(l−1)

c
+ 1

c
, τ + τ(1−l)

c
− 1

c

)
Bτ

(
l
c

+ km+ k, 1− l
c

)
,

for τ > 0, τ 6= 1, c > l.

• Maximum Likelihood Estimation

∂L∗

∂k
= n(m+1)[ψ(l/c+km+k)+ψ(km+k+1)]−(m+1)

n∑
i=0

ln(1+(xi/s)
−c),

∂L∗

∂s
=
n(c− l)

s
− (km+ k + 1)

cxi
−csc−1

(1 + (xi/s)−c)
,

∂L∗

∂c
=

n

c
+ nln(s)−

n∑
i=0

ln(xi)− (km+ k + 1)
n∑
i=0

xi
−cscln( s

xi
)

(1 + (xi/s)−c)

+
nl

c2
ψ(l/c+ km+ k)−

nl
c2

Γ(1− l/c)
,

∂L∗

∂l
= −nln(s) +

n∑
i=0

lnxi −
n

c
[ψ(l/c+ km+ k) + ψ(1− l/c)],

and

∂L∗

∂m
= −k

n∑
i=0

ln(1+(xi/s)
−c)−nkψ(l/c+km+k)+nkψ(km+k+1).

There is no closed form solution to these equations, so in this case a

numerical technique must be applied to obtain the solution.



CHAPTER 5

APPLICATIONS OF WEIGHTED BURR-TYPE III AND

RELATED DISTRIBUTIONS

5.1 Introduction

In this chapter, we present applications and examples involving the class

of weighted BurrIII distribution, which are flexible parametric models with

applications in reliability, actuarial science, economics, finance and telecom-

munications.

5.2 Applications

In this section, applications based on real data, as well as comparisons of

the WBIII distribution with its sub-models are given. The MLE of the

model parameters are computed by maximizing the objective function via

the subroutine NLMIXED in SAS. The estimated values of the parameters

(standard error in parenthesis), -2log-likelihood statistic, Akaike information

criterion (AIC = 2p − 2ln(L)) and Bayesian information criterion (BIC =

pln(n)−2ln(L)), where L = L(Θ̂) is the value of likelihood function evaluated

at the parameter estimates, p is the number of estimated parameters and n

is the number of observations are tabulated.

Recall the cdf and pdf for BurrIII distribution (BIII) are given by:

FBIII(x) = (1 + (x/s)−c)−k,
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and

fBIII(x) = ckscx−c−1(1 + (x/s)−c)−k−1,

for x > 0, and c, k, s > 0, respectively. The weighted Burr-III (WBIII) pdf

and cdf with weight function w(x) = xlFm(x) are given by:

g
WBIII

(x; c, k, s, l,m) =
csc−lxl−c−1(1 + (x/s)−c)−km−k−1

B

(
l
c

+ km+ k, 1− l
c

) ,

GWBIII(x; c, k, s, l,m) =

B

(
x∗; l

c
+ km+ k, 1− l

c

)
B

(
l
c

+ km+ k, 1− l
c

) ,

respectively, where x∗ = (1 + (x/s)−c)−1, and B(x∗;a,b)
B(a,b)

is an incomplete beta

function ratio.

The first data set is given in Table 5.3 with n = 51 observations is on

the strengths of 1.5 cm glass fibers. This data set was given in Smith and

Naylor (1987) and Cordeiro and Lemonte (2011). The data was obtained

from the National Physical Laboratory in England. The LR test statistic

of the hypothesis H0 : WBIII(c, k, 1, 0.5, 0) vs Ha : WBIII(c, k, s, 0.5, 0)

is w = 36.3, (p − value = 1.692 × 10−9). We reject the null hypothesis

in favor of WBIII(c, k, s, 0.5, 0) distribution, see fitted densities in Figure

5.1. The second data set is uncensored data on breaking stress of carbon

fiber (GPa) with n = 66, (Nichols and Padgett (2006)) is given in the Ta-

ble 5.4. The LR test statistic of the hypothesis H0 : WBIII(c, k, 1, 0.5, 0)

vs Ha : WBIII(c, k, s, 0.5, 0) for this data set is w = 54.5, (p − value =
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1.55×10−13). We reject the null hypothesis in favor of WBIII(c, k, s, 0.5, 0).

The LR test statistic of the hypothesis H0 : WBIII(c, 1, s, 0, 0) vs Ha :

WBIII(c, k, s, 0, 0) is w = 13.4, (p − value = 2.516 × 10−4 < 0.001). We

reject the null hypothesis in favor of WBIII(c, k, s, 0, 0) distribution. Based

on LR statistic in Tables 5.1 and 5.2, there is no different between the first

five models, while the last model with s=1 is a poor fit. The values of

the statistics (AIC and BIC) are smaller for the WBIII(c, k, s, 0, 0) distri-

bution compared to WBIII(c, 1, s, 0, 0) and WBIII(c, k, 1, 0.5, 0) distribu-

tions. The model WBIII(c, 1, s, 0, 0) is a better fit compared to the model

WBIII(c, k, 1, 0.5, 0) based on the values of the statistic in Table 5.2, (see

fitted densities in Figure 5.2).

Parameters Statistic

Models c k s l m -2lnL AIC BIC

WBIII(c, k, s, 0, 0) 18.5157 0.2479 1.7013 0 0 20.6 26.6 32.4

(4.3019) (0.07370) (0.04599)

WBIII(c, k, s, 1, 1) 19.1232 0.09383 1.6955 1 1 20.4 26.4 32.2

(4.3590) (0.03058) (0.04591)

WBIII(c, k, s, 1, 0) 19.1232 0.1877 1.6955 1 0 20.4 26.4 32.2

(4.3125) (0.06034) (0.04572)

WBIII(c, k, s, 0, 1) 18.5157 0.1240 1.7013 0 1 20.6 26.6 32.4

(4.3048) (0.03689) (0.04600)

WBIII(c, k, s, 0.5, 0) 18.8165 0.2173 1.6984 0.5 0 20.5 26.5 32.3

(4.2892) (0.06678) (0.04591)

WBIII(c, k, 1, 0.5, 0) 4.4626 2.6358 1 0.5 0 56.8 60.8 64.7

(0.3946) (0.3860)

Table 5.1: MLEs of Weighted BIII and related distributions for glass fibers

data.
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Parameters Statistic

Models c k s l m -2lnL AIC BIC

WBIII(c, k, s, 0, 0) 10.1895 0.2820 3.5112 0 0 169.9 175.9 182.4

(2.2944) (0.08906) (0.1865)

WBIII(c, k, s, 1, 1) 10.7878 0.08646 3.4753 1 1 169.8 175.8 182.3

(2.3171) (0.03223) (0.1888)

WBIII(c, k, s, 1, 0) 10.7878 0.1729 3.4753 1 0 169.8 175.8 182.3

(2.3789) (0.06585) (0.1914)

WBIII(c, k, s, 0, 1) 10.1895 0.1410 3.5112 0 1 169.9 175.9 182.4

(2.3004) (0.04469) (0.1869)

WBIII(c, k, s, 0.5, 0) 10.4824 0.2261 3.4927 0.5 0 169.8 175.8 182.4

(2.1479) (0.07142) (0.1817)

WBIII(c, 1, s, 0, 0) 4.8958 1 2.7109 0 0 183.3 187.3 191.7

(0.5137) (0.1161)

WBIII(c, k, 1, 0.5, 0) 2.4884 5.0428 1 0.5 0 224.3 228.3 232.7

(0.1521) (0.4069)

Table 5.2: MLEs of Weighted BIII and related distributions for carbon fiber

data (GPa).

Figure 5.1: Estimated densities of the models for glass fibers data.
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Figure 5.2: Estimated densities of the models for carbon fiber data (GPa).

0.55 0.74 0.77 0.81 0.84 0.93 1.04 1.11 1.13

1.24 1.25 1.27 1.28 1.29 1.30 1.36 1.39 1.42

1.48 1.48 1.49 1.49 1.50 1.50 1.51 1.52 1.53

1.54 1.55 1.55 1.58 1.59 1.60 1.61 1.61 1.61

1.61 1.62 1.62 1.63 1.64 1.66 1.66 1.66 1.67

1.68 1.68 1.69 2.00 2.01 2.24

Table 5.3: Glass fibers data

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47

3.11 3.56 4.42 2.41 3.19 3.22 1.69 3.28 3.09

1.87 3.15 4.90 1.57 2.67 2.93 3.22 3.39 2.81

4.20 3.33 2.55 3.31 3.31 2.85 1.25 4.38 1.84

0.39 3.68 2.48 0.85 1.61 2.79 4.70 2.03 1.89

2.88 2.82 2.05 3.65 3.75 2.43 2.95 2.97 3.39

2.96 2.35 2.55 2.59 2.03 1.61 2.12 3.15 1.08

2.56 1.80 2.53

Table 5.4: Data set of breaking stress of carbon fiber data (GPa)
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5.3 Concluding Remarks

Applications and numerical examples on the estimation and fit of the WBIII

distribution to real data are used to illustrate the usefulness of the developed

model.

5.4 Future Research

In the future, we hope to study further generalizations of Burr-Type dis-

tributions and obtain parameter estimates from the Bayesian perspective.

McDonald generalizations of the weighted BurrIII and BurrXII distributions

will be considered, including income inequality and entropy measures for

these models.
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